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I. EXTENDED SUMMARY

Problem: We consider the following bilinear model in the unknowns
X ∈ R

N×L andΦ ∈ R
M×N , which has applications is dictionary

learning, matrix completion, collaborative filtering, compressive sys-
tem calibration, compressive sensing with dictionary uncertainty, and
Bayesian experimental design:

Y = P (ΦX) +W . (1)

In (1), Y are known observations,P(·) accomplishes element-wise
selection or linear projection, andW models additive perturbation.
Please see [1] for further details.

Approach: We take a Bayesian approach to the inference problems
(in particular, posterior estimation) that revolve around the bilinear
model (1). In particular, we leverage the approximate message passing
(AMP) framework of [2], [3] and extend it to the bilinear domain.
Compared to Bayesian approaches that rely on Gibbs sampling meth-
ods or variational inference, the AMP framework allows us to fully
exploit theblessings-of-dimensionality (e.g., the asymptotic normality
and concentration-of-measures) to achieve salient advantages in com-
putation and estimation accuracy. Our “turbo AMP” framework also
allows us to characterize the impact of our message scheduling using
extrinsic information transfer (EXIT) charts, originally developed to
predict the convergence of turbo decoding.

Example Application: For concreteness, we describe the application
of the bilinear model (1) to thecompressive system calibration
problem. Based on the theoretical premise of compressive sensing, a
great deal of research has revolved around the design of sampling
systems, such as Analog-to-Information receivers and Xampling.
The sampling matrices in these systems are pre-designed with
certain desired theoretical properties to guarantee recovery along
with the constraints of hardware implementations. However, when
implementing the mathematical “sampling” operation—here defined
by the matrixΦ—in real hardware, one often introduces what are
effectively perturbations onΦ that create an undesired gap between
theoretical and practical system performance. As a means of closing
this gap, we are interested in jointly learning the true matrixΦ while
simultaneously recovering the signalX.

Suppose, then, that our compressive sensing system produces a
sequence of vector observationsyl (l = 1, . . . , L; collectively
referred asY ) that correspond to a sequence of unknown sparse
signalsxl (collectively,X). We assume that the signal coefficients
{xjl} are drawn i.i.d from a (known) compressible priorxjl ∼ pX(·),
and we model the entries of the true (unknown) sampling matrixΦ

as i.i.d Gaussian with varianceµw and known mean̄Φ. For ease
of description, we assume thatµw is known, that the signalsxl are
canonically sparse, and that the projection operatorP(·) is identity.
This calibration problem yields the factor graph in Fig. 1, to which

we applybilinear AMP in order to generate (approximate) posterior
marginals on the elements ofΦ andX.

This calibration problem can be interpreted as an instance of
dictionary learning, whereby one seeks a sparsifying dictionary
for some training data. In this setting, it is known thatℓ1-norm
minimization can locally identify the correct dictionary (i.e.,Φ) given
L = O

(

N3K
)

training samples, whereK is the “sparsity” ofxl [4].
We note, however, that the computational complexity of this approach
is extremely demanding for large scale problems.
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Fig. 1. An illustration of the factor graph for our message passing solution.

Preliminary Results: Figure 2 shows example results for the applica-
tion of bilinear AMP to the calibration problem. The non-convexity
of the problem is quite apparent from the plots. Here, to generate the
signals, we used an i.i.d Bernoulli-Gaussian prior that generated zero-
mean unit-variance active coefficients with probabilityK/N . The
nominal sampling matrix̄Φ was generated i.i.d Gaussian with zero
mean and1/M -variance, and trueΦ was generated by perturbinḡΦ
with an additive noise of the same distribution.
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Fig. 2. Recovery errors in dB: the dictionary, the signals, and the data.
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