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ABSTRACT

In previous work, we established necessary and sufficient condi-
tions on pilot/data patterns that minimize the mean-squared error
of pilot-aided channel estimates, given a pilot power constraint and
a general linear time-varying channel model. Here we deriveupper
and lower bounds on the ergodic channel capacity of these MSE-
optimal pilot-aided transmission (PAT) schemes. These bounds
may be used to allocate power between pilot and data, as well as to
choose among MSE-optimal pilot/data patterns. For example, the
bounds show that frequency-domain PAT achieves higher capac-
ity than time-domain PAT, or vice-versa, depending on the relative
time- and frequency-dispersion of the channel.

1. INTRODUCTION

The wireless communication channel is typically modeled aslin-
ear transformation and parameterized by a set of time-varying co-
efficients. Coherent receivers estimate these channel coefficients
for subsequent use in data detection. In pilot aided transmission
(PAT), a known signal is embedded in the transmitted stream to
facilitate channel estimation.

As noted in the recent overview [1], capacity-optimal PAT
designs have thus far proven elusive. A considerable amountof
work has been devoted to the simpler problem of MSE-optimal
pilot pattern design, however (e.g., [2–7]). Furthermore,several
authors have observed connections between the MSE-optimaland
capacity-optimal criteria. For example, an information-theoretic
analysis of imperfect channel knowledge appeared in [8]. More
recently, PAT designs that maximize a lower bound on ergodicca-
pacity were studied for MIMO flat-fading [9], frequency-selective
[10–12], and doubly-selective [4] channels.

In [7], necessary and sufficient conditions on MSE-optimal pi-
lot/data patterns were specified for a general class of linear time-
varying channels. Here we present a capacity analysis of these
MSE-optimal PAT schemes for the doubly-selective channel case.
The work [4], while similar in its intent, considers only non-super-
imposed pilots, thereby omitting important instances of MSE-
optimal pilot/data patterns. Our more general analysis provides
insight into the advantages and disadvantages of differentMSE-
optimal PAT schemes. Specifically, we find that the channel’s
spreading characteristics imply relative advantages for time-domain
versus frequency-domain PAT schemes. Numerical results confirm
the theoretical analysis.

This paper is organized as follows. We present the system
model in Section 2 and review MSE-optimal PAT in Section 3. We
present a capacity analysis in Section 4 and conclude in Section 5.
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2. SYSTEM MODEL

We consider block linear modulation over doubly selective chan-
nels, where a basis expansion model (BEM) is used to characterize
channel variation over the block.

2.1. Cyclic-Prefix Block Transmission Model

The output signal{y(n)} is related to the transmit signal{t(n)}
via

y(n) =

Nt−1
X

`=0

h(n, `)t(n − `) + v(n), (1)

where{v(n)} is σ2
v-variance CWGN and{h(n, `)} is the time-n

channel response to an impulse applied at timen−`. Here,Nt de-
notes the channel’s time spread normalized to the symbol duration.
The length-N block transmission{t(n)}N−1

n=0 includes a cyclic
prefix (CP) of lengthNt − 1. With largeN , the CP overhead be-
comes insignificant. The received vectory := [y(0), . . . , y(N −
1)]t is formed after discarding the CP contribution. Defining

T := [T 0 · · ·T −Nt+1]

T −i := diag(t(−i), ..., t(−i + N − 1))

h := [ht
0 · · ·ht

Nt−1]
t

hi := [h(0, i), . . . , h(N − 1, i)]t

v := [v(0), . . . , v(N − 1)]t,

we obtain

y = T h + v. (2)

The transmit signal is constructed ast(i) = s(i)+x(i), where
{s(i)} is the pilot sequence and{x(i)} is the zero-mean data se-
quence. Note the superposition of pilots and data. The pilotpower
is constrained as follows.

1

N

N−1
X

n=0

|s(n)|2 ≤ σ2
s . (3)

ConstructingS andX in the manner ofT , we findT = S + X .
Definings := [s(0), . . . , s(N−1)]t, x := [x(0), . . . , x(N−

1)]t and anN ×N matrix [H ]n,m = h(n, 〈n − m〉n), the input-
output relation (2) can be rewritten as

y = Hs + Hx + v. (4)

Equation (2) will be convenient for MSE-optimal pattern design
and (4) for capacity analysis.



2.2. Doubly-Selective Channel Model

The following BEM [4] describes the channel response over the
block duration. Forn ∈ {0, . . . , N −1} and` ∈ {0, . . . , Nt−1},

h(n, `) = N−
1
2

(Nf−1)/2
X

k=−(Nf−1)/2

λ(k, `)ej 2π
N

kn, (5)

where{λ(k, `)} are zero-mean i.i.d. Gaussian with varianceN
Nf Nt

.
The model (5) approximates wide-sense stationary uncorrelated
scattering (WSSUS) with uniform PSD

Shh(f) =

 1
2NtfdTs

, |f | < fdTs,

0, |f | ≥ fdTs,
(6)

wherefdTs denotes the one-sided Doppler spread normalized to
the symbol rate. The quantityNf := d2fdTsNe + 1 will be
referred to as the channel’s “frequency spread” and, for simplic-
ity, assumed to be an odd integer. The quantityγ := 2fdTsNt

will be referred to as the channel’s “spreading index.” Notethat
γ ≈ NtNf/N . We assume an underspread channel, for which
γ < 1.

Denoting theN -point unitary DFT matrix asF N , we define

F̄ := F ∗
N (:,−Nf−1

2
:

Nf−1

2
)

h` := [h(0, `), . . . , h(N − 1, `)]t

λ` := [λ(−Nf−1

2
, `), . . . , λ(

Nf−1

2
, `)]t,

where modulo-N indexing is assumed. Notice that̄F
H

F̄ = INf
.

With these definitions, (5) becomesh` = F̄ λ`. If we define

U := INt ⊗ F̄

h := [ht
0 · · · h

t
Nt−1]

t

λ := [λt
0 · · · λ

t
Nt−1]

t,

then

h = Uλ (7)

with UHU = INf Nt andRλ := E{λλH} = N
Nf Nt

INf Nt .

3. MSE OPTIMAL PILOT/DATA PATTERNS

In this section, we review results from [7] on MSE-optimal pi-
lot/data pattern design, including necessary/sufficient conditions
and design examples.

3.1. MSE-Optimality Conditions

For the model of Section 2, (8)-(9) provide necessary and sufficient
conditions on the pilot/data pattern such that the MSE incurred in
Wiener estimation ofh, giveny ands, is minimal [7].

∀X , (SU )H
XU = 0. (8)

(SU )H
SU = σ2

sINf Nt . (9)

Condition (8) says that the transmit signal should be constructed
so that the pilot and data subspaces remain orthogonal at thechan-
nel output. Condition (9) says that pilot signal should be con-
structed so that the channel modes are independently excited with

equal power. Let̂h(n, `) denote the Wiener estimate ofh(n, `) and
h̃(n, `) := h(n, `) − ĥ(n, `) denote the estimation error. When
(8) and (9) are satisfied, the variancesσ2

h̃
:= E{|h̃(n, `)|2} and

σ2
ĥ

:= E{|ĥ(n, `)|2} are given by

σ2
h̃ =

Nf

N
(
NfNt

N
+

σ2
s

σ2
v

)−1, (10)

σ2
ĥ =

1

Nt
− Nf

N
(
NfNt

N
+

σ2
s

σ2
v

)−1 (11)

for n ∈ {0, · · · , N − 1}, ` ∈ {0, · · · , Nt − 1}.
The conditions (8)-(9) can be rewritten in terms of{s(i)} and

{x(i)} using the index setsNt := {−Nt + 1, ..., Nt − 1} and
Nf := {−Nf + 1, ..., Nf − 1}.

Lemma 1 ( [7]) For N -block CP transmission over the doubly
selective channel (5), the necessary and sufficient conditions for
MSE-optimal PAT can be written as follows.∀k ∈ Nt, ∀m ∈ Nf ,

1

N

N−1
X

i=0

s(i)s∗(i − k)e−j 2π
N

mi = σ2
sδ(k)δ(m) (12)

N−1
X

i=0

x(i)s∗(i − k)e−j 2π
N

mi = 0. (13)

Given a pilot pattern that satisfies (12), data patterns thatsat-
isfy (13) can be constructed as follows. Defining

W k := F N (−Nf + 1 : Nf − 1, :)SH
k

W := [W t
−Nt+1 · · ·W t

Nt−1]
t.

condition (13) becomesW x = 0, implying that data must be
transmitted in the nullspace ofW . Thus, we structure the data as

x = Bd, (14)

where the columns ofB ∈ C
N×Nd form an orthonormal basis

for null(W ) and whered containsNd := dim(null(W )) data
symbols.

The data dimensionNd can be bounded as follows. Note
from (8) that theNfNt rows of (SU )H are contained within
the (2Nf − 1)(2Nt − 1) rows of W . In order to satisfy (9),
those rows must be orthogonal. Thus,NfNt ≤ rank(W ) ≤
(2Nf − 1)(2Nt − 1), which means that MSE-optimality implies

N − (2Nf − 1)(2Nt − 1) ≤ Nd ≤ N − NfNt.

3.2. Examples of MSE-Optimal Pilot/Data Patterns

Example MSE-optimal pilot/data patterns from [7] are givenbelow
in terms of their(s, B) parameterization, wheres specifies the
pilot sequence andB the data basis.

Example 1 (SCCP) AssumingN
Nf

∈ Z, define the pilot index set

P(i)

t and the guard index setG(i)

t :

P(i)

t := {i, i + N
Nf

, ..., i +
(Nf−1)N

Nf
} (15)

G(i)

t :=
[

k∈P
(i)
t

{−Nt + 1 + k, ..., Nt − 1 + k}. (16)



An MSE-optimal PAT scheme is given by

s(q) =

(

σs

q

N
Nf

ejθ(q) q ∈ P(i)

t

0 q /∈ P(i)

t

(17)

and byB constructed from the columns ofIN with indices in the
set{0, . . . , N−1}\G(i)

t . Bothi ∈ {0, . . . , N
Nf

−1} andθ(q) ∈ R

are arbitrary. Here,Nd = N − Nf (2Nt − 1).

Example 2 (CP-OFDM) AssumingN
Nt

∈ Z, define the pilot in-

dex setP(i)

f and the guard index setG(i)

f :

P(i)

f := {i, i + N
Nt

, ..., i + (Nt−1)N
Nt

} (18)

G(i)

f :=
[

k∈P
(i)
f

{−Nf + 1 + k, ..., Nf − 1 + k} (19)

An MSE-optimal PAT scheme is given bys = F H
Nsf with

sf (q) =

(

σs

q

N
Nt

ejθ(q) q ∈ P(i)

f

0 q /∈ P(i)

f

(20)

andB constructed from the columns of the IDFT matrixF H
N with

indices in the set{0, . . . , N −1}\G(i)

f . Bothi ∈ {0, . . . , N
Nt

−1}
andθ(q) ∈ R are arbitrary. Here,Nd = N − Nt(2Nf − 1).

Example 3 (Chirps) Assuming evenN , an MSE- optimal PAT
scheme is given by

s(q) = σse
j 2π

N

Nf
2

q2

(21)

[B]q,p =
1√
N

ej 2π
N

(p+Nf Nt)qej 2π
N

Nf
2

q2

, (22)

for q ∈ {0, . . . , N − 1} andp ∈ {0, . . . , Nd − 1}. Here,Nd =
N − 2Nf Nt + 1.

Example 1 corresponds to a single carrier cyclic prefix (SCCP)
system with uniformly spaced Kronecker-delta (KD) pilot bursts.
This system was analyzed in [4]. Example 2 corresponds to a CP-
OFDM system with uniformly spaced KD pilot tones. Example 3
corresponds to a cylic prefixed “chirp signaling” scheme.

Note that the three MSE-optimal examples above differ in their
data subspace dimensionNd. Intuitively, a largerNd should lead
to a higher data rate. Notice that, among the three examples above,
CP-OFDM yields the largestNd whenNt > Nf , while SCCP
yields the largestNd whenNf > Nt. The capacity analysis in the
sequel explores these issues further.

4. CAPACITY ANALYSIS

Here we present bounds on the ergodic capacity of MSE-optimal
PAT for the system of Section 2. A pilot/data power allocation
scheme based on maximization of the capacity lower bound is also
presented. The three example schemes in Section 3.2 are then
compared using these bounds. We find that SCCP dominates when
the channel is primarily frequency-spreading, while CP-OFDM
dominates when the channel is primarily time-spreading.

4.1. Capacity Bounds

Let (s, B) denote an MSE-optimal system with pilot powerσ2
s as

in (3). Combining (4) with (14), the observation becomes

y = Hs + HBd + v. (23)

In the sequel, we impose the data power constraint

1

N

N−1
X

n=0

E{|x(n)|2} =
1

N

Nd−1
X

n=0

E{|d(n)|2} ≤ σ2
d. (24)

In addition, we assume that the channel fading coefficientsλ are
Gaussian and fade independently from block to block.

Lemma 2 For the MMSE PAT system(s, B) with i.i.d. Gaussian
symbolsd ∈ C

Nd , the ergodic capacityCmse obeysCmse-lb ≤
Cmse ≤ Cmse-ub, where

Cmse-lb :=
1

N
E{log det[I + ρlB

H
H

H
HB]} (25)

Cmse-ub :=
1

N
E{log det[I + ρuB

H
H

H
HB]} (26)

ρl :=
Nσ2

d

Ndσ2
v

0

@

Nσ2
s

Nf Nt

Nσ2
d

Nd
+

Nσ2
s

Nf Nt
+ σ2

v

1

A (27)

ρu :=
Nσ2

d

Ndσ2
v

(28)

A proof is given in [13]. In brief, the lower bound (25) de-
scribes the “worst case” scenario, where channel estimation er-
ror acts as AWGN. This concept was previously used in [8] and
[9]. The upper bound (26) describes the “best case” scenarioof
perfect channel estimates. Recalling (3) and (24), the quantities
Nσ2

s/(NfNt) andNσ2
d/Nd can be interpreted as the average pi-

lot and data energy peressentialpilot and data subspace dimen-
sion, respectively. In (25) and (26), we ignore the overheaddue to
the prefix portion, in consistent with [12].

While a lower bound on the channel capacity for a subcase of
Example 1 was presented in [4], the bounds here apply more gen-
erally to any MSE-optimal PAT scheme with pilot powerσ2

s and
data powerσ2

d over the doubly selective channel of Section 2.2.
For reference, we consider the “ideal system” with perfect re-

ceiver channel state information (CSI) and transmitted power con-
straintσ2

t . In this ideal setting, there is no need to transmit pilots.
For i.i.d. Gaussian data, the ergodic capacity is [14]

Cideal =
1

N
E{log det[I + ρiH

H
H ]} (29)

ρi :=
σ2

t

σ2
v

. (30)

Several factors contribute to the difference betweenCideal and
Cmse. First, the PAT system suffers from channel estimation error,
which contributes a form of interference that degradesCmse. In
comparingCideal to Cmse-ub, we remove the effect of channel es-
timation error. Note, from (28) and (30), thatρu andρi describe
the effective SNRwithin the data subspacesof PAT and the ideal
system, respectively. In this sense,ρu andρi are equivalent. The
primary difference betweenCideal andCmse-ub, then, is a result of
the fact that MMSE PAT uses onlyNd out of N total dimensions
for data transmission. AsNfNt increases, so does the difference
betweenNd andN , widening the gap betweenCideal andCmse-ub,
and hence betweenCideal andCmse.



4.2. Pilot/Data Power Allocation

Section 3 described MSE-optimal pilot and data patterns that as-
sume a fixed allocation of pilot powerσ2

s . Here we consider the
problem of allocating a fixed transmit powerσ2

t = σ2
s + σ2

d be-
tween pilots and data. Notice the inherent tradeoff. Allocating
more power to pilots results in less channel estimation error but
also results in less data power, which in turn increases the sen-
sitivity to noise and estimation error. Roughly speaking, power
should be allocated to maximize theeffectiveSNR. We approach
this problem through the maximization ofCmse-lb.

Let α ∈ [0, 1] denote the fraction of power allocated to the
data symbols, i.e.,σ2

d = ασ2
t andσ2

s = (1 − α)σ2
t . We are in-

terested in findingα? := arg maxα Cmse-lb(α). Becauseα affects
Cmse-lb only through the termρl, and becauseCmse-lb is strictly in-
creasing inρl, it suffices to maximizeρl w.r.t.α. The value ofα? is
readily obtained by finding the value ofα which sets∂ρl/∂α = 0:

α? =

(

b
a
−

q

( b
a
)2 − b

a
if a 6= 0

1
2

if a = 0
(31)

a :=
Nσ2

t

NfNt
− Nσ2

t

Nd
, b :=

Nσ2
t

NfNt
+ σ2

v (32)

It can be verified thatα? ∈ [0, 1].
According to (31) and (32), whenNfNt = Nd, power should

be allocated equally to pilots and data. It is interesting tonote that
the authors in [9] came to a similar conclusion: when the number
of time slots used for training is equal to that used for data trans-
mission, then the training and data components should be given
equal power.

Note thatα? is invariant to(s, B). Thus, all MSE-optimal
PAT schemes with the same data dimensionNd haveCmse-lb max-
imized by the same pilot/data power allocation. While theCmse-lb-
maximizing power allocation for the SCCP scheme was derived
previously in [4], the results in this paper hold more generally.

4.3. Comparison of MSE-optimal PAT Schemes

Although all MSE-optimal PAT schemes yield equivalent channel
estimates, they differ in data subspace dimensionNd and hence in
achievable rate. To understand the relative merits of theseschemes,
we would like closed-form expressions forCmse. Unfortunately,
the expectations in (25), (26) and (29) are difficult to evaluate. In-
stead, we compare approximations of the capacity bounds. Specif-
ically, we use Jensen’s inequality to upper boundCmse-lb, Cmse-ub

and Cideal by C̄mse-lb, C̄mse-ub and C̄ideal, respectively. Using
E{log det A} ≤ log det E{A} and the facts thatE{HHH} =
IN andBHB = INd

, we find

C̄mse-lb =
Nd

N
log(1 + ρl) (33)

C̄mse-ub =
Nd

N
log(1 + ρu), (34)

C̄ideal = log(1 + ρi). (35)

We now show that̄Cmse-ub is increasing inNd for any power
allocationα ∈ [0, 1]. TreatingNd as a continuous parameter,

∂C̄mse-ub

∂Nd
=

1

N

„

log(1 + ρu) +
Nd

1 + ρu

(−1)Nσ2
d

N2
d σ2

d

«

(36)

=
1

N

„

log(1 + ρu) − ρu

1 + ρu

«

≥ 0, (37)

sincelog(1 + x) − x
1+x

is increasing inx for x ≥ 0. Using a
similar approach, it can be shown thatC̄mse-lb is also increasing
in Nd. These results provide evidence that, among MSE-optimal
PAT schemes, those with largerNd achieve higher rate. Similar
conclusions were reached for MIMO flat-fading channels in [9].

Taking a closer look at these upper bounds, we see that, in the
high-SNR regime, both̄Cmse-lb andC̄mse-ub increase linearly with
log(SNR) at slopeNd/N . In contrast,C̄ideal increases linearly
with log(SNR) at slope1. For channels with low spreading index
(i.e., γ � 1), Nd/N will be close to1, and henceC̄mse-lb and
C̄mse-ub will both have slopes close to that of̄Cideal. Thus, for
small spreading index, the capacity achieved by MSE-optimal PAT
is comparable to that of the ideal perfect-receiver-CSI system. But,
for channels with significant spreading,γ ≈ NfNt/N will be
significantly greater than0 and henceNd/N will be significantly
less than1. In this case,Cmse will deviate significantly fromCideal

at high SNR. These trends are confirmed by the numerical results
in Section 4.5.

4.4. SCCP versus CP-OFDM

The previous section showed that, among MSE-optimal PAT
schemes, those with higherNd yield higher rate. For a given pair
(Nt, Nf ), each of the examples in Section 3.2 supported a differ-
ent value ofNd. Specifically, SCCP maximizesNd whenNf >
Nt and CP-OFDM maximizesNd whenNf < Nt. Apart from
the trivial caseNf = Nt = 1, the chirp signaling in Example 3 is
dominated by both SCCP and CP-OFDM. WhenNt = Nf , it can
be proven that the capacity lower bounds for SCCP and CP-OFDM
coincide, as do the capacity upper bounds [13].

4.5. Numerical Results

Here we numerically investigate the capacity bounds from Sec-
tion 4.1 for the SCCP and CP-OFDM schemes in Examples 1 and
2 using the power allocation (31). In all cases, we consider block
sizeN = 128 and plot the bounds as a function of SNR:= σ2

t /σ2
v.

Figure 1 plotsCmse-lb andCmse-ub for the MSE-optimal PAT
assuming a channel withNt = 2 = Nf = 2. These channel pa-
rameters correspond to a spreading index ofγ ≈ 0.03. Recall that,
whenNf = Nt, both the SCCP and CP-OFDM schemes support
the same value ofNd. From the bounds andCideal, we conclude
that the capacity ofCmse is close to that of the “ideal” data-only
system with perfect receiver CSI. We also note that the capacity
curves are approximately linear inlog(SNR), as suggested in Sec-
tion 4.3.

Figure 2 repeats the investigation in Fig. 1 but withNt =
Nf = 4, corresponding toγ ≈ 0.12. Compared to Fig. 1, there
is a more significant difference between the ideal system andthe
MSE-optimal PAT systems at high SNR. Note that the “slope”
arguments, given in Section 4.3 for the approximationsC̄mse-lb,
C̄mse-ub andC̄ideal, fit the actual curvesCmse-lb, Cmse-ub andCideal

quite well.
Figure 3 investigates the case whereNt = 16 andNf = 2,

i.e., where the channel is primarily time-spreading. In this case,
the CP-OFDM system shows SNR gains of several dB over the
SCCP system. This corresponds to a channel for the scenario with
the carrier frequencyfc = 20GHz, system bandwidth500kHz,
mobile speed100 km/hour and channel delay spread32µs.



5. CONCLUSIONS

This paper presented a capacity analysis of MSE-optimal PAT
schemes. The transmission model covered a wide range of linear
modulation schemes and supported superimposed pilot/datapat-
terns. The doubly dispersive channel was modeled via standard
basis expansion. Lower and upper bounds on the ergodic capac-
ity were derived for MSE-optimal PAT, and the lower bound was
maximized as a means of allocating power between pilots and data.
The capacity bounds were used to compare two MSE-optimal PAT
schemes based on SCCP and CP-OFDM. The CP-OFDM scheme
was found to acheive higher rate when the channel is primarily
time-dispersive, while the SCCP acheives higher rate when the
channel is primarily frequency-dispersive. A numerical evaluation
of the capacity bounds confirmed the theoretical analysis.
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Fig. 1. Bounds on Ergodic Channel CapacityNt = 2, Nf = 2.
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Fig. 2. Bounds on Ergodic Channel CapacityNt = 4, Nf = 4.
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Fig. 3. Bounds on Ergodic Channel CapacityNt = 16, Nf = 2.


