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Sketched Clustering

Clustering with K-Means

Given: T feature vectors {xt} with xt ∈ R
N

Goal: Find K centroids {ck} that minimize sum of squared errors:

SSE(X,C) =

T∑

t=1

min
k

‖xt − ck‖
2
2

Finding the SSE-minimizing centroids is NP-hard

K-means++ is the standard heuristic approach:

Lloyd’s algorithm plus a careful random initialization

Per-iteration complexity of O(NKT )

Challenge: Complexity and memory can be prohibitive for large T
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Sketched Clustering

Sketched Learning

Sketched learning is an alternative framework:

1 Compress data X ∈ R
N×T down to y ∈ C

M (with M ≪ NT ).

2 Learn parameters (e.g., centroids) from y.

We choose to build the sketch y = [y1, . . . , yM ]T using14

ym =
1

T

T∑

t=1

exp(jwT
mxt) with random {wm}Mm=1

Well matched to distributed and/or streaming scenarios!
Complexity & memory of learning are invariant to T !

Can interpret ym as samples of the empirical characteristic function:

ym = φ(wm) =

∫

R
N

p(x) exp(jwT
mx) dx with p(x) =

1

T

T∑

t=1

δ(x− xt)

1Keriven,Bourrier,Gribonval,Pérez’17, 4Keriven,Tremblay,Traonmilin,Gribonval’17
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Sketched Clustering

Sketched Clustering

How do we learn the centroids C from the sketch y?

The CL-OMPR algorithm34 aims to solve

{Ĉ, α̂} = argmin
C,α

M∑

m=1

∣∣∣∣∣ym −
K∑

k=1

αk exp(jw
T
mck)

∣∣∣∣∣

2

using a greedy heuristic inspired by OMP.

In practice, CL-OMPR . . .
recovers accurate centroids with sketch length M ≈ 10KN

has a per-iteration complexity of O(MNK2)

Can we do better in terms of sample complexity and computational
complexity?

3Keriven,Bourrier,Gribonval,Pérez’17, 4Keriven,Tremblay,Traonmilin,Gribonval’17
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Cluster Recovery via EM and AMP

Formulation as a Generalized Linear Model

Suppose we model the data xt using a Gaussian mixture model (GMM):

xt ∼
∑K

k=1 αkN (ck,Φk) with
∑K

k=1 αk = 1, αk ≥ 0, Φk > 0.

As T →∞, have ym= 1
T

∑T
t=1 exp(jw

T
mxt) → E

{
exp(jwT

mxt)
}

=
∑K

k=1 αk exp
(
jgm aT

mck︸ ︷︷ ︸
, zmk

−g2m aT
mΦkam︸ ︷︷ ︸
, τmk

/2
)
,

where gm , ‖wm‖ and am , wm/gm.

As N→∞, with isotropic am, we have τmk → tr(Φk)/N , τk.

Thus for large T and N we have the generalized linear model (GLM)

p(ym|zm;α, τ ) ≈ δ
(
ym−

∑K
k=1 αk exp

(
jgmzmk−g2mτk/2

))

with transformed centroids Z=AC & random A w/ isotropic columns
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Cluster Recovery via EM and AMP

Sketched Clustering via EM

Objective: Recover the centroids C from the sketch y under the GLM

p(y|Z;α, τ ) =
M∏

m=1

p(ym|zm;α, τ ), Z = AC

Challenge: GMM weights α and variances τ are unknown!

Approach: Expectation Maximization (EM): Iterate . . .

(α̂, τ̂ )new = argmax
(α,τ ): α

T1=1, α≥0, τ>0

E
{
ln p(y,Z;α, τ )

∣∣y, α̂, τ̂
}

= argmax
(α,τ ): α

T1=1, α≥0, τ>0

M∑

m=1

∫

RK

N (zm; ẑm,Qz
m) ln p(ym|zm;α, τ )

with conditional mean ẑm = E{zm |y; α̂, τ̂} and conditional covariance Qz
m.

Thus we aim to compute MMSE centroid estimates Ĉ = E{C|Y ; α̂, τ̂}, since

1) they provide Ẑ = AĈ for EM and 2) solve our sketched clustering problem.
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Cluster Recovery via EM and AMP

MMSE Inference for Sketched Clustering

Objective: Compute MMSE centroid estimate Ĉ from y under GLM

p(y|Z) =
M∏

m=1

py|z(ym|zm; α̂, τ̂ ), Z = AC.

Note that the posterior centroid density is

p(C|y) ∝
M∏

m=1

py|z(ym|aT
mC; α̂, τ̂ )

N∏

n=1

pc(cn)

We assume the trivial centroid prior pc(cn) ∝ 1, but other priors are possible

We can approximately compute Ĉ using approximate message passing

Due to the form of the likelihood, we use the “HyGAMP” algorithm5

5Rangan,Fletcher,Goyal,Schniter’12
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Cluster Recovery via EM and AMP

Lineage of HyGAMP

Approximate Message Passing (AMP) [Donoho,Maleki,Montanari’09]

Estimate c under the standard linear model y = Ac+w with known iid A

Assumes separable prior pc(c) =
∏

n pc(cn) and AWGN w

Generalized AMP (GAMP) [Rangan’11]

Estimate c under generalized linear model y ∼ p(y|z) with z = Ac

Assumes separable prior and likelihood p(y|z) =
∏

m py|z(ym|zm)

Hybrid GAMP (HyGAMP) [Rangan,Fletcher,Goyal,Schniter’12]

GAMP with vector-valued variables zm, cn ∈ R
K

Separable likelihood: y ∼ p(y|Z) =
∏

m py|z(ym|zm) with Z = AC

Separable prior: p(C) =
∏

n pc(cn)
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Cluster Recovery via EM and AMP

Message-Passing View of HyGAMP

HyGAMP can be derived by approximating belief propagation (either
sum-product or max-product algorithm) on a factor graph with the form:

py|z

cn
ym

pc

Messages are approximated as K-dimensional Gaussian pdfs assuming N→∞

HyGAMP tackles the (NK)-dimensional inference problem by iteratively
solving M+N inference problems of dimension K
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Cluster Recovery via EM and AMP

HyGAMP Inference Steps

HyGAMP’s K-dimensional inference steps compute the posterior mean and
covariance of the random vectors {cn} and {zm} under the posterior pdfs

p(cn|rn;Q
r) ∝ pc(cn)N (cn; rn,Q

r)

p(zm|ym,pm;Qp) ∝ py|z(ym|zm)N (zm;pm,Qp)

The correctness of these posteriors can be argued, under large i.i.d.
Gaussian A, using the analysis in [Javanmard,Montanari’13]

To reduce computational complexity, we use the Simplified HyGAMP
(SHyGAMP) algorithm,6 which approximates covariance matrices as diagonal

The per-iteration complexity of SHyGAMP is only O(MNK).

For the sketched-clustering likelihood py|z(ym|zm), the computation of ẑm and
diag(Qz

m) uses generalized von Mises functions, and is somewhat involved.7

6Byrne,Schniter’15, 7Byrne,Chatalic,Gribonval,Schniter’19
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Numerical Experiments Synthetic Data

Experiment 1: Synthetic Data

Data generation:

{xt} drawn i.i.d. from a GMM with

centroids ck drawn ∼ N (0, 1.52K2/NIN )
equal weights αk = 1/K
covariances Φk = I

N = 100 dimensional, K = 10 classes, T = 107 samples

Sketching:8

frequencies wm = gmam with unit-norm isotropic am

gm ∼ p(g) = 1[0,∞)

√
g2σ2 + g4σ4

4 exp(−g2σ2/2) with σ2 = 1
NT

‖X‖2F

Accuracy metric:

median of SSE(Ĉ) =
∑T

t=1mink ‖xt − ĉk‖
2
2 over 10 trials

8Keriven,Bourier,Gribonval,Perez’17
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Numerical Experiments Synthetic Data

Accuracy & Runtime vs Sketch Length M
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Sample complexity:

CL-AMP needs only M ≈ 2KN samples
CL-OMPR needs M ≈ 10KN

Computational complexity (including sketch):

CL-AMP 3× faster than K-means++ for similar accuracy
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Numerical Experiments Synthetic Data

Runtime vs Data Size T
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When T > 2× 106 . . .

sketching+CL-AMP is faster than K-means++

sketching is more expensive than CL-AMP
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Numerical Experiments Spectral MNIST

Experiment 2: Spectral Clustering of MNIST

We repeat an experiment from [Keriven,Tremblay,Traonmilin,Gribonval’17]

Original MNIST data:
T = 70, 000 samples of handwritten digits from K = 10 classes

Preprocessing used to extract features of dimension N = 10
Compute SIFT descriptors
Compute k-NN adjacency matrix (for k=10) using FLANN
Compute K=10 principle eigenvectors of normalized Laplacian matrix

Dataset partitioned into equal-sized training and test sets (10 trials)

Kmeans++, CL-OMPR, and CL-AMP estimate K = 10 centroids from
training set

Accuracy metrics: 1) SSE on training set
2) error of minimum-distance classifier on test set
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Numerical Experiments Spectral MNIST

Accuracy vs Sketch Length M
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For M ≥ 2KN . . .

CL-OMPR and CL-AMP give SSE similar to that of k-means++

CL-AMP gives error rate much better than CL-OMPR and k-means++
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Numerical Experiments Spike Super-Resolution Recovery from Fourier Samples

Experiment 3: Spike Super-Resolution w/ Fourier Samples

Sum-of-spikes signal:
∑K

k=1 αkδ(t− ck) with time t ∈ R
N

Fourier transform: y(w) =
∑K

k=1 αk exp(jw
Tck) with freq w ∈ R

N

Goal: Recover {ck}
K
k=1 from Fourier samples {y(wm)}Mm=1

Experiment:

Generate frequency pairs {(c2i−1, c2i)}
K/2
i=1 with ‖c2i−1 − c2i‖ = ǫ ∀i

“Success” if maxk ‖ĉk − cik‖ < ǫ/2 for some {i1, . . . , iK} = {1, . . . ,K}

Theoretical analysis9 says that

M ≥ O(log(1/ǫ)) samples suffice for random frequencies {wm}
M ≥ O(1/ǫ) samples suffice for uniformly spaced frequencies {wm}

9Traonmilin,Keriven,Gribonval,Blanchard’17
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Numerical Experiments Spike Super-Resolution Recovery from Fourier Samples

Frequency Estimation Results (K = 4, N = 2)
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Numerical Experiments Spike Super-Resolution Recovery from Fourier Samples

Conclusion

Sketched clustering is an alternative to traditional clustering that

1 compresses the dataset down to a sketch (of generalized moments)
2 extracts centroids from that sketch

and is well matched to distributed and/or streamed scenarios

We formulated sketched clustering as a GLM inference problem, and
applied EM-SHyGAMP.

Numerical results suggest that has CL-AMP has good sample &
computational complexity

Ongoing work to analyze the AMP state evolution in the large-system
limit (N,M → ∞)
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Numerical Experiments Spike Super-Resolution Recovery from Fourier Samples

Full paper

E. Byrne, A. Chatalic, R. Gribonval, and P. Schniter, “Sketched Clustering
via Hybrid Approximate Message Passing,” IEEE Trans. Signal Processing,
to appear 2019 (see also https://arxiv.org/abs/1712.02849).
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