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/Doubly-SeIective Channel Representations: \
{hu(n,1)}: time/lag {hai(d,1)}: doppler/lag
3 H2%
-
Q0 -
-
Lile P

{hy(,k)}: time/frequency {hgs(d, k)}: doppler/frequency

— doppler/lag is most compact, but still has residual leakage. . .
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/Low Complexity Linear Pre-Processing: \
tn T'n Tn fn
—| channel window det/est ——=

effective channel

For i'" data frame and window coefficients {b,},

Np—1
O j : (4) () ()
=0
Np—1
B (4) (4) ()
=0 ]\fL(i)v l colored noise
tl (n,1)

so windowing the observation < windowing the channel response.

Note: Any finite-length processing of {r,,} implies some sort of window!
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/A Doppler-Domain Interpretation: \

e Time-domain signal:
r = Hqyt+w

e Windowed frequency-domain signal:

r = FDb)r = FDb)Hut+ FDbw
= FDb)F" FHyt+ FD(b)F" Fw
—_—
c(B) Ha c) "
whereB:ﬁFb
= C(B)Ha t+ C(B)v
N—_—— N——

effective channel colored noise

so we are filtering in the Doppler domain.

e Reminiscent of IS| shortening for MLSD state-reduction.

o




Phil Schniter The Ohio State University

/Effect of Window on Doppler Response: \

Can show (assuming WSSUS):

Doppler window
spectrum spectrum

—~— =
E{lha(d,D)|*} = S(o,1) * B(o) |

27
0= %k
lllustrated below for Rayleigh fading and rectangular windowing:
47
47 f4 N

= Samples of s A

Note: Zero Doppler spread = Sample at sinc nulls = Zero ICI
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/Effect of Windowing on Symbol Estimation: \
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CP-OFDM
x = Hqys + v

known Hgs
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/Effect of Windowing on Symbol Detection: \

'SNR [dB]
CP-OFDM
x = Hqys + v

known Hgs
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/Max-SI NR Window Coefficients: \

e Say 2D + 1 significant Doppler coefficients.

e Max-SINR window coefficients b, are
b, = gen-evec,,, (A O R, diag(R+o0°I)— A® R*)
where, for WSSUS Rayleigh fading,

B sin( % (2D + 1)(n — m))
e N sin(Z(n —m))

R],,, = Jo(2fa(n—m Zaz

e Note that b, is a function of {D, N, f4, %‘j}
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/Relationship to Channel Estimation: \
e Parsimonious representation = few channel parameters to estimate.
e E.g., Hy has 2DN,, significant parameters, D ~ fqN.

e Given H could compute, if necessary,
— H via N, FFTs of length N,
— Hys via 2D FFTs of length V.

~» Can we estimate Hy in a computationally efficient manner?
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\_

K = training interval

Kl'raining-based Approaches:

~

TR

DATA

TR

DATA

TR

We'll focus on two ideas:

L = # blocks used in estimate

e Complex-exponential bursts of length NV,,.

~»> FFT-based channel estimation

e Kronecker delta bursts of length 2N, — 1.

The former is novel while the latter is well-known.

~> interpolation-based channel estimation

10



Phil Schniter The Ohio State University

/FFT-Based Channel Estimation: \

N—1
]. . - 27T
ha(n,d) = \/—NE B (K, d)e? N F formn=1d,...,i+ N —1
k=0

Ny, —1
T, = W,+ Z ha(n,d)t,_q (windowing omitted)
d=0

p
H 1 2T 0.0 ;2T (N—1)
— _L | 5N Jj5n
fn X \{N [e N e N ]

hi'(0,0) ...  hS (0, Ny—1)
where { HY) = 2 :

hy)(N—1,0) ... b (N—1,N,—1)

t
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/FFT-Based Channel Estimation (cont.): \
Next, separate the 2D “big” and (N — 2D) “small” rows of HY;:

= Wn + FonHywtn + Fo Hyl tn
wy, + (), ® f£n>héi|),b +(t, ® ffn)hc(fl),s

where hy), = vec(Hy),) & hy, = vec(HY),), and stack L observations:

SN P ) . |4t o £H Do |t o £H
xV = |, |, TY =6, fp.|, TV = |t,®f.],
ORI, O} N0 (D) y () (i)
x" = T hy,+ \Ts hy,+w n

WV
interference + noise

Consider Zero-forcing and MMSE approaches to estimation of hy/, . ..
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/Zero-Forcing FFT-Based Channel Estimation: \

|dea:

—_—

(i) )\ 1)
hdl,b = (Tb ) X
To make T, easy to invert, choose

L = 2DN; (# observations)
K = N/L (sampling interval)

t
x = {CI%K Li+1)K  L(i4+2)K """ CI?(@+L—1)K}
toe — o) 5 DiK [ej%zDiK-o 6j%’2Dz’K-(Nh—1)}t7
so that
Ty = JoFf ding (|0 ... D)),
= f:éﬁ = \/Ediag({e—j%”'o e—j%’i(L—l)DFLK“K)
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/MMSE FFT-Based Channel Estimation: \

For better performance, try

—_—

hf:lil),b _ E{h((jili)z(iK)H} E{K(iK)X(iK)H}—lz(iK)

It can be shown that (WSSUS, Rayleigh, uniform power profile):

—_—

hy, = DY -\(AH © FL)Jol/ec(mat(g(iK))R_l)

X
J/

Lmults 57 oe I mults 2D L mults
where
D = L diag ([er%0 e-sFit-n] )
1 &
- 27T
Al = N Z Jo (27 fgm)e I N {@20=D)m =91 ynique cols
h m=pK—-N+1
R.],,,, = 0,0(0)+ (=1)"Jo(nfaND™'q), R, e C*"**"
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/Limitations:
With the FFT-based schemes:

D = de
N
K =
2D Ny,
K > N

we find

fol o~ <
o ® N T KN, = N2

giving a limitation on { fy, N,}.

(Perhaps a different construction could get around this?)

o

~
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/Numerical Results (MSE vs. SNR): N

N=512, fd=0.005, Nh=4, K=16, M=5000, win=1
5 T T T T T T T

|
KD-lin
FFT—zf

$9 |

FFT-mmse
FFT-mmse (thy)
KD-mmse

b

0 2 4 6 8 10 12 14 16 18 20
\ SNR /
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"N N

umerical Results (MSE vs. Doppler):

N=512, SNR=10, Nh=4, K=16, M=5000, win=1

— KD-lin D
- FFT-zf

_o || =~ FFT-mmse

— — FFT-mmse (thy)
A~ KD-mmse

-18 - -2
10 10
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/Conclusions:

e Parsimonious {hgq(n,)} channel representation:

L = 2D N, significant coefficients.
e Windowing can further squeeze channel into this representation.

e With careful pilot selection, {hq(n,l)} can be estimated via
— FFT-ZF scheme: one FFT of length L
— FFT-MMSE scheme: 2D FFTs of length L

e Compared to KD-MMSE-interpolation method. ..
— lower complexity: élogL or DLlog L versus 2L*N}, ops.
— comparable or better performance.

— limited to low fy4V,.
~» currently looking for a way around this. . .
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