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ABSTRACT

In previous work, we established necessary and sufficiemico
tions on pilot/data patterns that minimize the mean-saliareor
of pilot-aided channel estimates, given a pilot power a@nst and
a general linear time-varying channel model. Here we denpper

and lower bounds on the ergodic channel capacity of these-MSE

optimal pilot-aided transmission (PAT) schemes. Thesentisu
may be used to allocate power between pilot and data, as svell a
choose among MSE-optimal pilot/data patterns. For exantipée
bounds show that frequency-domain PAT achieves higherceapa
ity than time-domain PAT, or vice-versa, depending on theire
time- and frequency-dispersion of the channel.

1. INTRODUCTION

The wireless communication channel is typically modeletiras
ear transformation and parameterized by a set of time-vgryo-
efficients. Coherent receivers estimate these channdiaesfs
for subsequent use in data detection. In pilot aided tression
(PAT), a known signal is embedded in the transmitted stremm t
facilitate channel estimation.

As noted in the recent overview [1], capacity-optimal PAT
designs have thus far proven elusive. A considerable amafunt
work has been devoted to the simpler problem of MSE-optimal
pilot pattern design, however (e.g., [2-7]). Furthermaeyeral
authors have observed connections between the MSE-oimdal
capacity-optimal criteria. For example, an informatibedretic
analysis of imperfect channel knowledge appeared in [8].reMo
recently, PAT designs that maximize a lower bound on ergoatic
pacity were studied for MIMO flat-fading [9], frequency-selive
[10-12], and doubly-selective [4] channels.

In [7], necessary and sufficient conditions on MSE-optinial p
lot/data patterns were specified for a general class ofHitiee-
varying channels. Here we present a capacity analysis skthe
MSE-optimal PAT schemes for the doubly-selective chanaséc
The work [4], while similar in its intent, considers only nrsaoper-
imposed pilots, thereby omitting important instances of BMS
optimal pilot/data patterns. Our more general analysiviges
insight into the advantages and disadvantages of diffeviSiE-
optimal PAT schemes. Specifically, we find that the channel’'s
spreading characteristics imply relative advantagesrfe-domain
versus frequency-domain PAT schemes. Numerical resuifiroo
the theoretical analysis.

This paper is organized as follows. We present the system

model in Section 2 and review MSE-optimal PAT in Section 3. We
present a capacity analysis in Section 4 and conclude indBes:t
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2. SYSTEM MODEL

We consider block linear modulation over doubly selectikiare
nels, where a basis expansion model (BEM) is used to chaizete
channel variation over the block.

2.1. Cyclic-Prefix Block Transmission Model
The output signaly(n)} is related to the transmit signéd(n)}
via

Ne—1

Z h(n7 ()t(n - 6) + U(n)a

£=0

)

y(n)

where{v(n)} is o2-variance CWGN andh(n, £)} is the timen
channel response to an impulse applied at time/. Here,N; de-
notes the channel’s time spread normalized to the symbatidar
The lengthA block transmission{t(n)} - includes a cyclic
prefix (CP) of lengthiV; — 1. With large N, the CP overhead be-
comes insignificant. The received vecipr= [y(0),...,y(N —
1)]* is formed after discarding the CP contribution. Defining

T :=[To - T_n,+1]
T_; := diag(t(—1),....,t(—i+ N — 1))
hoi= b by, )"
h; == [h(0,),...,h(N —1,i)]
v = [v(0),...,v(N = 1],

we obtain

y =Th+v. (2)

The transmit signal is constructedi®s) = s(i)+x(¢), where
{s(4)} is the pilot sequence and:(7)} is the zero-mean data se-
guence. Note the superposition of pilots and data. The pdater
is constrained as follows.

N . (3)
ConstructingS and X in the manner of’, we findT = S + X.
Definings := [s(0),...,s(N—=1)]*, = := [2(0),...,z(N —
1)]* and anN x N matrix[H]n,m = h(n, (n — m),), the input-

output relation (2) can be rewritten as
y=Hs+ Hx +v. (4)

Equation (2) will be convenient for MSE-optimal pattern ides
and (4) for capacity analysis.



2.2. Doubly-Selective Channel Model

The following BEM [4] describes the channel response over th

block duration. For. € {0,...,N—1}and/ € {0,..., N —1},
, (Ng—1)/2 L
h(n,€) =N"2 > Ak, 0¥, (5)

k=—(Nj—1)/2

where{\(k, £)} are zero-mean i.i.d. Gaussian with variaq@gw.

The model (5) approximates wide-sense stationary uncaee!|
scattering (WSSUS) with uniform PSD

1 Ts,
Shh(f) = {Sjvtdes’ :;: ; ;:TS, (6)

where fy4Ts denotes the one-sided Doppler spread normalized to

the symbol rate. The quantit]V; := [2f¢TsN] + 1 will be
referred to as the channel’s “frequency spread” and, fopkim
ity, assumed to be an odd integer. The quantity= 2475 N:
will be referred to as the channel’s “spreading index.” Nibiat

v = N¢N¢/N. We assume an underspread channel, for which

v <1
Denoting theN-point unitary DFT matrix a#' n, we define

= X Np—1
F = Fy(;,——%—

he == [h(0,0),...,h(N — 1,0

A= NS0, A O

Np—1
:—f2 )

where modulad indexing is assumed. Notice th&Y' F = In,.
With these definitions, (5) becomas = F,. If we define
U = INt X F
h :=[h§ - hiy, 1]
2\ = [)\3 A?Vt—l]ty
then
h=UX (7)

with UU = In;n, andRy = E{QAN"} = e In ..

3. MSE OPTIMAL PILOT/DATA PATTERNS

In this section, we review results from [7] on MSE-optimal pi
lot/data pattern design, including necessary/sufficiemtdiions
and design examples.

3.1. MSE-Optimality Conditions

For the model of Section 2, (8)-(9) provide necessary arfitgrit
conditions on the pilot/data pattern such that the MSE ireclin
Wiener estimation ok, giveny ands, is minimal [7].

VX, (SU)? XU = o. (8)
(SU)'SU = o2In,n,. )
Condition (8) says that the transmit signal should be cantd
so that the pilot and data subspaces remain orthogonal ebhéme

nel output. Condition (9) says that pilot signal should ba-co
structed so that the channel modes are independently éxcitie

equal power. Lek(n, ¢) denote the Wiener estimatelofn, £) and
h(n,?) := h(n,€) — h(n,¢) denote the estimation error. When
(8) and (9) are satisfied, the varianees := E{|h(n, ¢)|*} and
o? := E{|h(n,£)|*} are given by

N¢ N#Ne o2 _
n=NCy T (10)
2 1 Nf Nth 0'3 —1
Th =N, T W( N +U—g) (11)

forne {0,--- ,N -1}, £€{0,---,N; — 1}.

The conditions (8)-(9) can be rewritten in terms{ef:) } and
{z (%)} using the index set8/; := {-N; +1,...,N; — 1} and
Np:={=Ny+1,..,Ny—1}.

Lemma 1 ([7]) For N-block CP transmission over the doubly
selective channel (5), the necessary and sufficient conditfor
MSE-optimal PAT can be written as follow& € N:, Vm € Ny,

1 N-1 e

¥ 2 s()s"(i - K)e IRT™ = 525(k)s(m)  (12)
=0
N-1

x(i)s™ (i — k)e IR (13)

=0

.

Given a pilot pattern that satisfies (12), data patternsshat
isfy (13) can be constructed as follows. Defining

Wy = Fn(—Ny+1:N;—1,:)SF
W= Wiy Wh, 1"

condition (13) become¥¥ xz = 0, implying that data must be
transmitted in the nullspace 8. Thus, we structure the data as

x = Bd, (14)
where the columns oB € CY*™¢ form an orthonormal basis
for null(W') and whered containsN; := dim(null(W)) data
symbols.

The data dimensionV; can be bounded as follows. Note
from (8) that theN;N; rows of (SU)" are contained within
the (2Ny — 1)(2N; — 1) rows of W. In order to satisfy (9),
those rows must be orthogonal. Thug;N; < rank(W) <
(2N¢ — 1)(2N: — 1), which means that MSE-optimality implies

N —(2N; —1)(2N; —1) < Ny < N — N;N.

3.2. Examples of MSE-Optimal Pilot/Data Patterns

Example MSE-optimal pilot/data patterns from [7] are gibetow
in terms of their(s, B) parameterization, where specifies the
pilot sequence an the data basis.

Example 1 (SCCP) Assuming]\% € Z, define the pilot index set
P{? and the guard index s&":

(Ny—1)N
S

P {i7i+Nif,...7i+ v (15)

= J {-Ne+ 14k Ne—1+k}  (16)

keP?



An MSE-optimal PAT scheme is given by
N ,i0(a) (2)
s(q)—{UM/Nfe qeP,

0 q¢ P
and by B constructed from the columns bk with indices in the
set{0,..., N—1}\G:”. Bothi € {0, ..., % —1}andd(q) € R
are arbitrary. Here, Ny = N — Ny(2N, — 1).

7

Example 2 (CP-OFDM) AssumingNﬂt € Z, define the pilot in-
dex setP}” and the guard index set}”:

PO = {iyi+ A, i+ SNy (18)
G = |J {-Nr+14k.,Ny—1+k} (19
keP ()
An MSE-optimal PAT scheme is givendy: FX s with
oor [ L@ g cp®
sy(q) = { e 7 (20)
0 q &P}

and B constructed from the columns of the IDFT matFi¥ with
indices in the sef0, ..., N —1}\G{". Bothi € {0,..., &~ — 1}
andf(q) € R are arbitrary. Here,Ng = N — N;(2Ny — 1).

Example 3 (Chirps) Assuming everV, an MSE- optimal PAT
scheme is given by

j2

B

N
Tf‘l2

2|

(1)

ose
. . N
1 ey%"(vaNth)qu%” 7fq2

Vi ; (22)

forq € {0,...,N —1}andp € {0,...,Nq — 1}. Here, Ny =
N —2NsN; + 1.

Example 1 corresponds to a single carrier cyclic prefix (SCCP
system with uniformly spaced Kronecker-delta (KD) pilotréts.
This system was analyzed in [4]. Example 2 corresponds to-a CP
OFDM system with uniformly spaced KD pilot tones. Example 3
corresponds to a cylic prefixed “chirp signaling” scheme.

Note that the three MSE-optimal examples above differ iirthe
data subspace dimensidvy. Intuitively, a largerN; should lead
to a higher data rate. Notice that, among the three examptaea
CP-OFDM yields the largestVg when N; > Ny, while SCCP
yields the largesiNg whenN; > N;. The capacity analysis in the
sequel explores these issues further.

4. CAPACITY ANALYSIS

Here we present bounds on the ergodic capacity of MSE-optima
PAT for the system of Section 2. A pilot/data power allocatio
scheme based on maximization of the capacity lower bouridas a

4.1. Capacity Bounds

Let (s, B) denote an MSE-optimal system with pilot powsef as
in (3). Combining (4) with (14), the observation becomes

y=Hs+ HBd+wv. (23)
In the sequel, we impose the data power constraint

Ng—1

> E{dm)’} < oi. (24)

n=0

1= 1

2 —_ —
N 2 Pl =
In addition, we assume that the channel fading coefficidnése

Gaussian and fade independently from block to block.

Lemma 2 For the MMSE PAT systel, B) with i.i.d. Gaussian
symbolsd € CNa, the ergodic capacitfmse 0beysCrge.p <
Cmse S CVmse-ub, where

Crseo i= %E{log det[I + p,B"H"HB]}  (25)
1
Cimseso = 7 E{log det [T + puBYH"HB]}  (26)
No?
NO'?i Nf ]\Sft
= 5 (27)
Ngo2 \ No No2
do. N_dd NN + o2
No?2
Pu = Ndo'd2 (28)

A proof is given in [13]. In brief, the lower bound (25) de-
scribes the “worst case” scenario, where channel estimatio
ror acts as AWGN. This concept was previously used in [8] and
[9]. The upper bound (26) describes the “best case” sceidrio
perfect channel estimates. Recalling (3) and (24), the tifien
No?/(NyN) andNo3 /N, can be interpreted as the average pi-
lot and data energy pessentialpilot and data subspace dimen-
sion, respectively. In (25) and (26), we ignore the overtshaelto
the prefix portion, in consistent with [12].

While a lower bound on the channel capacity for a subcase of
Example 1 was presented in [4], the bounds here apply more gen
erally to any MSE-optimal PAT scheme with pilot powef and
data powerr2 over the doubly selective channel of Section 2.2.

For reference, we consider the “ideal system” with perfeet r
ceiver channel state information (CSI) and transmittedgraven-
strainto?. In this ideal setting, there is no need to transmit pilots.
For i.i.d. Gaussian data, the ergodic capacity is [14]

1
Cideal = 7 E{log det[I + piH" H} (29)
2
g.
UU

Several factors contribute to the difference betwéggry and
Cmse. First, the PAT system suffers from channel estimationrerro
which contributes a form of interference that degradgse. In
comparingCigear t0 Cimse-un, W€ remove the effect of channel es-
timation error. Note, from (28) and (30), that andp; describe
the effective SNRwithin the data subspaced PAT and the ideal
system, respectively. In this senge, andp; are equivalent. The
primary difference betwee€igeas and Chse-un, then, is a result of

presented. The three example schemes in Section 3.2 are thethe fact that MMSE PAT uses only, out of NV total dimensions
compared using these bounds. We find that SCCP dominates wheffor data transmission. A&7;V; increases, so does the difference

the channel is primarily frequency-spreading, while CPROF
dominates when the channel is primarily time-spreading.

betweenV,; and N, widening the gap betweatjea and Crse-ub,
and hence betweabigea aNdCrse.



4.2. Pilot/Data Power Allocation

Section 3 described MSE-optimal pilot and data patternsabsa
sume a fixed allocation of pilot power?. Here we consider the
problem of allocating a fixed transmit powef = o2 + o2 be-
tween pilots and data. Notice the inherent tradeoff. Alivca
more power to pilots results in less channel estimationrdyub
also results in less data power, which in turn increases ¢he s
sitivity to noise and estimation error. Roughly speakingwer
should be allocated to maximize tefectiveSNR. We approach
this problem through the maximization Gfnse-ib-

Let o € [0,1] denote the fraction of power allocated to the
data symbols, i.eq3 = ao}? ando? = (1 — a)o?. We are in-
terested in findingv. := arg maxa Cmse-io(«). Becausey affects
Chse-b Only through the termp;, and becaus€'mse.ip is strictly in-
creasing irp;, it suffices to maximize; w.r.t. . The value oty is
readily obtained by finding the value afwhich set9p; /da. = 0:

b_ Jby_b
o = o V@I —g Taz0 @31)
% ifa=0
No? No? _ No? 5
NN Nt T NNt (2

It can be verified thatv, € [0, 1].

According to (31) and (32), wheN; N; = N4, power should
be allocated equally to pilots and data. It is interestingdte that
the authors in [9] came to a similar conclusion: when the nermb
of time slots used for training is equal to that used for detag-
mission, then the training and data components should hkengiv
equal power.

Note thata, is invariant to(s, B). Thus, all MSE-optimal
PAT schemes with the same data dimensignhaveCgse.n max-
imized by the same pilot/data power allocation. While @h@e-ib-

_z

sincelog(1 + x) — 7 is increasing inr for z > 0. Using a
similar approach, it can be shown th@se.ip is also increasing
in Ng. These results provide evidence that, among MSE-optimal
PAT schemes, those with largé¥; achieve higher rate. Similar
conclusions were reached for MIMO flat-fading channels in [9
Taking a closer look at these upper bounds, we see that, in the
high-SNR regime, botl s, and Cise-us iNcrease linearly with
log(SNR) at slopeNy/N. In contrast,Ciea increases linearly
with log(SNR) at slopel. For channels with low spreading index
(i.e., v < 1), Nyg/N will be close tol, and henc&mse.r and
Chse-ub Will both have slopes close to that @fges. Thus, for
small spreading index, the capacity achieved by MSE-optRA&
is comparable to that of the ideal perfect-receiver-C Siesyis But,
for channels with significant spreading, ~ N;N./N will be
significantly greater thafi and henceV, /N will be significantly
less thanl. In this caseCmse Will deviate significantly fromCigea
at high SNR. These trends are confirmed by the numericaltsesul
in Section 4.5.

4.4. SCCP versus CP-OFDM

The previous section showed that, among MSE-optimal PAT
schemes, those with highé¥, yield higher rate. For a given pair
(N¢, Ny), each of the examples in Section 3.2 supported a differ-
ent value ofNy. Specifically, SCCP maximize¥; when Ny >

N; and CP-OFDM maximize®Vy when Ny < N;. Apart from

the trivial caseV; = N; = 1, the chirp signaling in Example 3 is
dominated by both SCCP and CP-OFDM. WhEn= N, it can

be proven that the capacity lower bounds for SCCP and CP-OFDM
coincide, as do the capacity upper bounds [13].

maximizing power allocation for the SCCP scheme was derived 4.5. Numerical Results

previously in [4], the results in this paper hold more getgra

4.3. Comparison of MSE-optimal PAT Schemes

Although all MSE-optimal PAT schemes yield equivalent afen
estimates, they differ in data subspace dimeng¥grand hence in
achievable rate. To understand the relative merits of thelsemes,
we would like closed-form expressions f6kse. Unfortunately,
the expectations in (25), (26) and (29) are difficult to eatdu In-
stead, we compare approximations of the capacity bound=ifSp
ically, we use Jensen’s inequality to upper bourge-in, Crmse-ub
and Cigeat bY Crmse-bs Crmseun @nd Cigeal, respectively.  Using
FE{logdet A} < logdet E{A} and the facts thab {H" H} =
Iy andB¥ B = Iy, we find

= N,

Crnsen = 7 log(1 + p1) (33)

= N,

Chse-ub = Wd log(l + pu): (34)
Cigeal = log(1+ ps). (35)

We now show thaCinse.up is increasing inV, for any power
allocationa € [0, 1]. TreatingN4 as a continuous parameter,

aC'mse-ub o i Ny (_1)NU§
O — = (tox1-+ 9+ T3-S ) (o
1 Pu
= — w) — > s
N <10g(1+p ) l-l—pu) >0 (37)

Here we numerically investigate the capacity bounds from- Se
tion 4.1 for the SCCP and CP-OFDM schemes in Examples 1 and
2 using the power allocation (31). In all cases, we consittarkb
sizeN = 128 and plot the bounds as a function of SNR o7 /o2,

Figure 1 plotSCmse-p and Crmse-up for the MSE-optimal PAT
assuming a channel witN; = 2 = Ny = 2. These channel pa-
rameters correspond to a spreading index ef 0.03. Recall that,
whenN; = N¢, both the SCCP and CP-OFDM schemes support
the same value alV;. From the bounds an€ligea, We conclude
that the capacity o€mse is close to that of the “ideal” data-only
system with perfect receiver CSI. We also note that the d¢gpac
curves are approximately linearliog(SNR), as suggested in Sec-
tion 4.3.

Figure 2 repeats the investigation in Fig. 1 but with =
Ny = 4, corresponding tey ~ 0.12. Compared to Fig. 1, there
is a more significant difference between the ideal systemttaed
MSE-optimal PAT systems at high SNR. Note that the “slope”
arguments, given in Section 4.3 for the approximatiGhge.i,
Chse-ub @ANdCigeq, fit the actual curveSnse.i, Cimse-ub aNd Cigeal
quite well.

Figure 3 investigates the case whéve = 16 and Ny = 2,
i.e., where the channel is primarily time-spreading. Irs ttase,
the CP-OFDM system shows SNR gains of several dB over the
SCCP system. This corresponds to a channel for the scenihio w
the carrier frequency. = 20GHz, system bandwidth00kHz,
mobile speed 00 km/hour and channel delay sprea@2j.s.



5. CONCLUSIONS

This paper presented a capacity analysis of MSE-optimal PAT
schemes. The transmission model covered a wide range af line
modulation schemes and supported superimposed pilotiddta
terns. The doubly dispersive channel was modeled via stdnda
basis expansion. Lower and upper bounds on the ergodic-capac
ity were derived for MSE-optimal PAT, and the lower bound was
maximized as a means of allocating power between pilots atad d
The capacity bounds were used to compare two MSE-optimal PAT
schemes based on SCCP and CP-OFDM. The CP-OFDM scheme
was found to acheive higher rate when the channel is priynaril
time-dispersive, while the SCCP acheives higher rate when t
channel is primarily frequency-dispersive. A numericallaation

of the capacity bounds confirmed the theoretical analysis.
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