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Linear Regression, AMP, and Vector AMP (VAMP)

The Linear Regression Problem

Consider the following linear regression problem:

Recover x, from

y = Az, +w with

z, € RN

A € RM*N Kknown linear operator

w e RM

unknown signal

white Gaussian noise.

Typical methodologies:

Regularized loss minimization (or MAP estimation):

~ .0
T = arg min EQHA:B —y||3 + R(z; 6,)

Approximate MMSE:

z ~ B{zly} for = ~p(z;61), y~N(Az, 1/0>)

Plug-and-play: iteratively apply a denoising algorithm like BM3D

Train a deep network to recover x, from y.
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The AMP Methodology

m All of the aforementioned methodologies can be addressed using the
Approximate Message Passing (AMP) framework.!

m AMP tackles these difficult global optimization/inference problems through a
sequence of simpler local optimization/inference problems.

m It does this by appropriate definition of a denoiser g, (-;7,01) : RY — R¥:
m Optimization: g, (7;7,01) = argmin, R(x;61) + 3 ||« — rH% £ ‘proxp ., (T)"
® MMSE: g,(r;7,61) =E{x|r =2+ N(0,I/7)}
m Plug-and-play:®> g, (r;7,01) = BM3D(r,1/7)
m Deep network: g, (r;~,01) is learned.
IDonoho,Maleki,Montanari’09, 2Metzler,Maleki,Baraniuk'14
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Linear Regression, AMP, and Vector AMP (VAMP)

AMP: the good, the bad, and the ugly

The good:
m With large i.i.d. sub-Gaussian A, AMP performs provably® well, in that it can

be rigorously characterized by a scalar state-evolution (SE). When this SE has a
unique fixed point, AMP converges to the Bayes optimal solution.

m Empirically, AMP behaves well with many other “sufficiently random” A (e.g.,

randomly sub-sampled Fourier A & i.i.d. sparse x).

The bad:
m With general A, AMP gives no guarantees.

The ugly:
m With some A, AMP may fail to converge!
(e.g., ill-conditioned or non-zero-mean A)

3Bayati,Montanari'l5, Bayati,Lelarge,Montanari'15
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The Vector AMP (VAMP) Algorithm & V

Take SVD A = U Diag(s)V", choose ¢ € (0,1] and Lipschitz g, (-;71,61) : RY — RV,

Initialize 71, y1.

For k=1,2,3,...
Z1 < g,(r1;71,61) denoising of 71 = x, + N (0, I/71)
N1 < 71N/ tr {7891(1“1;71’91)]
1
T2 < (MmT1 — 7))/ (m — 1) Onsager correction
Y24 Mm—n
T < gy(r2;72,02) LMMSE estimate & ~ N (r2, I /72)
) from y = Az + N(0,1/62)
N2 < 72N/ tr {4892(7‘82"7‘72792)]
2
r1 < C(m®2 — y2r2)/(M2 —v2) + (1-¢)r2 Onsager correction
Y1 Cm2—v2) + (1= damping

where g, (r2;72,02) = V (62 Diag(s)® + 721)71 (62 Diag(s)U Ty + 72V 'r2)
n =~ SN (B2 4 2) two mat-vec mults per iteration!
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VAMP, ADMM, and Convergence in the Convex Setting

m Consider the optimization problem

Ji(x) = —logp(x; 61)

argmminﬁ(m)-kfz(ﬂﬂ) with, e.g., {f2(:n) &) Az — y|?

and define the augmented Lagrangian

Ly(@1.@2,5) = fil@:) + folwo) + " (@1 — @) + 5 [la1 — 2

m An ADMM variant (via Peaceman-Rachford splitting on the dual) is
Z1 < argming L, (1,2, s)
s s+ vy(x1 — x2)
Xy < argming, L. (Z1,®2, s)
s+ s+v(x —x2)

m PRS-ADMM has weaker convergence guarantees than standard ADMM, but is
supposedly faster.
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VAMP Connections to PRS-ADMM

m Now consider VAMP applied to the same optimization problem, but with
A . - .
Y1 = 72 = 7 enforced at each iteration. Also, define

s; 2 y(>; — ;) fori=1,2.
m This y-forced VAMP manifests as
Z1 < argming, L. (x1, %2, 1)
89 < 51+ 7(Z1 — Z2)
Zy + argming, L, (%1, 2, 52)
81 ¢ 82 +7(T1 — Z2)
which is identical to Peaceman-Rachford ADMM.

m The full VAMP algorithm adapts 71 and ~» on-the-fly according to the local
curvature of the cost function.
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VAMP, ADMM, and Convergence in the Convex Setting

Example of VAMP applied to the LASSO Problem

iid Gaussian matrix

NNMSE [dB]

——VAMP
—— AMP

‘Chambolle-Pock

——FISTA

A
14

10° 10" 102
iterations

10°

column-correlated (0.99) matrix

-5 ——VAMP
—— AMP
‘Chambolle-Pock
10 ——FISTA
[an)
=}
L -15
%)
=
Z .20
25
-30
10° 10’ 102 10° 10*
iterations

Solving LASSO to reconstruct 40-sparse & € R'%%0 from noisy y € R4,

Z = argmin |ly — Az|3 + Az

Phil Schniter (Ohio State & Duke iiD)
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VAMP Convergence in the Convex Setting

m Consider arbitrary A.

m A double-loop version of VAMP globally converges to a unique minimum when
the Jacobian of the denoiser g; is bounded as:

0
Jder, e >0 st il I< 9.(r,7) < 0%
’7+cl 87’ P)/+CQ

)

as occurs in optimization-VAMP under strictly convex regularization R(-;61).

m For convergence, it suffices to choose the damping parameter ¢ € (0, 1] as

< 2min{’71,72}.
Thus Y1+ Y2

m the damping parameter  can be adapted using 71,72, and
m damping is not needed (i.e., ¢ = 1 suffices) if v1 = 7o.
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VAMP State Evolution

m Suppose the denoiser g, (-) has identical scalar components g1 (-), where g; and
g4 are Lipschitz.

m Suppose that A is right-rotationally invariant, in that its SVD
A=USVT

has Haar V' (i.e., uniformly distributed over the set of orthogonal matrices).
Since U and S are arbitrary, this includes iid Gaussian A as a special case.

m In the large-system limit, one can prove* that VAMP is rigorously characterized
by a scalar state-evolution (using techniques inspired by Bayati-Montanari'10).

m This state-evolution establishes

the convergence of VAMP in the non-convex setting,
the correctness of the denoising model 71 = x, + N(0,I/v1).

4Rangan,Schniter,Fletcher'16
S ey 0



VAMP state evolution

Assuming empirical convergence of {s;}—S and {(r? ;,2.;)} — (R{, X,) and Lipschitz
continuity of g and ¢, the VAMP state-evolution under 7, = 7, is as follows:

fort=0,1,2,...
= E{[g(X, + N(0,7)):7}) - X,]} MSE
ay =E{¢ (X, + N(0,77);7}) } divergence
Vo =T 17?tv ™= a — K €1 - (ai)QTlt]
& =E{[S*/rw+7] "} MSE
b =75 E{ [5 /7w + 78] 1} divergence
S A = el - @)

More complicated expressions for £ and @} exist for the case when 7, # 7,,.
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VAMP for Inference

VAMP for Inference

m Now consider VAMP applied to the “inference” or "MMSE" problem.
m assume a prior p(x;61),
m choose the denoiser as g, (r1;71,01) = E{x|r1 = + N(0,I/v)}.

m What is the corresponding cost function in this case?
m What can we say about convergence and performance?

m Can we tune the hyperparameters 8 = [0, 6] if they are unknown?

Phil Schniter (Ohio State & Duke iiD) SPARS — June'17 17 / 48



Variational Inference

m ldeally, we would like to compute the exact posterior density
;01)¢(x; 0
plaly) = PEOIED) o 700) & [ pla:01)0(wi02)
Z(0)
but the high-dimensional integral in Z(8) is difficult to compute.
m We can avoid computing Z(8) through variational optimization:

p(x|y) = arg min D (b(x)||p(x|y)) where D(:|-) is KL divergence
b

= argbminD(b(w)Hp(:n; 61)) + D(b(z)|t(x;62)) + H (b(x))

Gibbs free energy
= argmin D (by()||p(e; 01)) + D (ba(x)||t(2;62)) + H (q(x))

b1,b2,q
s.t. by = by =g, £ Jgibbs (b1, b2, ¢; 0)

but the density constraint keeps the problem difficult.
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VAMP for Inference

Expectation Consistent Approximation

m In expectation-consistent approximation (EC)®, the density constraint is relaxed
to moment-matching constraints:

p(x|y) ~ arg min Jgibps(b1, b2, ¢; 0)
b1,ba,q

oi {Elaln) ~E(ab) ~Elol)
7\ tr(Cov{x|bi}) = tr(Cov{z|ba}) = tr(Cov{z|q}).

m The stationary points of EC are the densities

bl(w)O(p(wéel)N(wﬂ'l,I/Vl) E{ |b}—E{ |b }:A
by() o £(z; 02)N (w372, T /72) st d 101 " *r . "j ) —
q(x) = N(x;z,1/n) { tr(Cov{w|b,}) = tr(Cov{x|bs}) = N/n,

where VAMP iteratively solves for the quantities 71,71, 72,72, T, 7.

m For large right-rotationally invariant A, the these stationary points are “good”
in that MSE(Z) matches the MMSE predicted by the replica method.®”

50pper,Winther'04, ®Kabashima,Vehkapera'14, 7Fletcher,Sahraee,Rangan,Schniter'16
SPARS — June'l7 19 /48



The VAMP Algorithm for Inference

When applied to inference, the VAMP algorithm manifests as

Initialize 71, 1.
For k=1,2,3,...

Z1 < g,(r1;71,01) MMSE estimate of @ ~ p(x;01)
from r1 = x + N(0,1/71)
591(7%;71701)}

m < 1N/ tr [ posterior precision

or1
T2+ (MmT1 —7r1)/(m —mn)
Y2 M —MN
T2 < g5(T2;72,02) LMMSE estimate of @ ~ N (2, I/72)
from y = Az + N(0,1/02)
N2 < 2N/ tr [%;32’02)} posterior precision

r1 4 ((M2@2 — y2r2) /(M2 — 72) + (1-{)m
7 4= (2 —y2) + (1 = O

and yields Z; = > = Z and 71 = 72 = 1 at a fixed point.
SPARS — June'l7 20 /48



Experiment with Matched Priors

Comparison of several algorithms® with priors matched to data.

== N = 1024
Y M/N =05

—A— damped GAMP
-10 [ |—+—VAMP
= = replica

. T
15 1 A = U Diag(s)V
2 | U,V ~ Haar
w
2.25 | Sn/sn—l =¢Vn
z ¢ determines k(A)
S 30 .
Q
E 35 1 . .
X, ~Bernoulli-Gaussian
40 1 Pr{Xo #0} =0.1
-45, 1
-50 : : : : : SNR = 40dB
10° 10' 102 10° 10% 10° 108

condition number k(A)

VAMP follows replica prediction® over a wide range of condition numbers.

8S—AMP: Cakmak,Fleury,Winther'14,  AD-GAMP: Vila,Schniter,Rangan,Krzakala,Zdeborovd'15
9Tulino,Caire,Verdd,Shamai'13
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Experiment with Matched Priors

Comparison of several algorithms with priors matched to data.

condition number=1

5_1 ol AMP
o —%—S-AMP
Q.20 —A— damped GAMP
E —— VAMP
= -30 | - — VAMP SE
S
E -40 -
.50 | I T
10° 10" 102 10°
o condition number=1000
i AMP
w10+ —%—S-AMP
7] —&A— damped GAMP
E —+— VAMP
p - — VAMP SE
©
5 -30 -
£
40 L SRR — S S S R
10° 10" 102 10°

iterations

VAMP is fast even when A is ill-conditioned.

Phil Schniter (Ohio State & Duke iiD)

N = 1024
M/N =0.5

A = U Diag(s)V"
U,V ~ Haar

Sn/Sn—1 = ¢ ¥n
¢ determines k(A)

X, ~Bernoulli-Gaussian
Pr{Xo #0} = 0.1

SNR = 40dB
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EM-VAMP and Adaptive VAMP

Expectation Maximization

m What if the hyperparameters @ of the prior & likelihood are unknown?.

m The EM algorithm!® is majorization-minimization approach to ML estimation
that iteratively minimizes a tight upper bound on —Inp(y|0):

AkH—ar minq — In k(x T|Y;
67 = argmin{ ~Inp(yl6) + D (@) p(aly: 0)) |

with t*(2) = p(aly:6") 20

m We can also write EM in terms of the Gibbs free energy:!!

/ék+1 _ argmlnD bk Hp Cl: 01)) + D(bk )HE(:[H@Q)) + H(bk(iﬂ))

Jaibbs (b7, 0%, b¥; 9)
m Thus, we can interleave EM and VAMP to solve

. . E{x|b1} = E{x|bs} = E{=x
min min Jaibbs(b1, b2, ¢; 0) s:t. {tr%clv{}mwl}]{:‘tgr}{cov{i\zLZ%»] — tr[Cov{z|q}]-

0Dempster,Laird,Rubin'77,  'Neal,Hinton’98
SPARS — June'i7
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The EM-VAMP Algorithm

For k=1,2,3,...

Input conditional-mean g, (-) and g,(:), and initialize r1,71,01, 0.

T+ 91(7“1;’71751) MMSE estimation
m < N/ tr [agl(rl; '71,51)/81‘1]

r2 < (MZ1 —yr1)/(m —n)

Y2 =M T
é\g < arg maxg, E{ln ¢(x;02) | r2; V2, @\2} EM update
X2 92(7’2;72,52) LMMSE estimation

N2 72N/ tr [692(7'2? 72, @\2)/87‘2]

1= (@2 — 72r2) /(2 —72) + (1=Q)m1
Y14 Cm2 —72) + (L= Om
0, + arg maxg, E{lnp(zx;01) | rl;’yl,al} EM update

Experiments suggest it helps to update 0, several times per VAMP iteration.

Phil Schniter (Ohio State & Duke iiD)
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EM-VAMP and Adaptive VAMP

State Evolution and Consistency

m EM-VAMP has a rigorous state-evolution when the prior is i.i.d. and A is large
and right-rotationally invariant.'?

m Furthermore, a variant known as “adaptive VAMP" can be shown to yield
consistent parameter estimates with an i.i.d. prior in the exponential-family or
with finite-cardinality 6;.12

m Essentially, adaptive VAMP replaces the EM update

51 < argmaxg, E{lnp(z;61) | 7’1,71751}

with
(01,71) + argmaxg, ) E{lnp(x;601) [ 71,791,601},

which also re-estimates the precision 1. (And similar for 63, 75.)

12F|etcher,Ra ngan,Schniter'17
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Experiment with Unknown Hyperparameters 6

Learning both noise precision 8, and BG mean/variance/sparsity 61:

0

-5

-10

-15

-20

-25

-30

median NMSE [dB]

-35

-40

-45

-50

‘ ; ‘ 5
—A— damped EM—AMP//k’A__ni

- |—e— EM-VAMP

—— VAMP

= = replica

A

p

10° 10’ 102 10° 104 10°

condition number x(A)

N = 1024
M/N = 0.5

A = U Diag(s)VT
U,V ~ Haar
Sn/Sn_1 = ¢ ¥n
¢ determines k(A)

X, ~Bernoulli-Gaussian
Pr{Xo #0} =0.1

SNR = 40dB

EM-VAMP achieves oracle performance at all condition numbers!!3

I3EM-AMP proposed in Vila,Schniter'll and Krzakala,Mézard,Sausset,Sun,Zdeborova’'12

SPARS — June'17 27 / 48



Experiment with Unknown Hyperparameters 6

Learning both noise precision 82 and BG mean/variance/sparsity 61:

A A A AAA

median NMSE [dB]
h b b o
o

condition number=1

—4A— damped EM-AMP|
—+— VAMP
—6— EM-VAMP

-20

-30

median NMSE [dB]

-40
10°

iterations

EM-VAMP nearly as fast as VAMP and much faster than damped EM-GAMP.

Phil Schniter (Ohio State & Duke iiD)
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SNR = 40dB
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Plug-and-play VAMP

m Recall that the nonlinear estimation step in VAMP (or AMP)
Z1 <+ g,(r1;m) where 7y = x, + N(0,I/v,)

can be interpreted as “denoising” the pseudo-measurement 7.

m For certain signal classes, very sophisticated non-scalar denoising procedures
have been developed (e.g., BM3D for images).

m Such denoising procedures can be “plugged into” signal recovery algorithms like
ADMM* AMPI® or VAMP6,

m For AMP and VAMP, the divergence can be approximated using Monte-Carlo:

1,29 Ngipﬂgmepm—gl<r,m]
N 57‘1 K 1 Ne

with random vectors p,, € {£1}? and small € > 0. Often, K = 1 suffices.

4Bouman et al'13, ®Metzler,Maleki,Baraniuk’14, 16Schniter,Rangan,Fletcher'16
Ay




Experiment: Image Recovery with Random Matrices

Plug-and-play versions of VAMP and AMP work similarly when A is i.i.d.,
but VAMP can handle a larger class of random matrices A.

20 iid Gaussian A 20 spread spectrum A (M/N = 0.2)
— VAMP-BM3D
- - AMP-BM3D
35— VAMP-L1 25
- - AMP-L1
201,
30
< z Y — VAMP-BM3D
Z . Z150 —VAMP-L1
& 25 — o \ AMP-BM3D
e 10 A - - AMP-L1
— - B \\
200 5 \
L v
\
15 0 *
0.1 0.2 0.3 0.4 05 10° 10' 102 10° 10*
sampling rate M/N condition number

Results above are averaged over 128 x 128 versions of
lena, barbara, boat, fingerprint, house, peppers

and 10 random realizations of A, w.
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Plug-and-play VAMP & Whitening

Plug-and-play with Non-Random Matrices

m Many imaging applications (e.g., MRI) use low-frequency Fourier
measurements, in which case A =USV ' =I[I O] F.

m This causes problems for VAMP because the signal correlation structure
interacts with VT in a way that VAMP is not designed to handle.

m Why? Say « is a natural image, and consider g = V " .
m If V is large and Haar, then g will be iid Gaussian.
m If VT = F, the low-freq entries of g will be much stronger than the others.

PnP VAMP treats V' as iid Gaussian and thus diverges when VI=FI

Phil Schniter (Ohio State & Duke iiD) SPARS — June'17 32 /48



Plug-and-play VAMP & Whitening

Whitened VAMP {2} for Image REcovery (VAMPire)

m To apply VAMP with non-random Fourier measurements, we propose to
operate on the whitened signal:
R, =E{zz"}

_ 1/2
y=[IOFR, s +w for { s = whitened signal coefficients

—_——
A

and perform plug-and-play denoising from the whitened-coefficient space:
31 =g,(r1,m) = R;l/Qdenoise(R;/er;*le/ tr(Ry)).

m In practice, we approximate R, ~ W' Diag(7)>W, where W is a wavelet
transform and 772 specifies the energy of the ith wavelet coefficient (which is
easy to predict for natural images).

Phil Schniter (Ohio State & Duke iiD) SPARS — June'17 33 /48



Plug-and-play VAMP & Whitening

Whitened VAMP {2} for Image REcovery (VAMPire)

m The resulting matrix A = [I 0]FW Diag(7) does not yield a right singular
vector matrix V' with a fast multiplication.

m But since A has a fast implementation, the LMMSE stage can be computed via
(preconditioned) LSQR:

9o(T2;72) = (’ywATA +y2I)” ('YwA Y+ 2r2) = |:\/\/77%?:| |:\/\/’%"y2:|

m The divergence (g5(r2;72)) can be approximated using Monte-Carlo:

(g5) = %tr RWwAHA‘FVzI)l} ~ szk {\/\/?“;ﬂ [\/%PJ :

where E{p, p}!} = I. Here again, (preconditioned) LSQR can be used.
In practice, K = 1 suffices.
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Plug-and-play VAMP & Whitening

Image Recovery Experiments

Fourier measurements sampled at M lowest frequencies
SNR=40dB

128 x 128 images {/lena, barbara, boat, fingerprint, house, peppers}
dbl wavelet decomposition, D = 2 levels

VAMPire-BM3D

34 35
—— VAMPire-BM3D
—— LASSO via SPGL1
32 LMMSE 30
25
- o 20
4 =
2 2
15
10
22 5
20 0
0.1 0.2 0.3 0.4 0.5 0 5 10 15
measurement rate M/N iteration

Phil Schniter (Ohio State & Duke iiD) SPARS — June'17 35 /48



Outline

ﬂ VAMP as a Deep Neural Network

Phil Schniter (Ohio State & Duke iiD) SPARS — June'17 36 /48



VAMP as a Deep Neural Network

Deep learning for sparse reconstruction

m Until now we've focused on designing algorithms to recover x, ~ p(x) from

measurements y = Ax, + w. y

Y — algorithm —= 2

model p(x), A

m What about training deep networks to predict x, from y?
Can we increase accuracy and/or decreas; computation?

deep ~

Y= network [~ %

training data {(z4,y4) 5,

m Are there connections between these approaches?

Phil Schniter (Ohio State & Duke iiD) SPARS — June'17 37 /48



Unfolding Algorithms into Networks

Consider, e.g., the classical sparse-reconstruction algorithm, ISTA.7

'Ut =Y — Aﬁt /\t+1
T =g@" + ATv)

S271-ATA

g(Sz" + By) with BA AT

Gregor & LeCun'® proposed to “unfold” it into a deep net and “learn” improved
parameters using training data, yielding “learned ISTA" (LISTA):

9O SO0k S et
V{5 f.%.ﬂ

The same “unfolding & learning” idea can be used to improve AMP, yielding
“learned AMP" (LAMP).1°

7Daubechies,Defrise,DeMol'04.  18Gregor,LeCun’10.  °Borgerding,Schniter'16.
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Onsager-Corrected Deep Networks

™ LISTA layer:

~tHH
er

v tH1

Yy
to exploit low-rank B* A" in linear stage S' =T — B'A".

t™ LAMP layer:

z' s>

o] "
t t cle t
v var | A
Yy

Onsager correction now aims to decouple errors across layers.
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LAMP performance with soft-threshold denoising

LISTA beats AMP,FISTA,ISTA . .
LAMP beats LISTA " convergence speed and asymptotic MSE.

Lol 3
5l QQﬂaﬂ‘kk,” ]
4 oo o ® 00 0 ¢ ¢ .
10 e . QQplot of LAMP r
— \ _ 1 os
o . o ISTA b o B )y
=2 . —e— FISTA * . =
w 10 e —e— AMP ] g0
2 . —%— LISTA tied 3o
S 207 ® e | ¥ LISTAuntied| 3o
o ~e|—5— LAMP tied £,
& 257 —%— LAMP untied 1 5.,
b+ o
(% =
o S 0z
&80 bl S e
* S
-35 s
o3 ®T s @ oo 1z
40 ; : Standard Normal Quantiles

10 15 20
layers / iterations

(S,
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LAMP beyond soft-thresholding

So far, we used soft-thresholding to isolate the effects of Onsager correction.

What happens with more sophisticated (learned) denoisers?

e —»—LISTA

—8—LAMP-!1 Here we learned the parameters of
5l —A—LAMP-bg | | h . o

—9— LAMP-expo these denoiser families:

—6— LAMP-pwlin .
20 —+— LAMP-spline | | m scaled soft-thresholding

support oracle

m conditional mean under BG

m Exponential kernel®

average NMSE [dB]
oo o
(9]

-35 m Piecewise Linear®®
40 al .
0 m Spline?
A5 : : : : Big improvement!
2 4 6 8 10 12 14 g !mp :
layers

20Guo,Davies'15. 2!Kamilov,Mansour’16.
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LAMP versus VAMP O

How does our best Learned AMP compare to (unlearned) VAMP?

T T T T T T T

—G— LAMP-pwlin

—A— VAMP-bg
support oracle

VAMP wins!

average NMSE [dB]

2 4 6 8 10 12 14
layers / iterations

So what about “learned VAMP"?
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VAMP as a Deep Neural Network

Learned VAMP

m Suppose we unfold VAMP and learn (via backprop) the parameters {S*, g*}7_,
that minimize the training MSE.

" x, + N(0,1/4%) z, +N(0,I/4%)
N 0[] ”

L g'()

| ot NOI/) [ ] @0+ N(O.I/)

L g'()

Sf, Sf,

RN
RN

m Remarkably, backpropagation does not improve matched VAMP!
VAMP is locally optimal

m Onsager correction decouples the design of {S*, g*(-)}Z_;:
Layer-wise optimal S%,g’(:) = Network optimal {S*, g*(-)}{=,
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Outline

© VAMP for the Generalized Linear Model
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VAMP for the Generalized Linear Model

Generalized linear models

m Until now we have considered linear regression: y = Az, + w.

m VAMP can also be applied to the generalized linear model (GLM)?3

y ~ p(y|z) with hidden z = Ax,
which supports, e.g.,
® y; = z; + w;: additive, possibly non-Gaussian noise
m y; = sgn(z; + w;): binary classification / one-bit quantization
m y; = |2z; + w;|: phase retrieval in noise
m Poisson y;: photon-limited imaging

m How? A simple trick turns the GLM into a linear regression problem:

z=Ax & 0 =[A -1 {m}
~ =z
T

23Schniter,Rangan,Fletcher'16
Erp Ty



VAMP for the Generalized Linear Model

One-bit compressed sensing / Probit regression

Learning both 65 and 6;:

0 T
—A— EM-AMP
—+— EM-VAMP
—&— VAMP

— — VAMP-SE

-20

-25

average NMSE [dB]

-30

-35%

-40
10° 10’ 102 108 104 10° 108
condition number

VAMP and EM-VAMP robust to ill-conditioned A.

Phil Schniter (Ohio State & Duke iiD)

N =512
M/N =4

A = U Diag(s)VT
U,V drawn uniform

Sn/snfl =¢ Vn
¢ determines k(A)

X, ~Bernoulli-Gaussian
Pr{Xo #0} =1/32

SNR = 40dB
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VAMP for the Generalized Linear Model

One-bit compressed sensing / Probit regression

Learning both 6 and 64:

condition number=3.1623

— 0
5 3 —A— EM-AMP
w -10 - \ —— EM-VAMP
[} \ —e— VAMP
% 20 N — — VAMP-SE
g \
© L
b -30
>
®

-40 :

10° 10’

— 04
g —A— EM-AMP
w-10 - —— EM-VAMP
%) —&— VAMP
% 20 — — VAMP-SE
g
5 -30 1
>
©

-40

10° 10"
iterations

10°

N =512
M/N =4

A = U Diag(s)VT
U,V drawn uniform
Sn/snfl =9 Vn

¢ determines k(A)

X, ~Bernoulli-Gaussian
Pr{Xo # 0} = 1/32

SNR = 40dB

EM-VAMP mildly slower than VAMP but much faster than damped AMP.

Phil Schniter (Ohio State & Duke iiD)

SPARS — June'l7

47 / 48



VAMP for the Generalized Linear Model

Conc|u5|ons

m VAMP is an efficient algorithm for linear and generalized-linear regression.

m For convex optimization problems, VAMP is provably convergent and related to
Peaceman-Rachford ADMM.

m For inference under right rotationally-invariant A, VAMP has a rigorous state
evolution and fixed-points that agree with the replica MMSE prediction.

m VAMP can be combined with EM to handle priors/likelihood with unknown
parameters, again with a rigorous state evolution.

m Can unfold VAMP into an interpretable deep network.

m In non-convex settings (e.g., plug-and-play) with deterministic matrices, more
work is needed to understand the performance and convergence of VAMP.

m Still lots to do! (multilayer generative models, bilinear problems .. .)
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