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Abstract

To solve linear inverse problems, plug-and-play (PnP) methods replace the proximal

step in a convex optimization algorithm with a call to an application-specific denoiser,

often implemented using a deep neural network (DNN). Although such methods

yield accurate solutions, they can be improved. For example, denoisers are usually

designed/trained to remove white Gaussian noise, but the denoiser input error in

PnP algorithms is usually far from white or Gaussian. Approximate message passing

(AMP) methods provide white and Gaussian denoiser input error, but only when

the forward operator is sufficiently random. In the first work of the dissertation, for

Fourier operator based linear inverse problem, we propose a PnP algorithm based on

generalized expectation-consistent (GEC) approximation—a close cousin of AMP—

that offers predictable error statistics at each iteration, as well as a new DNN denoiser

that leverages those statistics. We apply our approach to magnetic resonance (MR)

image recovery and demonstrate its advantages over existing PnP and AMP methods.

In the second work of the dissertation, we expand our focus to address both linear

and non-linear inverse problems within the generalized linear model (GLM) framework.

We propose a novel variant of the expectation-consistent (EC) approximation that

iteratively leverages DNNs to solve GLM inverse problems. Unlike traditional EC

implementations, our proposed framework does not require random forward opera-

tors. As a case study, we focus on a popular non-linear inverse problem of phase
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retrieval, which involves accurately recovering images from noisy phaseless measure-

ments. In addition to applying EC in a non-traditional manner, we also propose a

novel stochastic damping scheme that is inspired by recent diffusion methods. Like

existing phase-retrieval methods based on PnP priors, regularization by denoising, or

diffusion, our approach iterates a denoising stage with a measurement-exploitation

stage. But unlike existing methods, our approach requires far fewer denoiser calls. We

demonstrate the efficacy and robustness of our approach for noisy phase-retrieval of

colored images on oversampled-Fourier and coded-diffraction-pattern measurements

and find improvements in both PSNR and SSIM with 5x fewer denoiser calls.

Given the ill-posed nature of noisy inverse problems, multiple plausible solutions can

exist for a single set of measurements. In the Bayesian framework, these solutions are

typically obtained by sampling from the posterior distribution. Unlike our initial works,

which focused on obtaining point estimates—specifically, the posterior mean—the

third and final part of this dissertation delves into the rapidly advancing field of

diffusion models. To this end, we address the challenge of posterior sampling from

first principles and introduce a novel framework called Recursive Annealed Posterior

Sampling (RAPS). To enhance the computational efficiency and robustness of the

algorithm, we introduce several improvements, including adaptive regularization and a

stochastic extension. Additionally, by employing expectation-propagation, we expand

the algorithm’s applicability to a broader array of generalized-linear inverse problems.

Our proposed method exhibits exceptional performance over a wide range of inverse

problems and neural-function evaluation budgets.
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Chapter 1: Introduction

1.1 Linear Inverse Problem

In linear inverse problem, we aim to recover a signal xtrue ∈ CN from measurements

y ∈ CP of the form

y = Axtrue +w, (1.1)

where A is a known linear operator and w is unknown noise. Well-known examples of

linear inverse problems include deblurring [1]; super-resolution [2, 3]; inpainting [4];

image recovery in magnetic resonance imaging (MRI) [5]; computed tomography [6];

holography [7]; and decoding in communications [8]. Importantly, when A is not full

column rank (e.g., when P < N), the measurements y can be explained well by many

different hypotheses of xtrue. In such cases, it is essential to harness prior knowledge

of xtrue when solving the inverse problem.

1.1.1 Prior Art

The traditional approach [9] to recovering xtrue from y in (1.1) is to solve an

optimization problem like

x̂ = argmin
x
{g1(x) + g2(x)} , (1.2)
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where g1(x) promotes measurement fidelity and the regularization g2(x) encourages

consistency with the prior information about xtrue. For example, if w is white Gaussian

noise (WGN) with precision (i.e., inverse variance) γw, then g1(x) =
γw
2
∥y −Ax∥2

is an appropriate choice. Choosing a good regularizer g2 is much more difficult. A

common choice is to construct g2 so that xtrue is sparse in some transform domain,

i.e., g2(x) = λ∥Ψx∥1 for λ > 0 and a suitable linear operator Ψ. A famous example

of this choice is total variation regularization [10] and in particular its anisotropic

variant (e.g., [11]). However, the intricacies of many real-world signal classes (e.g.,

natural images) are not well captured by sparse models like these. Even so, these

traditional methods provide useful building blocks for contemporary methods, as we

describe below. We will discuss the algorithmic aspects of solving (1.2) in Section 2.1.

More recently, there has been a focus on training deep neural networks (DNNs)

for image recovery given a sufficiently large set of examples {(xi,yi)} to train those

networks. These DNN-based approaches come in many forms, including dealiasing

approaches [12, 13], which use a convolutional DNN to recover xtrue from AHy or

A+y, where (·)+ denotes the pseudo-inverse; unrolled approaches [14,15], which unroll

the iterations of an optimization algorithm into a neural network and then learn the

network parameters that yield the best result after a fixed number of iterations; and

inverse GAN approaches [16, 17], which first use a generative adversarial network

(GAN) formulation to train a DNN to turn random code vectors z into realistic signal

samples x, and then search for the specific z that yields the x̂ for which ∥Ax̂− y∥ is

minimal. Good overviews of these methods can be found in [18–20]. Although the

aforementioned DNN-based methods have shown promise, they require large training

datasets, which may be unavailable in some applications. Also, models trained under
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particular assumptions about A and/or statistics of w may not generalize well to test

scenarios with different A and/or w.

So-called “plug-and-play” (PnP) approaches [21] give a middle-ground between

traditional algorithmic approaches and the DNN-based approaches discussed above.

In PnP, a DNN is first trained as a signal denoiser, and later that denoiser is used to

replace the proximal step in an iterative optimization algorithm (see Section 2.1.2).

One advantage of this approach is that the denoiser can be trained with relatively

few examples of {xi} (e.g., using only signal patches rather than the full signal) and

no examples of {yi}. Also, because the denoiser is trained on signal examples alone,

PnP methods have no trouble generalizing to an arbitrary A and/or w at test time.

The regularization-by-denoising (RED) [22, 23] framework yields a related class of

algorithms with similar properties. See [24] for a comprehensive overview of PnP and

RED.

1.1.2 Summary of Contribution 1: Denoising GEC for MRI
Recovery

With a well-designed DNN denoiser, PnP and RED significantly outperform

sparsity-based approaches, as well as end-to-end DNNs in limited-data and mismatched-

A scenarios (see, e.g., [24]). However, there is room for improvement. For example,

while the denoisers used in PnP and RED are typically trained to remove the effects

of additive WGN (AWGN), PnP and RED algorithms yield estimation errors that are

not white nor Gaussian at each iteration. As a result, AWGN-trained denoisers will

be mismatched at every iteration, thus requiring more iterations and compromising

performance at the fixed point. Although recent work [25] has shown that deep

equilibrium methods can be used to train the denoiser at the algorithm’s fixed point,
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the denoiser may still remain mismatched for the many iterations that it takes to

reach that fixed point, and the final design will be dependent on the A and noise

statistics used during training.

These shortcomings of PnP algorithms motivate the following two questions:

1. Is it possible to construct a PnP-style algorithm that presents the denoiser with

predictable error statistics at every iteration?

2. Is it possible to construct a DNN denoiser that can efficiently leverage those

error statistics?

When A is a large unitarily invariant random matrix, the answers are well-known to

be “yes": approximate message passing (AMP) algorithms [26] yield AWGN errors

at each iteration with a known variance, which facilitates the use of WGN-trained

DNN denoisers like DnCNN [27] (see Section 2.1.2 for more on AMP algorithms). In

many inverse problems, however, A is either non-random or drawn from a distribution

under which AMP algorithms do not behave as intended. So, the above two questions

still stand.

In Chapter 2, we answer both of the above questions in the affirmative for Fourier-

based A. Using the framework of generalized expectation-consistent (GEC) approxi-

mation [28] in the wavelet domain [29], we propose a PnP algorithm that yields an

AWGN error in each wavelet subband, with a predictable variance, at each iteration.

We then propose a new DNN denoiser design that can exploit knowledge of the

wavelet-domain error spectrum. For recovery of MR images from the fastMRI [30]

and Stanford 2D FSE [31] datasets, we present experimental results that show the

advantages of our proposed approach over existing PnP and AMP-based approaches.
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px(·) A
∏

i py|z(·|zi) yx z

Figure 1.1: Generalized linear model relating signal x to measurements y.

1.2 Phase Retrieval as an instance of Generalized Linear Model

We next expand our focus to Generalized Linear Model (GLM) framework [32]. A

wide variety of linear and nonlinear inverse problems fall under the GLM framework,

which models the relationship between the measurements y ∈ Ym and the signal/image

hypothesis x ∈ Rd or Cd using

py|x(y|x) =
m∏
i=1

py|z(yi|zi) for z = Ax, (1.3)

for scalar “measurement channel” py|z and forward transform A ∈ Rm×d or Cm×d (see

Fig. 1.1). By choosing appropriate py|z, one can model, e.g., additive noise of an

arbitrary distribution, logistic regression [33], Poisson regression [34], dequantization

[35], and phase retrieval [36,37].

A simple instance of the GLM is the Standard Linear Model (SLM) (1.1), where

py|z(yi|zi) = N (yi; zi, v) and so

y = ztrue +w = Axtrue +w, w ∼ N (0, vI). (1.4)

Here, v is the variance of the additive white Gaussian noise (AWGN) vector w. As

previously discussed, through appropriate choice of A, the SLM covers, e.g., denoising,

deblurring, compressed sensing, super-resolution, inpainting, magnetic resonance

imaging, and computed tomography.
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In Chapter 3, we tackle the phase retrieval (PR) problem. In PR one aims to

recover an unknown signal or image xtrue ∈ Rd from phaseless measurements

y = |Axtrue|+w, (1.5)

where A ∈ Cm×d is a known linear operator, | · | is an element-wise operation that

loses phase information, and w ∈ Rm is noise. PR is needed when it is infeasible to

measure phase information, as often occurs in optics [38], computational biology [39],

astronomy [40], X-ray crystallography [41, 42], coherent diffraction imaging [43],

speech recognition [44], electron microscopy [45], holography [46], non-line-of-sight

imaging [47], and other fields. PR is challenging because, even with full-rank A and

no noise, there exist many hypotheses of x that explain the phaseless measurements

y [36].

1.2.1 Prior Art

Various approaches to PR have been proposed. Classical methods, like the

Gerchberg-Saxton (GS) [48] and Hybrid Input-Output (HIO) [49] algorithms, are

based on iterative projection. Although these algorithms and their variants [50–52]

are simple to implement and fast to execute, their output qualities don’t compete

with those of contemporary methods, as we show in the sequel.

A more modern approach is to formulate PR as negative log-likelihood (NLL)

minimization and solve it using gradient-based iterative methods. The PR NLL is

non-convex, however, and so spectral initialization strategies have been proposed

in an attempt to avoid bad local minima [53–55]. Spectral initialization tends to

work well with randomized A [53–55] but often fails for the deterministic Fourier A

(see, e.g., [56]). As a more direct attack on non-convexity, convex relaxations such
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as PhaseLift [57] and PhaseMax [58] have been proposed (see [59] for an overview).

However, these relaxations manifest as semidefinite programs in d2-dimensional space,

which are computationally impractical for imaging applications with d-pixel images.

Approximate Message Passing (AMP) algorithms have also been proposed for PR under

sparsity-based signal models [60,61]. Although near-optimal for high-dimensional i.i.d.

or rotationally invariant random A [62, 63], they tend to diverge for deterministic

Fourier A.

For image PR, various approaches have been proposed to exploit the prior knowledge

that x is an image. For example, the plug-and-play (PnP) [21] and RED [22, 23]

frameworks have been adapted to PR in [56,64,65]. As mentioned before, these methods

iterate between NLL reduction and denoising, allowing them to harness the power of

deep-network-based image denoisers such as DnCNN [27], and they tend to work well

with both random and deterministic A. AMP-based PnP PR approaches have also

been proposed [66, 67], but they tend to struggle with deterministic Fourier A [56].

The Compressed-Sensing Generative Model (GSGM) framework [16] was applied to

PR in [68], where—given an image generator gθ(·) with fixed parameters θ—one

searches for a code vector z for which |Agθ(z)| matches the phaseless measurements

y. A variation [69,70] inspired by Deep Image Prior (DIP) [71] fixes z and instead

optimizes the generator parameters θ. A further evolution [72] applies dropout to

θ in an effort to approximate MMSE estimation. One weakness of these DIP-based

approaches is that their inference speed is about 10× slower than PnP methods like

prDeep [72, Table 4]. End-to-end deep networks have also been proposed to learn the

inverse mapping from y to x in PR [73, 74], but they often fail with deterministic

A [65]. Recently, diffusion methods have been proposed to sample from the posterior
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distribution [75–79] in PR. Some of them [78, 79] integrate Monte-Carlo sampling

to enable tractable theoretical analysis at the expense of slower inference time. In

Section 3.3, we test [76,77], which have similar inference times to PnP methods, but

find that they don’t perform as well.

1.2.2 Summary of Contribution 2: Deep EC for Phase Retrieval

In Chapter 3, we propose a novel approach to PR based on the expectation-

consistent (EC) approximation framework [28,80], which we refer to as “deepECpr.”

Different from existing EC-based methods like VAMP [81] and GVAMP [61], deepECpr

avoids the need for large random A by employing EC in a different way. In addition,

deepECpr includes a novel “stochastic damping” scheme to further mitigate potential

deviations from EC modeling assumptions. Like PnP, RED, and diffusion-based

approaches to PR, deepECpr iteratively calls a deep-net denoiser, but it converges

in significantly fewer iterations to more accurate solutions. We attribute deepECpr’s

excellent performance to its ability to track error-variances, thereby allowing efficient

use of the denoiser.

1.3 Leveraging Diffusion Models for Inverse Problems

Generating samples from complicated real-world distributions p0 is a longstanding

problem in machine learning. Recently, diffusion modeling [82–87] has emerged as a

powerful approach to this problem. In diffusion, the forward process gradually corrupts

samples x0 ∼ p0 with ever-increasing amounts of noise to obtain xT for some time T .

The reverse process starts with pure noise xT and gradually denoises intermediate

samples xt for t ∈ (0, T ), to ultimately generate a sample x0 ∼ p0. More details will

be provided in the sequel.
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In inverse problems like inpainting, deblurring, super-resolution, and phase retrieval,

we wish to recover x0 ∼ p0 from possibly ill-posed and noisy measurements y in an

unsupervised manner. Furthermore, we may wish to draw samples from the posterior

distribution p(x0|y). Recently, diffusion-based methods have emerged as an effective

approach to addressing these challenges [88]. There, a diffusion model is trained

to generate samples from p0 and, at test time, the reverse process is modified to

incorporate knowledge of the measurements y, with the goal of sampling from the

posterior distribution p(x0|y). When implementing the reverse process, the main

challenge is approximating the conditional score ∇x ln pt(xt|y) at each step t, where

xt is a additive-white-Gaussian-noise (AWGN) corrupted and possibly scaled version

of x0 ∈ Rd, and y ∈ Rm is treated as a draw from a likelihood function p(y|x0).

1.3.1 Prior Art

For linear inverse problems of the form

y = Ax0 + σww, w ∼ N (0, I), (1.6)

with known A and σw, several approximations x̂0|t,y ≈ E{x0|xt,y} have been proposed

that avoid the need to train a y-dependent model. For the noiseless case (i.e., σw = 0),

DDNM [89] uses the pre-trained unconditional denoiser to compute x̂0|t ≜ Dθ(xt, σt)

and then uses a hard data-consistency step to obtain

x̂0|t,y = A+y + (I −A+A)x̂0|t, (1.7)

where (·)+ is the pseudo-inverse. To handle σw > 0, DiffPIR [90] uses the soft

data-consistency step

x̂0|t,y = argmin
x
∥y −Ax∥2 + λσ2

w

σ2
t

∥x− x̂0|t∥2, (1.8)
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where λ is a tunable parameter. If a singular value decomposition (SVD) is not

available to compute (1.8), one step of gradient descent is used as an approximation.

DDRM [91] is a related scheme that requires an SVD, which is prohibitive in many

applications. DDS [92] proposes to approximately solve

argmin
x
∥y −Ax∥2 + λ∥x− x̂0|t∥2 (1.9)

using a few (M) steps of conjugate gradients (CG) initialized with x̂0|t. In this case,

both M and λ are tuning parameters.

For possibly non-linear inverse problems, which can be characterized by their

likelihood function p(y|x0), other methods are needed. Perhaps the best-known

approach, used by methods like DPS [76] and ΠGDM [93], is to combine Tweedie’s

formula [94]

∇xt log p(xt|y) =
E{x0|xt,y} − xt

σ2
t

, (1.10)

where xt = x0 + σtn for x0 ∼ p0 and n ∼ N (0, I), with Bayes rule p(xt|y) =

p(y|xt)p(xt)/p(y) to write

E{x0|xt,y} = xt + σ2
t∇xt log p(xt|y) (1.11)

= xt + σ2
t [∇xt log p(y|xt) +∇xt log p(xt)] (1.12)

= xt + σ2
t

[
∇xt log p(y|xt) +

E{x0|xt} − xt

σ2
t

]
(1.13)

= σ2
t∇xt log p(y|xt) + E{x0|xt}, (1.14)

after which x̂0|t = Dθ(xt, σt) is used in place of E{x0|xt}. But since p(x0|xt) is

unknown, p(y|xt) =
∫
p(y|x0)p(x0|xt) dx in (1.14) is intractable. Consequently,

DPS [76] approximates p(x0|xt) as δ(x0 − x̂0|t), while ΠGDM [93] approximates

p(x0|xt) as N (x0; x̂0|t, σ
2
0|tI) for some σ0|t. These approaches require backpropagation
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through Dθ(xt, σt), however, which increases computational complexity and prevents

batch generation of multiple samples.

There are, of course, many other ways to design diffusion posterior samplers, as

detailed in the recent overview [88]. For example, RED-diff [95] uses a stochastic version

of the RED algorithm [22], whose regularization is based on the score function [23].

Another approach is to use Markov-chain Monte Carlo (MCMC) methods as inner

iterations of the reverse process [78, 79,96,97].

1.3.2 Summary of Contribution 3: Recursive Annealed Poste-
rior Sampling Framework for Inverse Problems

As seen above, pre-trained diffusion models can be leveraged to solve imaging

inverse problems in an unsupervised manner. It is achieved by combining the pre-

trained score function with the measurement likelihood function to approximate

the measurement-conditional score function. While several approaches have been

proposed for this approximation, we take a first-principles approach inspired by

the idea of a decoupled forward process during reverse diffusion. Building on this

foundation, Chapter 4 introduces Recursive Annealed Posterior Sampling (RAPS), a

novel diffusion-based posterior sampling framework. To further enhance its efficiency

and robustness, we propose StRAPS, an extension of RAPS that incorporates key

improvements such as adaptive weighting, which eliminates the need for manual tuning,

and a stochasticity-enhancing technique in the update steps to mitigate discretization

and approximation errors. Additionally, we introduce an expectation-propagation

method that extends our approach to nonlinear inverse problems, such as phase

retrieval. The proposed framework is a practical and scalable solution for a wide
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range of inverse problems, achieving state-of-the-art performance without requiring

extensive hyperparameter tuning.
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Chapter 2: Denoising Generalized Expectation-Consistent

Approximation for MR Image Recovery

2.1 Background

2.1.1 Magnetic resonance imaging

We now detail the version of the linear system model

y = Axtrue +w, (2.1)

that manifests in C-coil MRI. There, xtrue ∈ CN is a vectorized version of the N -pixel

image that we wish to recover, y ∈ CCM are the so-called “k-space” measurements,

and

A =

MF Diag(s1)...
MF Diag(sC)

 . (2.2)

In (2.2), F ∈ CN×N is a unitary 2D discrete Fourier transform (DFT), M ∈ RM×N is

a sampling mask formed from M rows of the identity matrix I ∈ RN×N , and sc ∈ CN

is the cth coil-sensitivity map. In the special case of single-coil MRI, we have C = 1

and s1 = 1, where 1 denotes the all-ones vector. In MRI, the ratio R ≜ N/M is

known as the “acceleration rate.” When R > 1, the matrix A can be column-rank

deficient and/or poorly conditioned even when C ≥ R, and so prior knowledge of xtrue

must be exploited for accurate recovery.
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Figure 2.1: Examples of sampling masks M : (a) 2D point sampling at R = 4, (b) 2D point
sampling at R = 8 with a 24× 24 fully sampled central autocalibration region, (c) 2D line
sampling at R = 4 with a 24-wide fully sampled central autocalibration region, and (d) 2D
line sampling at R = 8 with a 24-wide fully sampled central autocalibration region.

In practical MRI, physical constraints govern the construction of the sampling

mask M . For example, samples are always collected along lines or curves in k-space.

In clinical practice, it is most common to sample along lines parallel to one dimension

of k-space, as illustrated in Figs. 2.1(c)-(d) for 2D sampling. We will refer to this

approach as “2D line sampling.” In this case, one dimension of k-space is fully sampled

and the other dimension is subsampled. For the subsampled dimension, it is common

to sample pseudorandomly or randomly, but with a higher density near the k-space

origin, as shown in Figs. 2.1(c)-(d). Also, when using ESPIRiT to estimate the

coil-sensitivity maps {sc}, one must include a fully-sampled “autocalibration” region

centered at the origin, as shown in Figs. 2.1(b)-(d).

2D line sampling, while attractive from an implementation standpoint, poses

challenges for signal reconstruction due to high levels of coherence [98] in the resulting

A matrix. This has led some algorithm designers to consider “2D point sampling”

masks such as those shown in Fig. 2.1(a)-(b), since they yield A with much lower

coherence [99]. But such masks are rarely encountered in practical 2D MR imaging.

It is, however, possible to encounter a 2D point mask as a byproduct of the following
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3D acquisition process: i) acquire a 3D k-space volume using 3D line sampling, ii)

perform an inverse DFT along the fully sampled dimension, and iii) slice along that

dimension to obtain a stack of 2D k-space acquisitions. The location of each line in

3D k-space determines the location of the respective point sample in 2D k-space, and

these locations can be freely chosen. But 3D acquisition is uncommon because it is

susceptible to motion; in 2D acquisition, the patient must lie still for the acquisition

of a single slice, whereas in 3D acquisition the patient must lie still for the acquisition

of an entire volume. We include experiments with 2D point masks only to compare

with the VDAMP family of algorithms [100–103] discussed in the sequel, since these

algorithms are all designed around the use of 2D point masks.

Although this work focuses on MRI, the methods we propose apply to any applica-

tion where the goal is to recover a signal from undersampled Fourier measurements.

2.1.2 Plug-and-play recovery

Many algorithms have been proposed to solve the optimization problem (1.2) (see,

e.g., [9]). The typical assumptions are that g1 is convex and differentiable, ∇g1 is

Lipschitz with constant L > 0, and g2 is convex but possibly not differentiable, which

allows sparsity-inducing regularizations like g2(x) = λ∥Ψx∥1. One of the most popular

approaches is ADMM [104], summarized by the iterations

x1 ← proxγ−1g1(x2 − u) (2.3a)

x2 ← proxγ−1g2(x1 + u) (2.3b)

u← u+ (x1 − x2) , (2.3c)
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where γ is a tunable parameter1 that affects convergence speed but not the fixed point,

and

proxρ(r) ≜ argmin
x

{
ρ(x) +

1

2
∥x− r∥2

}
. (2.4)

For example, when g1(x) =
γw
2
∥Ax− y∥2, we get

proxγ−1g1(r) =
(
γwA

HA+ γI
)−1 (

γwA
Hy + γr

)
. (2.5)

Based on the prox definition in (2.4), ADMM step (2.3b) can be interpreted as

MAP estimation [105] of xtrue with prior p(xtrue) ∝ e−g2(xtrue) from an observation

r = xtrue+e of the true signal corrupted by γ-precision AWGN e, i.e., MAP denoising.

This observation led Venkatakrishnan et al. [21] to propose that the prox in (2.3b)

be replaced by a high-performance image denoiser f2 : RN → RN like BM3D [106],

giving rise to PnP-ADMM. It was later proposed to use a DNN-based denoiser in

PnP [107], such as DnCNN [27]. Note that when (2.3b) is replaced with a denoising

step of the form “x2 ← f2(x1 + u),” the parameter γ does affect the fixed-point and

thus must be tuned to obtain the best recovery accuracy.

The PnP framework was later extended to other algorithms, such as primal-dual

splitting (PDS) in [107,108] and proximal gradient descent (PGD) in [107,109]. For

use in the sequel, we write the PGD algorithm as

x1 ← x2 − µ∇g1(x2) (2.6a)

x2 ← proxµg2(x1), (2.6b)

where µ ∈ (0, 1/L) and L is the Lipschitz constant of ∇g1. For example, when

g1(x) =
1
2
∥Ax−y∥2, we get ∇g1(x) = AH(Ax−y). For all of these PnP incarnations,

1The parameter γ arises from the augmented Lagrangian used by ADMM: g1(x1) + g2(x2) +
Re{uH(x1 − x2)}+ γ

2 ∥x1 − x2∥2.
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the prox step in the original optimization algorithm is replaced by a high-performance

denoiser f2. As shown in the recent overview [24], PnP methods have been shown

to significantly outperform sparsity-based approaches in MRI, as well as end-to-end

DNNs in limited-data and mismatched-A scenarios.

Although PnP algorithms work well for MRI [24,110], there is room for improvement.

For example, while image denoisers are typically designed/trained to remove the effects

of AWGN, PnP algorithms do not provide the denoiser with an AWGN-corrupted

input at each iteration. Rather, the denoiser’s input error has iteration-dependent

statistics that are difficult to analyze or predict.

2.1.3 Approximate message passing

For the model (2.1) with w ∼ N (0, τwI), the AMP algorithm2 [26, 112] manifests

as the following iteration over t = 0, 1, 2, . . . :

vt+1 =
(
y −Axt

)
β +

vt

M
tr
{
∇f t

2

(
xt−1+βAHvt

)}
(2.7a)

τ t+1 =
1

M

∥∥vt+1
∥∥2 (2.7b)

xt+1 = f t+1
2

(
xt + βAHvt+1

)
(2.7c)

initialized as v0 = 0 = x0, where f t
2(·) is the iteration-t denoising function (which may

depend on τ t), tr{∇f t
2(r)} is the trace of the Jacobian of f t

2 at r, and β =
√
N/∥A∥F .

The last term in (2.7a), known as the “Onsager correction,” is a key component of

the AMP algorithm. Without it, (2.7) would reduce to the PnP version of the PGD

algorithm (2.6) with µ = β2.

The goal of Onsager correction is to make the denoiser input error

et+1 ≜ xt + βAHvt+1 − xtrue (2.8)

2For generalized linear models, one would instead use the Generalized AMP algorithm from [111].
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behave like a realization of WGN with variance τ t+1, where τ t+1 is given in (2.7b).

Note that if

et+1 ∼ N (0, τ t+1I) (2.9)

did hold, it would be straightforward to design the denoiser f t+1
2 for MAP or MMSE

optimality. For example, in (1.2), if we interpret g1(x) as the log-likelihood and g2(x)

as the log-prior, then g1(x) + g2(x) becomes the log-posterior (up to a constant) and

so x̂ in (1.2) becomes the MAP estimate [113]. Thus, for the case of MAP estimation,

we would use the MAP denoiser f t
2(r) = proxτ tg2(r), and xt would approach the MAP

estimate as t→∞ [26]. On the other hand, for the case of MMSE estimation, where

we would like to compute the conditional mean x̂mmse ≜ E{x|y}, we would use the

MMSE denoiser f t
2(r) = E{x | r} for r = xtrue + e with e ∼ N (0, τ tI) [112].

Importantly, when the forward operator A ∈ RP×N is i.i.d. sub-Gaussian, the

dimensions P,N →∞ with a fixed ratio P/N , and f t
2 is Lipschitz, [114,115] established

that the WGN property (2.9) does indeed hold. Furthermore, defining the MSE

E t ≜ 1
N
∥xt − xtrue∥2, [114, 115] established that AMP obeys the following scalar

state-evolution over t = 0, 1, 2, . . . :

τ t = τw +
N

P
E t (2.10a)

E t+1 =
1

N
E
{∥∥f t

2

(
xtrue +N

(
0, τ tI

))
− xtrue

∥∥2
}
. (2.10b)

Remarkably, the AMP state evolution shows that, in the large-system limit, the

trajectory of the mean-squared recovery error can be predicted in advance knowing

only the dimensions of i.i.d. sub-Gaussian A (not the values in A) and the MSE

behavior of the denoiser f t
2(·) when faced with the task of removing white Gaussian

noise. Moreover, when f t
2 is the MMSE denoiser and the state-evolution has a unique
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fixed point, [114,115] established that AMP provably converges to the MMSE-optimal

estimate x̂mmse. These theoretical results were first established for separable denoisers

f2 in [114] and later extended to non-separable denoisers in [115]. By “separable” we

mean that f2 takes the form f2(x) = [f2(x1), . . . , f2(xN)]
⊤ for some scalar denoiser

f2 : R→ R.

For practical image recovery problems, [116] proposed to approximate the MMSE

denoiser by a high-performance image denoiser like BM3D or a DNN, and called

it “denoising-AMP” (D-AMP). Since these image denoisers are non-separable and

high-dimensional, the trace-Jacobian term in (2.7a) (known as the “divergence”) is

difficult to compute, and so D-AMP uses the Monte-Carlo approximation [117]

tr
{
∇f t

2(r)
}
≈ δ−1qH [

f t
2(r + δq)− f t

2(r)
]
, (2.11)

where q is a fixed realization of N (0, I) and δ is a small positive number. D-AMP

performs very well with large i.i.d. sub-Gaussian A, but can diverge with non-random

A, such as those encountered in MRI (recall (2.2)).

2.1.4 Expectation-consistent approximation and VAMP for
SLM

Expectation-consistent (EC) approximation [118] is an inference framework with

close connections to both PnP-ADMM and AMP. In EC, one is assumed to have

access to the prior density px(x) on xtrue and the likelihood function ℓ(x;y), and the

goal is to approximate the mean of the posterior px|y(x|y), i.e., the MMSE estimate

x̂mmse = E{x|y}. Although Bayes rule says that px|y(x|y) = Z−1(y)px(x)ℓ(x;y) for

Z(y) ≜
∫
px(x)ℓ(x;y) dx, this integral is usually too difficult to compute in the
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high-dimensional case. But note that we can write

px|y(x|y)

= argmin
q

D
(
q(x)

∥∥px|y(x|y)
)

(2.12)

= argmin
q

D
(
q(x)

∥∥ℓ(x;y))+D
(
q(x)

∥∥px(x)
)
+H

(
q(x)

)
= argmin

q1,q2,q3

JGibbs(q1, q2, q3) such that q1 = q2 = q3, (2.13)

where the minimizations are conducted over sets of probability densities, D(q1∥px) ≜∫
q1(x) log

q1(x)
px(x)

dx is the Kullback-Liebler (KL) divergence from px to q1, H(q3) ≜

−
∫
q3(x) log q3(x) dx is the differential entropy of q3, and

JGibbs(q1, q2, q3)

≜ D
(
q1(x)

∥∥ℓ(x;y))+D
(
q2(x)

∥∥px(x)
)
+H

(
q3(x)

)
(2.14)

where JGibbs(q, q, q) is known as the Gibbs free energy of q. So, if (2.13) could be

solved, it would give a way to compute the posterior that avoids computing Z(y).

However, (2.13) is generally too difficult to solve, and so it was proposed in [118] to

relax the equality constraints in (3.5) to moment-matching constraints, i.e.,

argmin
q1,q2,q3

JGibbs(q1, q2, q3) such that (2.15){
E{x|q1} = E{x|q2} = E{x|q3}
tr(Cov{x|q1}) = tr(Cov{x|q2}) = tr(Cov{x|q3}),

where E{x|qi} and Cov{x|qi} denote the mean and covariance of x under x ∼ qi

for i = 1, 2, 3, respectively. The authors of [118] then showed that the optimization
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problem (2.15) is solved by the densities

q1(x; r1, γ1) ∝ ℓ(x;y)N (x; r1, I/γ1) (2.16)

q2(x; r2, γ2) ∝ px(x)N (r2;x, I/γ2) (2.17)

q3(x; x̂, η) = N (x; x̂, I/η) (2.18)

for the values of (r1, γ1, r2, γ2, x̂, η) that lead to the satisfaction of the constraints in

(2.15). The resulting x̂ approximates the MMSE estimate x̂mmse and η−1 approximates

the resulting MMSE 1
N
tr(Cov{x|y}).

Although there is generally no closed-form expression for the moment-matching

values of (r1, γ1, r2, γ2, x̂, η), one can iteratively solve for them using the EC algorithm

shown in Alg. 1 (a form of expectation propagation (EP) [119]) using the estimation

functions

f1(r1; γ1) = E{x|q1} =
∫

x q1(x; r1; γ1) dx (2.19)

f2(r2; γ2) = E{x|q2} =
∫

x q2(x; r2; γ2) dx. (2.20)

It is straightforward to show (see, e.g., [28]) that, at a fixed point of Alg. 1, one obtains

x̂1 = x̂2 = x̂ and η1 = η2 = η = γ1 + γ2.

For WGN-corrupted linear measurements y as in (2.1), the likelihood becomes

ℓ(x;y) = N (y;Ax, I/γw) and so f1 in (2.19) manifests as

f1(r1; γ1) =
(
γwA

HA+ γ1I
)−1(

γwA
Hy + γ1r1

)
. (2.21)

This f1 can be interpreted as the MMSE estimator of xtrue from the measurements

y = Axtrue + N (0, I/γw) under the pseudo-prior xtrue ∼ N (r1, I/γ1). Meanwhile

f2 in (2.20) can be interpreted as the MMSE estimator of xtrue from the pseudo-

measurements r2 = xtrue +N (0, I/γ2) under the prior xtrue ∼ px(x). In other words,
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Algorithm 1 EC / VAMP
Require: f1(·; ·) and f2(·; ·).
1: Select initial r1 ∈ RN , γ1 > 0
2: repeat
3: // Measurement fidelity
4: x̂1 ← f1(r1; γ1)
5: η1 ← γ1N/ tr(∇f1(r1; γ1))
6: γ2 ← η1 − γ1
7: r2 ← (η1x̂1 − γ1r1)/γ2
8: // Denoising
9: x̂2 ← f2(r2; γ2)

10: η2 ← γ2N/ tr(∇f2(r2; γ2))
11: γ1 ← η2 − γ2
12: r1 ← (η2x̂2 − γ2r2)/γ1
13: until Terminated
14: return x̂2

f2 can be interpreted as the MMSE denoiser of r2. This pseudo-measurement model

is exactly the same one that arises in AMP (recall (2.9)).

For generic A, there are no guarantees on the quality of the EC estimate x̂

or even the convergence of Alg. 1. But when A is a right orthogonally invariant

(ROI) random matrix, EC has a rigorous high-dimensional analysis. ROI matrices

can be understood as those with singular value decompositions of the form USV ⊤,

for orthogonal U , diagonal S, and random V uniformly distributed over the set

of orthogonal matrices; the ROI class includes the i.i.d. Gaussian class but is more

general. In particular, [81, 120] showed that, for asymptotically large ROI matrices A,

EC’s denoiser input error e2 = r2 − xtrue obeys

e2 ∼ N (0, I/γ2) (2.22)

at every iteration, similar to AMP (recall (2.9)). Likewise, macroscopic statistical

quantities like MSE E = 1
N
∥x̂ − xtrue∥2 obey a scalar state evolution. Importantly,
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these results hold not only for the MMSE denoising functions f2 specified by EC,

but also for general Lipschitz f2 [81, 121]. Due to the tight connections with AMP,

the EC algorithm with general Lipschitz f2 was referred to as Vector AMP (VAMP)

in [81,121]. A similar rigorous analysis of EC with asymptotically large, right unitarily

invariant (RUI) matrices A was given in [122]. For those matrices, the SVD of A

takes the form USV H with random V uniformly distributed over the set of unitary

matrices.

Given that the EC/VAMP algorithm can be used with estimation functions other

than the MMSE choices in (2.19)-(2.20), one might wonder whether it can be applied

to solve optimization problems of the form (1.2), i.e., MAP estimation. This was

answered affirmatively in [28]. In particular, it suffices to choose

f1(r1, γ1) = proxγ−1
1 g1

(r1) (2.23)

f2(r2, γ2) = proxγ−1
2 g2

(r2). (2.24)

Furthermore, the resulting EC/VAMP algorithm can be recognized as a form of ADMM.

If we fix the values of γ1 and γ2 over the iterations (which forces η1 = η2 = γ1 + γ2)

and define u1 ≜ γ1(x̂2 − r1) and u2 ≜ γ2(r2 − x̂1), we can rewrite EC/VAMP from

Alg. 1 as the recursion

x̂1 ← proxγ−1
1 g1

(x̂2 − u1/γ1) (2.25a)

u2 ← u1 + γ1(x̂1 − x̂2) (2.25b)

x̂2 ← proxγ−1
2 g2

(x̂1 + u2/γ2) (2.25c)

u1 ← u2 + γ2(x̂1 − x̂2) (2.25d)
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which is a generalization of ADMM in (2.3) to two dual updates and two penalty

parameters. If we additionally constrain γ1 = γ2 ≜ γ then (2.25) reduces to

x̂1 ← proxγ−1g1(x̂2 − u) (2.26a)

u← u+ (x̂1 − x̂2) (2.26b)

x̂2 ← proxγ−1g2(x̂1 + u) (2.26c)

u← u+ (x̂1 − x̂2), (2.26d)

which is known as the Peaceman-Rachford or symmetric variant of ADMM, and which

is said to converge faster than standard ADMM [123, 124]. The important point is

that EC/VAMP can be understood as a generalization of ADMM that i) uses two

penalty parameters and ii) adapts those penalty parameters with the iterations.

Inspired by D-AMP [116], a “Denoising VAMP” (D-VAMP) was proposed in [125],

which used VAMP with high-performance image denoisers and the Monte-Carlo

approximation (2.11). Although D-VAMP was shown to work well with large ROI A,

it can diverge with non-random A, such as those encountered in MRI. Some intuition

behind the failure of VAMP with non-ROI A will be given in Section 2.2.1

2.1.5 AMP/VAMP for MRI

The versions of A that manifest in linear inverse problems often do not have

sufficient randomness for the AMP and EC/VAMP algorithms to work as intended. If

used without modification, AMP and EC/VAMP algorithms may simply diverge. This

is definitely the case for MRI, where A is the Fourier-based matrix shown in (2.2).

Consequently, modified AMP and VAMP algorithms have been proposed specifically

for MRI image recovery.
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Figure 2.2: Approximate block-diagonality of 2D Fourier-wavelet matrices. Using abs(·)
to denote the entry-wise magnitude operation, (a) shows abs(FΨ⊤) with rows sorted
according to distance from the k-space origin, columns sorted according to wavelet subbands,
and subband boundaries denoted by red lines. Meanwhile, (b) shows the matrix product
abs(FΨ⊤)⊤ abs(FΨ⊤) and (c) shows abs(G)⊤ abs(G) for the multi-coil Fourier-wavelet
matrix G defined in (2.29). The approximate block-diagonality of (b) and (c) suggests
that the columns of the 2D Fourier-wavelet matrices are well decoupled in the single- and
multi-coil cases.

For example, [126] proposed to use D-AMP (2.7) with β ≪
√
N/∥A∥F , which

helps to slow down the algorithm and help it converge, but at the cost of degrading its

fixed points, as we show in Section 2.3.5. The authors of [127] instead used damping

to help D-VAMP converge without disturbing its fixed points. In conjunction with

a novel initialization based on Peaceman-Rachford ADMM, the latter scheme was

competitive with PnP-ADMM for single-coil MRI.

For the special case of 2D point-sampled MRI, the principle of density compensation

[128] has also been exploited for the design of AMP-based algorithms. For applications

where k-space is non-uniformly sampled, density compensation applies a gain to each

k-space sample that is proportional to the inverse sampling density at that sample,

changing y to Gy in (2.1) with diagonal gain matrix G. When A uses a 2D point

mask, the error in the density-compensated linear estimate x̂ = AHGy behaves much

more like white Gaussian noise than does the error in the standard linear estimate
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x̂ = AHy (see, e.g., [129]). After observing the error to behave even more like white

noise within wavelet subbands, Millard et al. [100] proposed a VAMP modification

that employs density compensation in the linear stage and wavelet thresholding in

the denoising stage. The resulting “Variable-Density AMP” (VDAMP) algorithm was

empirically observed to successfully track the error variance in each subband over the

algorithm iterations. The authors then extended their work from single- to multicoil

MRI in [102], calling their approach Parallel VDAMP (P-VDAMP).

To improve on VDAMP, Metzler and Wetzstein [101] proposed a PnP extension

of the algorithm, where the wavelet-thresholding denoiser was replaced by a novel

DNN that accepts a vector of subband error variances at each iteration. The resulting

Denoising VDAMP (D-VDAMP) showed a significant boost in recovery accuracy over

VDAMP for single-coil 2D point-sampled MRI [101]. Although D-VDAMP works

relatively well, it requires early stopping for good performance (as we demonstrate

in Section 2.3.5), which suggests that D-VDAMP has suboptimal fixed points and

hence can be improved. Most recently, a “Denoising P-VDAMP” (DP-VDAMP) was

proposed [103, 130] that replaces the wavelet thresholding step in P-VDAMP with

a DNN denoiser. A major shortcoming of VDAMP, P-VDAMP, D-VDAMP, and

DP-VDAMP is that they are designed around the use of 2D point sampling masks,

which are impractical and uncommon in clinical MRI. These shortcomings motivate

our proposed approach, which is described in the next section.

2.2 Proposed Approach

We now propose a new approach to MRI recovery that, like the VDAMP-based

algorithms [100–103], formulates signal recovery in the wavelet domain, but, unlike the
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VDAMP-based algorithms, does not use density compensation and does not require

the use of 2D point masks. Our approach is based on a PnP version of the generalized

EC algorithm, which is described in Section 2.2.1, in conjunction with a DNN denoiser

that can handle parameterized colored noise, which is described in Section 2.2.2.

2.2.1 Wavelet-domain denoising GEC algorithm

To motivate wavelet-domain signal recovery, we first present an intuitive explanation

of the problems faced by EC/VAMP with non-ROI A. To start, one can show (see

Appendix A) that EC/VAMP’s denoiser input error e2 ≜ r2 − xtrue can be written as

e2 = V DV He1 + u, (2.27)

where V is the right singular vector matrix of A, the matrix D is diagonal with

tr(D) = 0, e1 ≜ r1 − xtrue is the error on the input to f1, and u is a linear

transformation of the measurement noise vector w from (2.1). When A is ROI or RUI,

V is drawn uniformly from the group of orthogonal or unitary matrices, respectively.

Appendix B shows for the orthogonal case that, if V and e1 are treated as independent

up to the fourth moment and w and e1 are uncorrelated, then, conditioned on e1, both

V DV He1 and e2 are asymptotically white and zero-mean Gaussian. Importantly, this

behavior occurs despite the tendency for e1 to be highly structured and non-Gaussian.

When A is not a high-dimensional ROI or RUI matrix, however, there is no

guarantee that V DV He1 will asymptotically be white and zero-mean Gaussian. For

example, when A = MF as in single-coil MRI and xtrue is a natural image, this desired

property does not manifest because the xtrue (and thus e1) has a high concentration of

energy at low frequencies and V H = F focuses that error into a few dimensions of D.
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We now explain why using an AMP/EC algorithm to recover the wavelet coefficients

ctrue ≜ Ψxtrue, rather than the image pixels xtrue, offers a path to circumvent these

issues. For an orthogonal discrete wavelet transform (DWT) Ψ, we have xtrue = Ψ⊤ctrue

and so (2.1) implies the measurement model

y = Bctrue +w with B ≜ AΨ⊤. (2.28)

In the case where A is a subsampled version of the Fourier matrix F , the matrix B is

a subsampled Fourier-wavelet matrix FΨ⊤. The Fourier-wavelet matrix is known to

be approximately block diagonal after appropriate row-sorting [131], where the blocks

correspond to the wavelet subbands. This means that B in (2.28) primarily mixes the

wavelet coefficients ctrue within subbands rather than across subbands. Consequently,

if that mixing has a sufficiently randomizing effect on each subband of e1, then—with

an appropriate EC-style algorithm design—the subband error vectors e2 can be kept

approximately i.i.d. Gaussian across the iterations, although with a possibly different

variance in each subband. In Fig. 2.2(a), we plot abs(FΨ⊤) for the 2D case with

the rows sorted according to the distance of their corresponding k-space sample to

the origin. Although this row-sorting does not yield an approximately block-diagonal

matrix, it should be clear from the discussion above that row-sorting is unimportant;

it only matters that the columns of B for each given subband have a sufficiently

randomizing effect on that subband and are approximately decoupled from the columns

of other subbands. To illustrate the degree of column-decoupling in FΨ⊤, we plot

abs(FΨ⊤)⊤ abs(FΨ⊤) in Fig. 2.2(b). We plot this particular quantity because, if

FΨ⊤ = JD where J is a permutation matrix and D is a perfectly block-diagonal

matrix, then abs(FΨ⊤)⊤ abs(FΨ⊤) will be perfectly block-diagonal for any J , i.e.,
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for any row-sorting. The fact that Fig. 2.2(b) looks approximately block-diagonal

suggests that the column-blocks of FΨ⊤ are significantly decoupled.

The discussion in the previous paragraph pertains to single-coil MRI. In the

multi-coil case, the matrix A takes the form in (2.2) and so B from (2.28) manifests

as

B =

M . . .
M

G with G ≜

F Diag(s1)Ψ
⊤

...
F Diag(sC)Ψ

⊤

 . (2.29)

We would like that the multi-coil Fourier-wavelet matrix G has a sufficiently ran-

domizing effect on each given subband in c0 and that the columns corresponding

to that subband are decoupled from the columns of other subbands. To investigate

the decoupling behavior of G, we plot abs(G)⊤ abs(G) in Fig. 2.2(c) for the case of

C = 8 ESPIRiT-estimated coils and notice that, similar to the single-coil quantity

abs(FΨ⊤)⊤ abs(FΨ⊤) in Fig. 2.2(b), the multi-coil quantity abs(G)⊤ abs(G) looks

approximately block-diagonal.

The first AMP-based method that exploited the aforementioned Fourier-wavelet

properties was the VAMPire algorithm from [132], where a normalization of the

subband energies in ctrue was used to equalize the subband error variances in e2, with

the goal of tracking a single variance across the iterations (thus facilitating the use of

D-VAMP). In other words, (2.28) was written as y = Bctrue +w with B = BDiag(g)

and ctrue = Diag(g)−1ctrue, for g such that diag(Cov(ctrue)) ≈ 1. But, because the

variances of the subbands in e2 do change with the iterations, the scheme in [132] was

far from optimal.

In this work, we propose an EC-based PnP method that recovers the wavelet

coefficients ctrue and tracks the variances of both e1 and e2 in each wavelet subband.

Our approach leverages the Generalized EC (GEC) framework from [28], which is
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Algorithm 2 Generalized EC (GEC)
Require: f1(·; ·), f2(·; ·), and gdiag(·).
1: Select initial r1,γ1

2: repeat
3: // Measurement fidelity
4: x̂1 ← f1(r1,γ1)
5: η1 ← Diag(gdiag(∇f1(r1,γ1)))

−1γ1

6: γ2 ← η1 − γ1

7: r2 ← Diag(γ2)
−1(Diag(η1)x̂1 −Diag(γ1)r1)

8: // Denoising
9: x̂2 ← f2(r2,γ2)

10: η2 ← Diag(gdiag(∇f2(r2,γ2)))
−1γ2

11: γ1 ← η2 − γ2

12: r1 ← Diag(γ1)
−1(Diag(η2)x̂2 −Diag(γ2)r2)

13: until Terminated
14: return x̂2

summarized in Alg. 2 and (2.30). GEC is a generalization of EC from Alg. 1 that

averages the diagonal of the Jacobian ∇fi separately over L coefficient subsets using

the gdiag : RN×N→RN operator:

gdiag(Q) ≜
[
d11

⊤
N1
, . . . , dL1

⊤
NL

]⊤ (2.30a)

dℓ =
tr{Qℓℓ}

Nℓ

. (2.30b)

In (2.30), Nℓ denotes the size of the ℓth subset and Qℓℓ ∈ RNℓ×Nℓ denotes the ℓth

diagonal subblock of the matrix input Q. When GEC is used to solve a convex

optimization problem of the form (1.2), the functions fi take the form

fi(r,γ) = gproxgi,γ(r) (2.31a)

gproxρ,γ(r) ≜ argmin
x

{
ρ(x) +

1

2
∥x− r∥2γ

}
, (2.31b)

where ∥q∥γ ≜
√
qH Diag(γ)q. When L=1, GEC reduces to EC/VAMP. In that case,

γ = γ1 and gproxρ,γ = proxγ−1ρ.
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Algorithm 3 Denoising GEC operating in the wavelet domain
Require: f1(·, ·), f2(·, ·), gdiag(·), and Ψ.
1: Select initial r1,γ1

2: repeat
3: // Measurement fidelity
4: ĉ1 ← f1(r1,γ1)
5: η1 ← Diag(gdiag(∇f1(r1,γ1)))

−1γ1

6: γ2 ← η1 − γ1

7: r2 ← Diag(γ2)
−1(Diag(η1)ĉ1 −Diag(γ1)r1)

8: // Denoising
9: ĉ2 ← Ψf2(Ψ

⊤r2,γ2)
10: η2 ← Diag(gdiag(∇f2(r2,γ2)))

−1γ2

11: γ1 ← η2 − γ2

12: r1 ← Diag(γ1)
−1(Diag(η2)ĉ2 −Diag(γ2)r2)

13: until Terminated
14: return x̂2 = Ψ⊤ĉ2

Our proposed wavelet-domain Denoising GEC (D-GEC) approach is outlined in

Alg. 3. For the gdiag operator, we use (2.30) with the diagonalization subsets defined

by the L = 3D + 1 subbands of a depth-D dyadic 2D orthogonal DWT. Also, when

computing gdiag(∇f1) and gdiag(∇f2) in lines 5 and 10, we approximate the tr{Qℓℓ}

terms in (2.30b) using the Monte Carlo approach [117]

tr{Qℓℓ} ≈ δ−1
ℓ qH

ℓ [fi(r + δℓqℓ,γ)− fi(r,γ)] , (2.32)

where we use i.i.d. unit-variance Gaussian coefficients for the ℓth coefficient subset in

qℓ and set all other coefficients in qℓ to zero. As a result of the chosen diagonalization,

the γi vectors (for i = 1, 2) are structured as

γi =
[
γi,11

⊤
N1
, . . . , γi,L1

⊤
NL

]⊤
, (2.33)

and the ηi vectors have a similar structure. In (2.32) we used δℓ = min{
√

1/γℓ, ∥rℓ∥1/Nℓ}

where rℓ denotes the ℓth coefficient subset of r.
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For the wavelet-measurement model (2.28) with WGN w, (2.31) implies that the

f1 estimation function in line 4 of Alg. 3 manifests as

f1(r1,γ1)

=
(
γwB

HB +Diag(γ1)
)−1(

γwB
Hy +Diag(γ1)r1

)
. (2.34)

When numerically solving (2.34), we exploit the fact that B is a fast operator by

using the conjugate gradient (CG) method [133].

For f2 in line 9 of Alg. 3, we use a pixel-domain DNN denoiser. As shown in

line 9, we convert from the wavelet domain to the pixel domain and back when calling

this denoiser. Note that the denoiser f2 is provided with the vector γ2 of subband

error precisions. The design of this denoiser will be discussed in Section 2.2.2. The

experiments in Section 2.3.2 suggest that the denoiser input error e2 = r2 − ctrue does

indeed obey

e2 ∼ N
(
0,Diag(γ2)

−1
)

(2.35)

for the γ2 vector computed in line 6 of Alg. 3, similar to other AMP, VAMP, EC,

and GEC algorithms. Further work is needed to understand if this behavior can be

predicted by a rigorous analysis. The error model (2.35) facilitates a principled way

to train the DNN denoiser, as we discuss in the next section.

We now discuss the initialization of D-GEC. For (2.35) to hold at all iterations, we

need that the initial γ1 contains the precisions (i.e., inverse variances) of the subbands

of the initial e1 = r1 − ctrue. But initializing γ1 is complicated by the fact that ctrue is

unknown. In response, we suggest initializing γ1 at an average value such as

γ̂1 = Diag
(
gdiag

(
E
{
(r1 − ctrue)(r1 − ctrue)

H}))−1
1, (2.36)
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where the expectation is approximated using a sample average over a training set (e.g.,

the dataset used to train the denoiser). But this approach could fail if the precision

of the initial error falls far from γ̂1, which can happen if r1 is strongly dependent on

y. Thus, we propose to initialize r1 = BHy + n, where n is Gaussian and white in

each subband. The per-subband variance of n should be large enough to dominate

the behavior of e1, which makes the subband precisions easy to predict, but not so

large that the algorithm is initialized at a terribly bad state. For the experiments

in Section 2.3.2, we set the per-subband variance of n at 10 times the per-subband

variance of BHy − ctrue, and observed that (2.35) held at all iterations. Although

a careful choice of initialization is important for (2.35) to hold at all iterations, we

find that the initialization has little effect on the fixed points of D-GEC. So, for the

experiments in Sections 2.3.3, 2.3.4, and 2.3.5, we set n = 0 to improve the accuracy

of the initial r1 and thus speed D-GEC convergence.

Computationally, the cost of D-GEC is driven by lines 4-5 and 9-10 of Alg. 3,

which call f1 and f2, respectively, L+ 1 times when implementing (2.32). The L+ 1

calls to f1 can be performed in parallel (e.g., in a single minibatch on a GPU), as can

the calls to f2. As described above, each call to f1 involves running several iterations

of CG. For accurate D-GEC fixed points, we find that 10 CG iterations suffice, and

we use this setting in Sections 2.3.3, 2.3.4, and 2.3.5. For D-GEC error to match the

state-evolution predictions at all iterations, we find that 150 CG iterations suffice, and

we use this value in Section 2.3.2. Each call to f2 involves calling the DNN denoiser

that is described in the next subsection.
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2.2.2 A DNN denoiser for correlated noise

As suggested by (2.35), the denoiser f2 in Alg. 3 faces the task of denoising the

pixel-domain signal Ψ⊤r2, where r2 = ctrue + n for n ∼ N (0,Diag(γ2)
−1) and ctrue

are the wavelet coefficients of the true image xtrue. The denoiser input can thus be

modeled as

Ψ⊤r2 = xtrue + n for n ∼ N
(
0,Ψ⊤Diag(γ2)

−1Ψ
)
, (2.37)

i.e., the true image corrupted by colored Gaussian noise with (known) covariance

matrix Ψ⊤Diag(γ2)
−1Ψ. Here, the γ2 vector takes the form shown in (2.33).

Although several DNNs have been proposed to tackle denoising with correlated noise

(e.g., [134–136]), to our knowledge, the only one compatible with our denoising task is

the DNN proposed by Metzler and Wetzstein in [101]. There, they built on the DnCNN

network by providing every layer with L additional channels, where the ℓth channel

contains the standard deviation (SD) of the noise in the ℓth wavelet subband (i.e.,√
1/γ2,ℓ). Their approach can be interpreted as an extension of FFDNet [137], which

provides one additional channel containing the SD of the assumed white corrupting

noise, to multiple additional channels containing subband SDs. In our numerical

experiments in Section 2.3, we find that Metzler’s denoising approach works well in

some cases but poorly in others. We believe that the observed poor performance

may be the result of the fact that their DNN operates in the pixel domain, while

their SD side information is given in the wavelet domain and the network is given no

information about the wavelet transform Ψ.

We now propose a novel approach to DNN denoising that can handle colored

Gaussian noise with an arbitrary known covariance matrix. Our approach starts with
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an arbitrary DNN denoiser (e.g., DnCNN [27], UNet [138], RNN [139], etc.) that

normally accepts C input channels (e.g., 3 channels for color-image denoising or 2

channels for complex-image denoising). It then adds K ≥ 1 sets of C additional

channels, where each set is fed an independently generated realization of noise with

the same statistics as that corrupting the signal to be denoised. In other words, if

u ∈ RCN denotes the (vectorized) noisy input signal, which obeys (recall (2.37))

u = xtrue + n for n ∼ N (0,Σ) (2.38)

with arbitrary known Σ, then the (vectorized) input to the kth additional channel-set

would be

nk ∼ N (0,Σ) ∀k = 1, . . . , K, (2.39)

where {nk}Kk=1 are mutually independent and independent of u. The hope is that,

during training, the denoiser learns how to i) extract the relevant statistics from

{nk}Kk=1 and ii) use them productively for the denoising of u. Here, K is a design

parameter; for our D-GEC application we find that K = 1 suffices. Because the

denoiser accepts a signal corrupted by correlated noise plus additional realizations of

correlated noise, we call our approach “corr+corr.”

To train our corr+corr denoiser, we use the following approach. Suppose that we

have access to a training set of clean signals {xi}, and that we would like to train

the denoiser to handle γ2 vectors from some distribution pΓ. During training, we

draw many γ2 ∼ pΓ and, for each realization of γ2, we draw independent realizations

of v and {nk}Nk=1 from the distribution N (0,Ψ⊤Diag(γ2)
−1Ψ). The v vector is

then used to form the noisy signal ui = xi + v and the denoiser is given access to

N ≜ [n1, . . . ,nK ] when denoising ui. Concretely, if we denote the corr+corr denoiser
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as f2(ui,N ;θ), where θ contains the trainable denoiser parameters, then we train

those parameters using

θ̂ = argmin
θ

∑
i

E
{
L
(
xi,f2(xi + v,N ;θ)

)}
, (2.40)

where L(·, ·) is a loss function that quantifies the error between its two vector-valued

arguments. Popular losses include [140] ℓ2, ℓ1, SSIM [141], or combinations thereof,

and in our experiments we used ℓ2 loss. The expectation in (2.40) is taken over both

v and N , which implicitly involves pΓ.

In inference mode, we are given a noisy u and a single precision vector γ2. From

the latter, we generate a single independent realization of N ∼ N (0,Ψ⊤Diag(γ2)
−1Ψ)

and then compute the denoised pixel-domain image estimate via x̂2 = f2(u,N ; θ̂).

In Section 2.3.1 we show that our corr+corr denoiser performs better than Metzler’s

DnCNN and nearly as well as a genie-aided denoiser that knows the distribution of

the test noise v ∼ Ψ⊤Diag(γ2)
−1Ψ, with fixed γ2, at training time.

2.3 Numerical Experiments

In this section, we present numerical experiments demonstrating the performance

of the proposed corr+corr denoiser as well as the proposed D-GEC method applied to

both single-coil and multicoil MRI recovery.

2.3.1 Denoising experiments

In this subsection, we compare the corr+corr denoiser proposed in Section 2.2.2

to several existing denoisers. We test all denoisers on the 10 MRI images from the

Stanford 2D FSE dataset [31] shown in Fig. 2.3, which ranged in size from 320× 320

to 416× 416. Noisy images were obtained by corrupting those test images by additive
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Figure 2.3: Test images from the Stanford 2D FSE MRI dataset.

zero-mean Gaussian noise of covariance

Σ = Ψ⊤Diag(γ)−1Ψ, (2.41)

with Ψ a 2D Haar wavelet transform of depth D = 1. This wavelet transform

has L = 4 subbands, and so the precision vector γ in (2.41) is structured as γ =

[γ11
⊤
N/4, . . . , γ41

⊤
N/4]

⊤ and thus parameterized by the four precisions [γ1, γ2, γ3, γ4], or

equivalently the four SDs
[

1√
γ1
, 1√

γ2
, 1√

γ3
, 1√

γ4

]
. We test the denoisers under different

assumptions on these SDs, as indicated by the rows in Table 2.1. For some tests,

we use a fixed SD vector, while for other tests we average over a distribution of SD

vectors.

When training the denoisers, we used the 70 training MRI images from the Stanford

2D FSE dataset. We trained to minimize ℓ2 loss on a total of 44 000 patches of size

40× 40 taken with stride 10× 10. All denoisers used the bias-free version of DnCNN

from [142], with the exception of Metzler’s DnCNN from [101], which used the publicly

available code provided by the author. For both corr+corr and Metzler’s DnCNN,

37



Table 2.1: Performance comparison of four different DnCNN denoisers for various cases of
colored noise

test standard deviations white DnCNN Metzler’s DnCNN corr+corr DnCNN genie DnCNN[
1√
γ1
, 1√

γ2
, 1√

γ3
, 1√

γ4

]
PSNR ± SE SSIM ± SE PSNR ± SE SSIM ± SE PSNR ± SE SSIM ± SE PSNR ± SE SSIM ± SE[

48
255

, 47
255

, 6
255

, 19
255

]
25.36 ± 0.02 0.7328 ± 0.0013 31.23 ± 0.03 0.8783 ± 0.0006 31.69 ± 0.03 0.8899 ± 0.0005 32.12 ± 0.04 0.9012 ± 0.0005[

10
255

, 40
255

, 23
255

, 14
255

]
32.44 ± 0.03 0.9044 ± 0.0006 34.87 ± 0.04 0.9363 ± 0.0004 35.24 ± 0.04 0.9407 ± 0.0004 35.54 ± 0.04 0.9449 ± 0.0004[

13
255

, 7
255

, 8
255

, 10
255

]
36.50 ± 0.03 0.9421 ± 0.0003 31.03 ± 0.03 0.9359 ± 0.0003 37.02 ± 0.03 0.9535 ± 0.0003 37.41 ± 0.03 0.9569 ± 0.0003[

10
255

, 10
255

, 10
255

, 10
255

]
37.41 ± 0.03 0.9571 ± 0.0003 31.94 ± 0.02 0.9413 ± 0.0003 37.31 ± 0.03 0.9559 ± 0.0003 37.63 ± 0.03 0.9586 ± 0.0003[

0- 50
255

, 0- 50
255

, 0- 50
255

, 0- 50
255

]
31.07 ± 0.05 0.8597 ± 0.0013 33.24 ± 0.05 0.9132 ± 0.0006 34.08 ± 0.05 0.9213 ± 0.0006 n/a n/a

when training, we used random subband SDs {1/√γℓ}4ℓ=1 drawn independently from a

uniform distribution over the interval [0, 50/255]. When interpreting the value “50/255,”

note that the image pixel values were in [0, 1] for this dataset. As a baseline method,

we trained bias-free DnCNN using white noise with a standard deviation distributed

uniformly over the interval [0, 50/255]. We expect this “white DnCNN” to perform

poorly with colored testing noise. As an upper bound on performance, we trained

bias-free DnCNN using the same fixed value of the SD vector
[

1√
γ1
, 1√

γ2
, 1√

γ3
, 1√

γ4

]
that

is used when testing. The resulting “genie DnCNN” is specialized to that particular

SD vector, and thus not useful in practical situations where the test SD is unknown

during training (e.g., in D-GEC).

The results of our denoiser comparison are presented in Table 2.1 using the metrics

of PSNR and SSIM [141] along with the respective standard errors (SE). In the

first four rows of the table, performance is evaluated for a fixed value of the SD

vector
[

1√
γ1
, 1√

γ2
, 1√

γ3
, 1√

γ4

]
, while in the last row the results are averaged over subband

SDs {1/√γℓ}4ℓ=1 drawn independently from a uniform distribution over the interval

[0, 50/255]. The fourth row corresponds to white Gaussian noise with a fixed standard

deviation of 10, while all other rows correspond to colored noise. The fifth row

corresponds to noise that is non-Gaussian in general, but Gaussian when conditioned
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on γ. All results in the table represent the average over 500 different noise realizations.

The results in Table 2.1 are summarized as follows.

• As expected, white DnCNN performs relatively poorly for all test cases except

that in the fourth row, where the testing noise was white, and that in the

third row, where the testing noise was lightly colored. In the fourth row, white

DnCNN performs slightly worse than genie DnCNN, which is expected because

white DnCNN was trained using white noise with SDs in the range [0, 50/255],

while genie DnCNN was trained using a white noise with a fixed SD that exactly

matches the test noise.

• As expected, genie DnCNN is the best method in the first four rows. In all of

those cases, genie DnCNN is specialized to handle exactly the noise distribution

used for the test, and thus is impractical. By definition, genie DnCNN is not

applicable to the fifth row.

• Metzler’s DnCNN performs relatively well in the first two rows, but relatively

poorly in the second two rows. We believe that the inconsistency is the result

of the fact that the DNN operates in the pixel domain, while the SD side

information is given in the wavelet domain and the DNN is given no information

about the wavelet transform itself.

• The proposed corr+corr outperforms Metzler’s DnCNN in all cases and is only

0.3 to 0.5 dB away from the genie DnCNN. This is notable because genie DnCNN

gives an (impractical) upper bound on the performance achievable with the

chosen architecture and training method.
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Code for our corr+corr experiments can be found at https://github.com/Saurav-

K-Shastri/corr-plus-corr.

2.3.2 Example D-GEC behavior in multicoil MRI with a 2D
line mask

In this section, we demonstrate the typical behavior of D-GEC when applied to

multicoil MRI image recovery with a 2D line mask; experiments with a 2D point mask

will be presented in Section 2.3.3. The full details of our multicoil experimental setup

are given in Appendix C-A. One of our main goals is to demonstrate that D-GEC’s

denoiser input error behaves as in (2.35), i.e., that the error in each wavelet band is

white and Gaussian with a predictable variance. For the experiments in this section,

we used the corr+corr denoiser proposed in Section 2.2.2, a signal-to-noise ratio (SNR)

of 40 dB, and an acceleration of R = 4. Code for our D-GEC experiments can be

found at https://github.com/Saurav-K-Shastri/D-GEC.

Before discussing our results, there is one peculiarity to multicoil MRI that should

be explained. In practice, both the coil-sensitivity maps {sc}Cc=1 in A from (2.2) and

the image xtrue in (2.1) are unknown. The standard recovery approach is to first

use an algorithm like ESPIRiT [143] to estimate the coil maps {sc}Cc=1, then plug

the estimated maps into the A matrix, and finally solve the inverse problem with

the estimated A to recover xtrue. One complication with ESPIRiT is that, in pixel

regions where the true image xtrue is zero or nearly zero (e.g., the outer regions of

many MRI images), the ESPIRiT-estimated coil maps can be uniformly zero-valued,

depending on how ESPIRiT is configured. In other words, there may exist pixels

n such that [sc]n = 0 ∀c = 1 . . . C, which causes the corresponding columns of A

to be zero. In our experiments, we use the default ESPIRiT parameters from the

40

https://github.com/Saurav-K-Shastri/corr-plus-corr
https://github.com/Saurav-K-Shastri/corr-plus-corr
https://github.com/Saurav-K-Shastri/D-GEC


Figure 2.4: Example multicoil knee image recovery: True image magnitude |xtrue|, D-GEC’s
recovered image magnitude |x̂| at iteration 20, and the error magnitude |xtrue− x̂|, for R = 4
and measurement SNR = 40 dB.

SigPy implementation3 and find such zero-valued regions do occur. Although the

presence of zero-valued columns in A might appear to make the inverse problem (2.1)

more difficult, the (known) coil-map estimates can be exploited as side-information to

tell the algorithm which pixels in xtrue are nearly zero-valued. Consequently, in our

multicoil experiments, for all algorithms, we set those pixels of the recovered image x̂

to zero wherever the estimated coil maps are uniformly zero. In the sequel, we will

refer to the pixel region with zero-valued coil map estimates as the “zero-coil region.”

For a typical MRI knee image, Fig. 2.4 shows the magnitude |xtrue| of the true

image, D-GEC’s recovery |x̂| after 20 iterations, and the error magnitude |x̂− xtrue|.

The error is exactly zero in the previously defined zero-coil region because both xtrue

and x̂ are zero-valued there. The PSNR ≜ 10 log10[(N maxn |[xtrue]n|2)/∥x̂− xtrue∥2]

and SSIM [141] values for this example reconstruction were 36.87 dB and 0.9397,

respectively.

3https://sigpy.readthedocs.io/en/latest/generated/sigpy.mri.app.EspiritCalib.html.
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Figure 2.5: Example multicoil knee image recovery: True wavelet coefficient magnitude |c0|,
D-GEC’s denoiser-input magnitude |r2| at iteration 10, and the error magnitude |c0 − r2|,
for R = 4 and measurement SNR = 40 dB.

Fig. 2.5 shows the magnitude |ctrue| of the corresponding true wavelet coefficients,

the magnitude |r2| of the noisy signal entering the D-GEC denoiser at iteration 10,

and the error magnitude |r2 − ctrue|. The wavelet subbands are visible as the image

tiles in these plots. Here again, we see zero-valued error in the zero-coil region. As

anticipated from (2.35), the error maps look like white noise outside the zero-coil

region of each wavelet subband, with an error variance that varies across subbands.

To verify the Gaussianity of the wavelet subband errors, Fig. 2.6 shows quantile-

quantile (QQ) plots of the real and imaginary parts of the error ctrue − r2 outside the

zero-coil region of several wavelet subbands at iteration 1, and Fig. 2.7 shows the same

at iteration 10. These QQ-plots suggest that the subband errors are indeed Gaussian

at all iterations.

To show that the subband precisions γ2 predicted by D-GEC match the empirical

subband precisions in the error vector e2, Fig. 2.8 plots the ℓth subband SD 1/
√
γℓ

versus iteration, along with the SDs empirically estimated from ctrue − r2, for several
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Figure 2.6: QQ-plots of the real and imaginary parts of D-GEC’s subband errors ctrue − r2
at iteration 1.

subbands ℓ and a typical run of the algorithm. It can be seen that the predicted SDs

are in close agreement with the empirically estimated SDs.

Finally, to verify that the errors ctrue − r2 are zero-mean in each subband of each

validation image, we performed a t-test [144] using a significance level of α = 0.05

(i.e., if the errors were truly zero mean then the test would fail with probability α).

At the first iteration, we ran a total of 208 tests (one for each of the 13 subbands

in each of the 16 knee validation images at R = 4 and SNR = 40 dB) and found

that 11 tests rejected the zero-mean hypothesis, which is consistent with α = 0.05

since 11/208 = 0.0529 ≈ 0.05. At the 10th iteration, 12 tests rejected the zero-mean

hypothesis, which is again consistent with α = 0.05.
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Figure 2.7: QQ-plots of the real and imaginary parts of D-GEC’s subband errors ctrue − r2
at iteration 10.

2.3.3 Multicoil MRI algorithm comparison with a 2D point
mask

In this section, we compare the performance of D-GEC to two state-of-the-art

algorithms for multicoil MRI image recovery: P-VDAMP [102] and PnP-PDS [108].

We use 2D point masks in this section out of fairness to P-VDAMP, which was designed

around 2D point masks. Multicoil experiments with 2D line masks are presented in

Section 2.3.4, and single-coil experiments are presented in Section 2.3.5. We examine

two acceleration rates, R = 4 and R = 8, and several measurement SNRs between

20 and 45 dB. As before, we quantify recovery performance using PSNR and SSIM.
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Figure 2.8: Evolution of D-GEC’s predicted subband SDs (1/√γℓ) and empirically estimated
subband SDs (from ctrue − r2) for several subbands ℓ over 20 iterations.

For this section, we used both knee and brain fastMRI data. The details of the

experimental setup are given in Appendix C-A.

For P-VDAMP, we ran the authors’ code from [102] under its default settings. For

PnP-PDS, we used a bias-free DnCNN [142] denoiser trained to minimize ℓ2 loss when

removing WGN with an SD uniformly distributed in the interval [0, 55/255]. This

bias-free network is known to perform very well over a wide SD range, and so there is

no advantage in training multiple denoisers over different SNR ranges [142]. Because

PnP-PDS performance strongly depends on the chosen penalty parameter and number

of PDS iterations, we separately tuned these parameters for every combination of

measurement SNR and acceleration rate to maximize PSNR on the training set. For

D-GEC, we used a Haar wavelet transform of depth D = 4, which yields L = 13

subbands, and a corr+corr bias-free DnCNN denoiser; see Appendix C-A for additional

details. For all algorithms, we set the image estimate to zero in the zero-coil region.

For each acceleration rate R and SNR under test, we ran all three algorithms on

all images in the brain and knee testing sets. We then computed the average PSNR

and SSIM values across those images and summarized the results in Fig. 2.9, using
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Figure 2.9: Average PSNR and SSIM versus measurement SNR for P-VDAMP, PnP-PDS,
and D-GEC.

error bars to show plus/minus one standard error. The figure shows that D-GEC

significantly outperformed the other algorithms in all metrics at all combinations of R

and measurement SNR.

Figure 2.10 shows image recoveries and error images for a typical fastMRI brain

image at acceleration R = 4 and measurement SNR = 35 dB. In this case, D-GEC

outperformed the P-VDAMP and PnP-PDS algorithms in PSNR by 2.6 and 0.76 dB,

respectively. Furthermore, D-GEC’s error image looks the least structured. Looking

at the details of the zoomed plots, we see that D-GEC is able to reconstruct certain

fine details better than its competitors.

Figure 2.11 shows PSNR versus iteration for the three algorithms at R = 4 and

SNR = 20 dB. The PSNR values shown are the average over all 16 test images from

the brain MRI dataset. The plot shows P-VDAMP, D-GEC, and PnP-PDS taking
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Figure 2.10: Example multicoil MRI brain recoveries and error images at R = 4 and SNR
= 35 dB. The number printed on each recovered image shows its PSNR. The bottom row is a
zoomed in version of the green square in the top row. This figure is best viewed in electronic
form.

about 7, 8, and 25 iterations to converge, respectively. If we measure the number of

iterations taken to reach 35 dB SNR, then D-GEC, PnP-PDS, and P-VDAMP take

about 3, 5, and 7 iterations, respectively.

2.3.4 Multicoil MRI algorithm comparison with a 2D line mask

In this section, we compare the performance of D-GEC to that of P-VDAMP [102]

and PnP-PDS [108] when using a 2D line mask. We examine acceleration rates R = 4
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Figure 2.11: PSNR versus iterations for multicoil brain MRI recovery at R = 4 and SNR
= 20 dB. PSNR was averaged over the 16 test images.

Table 2.2: Multicoil 2D line-mask results at SNR = 40 dB averaged over all test images.
Knee Brain

R = 4 R = 8 R = 4 R = 8
method PSNR ± SE SSIM ± SE PSNR ± SE SSIM ± SE PSNR ± SE SSIM ± SE PSNR ± SE SSIM ± SE

P-VDAMP [102] 33.84 ± 0.40 0.9018 ± 0.0036 20.34 ± 0.46 0.5614 ± 0.0051 30.30 ± 0.16 0.8847 ± 0.0021 13.51 ± 0.26 0.4763 ± 0.0069
PnP-PDS [108] 36.28 ± 0.38 0.9204 ± 0.0028 32.34 ± 0.32 0.8556 ± 0.0040 38.07 ± 0.23 0.9501 ± 0.0016 28.97 ± 0.13 0.8269 ± 0.0031

D-GEC (proposed) 38.82 ± 0.50 0.9504 ± 0.0023 33.66 ± 0.28 0.8893 ± 0.0028 39.04 ± 0.29 0.9631 ± 0.0013 30.61 ± 0.19 0.9015 ± 0.0031

and R = 8, and a measurement SNR of 40 dB, on the fastMRI brain and knee datasets.

With the exception of the sampling mask, the experimental setup was identical to that

in Section 2.3.3. Although [102] states that P-VDAMP is not intended to be used for

“purely 2D acquisitions” like that associated with a 2D line mask, we show P-VDAMP

performance for completeness. To run P-VDAMP, we gave it a 2D sampling density

that was uniform along the fully sampled dimension and proportional to the 1D

sampling density along the subsampled dimension (recall Figs. 2.1(c)-(d)).
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Table 2.2 shows PSNR and SSIM averaged over the test images with the corre-

sponding standard errors. There it can be seen that D-GEC significantly outperformed

the other techniques on both datasets at both acceleration rates. For example, D-GEC

outperformed its closest competitor, PnP-PDS, by 2.54 and 1.32 dB at R = 4 and

R = 8, respectively, on the knee data.

2.3.5 Single-coil MRI algorithm comparison with a 2D point
mask

In this section we compare the performance of D-GEC to several other recently

proposed algorithms for single-coil MRI recovery using a 2D point mask. We examine

two acceleration rates, R = 4 and R = 8, and a measurement SNR of 45 dB. For this

section, we used the Stanford 2D FSE dataset [31] with the test images in Fig. 2.3.

The details of the experimental setup are reported in Appendix C-B.

We compared our proposed D-GEC algorithm to D-AMP-MRI [126], VDAMP [100],

D-VDAMP [101], and PnP-PDS [108]. We used a 2D point mask out of fairness to

VDAMP and D-VDAMP, which were designed around 2D point masks. For VDAMP

and D-VDAMP, we ran the authors’ implementations at their default settings. For

D-AMP-MRI and PnP-PDS, we used a bias-free DnCNN [142] denoiser trained to

minimize the ℓ2 loss when removing WGN with SDs uniformly distributed in the

interval [0, 55/255]. This bias-free network is known to perform very well over a wide

SD range, and so there is no advantage in training multiple denoisers over different

SNR ranges [142]. We ran the D-AMP-MRI and PnP-PDS algorithms for 50 and 300

iterations, respectively. Because the PnP fixed-points strongly depend on the chosen

penalty parameter, we carefully tuned the PnP-PDS parameter at each acceleration

rate R to maximize PSNR on the validation set. For D-GEC, we used a Haar wavelet
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Table 2.3: Single-coil image recovery results averaged over the ten test images.
R = 4 R = 8

method PSNR ± SE SSIM ± SE PSNR ± SE SSIM ± SE
D-AMP-MRI [126] 33.28 ± 4.62 0.7789 ± 0.0900 25.83 ± 4.33 0.7252 ± 0.1214

VDAMP [100] 33.10 ± 1.30 0.8650 ± 0.0243 28.47 ± 0.96 0.7378 ± 0.0313
D-VDAMP [101] 42.57 ± 1.48 0.9731 ± 0.0089 35.18 ± 1.93 0.9023 ± 0.0248
PnP-PDS [108] 43.36 ± 1.60 0.9787 ± 0.0076 38.10 ± 1.75 0.9527 ± 0.0158

D-GEC (proposed) 45.17 ± 1.62 0.9824 ± 0.0066 38.97 ± 1.76 0.9570 ± 0.0132

transform of depth D = 4, which yields L = 13 subbands, and a corr+corr bias-free

DnCNN denoiser; see Appendix C-B for additional details.

Table 2.3 shows PSNR and SSIM averaged over the 10 test images with the

corresponding standard errors. There it can be seen that D-GEC significantly outper-

formed the other techniques at both tested acceleration rates. For example, D-GEC

outperformed its closest competitor, PnP-PDS, by 1.81 and 0.87 dB at R = 4 and

R = 8, respectively.

Figure 2.12 shows PSNR versus iteration for several algorithms at R = 4 and SNR

= 45 dB. The PSNR value shown is the average over all 10 test images in Fig. 2.3.

Two versions of D-VDAMP are shown in Fig. 2.12: the standard version from [101],

which includes early stopping, and a modified version without early stopping. The

importance of early stopping is clear from the figure. The figure also shows that,

for this single-coil dataset, D-GEC took more iterations to converge than the other

algorithms but yielded a larger value of PSNR at convergence. In the multicoil case

in Fig. 2.11, D-GEC took an order-of-magnitude fewer iterations to converge.

Figure 2.13 shows image recoveries for a typical Stanford 2D FSE MRI image at

R = 4 and measurement SNR = 45 dB. For this experiment, D-GEC significantly
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Figure 2.12: PSNR versus iterations for single-coil MRI recovery at R = 4 and SNR = 45 dB.
PSNR was averaged over the 10 test images in Fig. 2.3.

outperformed the competing algorithms in PSNR, and its error image looks the least

structured. Also, the zoomed subplots show that D-GEC recovered fine details in the

true image that are missed by its competitors.

2.4 Conclusion

PnP algorithms require relatively few training images and are insensitive to devia-

tions in the forward model A and measurement noise statistics between training and

test. However, PnP can be improved, because the denoisers typically used for PnP are

trained to remove white Gaussian noise, whereas the denoiser input errors encountered

in PnP are typically non-white and non-Gaussian. In this chapter, we proposed a

new PnP algorithm, called Denoising Generalized Expectation-Consistent (D-GEC)

approximation, to address this shortcoming for Fourier-structured A and Gaussian
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measurement noise. In particular, D-GEC is designed to make the denoiser input

error white and Gaussian within each wavelet subband with a predictable variance.

We then proposed a new DNN denoiser that is capable of exploiting the knowledge of

those subband error variances. Our “corr+corr” denoiser takes in a signal corrupted by

correlated Gaussian noise, as well as independent realization(s) of the same correlated

noise. It then learns how to extract the statistics of the provided noise and then

use them productively for denoising the signal. Numerical experiments with single-

and multicoil MRI image recovery demonstrate that D-GEC does indeed provide

the denoiser with subband errors that are white and Gaussian with a predictable

variance. Furthermore, the experiments demonstrate improved recovery accuracy

relative to existing state-of-the-art PnP methods for MRI, especially with practical

2D line sampling masks. More work is needed to understand the theoretical properties

of the proposed D-GEC and corr+corr denoisers.
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Chapter 3: Fast and Robust Phase Retrieval via Deep

Expectation-Consistent Approximation

3.1 Background

3.1.1 Generalized Linear Model (GLM)

Recall that in Generalized Linear Model, relationship between y ∈ Ym and x ∈ Rd

or Cd can be described using a likelihood model of the form

py|x(y|x) =
m∏
i=1

py|z(yi|zi) for z = Ax, (3.1)

where the forward operator A ∈ Cm×d and scalar measurement channel py|z are

both known. As previously discussed, versions of py|z exist for, e.g., additive noise

of an arbitrary distribution, logistic regression [33], Poisson regression [145], noisy

quantization [146], and phase retrieval [36, 37]. In this work, we focus on phase

retrieval, although many of the ideas that we describe can be applied more generally.

For phase retrieval, several variants of py|z have been employed, such as py|z(yi|zi) =

N (yi; |zi|2, v) [53], py|z(yi|zi) = Poisson(yi; |zi|2) [147], the Rician model resulting from

yi ∼ |zi + wi| with wi ∼ N (0, v) [60], and

py|z(yi|zi) = N (yi; |zi|, v). (3.2)
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For algorithm design, we will focus on (3.2), as it has proven to be effective in

practice [148] and is adopted by state-of-the-art techniques like prDeep [56] and

Deep-ITA [65].

3.1.2 Expectation-Consistent Approximation for GLM

We now consider statistical estimation of x ∼ px from y under the GLM (3.1).

When both px and py|z are Gaussian, the maximum a posteriori (MAP) and minimum

mean-squared error (MMSE) estimates of x coincide and are analytically computable.

But Gaussian py|z is not useful for phase retrieval. When both px and py|z are log-

concave, the posterior px|y is also log-concave and thus the MAP estimate of x can be

computed using standard convex-optimization algorithms [149,150]. Although the py|z

in (3.2) is indeed log-concave, high-fidelity image priors px are not. Furthermore, the

widespread use of PSNR as a recovery-performance metric suggests the use of MMSE

estimation over MAP.

The expectation-consistent (EC) approximation framework [28, 80] is a well estab-

lished method to approximate the MMSE estimate of x from y, i.e., the conditional

mean E{x|y}. The application of EC to the SLM (1.4) or GLM (3.1) is sometimes

referred to as vector AMP (VAMP) [120] and generalized VAMP [61], respectively. Rig-

orous analyses of VAMP have established its MSE optimality under high-dimensional

rotationally invariant A and various assumptions on px and py|z [81, 121,151,152].

In the above works, EC is employed to MMSE-estimate x from y using the

prior px and the likelihood py|x from (3.1). This approach, however, fails for many

deterministic choices of A, such as the Fourier-based operators that arise in phase

retrieval (see the discussion in [56, 67]) and magnetic resonance imaging (see the
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discussion in [100, 101, 127, 153]). In this work, we instead employ EC to MMSE-

estimate z from y, using the prior pz and likelihood py|z. Separately, we estimate x

from z = Ax. Thus, when reviewing EC below, we do so in the context of estimating

z using pz and py|z. The more “traditional” application of EC (estimating x using px

and py|x) is identical up to variable substitutions.

To begin our review of EC, notice that one can write the true posterior distribution

pz|y(·|y) without approximation as

pz|y(·|y) = argmin
q

D
(
q
∥∥pz|y(·|y)) (3.3)

= argmin
q

D
(
q
∥∥py|z(y|·))+D(q∥pz) +H(q) (3.4)

= argmin
q1=q2=q3

D
(
q1
∥∥py|z(y|·))+D(q2∥pz) +H(q3)︸ ︷︷ ︸

≜ JGibbs(q1, q2, q3)

, (3.5)

where D(q∥p) ≜
∫
q(z) ln q(z)

p(z)
dz denotes Kullback-Leibler (KL) divergence, H(q) ≜

−
∫
q(z) ln q(z) dz denotes differential entropy, and pz|y(z|y) = py|z(y|z)pz(z)/py(y)

via Bayes rule was used for (3.4). Because the optimization in (3.5) is intractable, Opper

and Winther [118] proposed to relax the equality constraints to moment-matching

constraints, i.e.,

argmin
q1,q2,q3

JGibbs(q1, q2, q3) such that (3.6){
E{z|q1} = E{z|q2} = E{z|q3} ≜ ẑ

tr(Cov{z|q1}) = tr(Cov{z|q2}) = tr(Cov{z|q3}) ≜ mv̂,

where E{z|qi} and Cov{z|qi} denote the mean and covariance of z under z ∼ qi and

tr(·) denotes the trace, and then approximate E{z|y} by ẑ. The solution to (3.6)
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takes the form

q1(z; z
(1), v(1)) ∝ py|z(y|z)N (z; z(1), v(1)I) (3.7)

q2(z; z
(2), v(2)) ∝ pz(z)N (z(2); z, v(2)I) (3.8)

q3(z; ẑ, v̂) = N (z; ẑ, v̂I) (3.9)

for some z(1), z(2) and v(1), v(2), known as the “extrinsic” means and variances, respec-

tively, that must be computed (see the discussion after (3.12)), and for

v̂ =
(
1/v(1) + 1/v(2)

)−1 (3.10)

ẑ =

(
z(1)

v(1)
+

z(2)

v(2)

)
v̂. (3.11)

Note that q1 combines the true likelihood py|z with the Gaussian “pseudo-prior” z ∼

N (z(1), v(1)I), while q2 combines the true prior pz with the Gaussian “pseudo-likelihood”

N (z(2); z, v(2)I), i.e., the model

z(2) = ztrue + e with e ∼ N (0, v(2)I). (3.12)

To solve for (z(1), z(2), v(1), v(2)), Opper and Winther [118] proposed Alg. 4, which

iterates the following four steps: compute the posterior mean and trace-covariance of

q2(·; z(2), v(2)), update the extrinsic quantities (z(1), v(1)) to obey (3.10)-(3.11), compute

the posterior mean and trace-covariance of q1(·; z(1), v(1)), and update the extrinsic

quantities (z(2), v(2)) to obey (3.10)-(3.11). The non-informative initialization of v(2)

and z(2) in line 3 ensures that q2 = pz initially, so that the initial v̂(2) and ẑ(2) are

the prior variance and mean (as are the initial v(1) and z(1)). Algorithm 4 can be

interpreted [118] as an instance of expectation propagation (EP) from [119].
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Algorithm 4 EC to infer z ∼ pz from y ∼ py|z(·|z)
Require: pz(·), py|z(y|·)
1: q1(z; z

(1), v(1)) ∝ py|z(y|z)N (z; z(1), v(1)I)
2: q2(z; z

(2), v(2)) ∝ pz(z)N (z; z(2), v(2)I)
3: v(2) ←∞ and z(2) ← arbitrary finite vector in Rm

4: // Exploit prior pz(·) and pseudo-likelihood
5: v̂(2) ← 1

m
tr(Cov{z|q2(·; z(2), v(2))})

6: ẑ(2) ← E{z|q2(·; z(2), v(2))}
7: v(1) ← (1/v̂(2) − 1/v(2))−1

8: z(1) ← (ẑ(2)/v̂(2) − z(2)/v(2))v(1)

9: // Exploit likelihood py|z(y|·) and pseudo-prior
10: v̂(1) ← 1

m
tr(Cov{z|q1(·; z(1), v(1))})

11: ẑ(1) ← E{z|q1(·; z(1), v(1))}
12: v(2) ← (1/v̂(1) − 1/v(1))−1

13: z(2) ← (ẑ(1)/v̂(1) − z(1)/v(1))v(2) return ẑ(2) as the EC approximation of E{z|y}

3.2 Proposed Method

In the following subsections we propose several modifications of the standard EC

approach from Alg. 4 that involve stochastic damping, deep networks, and simplifica-

tions/approximations specific to phase retrieval.

3.2.1 Stochastic Damping

The EC Alg. 4 is not guaranteed to converge for general pz and py|z. One technique

that helps promote convergence is “damping” [127,154], which slows the updates in a

way that preserves the EC fixed points. Damping is also referred to as “under-relaxation”

in the context of iterative numerical methods and computational fluid dynamics [155].

It typically takes the form φnew ← µφraw + (1− µ)φold when iteratively updating φ

using the most recent computation φraw. Here, µ ∈ (0, 1] is a user-selectable parameter,

where lower values increase stability but slow convergence.
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The damping technique from [127] considers the v(i) and z(i) computed in lines 7-8

and 12-13 of Alg. 4 as “raw” quantities and damps them using the additional steps

(for i ∈ {1, 2})

v(i) ←
(
µ(i)
√
v(i)

raw + (1− µ(i))
√
v(i)

old

)2

(3.13a)

z(i) ← µ(i)z(i)

raw + (1− µ(i))z(i)

old, (3.13b)

where v(i)

old and z(i)

old denote the values of v(i) and z(i) from the previous iteration and

µ(i) ∈ (0, 1] is a fixed damping constant. When µ(1) = 1 = µ(2), the original EC is

recovered.

We now propose a “stochastic damping” procedure inspired by diffusion methods

like [84]. It damps v(2) as in (3.13a) but constructs z(2) by adding AWGN of a prescribed

variance:

v(2) ←
(
µ(2)
√
v(2)

raw + (1− µ(2))
√
v(2)

old

)2

(3.14a)

z(2) ← z(2)

raw + ϵ, ϵ ∼ N (0,max{v(2) − v(2)

raw, 0}I). (3.14b)

To better understand (3.14b), recall from (3.12) that, under ideal conditions, z(2) =

ztrue + e for e ∼ N (0, v(2)I) and z(2)

raw = ztrue + ε for ε ∼ N (0, v(2)
rawI). This implies

that a valid z(2) can be constructed from z(2)

raw by adding additional AWGN of variance

v(2) − v(2)
raw, as done in (3.14b). Here, it is expected that v(2) > v(2)

raw because the

variances decrease over the iterations and damping aims to slow down that decrease.

In Section 3.3, we show that (3.14) has advantages over (3.13), perhaps because (3.14)

attempts to enforce the EC model (3.12).
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3.2.2 deepEC for general A

As formulated in Alg. 4, EC estimates z ∼ pz from observations y ∼ py|z(·|z).

To solve inverse problems using the GLM model (3.1), we instead want to estimate

x ∼ px from y ∼ py|z(·|z) where z = Ax. In principle, this can be done using a minor

modification of Alg. 4 that rewrites ẑ(2) in line 6 as a function of an MMSE estimate

of x:

ẑ(2) = E{z|q2(·; z(2), v(2))} (3.15)

= E{z|z(2) = z + e}, z ∼ pz, e ∼ N (0, v(2)I) (3.16)

= AE{x|z(2) = Ax+ e}, x ∼ px, e ∼ N (0, v(2)I)︸ ︷︷ ︸
≜ x̂(2)

, (3.17)

and then returns x̂(2) as the EC output. The practical challenge, however, is that

computing x̂(2) via (3.17) involves MMSE estimation of x under the SLM (1.4), which

is itself non-trivial.

Fortunately, it is now commonplace to train a deep networks to solve SLMs [18].

Writing x̂(2) ≈ d(z(2); v(2)) for deep network d, we could train the network parameters

θ via

argmin
θ

T∑
t=1

E
{
∥xt − d(Axt + e; v(2))∥2

}
(3.18)

with training data {xt}Tt=1, random noise e ∼ N (0, v(2)I), and random noise variance

v(2) ∼ Unif[0, vmax] for some vmax. Likewise, we could train another deep network hϕ

to approximate the posterior variance v̂(2). Writing v̂(2) ≈ hϕ(z
(2); v(2)), its network

parameters ϕ might be trained via

argmin
ϕ

T∑
t=1

E
{∣∣ 1

m
∥zt −Ax̂(2)

t ∥2 − hϕ(Axt + e; v(2))
∣∣}, (3.19)
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Algorithm 5 deepECpr
Require: transform A, channel py|z(y, ·), denoiser d(·, ·), denoising factor β ∈ (0, 1),

image initialization x̂init, variance initialization vinit, variance initialization
factor ζ ≈ 1.2, damping factors µ(1) ∈ (0, 1] and µ(2) ∈ (0, 1]

1: initialize: z(2) ← Ax̂init + n with n ∼ CN (0, vinitI), and v(2) ← ζvinit
2: for j = 1, . . . , J do
3: // Exploit prior x ∼ px (via denoiser d) and pseudo-likelihood p(z(2)|x) =

CN (z(2);Ax, v(2)I)
4: denoise: x̂(2) ← d(ℜ{AHz(2)}, 0.5v(2))
5: deep-network approximated posterior mean and variance: ẑ(2) ← Ax̂(2) and

v̂(2) ← βv(2)

6: extrinsic variance: v(1)
raw ← (1/v̂(2) − 1/v(2))−1 and v(1)

old ← v(1)

7: extrinsic mean: z(1)

raw ← (ẑ(2)/v̂(2) − z(2)/v(2))v(1)
raw and z(1)

old ← z(1)

8: damping: v(1) ←
(
µ(1)

√
v(1)
raw+(1−µ(1))

√
v(1)

old

)2 and z(1) ← µ(1)z(1)

raw+(1−µ(1))z(1)

old

9: // Exploit likelihood py|z(yi|zi) and pseudo-prior zi ∼ CN (z(1)

i , v(1)) for i =
1, . . . ,m

10: Laplace-approximated posterior mean and variance: (ẑ(1)

i , v̂(1)

i ) ∀i and set
v̂(1) ← 1

m

∑m
i=1 v̂

(1)

i

11: extrinsic variance: v(2)
raw ← (1/v̂(1) − 1/v(1))−1 and v(2)

old ← v(2)

12: extrinsic mean: z(2)

raw ← (ẑ(1)/v̂(1) − z(1)/v(1))v(2)
raw

13: stochastic damping: v(2) ←
(
µ(2)
√
v(2)
raw + (1− µ(2))

√
v(2)

old

)2 and z(2) ← z(2)

raw + ϵ
with ϵ ∼ CN (0, [v(2) − v(2)

raw]I)
14: return x̂(2)

where x̂(2)

t ≜ d(Axt + e; v(2)) and where xt, e, and v(2) are constructed as they were

for (3.18).

We will refer to EC with these deep-network approximations as “deepEC.” To

summarize, deepEC is EC Algorithm 4 but with ẑ(2) computed via Afθ(z
(2); v(2)) and

v̂(2) computed via hϕ(z
(2); v(2)). As such, deepEC solves GLM problems by plugging

deep SLM networks into EC Alg. 4.
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3.2.3 deepEC when AHA = I

One practical drawback to deepEC is that the deep networks d and hϕ are

dependent on the forward operator A, and so the networks must be retrained for each

new choice of A. There is, however, an important exception to this rule, which is

when AHA = I. For such column-orthogonal A, a sufficient statistic [105] for the

estimation of x̂(2) in (3.17) is

r(2) ≜ AHz(2) = x+ ϵ, ϵ ∼ N (0, v(2)I), (3.20)

in which case x̂(2) solves the MMSE denoising problem

x̂(2) = E{x|r(2) = x+ ϵ}, x ∼ px, ϵ ∼ N (0, v(2)I), (3.21)

and we can approximate x̂(2) using a deep denoising network d(r(2), v(2)) that is

invariant to A. Likewise, we have that

v̂(2) = 1
m
tr(Cov{z|z(2), v(2)}) (3.22)

= 1
m
tr(ACov{x|z(2), v(2)}AH) (3.23)

= 1
m
tr(ACov{x|r(2), v(2)}AH) (3.24)

= 1
m
tr(AHACov{x|r(2), v(2)}) (3.25)

= 1
m
tr(Cov{x|r(2), v(2)}), (3.26)

and so the network hϕ that deepEC uses to approximate v̂(2) can also be invariant

to A. One way to construct hϕ would be to use the Monte-Carlo scheme from [117],

which employs random {pc}Cc=1 such that E{pcp
⊤
c } = I and small δ > 0 in

tr(Cov{x|r(2), v(2)})

≈ 1

C

C∑
c=1

p⊤
c [d(r

(2)+δpc, v
(2))− d(r(2), v(2))]

δ
(3.27)
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at the expense of C ≥ 1 additional calls of the denoiser d.

In summary, for any forward operator A that obeys AHA = I, the proposed

deepEC scheme computes approximate-MMSE solutions to GLM problems by itera-

tively calling a deep denoiser, similar to the PnP [21] or RED [22,23] schemes. But it

requires far fewer iterations, as we demonstrate in Section 3.3.

For phase retrieval, AHA = I holds for the two classes of A that dominate the

literature: i) oversampled-Fourier (OSF) and ii) coded diffraction pattern (CDP) [156].

For OSF,

A = FmO for O ≜

[
Id

0m−d×d

]
∈ Rm×d, (3.28)

where Fm ∈ Cm×m is a unitary 2D Fourier transform and O pads the vectorized image

with zeros. For CDP,

A =
1√
K

Fd Diag(c1)...
Fd Diag(cK)

 , (3.29)

where Fd ∈ Cd×d is a unitary 2D Fourier transform and ck ∈ Cd are random code

vectors with entries drawn independently and uniformly from the unit circle in C. By

inspection, AHA = I under (3.28) with m ≥ d and (3.29) with K ≥ 1.

3.2.4 deepEC for Phase Retrieval

For PR, we propose to apply the deepEC algorithm from Section 3.2.3 with

the stochastic damping scheme from Section 3.2.1. In addition, we use the minor

modifications described below. The overall scheme, “deepECpr,” is detailed in Alg. 5.

Initialization: Unlike the non-informative z(2) initialization used in Alg. 4, deep-

ECpr uses an informative initialization. For OSF A, we first run the HIO algorithm [49]

to produce x̂init, as in prDeep [56] and Deep-ITA [65]. For CDP A, we find that it
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suffices to run only the first iteration of HIO, and so x̂init = AH(yej∠A1), where ej∠A1

is computed and applied element-wise. Then, to initialize z(2), deepECpr transforms

x̂init to the z-domain and adds circular-complex AWGN:

z(2) ← Ax̂init + n with n ∼ CN (0, vinitI). (3.30)

By using a large noise variance (nominally vinit ≈ 1002 for pixel amplitudes in [0, 255])

the structured error artifacts in Ax̂init are suppressed. Because the error variance of

z(2) is larger than vinit due to the error in Ax̂init, the initial v(2) is set to ζvinit for some

ζ > 1 (nominally ζ = 1.2).

Real-valued x and complex-valued A: The sufficient statistic r(2) = AHz(2) in (3.20)

would be appropriate if both x and A were real-valued, or if both were complex-

valued. However, for the PR problems that we consider, x is real-valued and A is

complex-valued, and so we form the sufficient statistic as

r(2) ≜ ℜ{AHz(2)} = x+ ϵ, ϵ ∼ N (0, 0.5v(2)I), (3.31)

and call the deepECpr denoiser as ẑ(2) = Ad(r(2), 0.5v(2)).

Simplified variance-prediction: As described in Section 3.2.2, the deep variance

predictor hϕ aims to estimate the error variance v̂(2) of the transformed denoiser output

ẑ(2). Although the Monte-Carlo scheme (3.27) is an option, it involves additional

denoiser calls, which would increase runtime. We thus propose to use the simple

approximation

v̂(2) ≈ βv(2), (3.32)

where β ∈ (0, 1) is a denoiser-specific constant. In words, (3.32) models the denoiser’s

output error variance v̂(2) as a fixed fraction of its input error variance v(2).
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Laplace approximation: For PR, we adopt the likelihood

py|z(yi|zi) = N (yi; |zi|, v), i = 1, . . . ,m, (3.33)

due to its excellent performance in practice [148]. However, the resulting EC posterior

q2(zi; z
(1)

i , v(1)) =
py|z(yi|zi)CN (zi; z

(1)

i , v(1))∫
py|z(yi|z′i)CN (z′i; z

(1)

i , v(1)) dz′i
(3.34)

≜ pz|y(zi|yi; z(1)

i , v(1)) (3.35)

does not have analytically tractable mean or variance. Consequently, we employ

the Laplace approximation [157], which assigns ẑ(1)

i to the posterior mode (i.e., the

MAP estimate) and v̂(1)

i to the trace of the inverse Hessian of − ln pz|y(zi|yi; z(1)

i , v(1)) at

zi = ẑ(1)

i , both of which have closed-form expressions. In particular, the MAP estimate

of zi is given by [65]

ẑ(1)

i =
v(1)yi + 2v|z(1)

i |
v(1) + 2v

ej∠z
(1)
i , (3.36)

and the trace-inverse-Hessian at zi = ẑ(1)

i is

v̂(1)

i =
v(1)(v(1)yi + 4v|z(1)

i |)
2|z(1)

i |(v(1) + 2v)
(3.37)

as derived in Appendix E. The overall posterior variance v̂(1) is then set to the average

value over all i, i.e., v̂(1) = 1
m

∑m
i=1 v̂

(1)

i .

3.3 Numerical Experiments

In this section, we present numerical experiments with Poisson-shot-noise-corrupted

OSF and CDP phaseless measurements, comparing the performance of the proposed

deepECpr algorithm to the classical HIO [49] and state-of-the-art prDeep [56], Deep-

ITA (both “F” and “S” variants) [65], Diffusion Posterior Sampling (DPS) [76], and

Diffusion mOdeL for PHase retrieval (DOLPH) [77] approaches. Our code is available

at https://github.com/Saurav-K-Shastri/deepECpr.
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Figure 3.1: The thirty 256× 256 FFHQ test images.

3.3.1 Test Data and Denoisers

We test on three image datasets. As in the DPS paper [76], we use 256 × 256

color images from the FFHQ test partition [158]. In particular, we use the first thirty

images, shown in Fig. 3.1. As in the Deep-ITA paper [65], we use the six “natural”

128× 128 grayscale images shown in Fig. 3.2, and as in the prDeep paper [56], we use

the six “unnatural” 128× 128 grayscale images shown in Fig. 3.2.
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Figure 3.2: The natural (left) and unnatural (right) grayscale test images.

When recovering the FFHQ test images, we use a denoiser that was constructed

by rescaling (see [76, eq. (9)]) an unconditional DDPM diffusion model [84] trained on

49 000 FFHQ training images [159]. The resulting diffusion denoiser “fdiff(rnoisy, vin)”

accepts a noisy image rnoisy and an input-noise variance vin, and thus is directly

compatible with deepECpr, DOLPH, and DPS. The prDeep and Deep-ITA methods,

however, do not have a way to estimate vin and instead sequence through a bank

of four “blind” denoisers designed to work at input-noise standard deviations (SD)

of 60, 40, 20, 10 (relative to pixel values in [0, 255]), respectively. Thus, for prDeep

and Deep-ITA, we use fdiff(rnoisy, vin) with vin ∈ {602, 402, 202, 102} for FFHQ image

recovery.

When recovering the grayscale images, we follow prDeep and Deep-ITA in using a

bank of four blind DnCNN [27] denoisers {fdncnn-60(·),fdncnn-40(·),fdncnn-20(·),fdncnn-10(·)}.

Although deepECpr would likely work better with a non-blind denoiser, we wanted a

fair comparison with prDeep and Deep-ITA. These DnCNN denoisers were trained over

the SD intervals {[40, 60], [20, 40], [10, 20], [0, 10]}, respectively, on the BSD400 [160]

dataset using the bias-free approach from [142]. Note that our natural grayscale test
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images are similar to (but distinct from) the BSD400 training data, while our unnatural

grayscale test images could be considered out-of-distribution for this denoiser. For

DOLPH and DPS, which are incompatible with blind denoisers, we use a pretrained

ImageNet diffusion denoiser [161] and copied the grayscale measurements into all three

color channels.

3.3.2 Measurement Generation

Like the prDeep and Deep-ITA papers, we employ OSF and CDP forward operators

A (recall (3.28)-(3.29)) with 4× oversampling and the (Gaussian approximated)

Poisson shot-noise mechanism from [56]

y2i = |zi|2 + wi with wi ∼ N (0, α2|zi|2), (3.38)

where y2i /α2 ∼ N (|zi|2/α2, |zi|2/α2) is approximately Poisson((|zi|/α)2) for sufficiently

small noise levels α. Note that, because we scale A to have unit-norm columns, our α

may have a different meaning than the α used in other papers. For example, with OSF

measurements, our α must be scaled by 1/
√
K = 0.5 to match the prDeep paper [56]

or by
√
K = 2 to match the Deep-ITA paper [65]. With CDP measurements, our α

must be scaled by
√
K = 2 to match the prDeep paper.

3.3.3 Performance Evaluation

We quantify performance using PSNR and SSIM [141] after resolving certain

ambiguities fundamental to PR.

Phaseless Fourier measurements are unaffected by spatial translations, conjugate

flips, and global phase [162]. The phase ambiguity is circumvented when the image

pixels are non-negative, as with all of our test images. Furthermore, the translation
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ambiguity is avoided when oversampling is used with images that have a sufficient

number of non-zero edge pixels, as with our color FFHQ test images, but not our

grayscale test images. Thus, when recovering the grayscale test images from OSF

measurements, we correct for both translations and flips, but when recovering the

color FFHQ test images, we correct for flips only. With color images, however, one

further complication arises with HIO. Because HIO separately recovers each color

channel, the flip ambiguity can manifest differently in each channel. To address this

latter problem, we fix the first channel of the HIO recovery and flip of each remaining

channel to maximize its correlation with the first channel.

Phaseless CDP measurements experience only a global-phase ambiguity [163],

which is inconsequential with our non-negative test images, and so we perform no

ambiguity resolution.

3.3.4 Algorithm Setup

For HIO, we ported the MATLAB implementation from [164] to Python and set the

tunable step-size parameter to 0.9. For prDeep, we use the Python implementation from

[165]. For Deep-ITA and DOLPH, we implemented the algorithm in Python/PyTorch

since no public information is available. For DPS, we use the Python implementation

from [159]. As in the prDeep and Deep-ITA papers, we use py|z from (3.2) for all

algorithms (except HIO, which does not use a likelihood). For deepECpr, we use

damping factors µ(1) = 0.3 and µ(2) = 0.075 and initialization factor ζ = 1.2. EM-based

auto-tuning [166] is used to re-evaluate v(2) for the first 3 and 10 iterations in the

FFHQ and grayscale experiments, respectively. The initial noise level vinit is set to 1202
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for the FFHQ experiments and 702 for the grayscale experiments. Experiment-specific

settings are described later.

Initialization/Reporting for OSF: For the OSF experiments, we apply the initial-

ization/reporting protocol used in both the prDeep and Deep-ITA papers to those

algorithms, as well as to HIO and deepECpr. First, HIO is run 50 times, for 50

iterations each, from a random initialization. The candidate x̂ with the lowest mea-

surement residual ∥y − |Ax|∥ is then selected as the HIO initialization, after which

HIO is run for 1000 iterations. In the case of color images, the second and third

channels are flipped to best match the first. Finally, the resulting HIO output is used

to initialize prDeep, Deep-ITA, and deepECpr. The entire procedure is repeated three

times, and the reconstruction with the lowest measurement residual is reported as the

final output for each algorithm. For DPS and DOLPH, we follow the DPS authors’

recommendation to run the algorithm four times and report the reconstruction with

the lowest measurement residual.

Initialization/Reporting for CDP: For the CDP experiments, we use the initializa-

tion x̂init = AH(yej∠A1) for HIO, prDeep, Deep-ITA, and deepECpr, where ej∠A1 is

computed and applied element-wise. Each algorithm was run only once.

3.3.5 OSF Phase Retrieval of FFHQ Images

We first investigate the recovery of FFHQ test images from noisy, phaseless

OSF measurements. For prDeep and Deep-ITA, we sequence through the denoisers

fdiff(·, 602),fdiff(·, 402),fdiff(·, 202), and fdiff(·, 102) for 300 iterations each, for a total

of 1200 iterations, as recommended by the authors. Also, we set the λ parameter to

0.1
√
v for prDeep, and 0.05

√
v for Deep-ITA, to maximize validation PSNR. For DPS,
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Table 3.1: Average PSNR and SSIM for FFHQ phase retrieval with OSF and CDP operators
and noise level α.

method
OSF CDP

α = 4 α = 6 α = 8 α = 5 α = 15 α = 45
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HIO 27.37 0.6759 26.08 0.6163 25.03 0.5664 36.48 0.9140 26.79 0.6064 17.58 0.2330
Deep-ITA-F 35.05 0.9420 34.94 0.9374 34.50 0.9321 41.69 0.9786 37.20 0.9556 29.93 0.8402
Deep-ITA-S 34.01 0.9365 34.54 0.9367 35.15 0.9412 41.87 0.9795 37.15 0.9531 27.28 0.7817

prDeep 37.69 0.9654 35.28 0.9523 33.68 0.9410 42.43 0.9816 37.48 0.9584 23.14 0.4477
DOLPH 14.65 0.3426 14.65 0.3420 14.64 0.3393 40.74 0.9755 33.84 0.8806 20.98 0.3541

DPS 27.22 0.7674 25.84 0.7530 24.57 0.7408 41.52 0.9786 35.68 0.9381 30.12 0.8428
deepECpr (proposed) 39.75 0.9720 37.01 0.9567 34.86 0.9404 43.12 0.9846 37.55 0.9589 32.15 0.8941

Figure 3.3: Top: Example FFHQ image recoveries from phaseless OSF measurements at
noise level α = 8, with PSNR indicated in the top right corner of each image. Bottom:
Zoomed versions of the cyan regions in the top row. Note that the HIO, DOLPH, and DPS
recoveries contain strong artifacts and that Deep-ITA and prDeep show oversmoothing.

we use 1000 steps as recommended by the authors and set the scale parameter to

0.0075 to maximize validation PSNR. Similarly, we use 1000 steps for DOLPH and

set the step-size parameter to 10−6 to maximize validation PSNR. For deepECpr, we

use fdiff as specified in Alg. 5 for 200 iterations with denoising factor β = 0.15.

Table 3.1 shows the average PSNR and SSIM at noise levels α ∈ {4, 6, 8}. There,

deepECpr outperforms the other methods in both PSNR and SSIM at α ∈ {4, 6},

where the PSNR advantage is significant (≈ 2 dB). At α = 8, deepECpr trails the
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Figure 3.4: Average PSNR versus iteration for FFHQ phase retrieval from OSF measurements
at noise level α = 6.

best-performing technique, Deep-ITA-S, by a small margin: 0.29 dB in PSNR and

0.0008 in SSIM.

Figure 3.3 shows example recoveries at α = 8. There we see severe artifacts in the

HIO, DOLPH, and DPS recoveries. Although the prDeep, Deep-ITA-F, Deep-ITA-S,

and deepECpr approaches avoid unwanted artifacts, the proposed deepECpr does the

best job of recovering fine details in the ground-truth image.

Figure 3.4 plots PSNR (averaged over the FFHQ test images) versus iteration at α =

6. Note that the prDeep, Deep-ITA, DOLPH, DPS, and deepECpr algorithms all call

the denoiser once per iteration and thus have similar per-iteration complexities. From

the figure, we see that deepECpr converges significantly faster than its competitors.

Figure 3.5 plots the standard-deviations (SDs) of the deepECpr-estimated and

true errors in the z estimates for an typical OSF recovery at noise level α = 8. In

particular, it plots
√
v(i) in comparison to the true error m−1/2∥z(i) − ztrue∥, and

√
v̂(i)
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Figure 3.5: Evolution of the true and estimated z errors in deepECpr for OSF phase retrieval
at noise level α = 8.

in comparison to the true error m−1/2∥ẑ(i) − ztrue∥, for i ∈ {1, 2}. The figure shows

the accuracy of v(2) over all iterations and the accuracy of the other estimates after

iteration 100. Furthermore, it shows the EC fixed-point condition v̂(1) = v̂(2) being

satisfied.

Table 3.2 presents an ablation study comparing the proposed stochastic damping

(3.14) to the deterministic damping (3.13) when used in line 13 of Alg. 5. With

stochastic damping, deepECpr yields higher PSNR and SSIM values at all tested noise

levels α. Figure 3.7 plots the SD of the AWGN noise injected by stochastic damping

as a function of the deepECpr iteration. The plot shows that the SD starts high but

decreases to zero with the iterations.

73



Figure 3.6: Top: Example FFHQ image recoveries from phaseless CDP measurements at noise
level α = 45, with PSNR indicated in the top right corner of each image. Bottom: Zoomed
versions of the cyan regions in the top row. Note that the HIO, prDeep, DOLPH recoveries
are very noisy and that Deep-ITA is plagued by both oversmoothing and hallucinations.

Table 3.2: PSNR and SSIM of deterministic versus stochastic damping for FFHQ OSF phase
retrieval under noise level α

type of damping used α = 4 α = 6 α = 8
in line 13 of Alg. 5 PSNR SSIM PSNR SSIM PSNR SSIM

deterministic damping (3.13) 38.05 0.9565 36.3 0.9468 34.20 0.9267
stochastic damping (3.14) 39.75 0.9720 37.01 0.9567 34.86 0.9404

3.3.6 CDP Phase Retrieval of FFHQ Images

We now investigate the recovery of FFHQ test images from noisy, phaseless CDP

measurements. Deep-ITA, prDeep, DOLPH, DPS, and deepECpr are configured as

described in Section 3.3.5, except that the Deep-ITA uses λ = 0.01
√
v, DOLPH uses

stepsize 5× 10−6, and DPS uses scale parameter 0.05, in all three cases to maximize

validation PSNR. deepECpr uses the denoising factor β = 0.002.

Table 3.1 shows the average PSNR and SSIM values at noise levels α ∈ {5, 15, 45}.

There we see that deepECpr outperforms the other methods in both PSNR and SSIM

at all α and gives a PSNR advantage of > 2 dB at α = 45.
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Figure 3.7: Standard deviation of the noise added by deepECpr’s stochastic damping scheme
versus iteration for an example of FFHQ phase retrieval with OSF measurements at noise
level α = 8.

Figure 3.6 shows example recoveries at α = 45. There we see that HIO, prDeep,

and DOLPH fall prey to noise-like artifacts. Meanwhile, Deep-ITA-F over-smooths

the image, while Deep-ITA-S and DPS introduce hallucinations. Finally, deepECpr

does the best job of faithfully recovering the true image.

Figure 3.8 plots the PSNR (averaged over the FFHQ test images) versus iteration

at α = 5. As before, deepECpr converges significantly faster than its competitors.

3.3.7 CDP Phase Retrieval of Grayscale Images

We now investigate the recovery of natural and unnatural grayscale test images

from noisy, phaseless CDF measurements. The algorithms under test are configured

as described in Section 3.3.4. In addition, prDeep uses the author-recommended

λ = 0.1
√
v, while Deep-ITA uses λ = 0.25

√
v to maximize validation PSNR. For

deepECpr, we use the same blind DnCNN denoisers as prDeep and Deep-ITA, with β =
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Figure 3.8: Average PSNR versus iteration for FFHQ phase retrieval from CDP measurements
at noise level α = 5.

0.045, 0.035, 0.025, 0.020 for fdncnn-60,fdncnn-40,fdncnn-20,fdncnn-10, respectively. DOLPH

and DPS utilize the ImageNet diffusion denoiser [161] with step-size of 5× 10−6 and a

scale parameter of 0.025, respectively, to maximize validation PSNR.

Table 3.3 shows the average PSNR and SSIM values at noise levels α ∈ {5, 15, 45}.

There deepECpr achieves the highest PSNR and SSIM values at all tested noise levels

for both natural and unnatural grayscale images.

Figure 3.9 shows example recoveries at α = 15. There we see that deepECpr’s

recovery looks cleaner and sharper than those of the competing methods.

3.3.8 OSF Phase Retrieval of Grayscale Images

Finally, we investigate the recovery of natural and unnatural grayscale test images

from noisy, phaseless OSF measurements. The algorithms are set up as described in

Section 3.3.7, except that prDeep and Deep-ITA use the author-recommended choices
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Table 3.3: Average PSNR and SSIM for natural and unnatural grayscale image phase retrieval
with CDP measurements at noise level α.

method
natural unnatural

α = 5 α = 15 α = 45 α = 5 α = 15 α = 45
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HIO 36.39 0.9541 26.65 0.7663 17.13 0.4155 36.45 0.8891 26.94 0.6133 18.55 0.3175
Deep-ITA-F 38.67 0.9783 29.57 0.8595 22.77 0.6301 39.42 0.9607 29.80 0.7526 21.40 0.4352
Deep-ITA-S 38.80 0.9797 28.56 0.8357 17.25 0.4260 39.80 0.9679 28.56 0.7077 18.74 0.3211

prDeep 38.73 0.9785 32.49 0.9388 26.38 0.8167 39.63 0.9660 33.84 0.9267 27.57 0.8220
DOLPH 39.19 0.9738 28.37 0.7435 17.63 0.3336 40.40 0.9708 29.11 0.6571 19.28 0.2797

DPS 37.66 0.9617 32.07 0.9038 26.76 0.7634 39.05 0.9603 33.15 0.8978 27.22 0.7423
deepECpr (proposed) 39.46 0.9845 32.75 0.9439 27.06 0.8428 40.92 0.9808 34.17 0.9356 28.14 0.8292

Figure 3.9: Top: Example unnatural image recoveries from phaseless CDP measurements
at noise level α = 15, with PSNR indicated in the top right corner of each image. Bottom:
Zoomed versions of the cyan regions in the top row. Note that the HIO, Deep-ITA, and
DOLPH recoveries are visibly noisy, and that DPS has hallucinated a bright spot in the
middle of the image.

λ =
√
v and λ = 0.025

√
v, respectively, and deepECpr uses β = 0.45, 0.35, 0.25, 0.20

for fdncnn-60,fdncnn-40,fdncnn-20,fdncnn-10 over 150, 100, 75, 75 iterations, respectively. Ad-

ditionally, DOLPH employs a step-size of 5× 10−5, while DPS uses a scale parameter

of 0.05, each to maximize validation PSNR.

Table 3.4 shows the average PSNR and SSIM values at noise levels α ∈ {4, 6, 8}.

There, for both natural and unnatural test images, deepECpr achieves the highest
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Table 3.4: Average PSNR and SSIM for natural and unnatural grayscale test images with
OSF phase retrieval at noise level α.

method
natural unnatural

α = 4 α = 6 α = 8 α = 4 α = 6 α = 8
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HIO 24.32 0.6932 22.75 0.6267 21.63 0.5702 26.66 0.6221 25.10 0.5653 24.04 0.5231
Deep-ITA-F 31.19 0.8996 29.64 0.8642 28.35 0.8278 28.30 0.6904 26.76 0.6466 26.58 0.6450
Deep-ITA-S 30.98 0.8933 29.71 0.8603 28.78 0.8343 28.20 0.6894 26.96 0.6472 26.75 0.6390

prDeep 35.71 0.9632 32.56 0.9242 29.57 0.8670 30.22 0.7533 26.66 0.6630 25.96 0.6297
DOLPH 16.65 0.3331 16.63 0.3234 16.61 0.3208 19.25 0.4226 19.27 0.4025 19.08 0.3833

DPS 14.65 0.2177 14.22 0.2014 14.19 0.1851 17.19 0.3168 15.66 0.2742 15.75 0.2774
deepECpr (proposed) 37.30 0.9766 34.06 0.9546 31.85 0.9302 30.98 0.7675 27.45 0.6897 27.09 0.6780

Figure 3.10: Top: Example natural image recoveries from phaseless OSF measurements at
noise level α = 8, with PSNR indicated in the top right corner of each image. Bottom:
Zoomed versions of the cyan regions in the top row. Note that the HIO, Deep-ITA, DOLPH,
and DPS recoveries contain strong artifacts, while the prDeep recovery shows an overly rough
texture.

PSNR and SSIM at all tested noise levels. For natural images, deepECpr’s PSNR

exceeds the second-best PSNR by ≥ 1.5 dB.

Figure 3.10 shows example recoveries at α = 8. There we see that deepECpr

recovers the fine details and texture of the original image, while the other approaches

show noise-like artifacts and overly rough textures.
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3.4 Conclusion

In this chapter, we proposed “deepECpr,” which combines expectation-consistent

(EC) approximation with deep denoising networks to advance the state-of-the-art in

phase retrieval. In addition to a non-traditional application of EC, deepECpr employs a

novel stochastic damping scheme. Experimental results with oversampled-Fourier and

coded-diffraction-pattern operators, and with color, natural, and unnatural grayscale

images, demonstrate deepECpr’s advantages in image recovery from noise-corrupted

phaseless measurements. In almost all cases, deepECpr yielded improved PSNR and

SSIM over the state-of-the-art prDeep, Deep-ITA, DOLPH, and DPS methods with

significantly fewer denoiser calls. Although not explicitly tested, the proposed deepEC

approach should be directly applicable to other generalized-linear-model problems like

dequantization, logistic regression, and image recovery in non-Gaussian noise.
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Chapter 4: Solving Inverse Problem using Recursive Annealed

Posterior Sampling

4.1 Background

In diffusion models, the forward process transforms a complex distribution p(x0) a

simple distribution (e.g., Gaussian) by gradually adding noise, and the reverse process

learns to gradually denoise a sample from that simple distribution to finally obtain a

sample from p(x0). The forward process is often defined by a stochastic differential

equation (SDE) [85] of the form

dxt = f(xt, t) dt+ g(t) dwt, (4.1)

for some choices of f(·, t) and g(·). In (4.1), xt ∈ Rd is the sample at time t ∈ [0, T ]

and wt is the standard Wiener process (SWP) (i.e., Brownian motion). The reverse

process can then be described by [167]

dxt =
(
f(xt, t)− g2(t)∇xt ln p(xt)

)
dt+ g(t) dwt, (4.2)

where p(xt) is the distribution of xt and wt is the SWP run backwards. The so-called

score function ∇xt ln p(xt) can be approximated using a neural network sθ(xt, t)

trained by score matching [168]

argmin
θ

Ex0∼p(x0),xt∼p(xt|x0),t{λt∥sθ(xt, t)−∇xt ln p(xt)∥2} (4.3)
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for some positive weighting function λt.

Above, f(·, t) and g(·) are design choices. One famous example is the variance

preserving (VP) SDE, where f(xt, t) = −1
2
βtxt and gt =

√
βt for some variance

schedule βt. In practice, the VP-SDE is discretized over i = 0, . . . , N with forward

and reverse processes

xi =
√

1− βixi−1 +
√

βizi−1, {zi}
i.i.d∼ N (0, I) (4.4)

xi−1 =
1
√
αi

[
xi + βi∇xi

ln p(xi)
]
+ σizi, (4.5)

with αi ≜ 1− βi and αi ≜
∏i

j=1 αj and σ2
i ≜ 1−αi−1

1−αi
βi, where it is known as DDPM

[84]. Another choice is the variance exploding (VE) SDE, where f(xt, t) = 0 and

g(t) =
√

d[σ2
t ]/ dt for some variance schedule σ2

t . In practice, the VE-SDE is discretized

over i = 0, . . . , N with forward and reverse processes

xi+1 = xi +
√
σ2
i+1 − σ2

i zi, {zi}
i.i.d∼ N (0, I) (4.6)

xi = xi+1 + (σ2
i+1 − σ2

i )∇xi+1
ln p(xi+1) +

√
σ2
i (σ

2
i+1 − σ2

i )

σ2
i+1

zi+1, (4.7)

where it is known as SMLD [83].

For either the VP-SDE or VE-SDE (and in fact for any affine f(·, t)), the

pdf p(xt|x0) is Gaussian. For example, with the VE-SDE we have p(xt|x0) =

N (xt;x0, σ
2
t I). In this case, the score can be expressed using Tweedie’s formula [94]

as

∇xt ln p(xt) =
E{x0|xt} − xt

σ2
t

, (4.8)

where E{x0|xt} is the minimum mean-squared error (MMSE) denoiser of xt = x0+σtn

for n ∼ N (0, I). Thus, as an alternative to score-matching (4.3), one can approximate
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E{x0|xt} by a denoising network dθ(xt, σt) trained via [169]

argmin
θ

Ex0∼p(x0),n∼N (0,I),t

{
λ′
t∥dθ(x0 + σtn, σt)− x0∥2

}
, (4.9)

for positive weighting function λ′
t = λt/σ

4
t , and then set the score approximation as

sθ(xt) =
dθ(xt, σt)− xt

σ2
t

. (4.10)

When applied in discretized form to the SMLD reverse process, this yields

xi = xi+1 + (σ2
i+1 − σ2

i )

(
dθ(xi+1, σi+1)− xi+1

σ2
i+1

)
+

√
σ2
i (σ

2
i+1 − σ2

i )

σ2
i+1

zi+1 (4.11)

=
σ2
i

σ2
i+1

xi+1 +

(
1− σ2

i

σ2
i+1

)
dθ(xi+1, σi+1) +

√
σ2
i (σ

2
i+1 − σ2

i )

σ2
i+1

zi+1. (4.12)

Another widely used approach to diffusion involves a deterministic formulation.

For every forward process defined in (4.1), Song et al. [83] introduce a corresponding

deterministic process:

dxt =
(
f(xt, t)− 1

2
g2(t)∇xt ln p(xt)

)
dt, (4.13)

which preserves the same marginal distribution p(xt) at all times t as the SDE in (4.2).

This deterministic process, described by (4.13), is referred to as the probability

flow ordinary differential equation (ODE) since it governs the continuous evolution

of probability distributions in a non-stochastic manner. For a specific choice of

f(xt, t) = 0 and g(t) =
√

2σt dσt/ dt, where σ2
t follows a predefined variance schedule,

the probability flow ODE simplifies to:

dxt = −
dσt

dt
σt∇xt ln p(xt) dt. (4.14)

This ODE can be solved using various numerical integration schemes and choices of

discrete sampling time steps [85–87]. When dt is discretized over i = 0, . . . , N using
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the Euler method, the reverse process becomes [85]

xi = xi+1 +
1

2
(σ2

i − σ2
i+1)∇xi+1

ln p(xi+1). (4.15)

If instead dσt is discretized using the Euler method, one gets the deterministic variant

of DDIM [86]:

xi = xi+1 + (σi − σi+1)σi+1∇xi+1
ln p(xi+1). (4.16)

When (4.10) is applied to the ODE reverse process (4.16), we get

xi =
σi

σi+1

xi+1 +

(
1− σi

σi+1

)
dθ(xi+1, σi+1). (4.17)

The stochastic EDM algorithm [87] generalizes this deterministic ODE reverse pro-

cess (4.17) to a stochastic rule parameterized by γi ≥ 0:

xi =
σi

(1 + γi)σi+1

xi+1 +

(
1− σi

(1 + γi)σi+1

)
dθ(xi+1, σi+1) +

√
σ2
i −

σ2
i

(1 + γi)2
zi+1,

(4.18)

where γi = 0 recovers the deterministic update (4.17).

Equations (4.12), (4.17), and (4.18) are all self-consistent, in that p(xi|x0) =

N (xi;x0, σ
2
i I) guarantees p(xi+1|x0) = N (xi+1;x0, σ

2
i+1I) when the denoiser is per-

fect, i.e., when dθ(xi+1, σi+1) = x0. Thus stochastic EDM (4.18) can also be seen as a

generalization of SMLD (4.12) that agrees with SMLD when

σi

(1 + γi)σi+1

=
σ2
i

σ2
i+1

⇔ γi =
σi+1

σi

− 1. (4.19)

Through the choice of γi, stochastic EDM can traverse a range of stochasticities from

none (i.e., ODE) to fully stochastic (i.e., much more stochastic than SMLD).

Diffusion methods can be used to solve inverse problems, where one observes

measurements y ∼ p(y|x0) and seeks to sample from the posterior p(x0|y). For
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this application, the methodology is similar to above, but with the score function

∇xt ln p(xt) replaced by the conditional score function ∇xt ln p(xt|y), which can be

decomposed using Bayes rule as

∇xt ln p(xt|y) = ∇xt ln p(xt) +∇xt ln p(y|xt). (4.20)

The latter term is non-trivial to compute because p(y|xt) =
∫
p(y|x0)p(x0|xt) dxt

with a p(x0|xt) that is difficult to characterize. Hence, various approximations

have been made, such as p(x0|xt) ≈ δ
(
x0 − dθ(xt, σt)

)
in DPS [76] and p(x0|xt) ≈

N (x0;dθ(xt, σt), σ
2
0|tI) for some σ2

0|t in ΠGDM [93]. Many other approximation exist;

see [88] for a survey.

An important observation from (4.4) and (4.6) is that, in the typical case that

N is large, both βi and σ2
i+1 − σ2

i are small, and so the amount of stochasticity

injected into xi relative to xi−1 is quite small. Consequently, the {xi} trajectories

that arise in a given instance of the reverse process don’t explore the full range of

possibilities afforded by p(xt|y). The authors of [97] conjectured that this behavior

leads to a lack of diversity when existing diffusion methods are used as approximate

posterior samplers. As an alternative, they proposed a “decoupled” forward process

over i ∈ {1, . . . , N} with the form

xi = x0 + σini, {ni}Ni=1
i.i.d∼ N (0, I) (4.21)

with σi decreasing in i. Importantly, {xi}Ni=1 in (4.21) are mutually independent

conditional on x0, i.e., p(x0,x1, . . . ,xN) ∝ p(x0)
∏N

i=1 p(xi|x0). This dependency

structure is markedly different from traditional forward processes like (4.4) and (4.6),

where p(x0,x1, . . . ,xN) ∝ p(x0)
∏N

i=1 p(xi|xi−1). Consequently, the design of the

reverse process must be reconsidered.
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The authors of [97] observed that, for any steps i and k ̸= i,

p(xi|y) =
∫ ∫

p(xi|x0,xk,y)︸ ︷︷ ︸
N (xi;x0, σ

2
i I)

p(x0|xk,y)p(xk|y) dx0 dxk (4.22)

which suggests a three-step approach to drawing a sample x̃i from p(xi|y): first

draw x̃k ∼ p(xk|y), then draw x̃0|k from p(x0|xk,y)|xk=x̃k
, and finally draw x̃i from

N (x̃0|k, σ
2
i I). This led them to propose a reverse process that starts by sampling

x̃N from N (0, σ2
NI) ≈ p(xN |y) and then recursively samples x̃i−1 using x̃i for i =

N,N−1, . . . , 1. We argue, however, that using only x̃i to construct x̃i−1 is suboptimal,

and is in fact guided by the intuition from traditional diffusion, like (4.4) or (4.6),

where

p(x0|xi,xi+1, . . . ,xN ,y) = p(x0|xi,y). (4.23)

But under the decoupled forward process (4.21), one can show that

p(x0|xi,xi+1, . . . ,xN ,y) ̸= p(x0|xi,y), (4.24)

and so we claim that all previous samples {x̃k}Nk=i should be used to construct x̃i−1.

The details are presented below.

4.2 Proposed Approaches

4.2.1 Exact RAPS

Suppose that the goal is to sample from the posterior p(x0|y). Notice that, under

the forward model (4.21),

p(x0|y) =
∫
· · ·

∫
p(x0,x1, . . . ,xN |y) dx1 · · · dxN (4.25)

=

∫
· · ·

∫
p(x0|x1, . . . ,xN ,y)p(x1, . . . ,xN |y) dx1 · · · dxN , (4.26)
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where p(x0|x1, . . . ,xN ,y) does not simplify. So, to sample from p(x0|y), we could

first draw (x̃1, . . . , x̃N) ∼ p(x1, . . . ,xN |y) and then sample from p(x0|x1, . . . ,xN ,y)

evaluated at x1 = x̃1, . . . ,xN = x̃N .

As for how to draw (x̃1, . . . , x̃N) ∼ p(x1, . . . ,xN |y), notice that

p(x1, . . . ,xN |y) = p(x1|x2, . . . ,xN ,y)p(x2, . . . ,xN |y) (4.27)

= p(x1|x2, . . . ,xN ,y)p(x2|x3, . . . ,xN ,y)p(x3, . . . ,xN |y) (4.28)

= p(x1|x2, . . . ,xN ,y)p(x2|x3, . . . ,xN ,y) · · · p(xN |y) (4.29)

=
N∏
i=1

p(xi|xi+1, . . . ,xN ,y). (4.30)

This implies that we can sample the tuple (x̃1, . . . , x̃N) sequentially: we first sam-

ple x̃N ∼ p(xN |y), and then x̃N−1 ∼ p(xN−1|xN ,y)|xN=x̃N
, and then x̃N−2 ∼

p(xN−2|xN−1,xN ,y)|xN−1=x̃N−1,xN=x̃N
, and so on. This suggests a reverse process

over the indices i = N,N − 1, . . . , 1. To initialize the reverse process, we can approxi-

mate p(xN |y) ≈ N (xN ;0, σ
2
NI) when σ2

N is very large.

At index i of this reverse process, we want to draw x̃i ∼ p(xi|xi+1, . . . ,xN ,y)

evaluated at xi+1 = x̃i+1, . . . ,xN = x̃N . For intuition on how to perform this sampling,

notice that, for any i ∈ {1, . . . , N},

p(xi|xi+1, . . . ,xN ,y) =

∫
p(xi,x0|xi+1, . . . ,xN ,y) dx0 (4.31)

=

∫
p(xi|xi+1, . . . ,xN ,y,x0)p(x0|xi+1, . . . ,xN ,y) dx0 (4.32)

=

∫
p(xi|x0)p(x0|xi+1, . . . ,xN ,y) dx0 (4.33)

because xi is independent of {xi+1, . . . ,xN ,y} when conditioned on x0. Furthermore,

because p(xi|x0) = N (xi;x0, σ
2
i I), we can draw x̃i via

x̃i = x̃0|i+1 + σini, ni ∼ N (0, I), x̃0|i+1 ∼ p(x0|xi+1, . . . ,xN ,y)|xi+1=x̃i+1,...,xN=x̃N
.

(4.34)
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As for how to construct x̃0|i+1, notice that

p(x0|xi+1, . . . ,xN ,y) =
p(y|xi+1, . . . ,xN ,x0)p(x0|xi+1, . . . ,xN)

p(y|xi+1, . . . ,xN)
(4.35)

∝ p(y|x0)p(x0|xi+1, . . . ,xN) (4.36)

because y is independent of {xi+1, . . . ,xN} when conditioned on x0. Importantly,

because xi+1, . . . ,xN are independent when conditioned on x0, we can write

p(x0|xi+1, . . . ,xN) ∝ p(xi+1, . . . ,xN |x0)p(x0) (4.37)

p(xi+1, . . . ,xN |x0) =
N−i∏
j=1

p(xi+j|x0) =
N−i∏
j=1

N (xi+j;x0, σ
2
i+jI) =

N−i∏
j=1

N (x0;xi+j, σ
2
i+jI)

(4.38)

∝ N (x0;xi+1, σ
2
i+1I) for σ2

i+1 ≜
1∑N−i

j=1 σ−2
i+j

and xi+1 ≜ σ2
i+1

N−i∑
j=1

xi+j

σ2
i+j

(4.39)

= N (xi+1;x0, σ
2
i+1I) (4.40)

and thus, from (4.37) and (4.40)

p(x0|xi+1, . . . ,xN) ∝N (xi+1;x0, σ
2
i+1I)p(x0) ∝ p(x0|xi+1) (4.41)

for

p(x0|xi+1) ≜ Z−1N (xi+1;x0, σ
2
i+1I)p(x0) with Z ≜

∫
N (xi+1;x0, σ

2
i+1I)p(x0) dx0.

(4.42)

The implication of (4.41) is that, for the purpose of estimating x0, knowing xi+1

is equivalent to knowing xi+1, . . . ,xN . Furthermore, (4.42) shows that xi+1 can be

interpreted as a Gaussian-noise corrupted measurement of x0. Finally, based on (4.39),

the quantities σ−2
i+1 and xi+1 can be recursively computed:

σ−2
i+1 =

N−i∑
j=1

σ−2
i+j = σ−2

i+1 +
N−i∑
j=2

σ−2
i+j = σ−2

i+1 +
N−i−1∑
j′=1

σ−2
i+1+j′ = σ−2

i+1 + σ−2
i+2 (4.43)

xi+1

σ2
i+1

=
N−i∑
j=1

xi+j

σ2
i+j

=
xi+1

σ2
i+1

+
N−i∑
j=2

xi+j

σ2
i+j

=
xi+1

σ2
i+1

+
N−i−1∑
j′=1

xi+1+j′

σ2
i+1+j′

=
xi+1

σ2
i+1

+
xi+2

σ2
i+2

. (4.44)
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Plugging (4.41) into (4.36) then gives

p(x0|xi+1, . . . ,xN ,y) ∝ p(y|x0)p(x0|xi+1). (4.45)

To sample from (4.45), one option is to use MCMC methods such as Langevin

dynamics [170]:

x̃[k+1] = x̃[k]− ηlan
[
∇x0 ln p(y|x0) +∇x0 ln p(x0|xi+1)

]
x0=x̃[k]

+
√

2ηlanϵ[k] (4.46)

for ϵ[k] ∼ N (0, I). As ηlan → 0 and k →∞, the quantity x̃[k] is an exact sample from

(4.45) under certain regularity conditions. In practice, ∇x0 ln p(x0|xi+1) would be

approximated by a noise-conditional score network (NCSN) [83] trained by denoising

score matching [169], as described around (4.3).

Algorithm 6 summarizes the reverse process described thus far, which we refer to

as “exact” recursive annealed posterior sampling (RAPS). It generates exact samples

from p(x0|y) when Langevin dynamics is correct and when σ2
N →∞, in which case

p(xN |y) is well approximated by N (xN ;0, σ
2
N).

4.2.2 Equivalence between RAPS and SMLD

An interesting observation is that if we consider xi as the “main” iterate of the

RAPS reverse process, then we can write its update as

xi =
σ2
i

σ2
i

x̃i +
σ2
i

σ2
i+1

xi+1 =
σ−2
i

σ−2
i

(x̃0|i+1 + σini) +
σ−2
i+1

σ−2
i

xi+1 (4.47)

=
σ−2
i − σ−2

i+1

σ−2
i

x̃0|i+1 +
σ−2
i+1

σ−2
i

xi+1 +
σ2
i

σi

ni =
(
1−

σ−2
i+1

σ−2
i

)
x̃0|i+1 +

σ−2
i+1

σ−2
i

xi+1 +
σ2
i

σi

ni

(4.48)

=
σ2
i

σ2
i+1

xi+1 +
(
1− σ2

i

σ2
i+1

)
x̃0|i+1 +

σ2
i

σi

ni. (4.49)

We might wonder whether (4.49) is a valid recursion. In other words, if xi+1 =

x0 + σi+1ei+1 for ei+1 ∼ N (0, I) and x̃0|i+1 = x0 (i.e., the conditional denoising is
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Algorithm 6 Exact RAPS
Require: p(y|x0), {σi}Ni=1, σ0 = 0, Nlan, ηlan
1: x̃N ∼ N (0, σ2

NI)
2: σN+1 =∞, xN+1 = 0
3: for i = N,N − 1, . . . , 1 do
4: // recursive update
5: σ2

i = 1/(σ−2
i + σ−2

i+1)
6: xi = σ2

i (x̃i/σ
2
i + xi+1/σ

2
i+1)

7: // Langevin sampling from p(y|x0)p(x0|xi)
8: x̃0|i ← xi

9: for k = 0, . . . , Nlan−1 do
10: ϵik ∼ N (0, I)
11: x̃0|i ← x̃0|i − ηlan

[
∇x0 ln p(y|x0) +∇x0 ln p(x0|xi)

]
x0=x̃0|i

+
√
2ηlanϵik

12: // annealing
13: x̃i−1 = x̃0|i + σi−1ni−1, ni−1 ∼ N (0, I)
14: return x̃0

perfect), then is xi = x0 + σiei for ei ∼ N (0, I)? We can answer “yes” since, under

these conditions,

xi =
σ2
i

σ2
i+1

(x0 + σi+1ei+1) +
(
1− σ2

i

σ2
i+1

)
x0 +

σ2
i

σi

ni (4.50)

= x0 +
σ2
i

σi+1

ei+1 +
σ2
i

σi

ni. (4.51)

Since ni is independent of ei+1, the total variance of the noise above will equal

σ4
i

σ2
i+1

+
σ4
i

σ2
i

= σ4
i (σ

−2
i+1 + σ−2

i ) = σ4
i (σ

−2
i ) = σ2

i , (4.52)

which is the expected result.

We now argue that (4.49) is exactly the SMLD reverse process (4.12) when “σi” is

used in place of the standard SMLD quantity “σi” and when x̃0|i+1 is considered the

denoiser output dθ. The first two terms in (4.49) and (4.12) clearly agree, an so we
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need to show that the last term agrees as well. Towards this aim, notice that

σ2
i

σi

=

√
σ4
i

σ2
i

=
√

σ4
iσ

−2
i =

√
σ4
i (σ

−2
i − σ−2

i+1) =

√
σ2
i −

σ4
i

σ2
i+1

=

√
σ2
i (σ

2
i+1 − σ2

i )

σ2
i+1

(4.53)

which exactly agrees with the last term in (4.12). Thus RAPS is equivalent to SMLD.

4.2.3 Choice of variance schedule {σi}

In RAPS, the choice of {σi} determines {σi}, which in turn governs the dynamics

of the reverse process via (4.49). For example, by changing the ratio σ2
i /σi, we can

control how much stochasticity there is in the reverse process. Given the connection

to the SMLD, it makes sense to choose a schedule {σi} that transitions from σmax

down to σmin in either a geometric manner

σi = σmin(σmax/σmin)
i−1
N−1 (4.54)

or like deterministic EDM [87]

σi =
(
σ1/ρ
max +

N−i
N−1

(σ
1/ρ
min − σ1/ρ

max)
)ρ
. (4.55)

In either case, we would set

σ2
i =

{
σ2
i i = N[
σ−2
i − σ−2

i+1

]−1
i ∈ {1, . . . , N − 1}.

(4.56)

4.2.4 Practical RAPS

The exact RAPS approach in Alg. 6 is computationally impractical because it

computes the score function within the inner loop. To circumvent this computation,

we propose a Gaussian approximation

p(x0|xi+1) ≈ N (x0; x̂0|i+1, σ̂
2
0|i+1I), (4.57)
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where x̂0|i+1 either approximates E{x0|xi+1} or is an approximate sample from

p(x0|xi+1) computed using a few steps of DDIM. Although similar Gaussian ap-

proximations have been used in the past (see [88]), ours differs in the construction of

σ̂2
0|i+1. We view the goal of σ̂2

0|i+1 as approximating E{∥x0 − x̂0|i+1∥2/d}. To do this,

we propose to train the parameters ϕ of a model fϕ(·) such that

fϕ(σ) ≈ Ex0,y,ϵ∼N (0,I){ln p(y|x0 + σϵ)} (4.58)

and then, in the reverse process, set

σ̂0|i+1 = argmin
σ

∣∣[ln p(y|x0)]x0=x̂0|i+1
− fϕ(σ)

∣∣. (4.59)

In the special case of a linear-Gaussian measurement model of the form

y = Ax0 + σww ∈ Rm, w ∼ N (0, I), (4.60)

we have ln p(y|x0) = − 1
2σ2

w
∥y−Ax0∥2−C for C ≜ m

2
ln[2πσ2

w], and so we can actually

design fϕ(·) in closed-form as

fϕ(σ) = Ex0,y,ϵ∼N (0,I){ln p(y|x0 + σϵ)} = − 1

2σ2
w

Ew,ϵ

{
∥σww + σAϵ∥2

}
− C (4.61)

= − 1

2σ2
w

(
mσ2

w + σ2∥A∥2F
)
− C, (4.62)

after which (4.59) reduces to

σ̂0|i+1 = argmin
σ

∣∣mσ2
w + σ2∥A∥2F − ∥y −Ax̂0|i+1∥2

∣∣ (4.63)

= (∥y −Ax̂0|i+1∥2 −mσ2
w)/∥A∥2F , (4.64)

which matches the approach proposed in DDfire [171]. The approach that we propose

for RAPS is more general, however, in that it can handle arbitrary p(y|x0).

We summarize this “Gaussian” variant of RAPS in Alg. 7. Note that if Node = 1,

then x̂0|i = dθ(xi;σi).
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Algorithm 7 Gaussian RAPS
Require: {σi}Ni=1, σ0 = 0,dθ(·|σ), Node, σmin, fϕ(·), p(y|x0), Nlan, ηlan
1: x̃N ∼ N (0, σ2

NI)
2: σN+1 =∞, xN+1 = 0
3: for i = N,N − 1, . . . , 1 do
4: // recursive update
5: σ2

i = 1/(σ−2
i + σ−2

i+1)
6: xi = σ2

i (x̃i/σ
2
i + xi+1/σ

2
i+1)

7: // unconditional DDIM starting from variance σ2
i

8: x̂0|i ← xi

9: for j = Node, Node − 1, . . . , 1 do
10: σ2

ij = σ2
i (σ

2
min/σ

2
i )

Node−j

Node−1 ▷ geometric with σi,Node
= σi and σi,1|Node>1 = σmin

11: x̂0|i ←
σi,j−1

σij

x̂0|i + (1− σi,j−1

σij

)dθ(x̂0|i;σij) ▷ where σi,0 ≜ 0

12: σ̂2
0|i = argminσ

∣∣[ln p(y|x0)]x0=x̂0|i − fϕ(σ)
∣∣

13: // Langevin sampling from p(y|x0)p(x0|xi)
14: for j = 0, . . . , Nlan − 1 do
15: ϵij ∼ N (0, I)
16: x̃0|i ← x̃0|i − ηlan

[
∇x0 ln p(y|x0) +∇x0

1
2σ̂2

0|i
∥x0 − x̂0|i∥2

]
x0=x̃0|i

+
√
2ηlanϵij

17: // annealing
18: x̃i−1 = x̃0|i + σi−1ni−1, ni−1 ∼ N (0, I)
19: return x̃0

• For a given NFE budget, how beneficial is it to use multiple inner EDM iterations

at the expense of fewer outer diffusion iterations? Since the inner iterations

don’t use y, it seems that data consistency would be lost. Are they trying to

keep the MCMC cost down? It seems they use 100 MCMC iterations by default.

• Expanding on the last point, is it essential to add the colored noise in (4.69)?

The colored noise contributes appropriate levels of stochasticity to the measured

and non-measured spaces, but since the noise injected by the subsequent diffusion

step is so large, it is not clear that the colored noise would have a significant effect
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on xi−1. (Also, it may degrade the performance of the subsequent denoising

step.)

4.2.5 Simplifications and Stochastic Enhancement

We now consider a simplification of Gaussian RAPS for the case of the standard

linear models (SLM), where the likelihood is given by p(y|x0) = N (y;Ax0, σ
2
wI).

Under this model, the approximate posterior ∝ p(y|x0)N (x0; x̂0|i, σ̂
2
0|iI) takes the

Gaussian form N (x0;µi,Ci), where

µi ≜ argmin
x

{ 1

2σ2
w

∥y −Ax∥22 +
1

2σ̂2
0|i
∥x− x̂0|i∥2

}
(4.65)

= x̂0|i +A⊤
(
AA⊤ +

σ2
w

σ̂2
0|i
I
)−1

(y −Ax̂0|i) (4.66)

and

Ci = σ̂2
0|iI − σ̂2

0|iA
⊤
(
σ̂2
0|iAA⊤ + σ2

wI
)−1

Aσ̂2
0|i = σ̂2

0|i

(
I −A⊤

(
AA⊤ +

σ2
w

σ̂2
0|i
I
)−1

A
)

(4.67)

= σ̂2
0|i

(
I +

σ̂2
0|i

σ2
w

A⊤A
)−1

=
( 1

σ̂2
0|i
I +

1

σ2
w

A⊤A
)−1

. (4.68)

Thus, in place of MCMC, a posterior sample could be drawn using

x̃0|i = µi +C
1/2
i vi, vi ∼ N (0, I). (4.69)

For nonlinear inverse problems modeled as GLMs, a similar approach can be adopted

using expectation propagation, as we will discuss later.

The colored noise in (4.69) contributes appropriate levels of stochasticity to the mea-

sured and non-measured spaces. However, since the noise injected by the subsequent

annealing step is substantially larger, the effect of the colored noise is overwhelmed.
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Empirically, it was observed to have no significant impact on x̃i−1, and hence we

choose to set

x̃0|i = µi = x̂0|i +A⊤
(
AA⊤ +

σ2
w

σ̂2
0|i
I
)−1

(y −Ax̂0|i) (4.70)

=
(
σ̂2
0|iA

⊤A+ σ2
wI

)−1(
σ̂2
0|iA

⊤y + σ2
wx̂0|i

)
. (4.71)

Equation (4.71) can be computed using conjugate gradients (CG) or, if practical, the

SVD A = USV ⊤ via

x̃0|i = V

(
σ̂2
0|iS

⊤S + σ2
wI

)−1(
σ̂2
0|iS

⊤U⊤y + σ2
wV

⊤x̂0|i

)
. (4.72)

In addition, given a fixed NFE budget, using multiple inner unconditional DDIM

iterations comes at the cost of fewer outer diffusion iterations. Since the inner iterations

do not incorporate the measurements y, relying heavily on them can lead to a loss of

data consistency. To mitigate this, we choose to use Node = 1, resulting in the update

x̂0|i = dθ(xi;σi).

The practical refinements introduced up to this point perform well across a range

of linear inverse problems. However, we observe a notable degradation in performance

for inpainting task. To address this, we draw inspiration from the stochastic EDM

algorithm (4.18), parameterized by γi ≥ 0, which introduces noise into the ODE (4.17),

yielding a generalized algorithm with adjustable stochasticity. By selecting appro-

priate values of γi, stochastic EDM can span a spectrum of stochastic behaviors,

ranging from purely deterministic (i.e., ODE) to highly stochastic (i.e., exceeding the

stochasticity of SMLD). As shown in prior work [87], injecting controlled stochasticity

can improve robustness by mitigating errors arising from discretization and approxi-

mations introduced in earlier sampling steps. Motivated by these insights, we adapt a
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similar strategy within RAPS by augmenting the update steps with additional noise,

effectively enhancing the overall stochasticity of the sampling process.

By incorporating all of the aforementioned refinements—including the simplification

for SLM (cf. Eq. (4.71)), the use of a single inner DDIM iteration i.e. Node = 1, and

the introduction of controlled stochasticity inspired by stochastic EDM—we arrive at

the following updated set of update rules that modify Alg. 7 for any γi ≥ 0:

1

σ2
i

=
1

(1 + γi+1)2σ
2
i+1

+
1

σ2
i

(4.73)

xi =
σ2
i

(1 + γi+1)2σ
2
i+1

x̆i+1 +

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)(
x̃0|i+1 + σini

)
, ni ∼ N (0, I)

(4.74)

x̆i = xi +
√

(1 + γi)2σ
2
i − σ2

iwi, wi ∼ N (0, I) (4.75)

x̂0|i = dθ(x̆i, (1 + γi)σi) (4.76)

x̃0|i =
(
σ̂2
0|iA

⊤A+ σ2
wI

)−1(
σ̂2
0|iA

⊤y + σ2
wx̂0|i

)
(4.77)

x̃i−1 = x̃0|i + σi−1ni−1, ni−1 ∼ N (0, I). (4.78)

This new formulation is self-consistent, in that, when x̆i+1 ∼ N (x0, (1 + γi+1)
2σ2

i+1I)

and x̃0|i+1 = x0, then xi ∼ N (x0, σ
2
i I) and x̆i ∼ N (x0, (1+γi)

2σ2
i I) at each iteration

i. We now prove this by writing x̆i+1 = x0 + (1 + γi+1)σi+1ĕi+1 with ĕi+1 ∼ N (0, I),

in which case (4.74) gives

xi − x0 =
σ2
i

(1 + γi+1)2σ
2
i+1

(1 + γi+1)σi+1ĕi+1 +

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)
σini. (4.79)

The variance on the first term in (4.79) is

σ4
i

(1 + γi+1)2σ
2
i+1

(4.80)

and noting from (4.73) that

σ2
i = σ2

i

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)−1

(4.81)
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the variance on the second term in (4.79) is(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)2

σ2
i =

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)2

σ2
i

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)−1

(4.82)

=

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)
σ2
i (4.83)

= σ2
i −

σ4
i

(1 + γi+1)2σ
2
i+1

, (4.84)

and so, due to the independence between ĕi+1 and ni, the total variance of (4.79) is

σ2
i . Thus we see that xi ∼ N (x0, σ

2
i I). Applying that to (4.75), it’s straightforward

to see that x̆i will have error variance (1 + γi)σ
2
i , and so x̆i ∼ N (x0, (1 + γi)

2σ2
i I).

We summarize this new simplified and stochastically enhanced variant of RAPS

for SLM inverse problems in Alg. 8. We refer to this algorithm as Stochastic RAPS,

or StRAPS for short.

4.2.6 Extension to GLM Inverse Problems

We now propose to extend the SLM-StRAPS from Section 4.2.5 to the generalized

linear model (GLM)

y ∼ p(y|z0) =
m∏
j=1

py|z(yj|z0,j) with z0 ≜ Ax0 (4.85)

where py|z is some scalar “measurement channel.” Examples include py|z(y|z) =

N (y; |z|, σ2
w) for phase retrieval, py|z(y|z) = zye−z/y! for Poisson regression, and

py|z(y|z) =
∫ τy+1

τy
N (τ ; z, σ2

w) dτ for dequantization.

Our extension is inspired by expectation propagation (EP) [119, 157] and its

application to GLMs [61,172]. The idea is to iterate between i) constructing “pseudo-

measurements” y = Ax0 +w with w ∼ N (0, σ2
wI) using py|z and an SLM-StRAPS-

constructed belief that z0 ∼ N (z0, σ
2
zI), and then ii) running SLM-StRAPS with
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Algorithm 8 StRAPS for the SLM
Require: y,A, σw, {σi}Ni=1, σ0 = 0, {γi},dθ(·|σ),
1: x̃N ∼ N (0, σ2

NI)
2: σN+1 =∞, xN+1 = 0
3: for i = N,N − 1, . . . , 1 do
4: // stochastic recursive update

5: σ2
i =

(
1

(1 + γi+1)2σ
2
i+1

+
1

σ2
i

)−1

6: xi =
σ2
i

(1 + γi+1)2σ
2
i+1

x̆i+1 +

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)
x̃i

7: x̆i = xi +
√

(1 + γi)2σ
2
i − σ2

iwi, wi ∼ N (0, I)
8: // unconditional denoising
9: x̂0|i = dθ(x̆i; (1 + γi)σi)

10: σ̂2
0|i = (∥y −Ax̂0|i∥2 −mσ2

w)/∥A∥2F
11: // approximate sampling from p(y|x0)p(x0|xi)
12: x̃0|i = argminx

{
1

2σ2
w
∥y −Ax∥2 + 1

2σ̂2
0|i
∥x− x̂0|i∥2

}
13: // annealing
14: x̃i−1 = x̃0|i + σi−1ni−1, ni−1 ∼ N (0, I)
15: return x̃0

those pseudo-measurements and updating its belief on z0. Figure 4.1 shows a high-level

summary. Details are given below.

First we assume that the denoiser output error is white and Gaussian, i.e., x0 ∼

N (x̂0|i, σ̂
2
0|iI). We estimate the variance σ̂2

0|i quantity from the denoiser input variance

σ2 by training a predictor of the form

ν̂ϕ(σ) ≈ E{∥dθ(x0 + σϵ, σ)− x0∥2/d}, (4.86)

where the expectation is over ϵ ∼ N (0, I) and validation images x0 ∼ p0. Recall that

d is the dimension of x0. In our experiments, ν̂ϕ(·) is implemented using a lookup

table or zero-order spline.

Next, we construct the belief on z0. Because z0 = Ax0, we see that z0 ∼

N (z, σ̂2
0|iAA⊤), where z ≜ Ax̂0|i. For simplicity, however, we use the white-noise
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MMSE inference
of z0,j ∼ N (zj, σ

2
z)

from yj ∼ py|z(·|z0,j)

SLM-StRAPS
with y = Ax0 + σww

and w ∼ N (0, I)

y, σ2
w

z, σ2
z

y x̃0

Figure 4.1: High-level overview of GLM-StRAPS, which uses EP-style iterations between
SLM-StRAPS and an MMSE inference stage that involves the scalar measurement channel
py|z.

approximation z0 ∼ N (z, σ2
zI), where σ2

z ≜ σ̂2
0|i∥A∥2F/m. Using the scalar belief

z0,j ∼ N (zj, σ
2
z) and the likelihood model yj ∼ py|z(·|z0,j), EP suggests to first compute

the posterior mean E{z0,j|yj ; zj, σ2
z} ≜ ẑj and variance 1

m

∑m
j=1 var{z0,j|yj ; zj, σ2

z} ≜ σ̂2
z ,

and then pass the “extrinsic” versions of those quantities:

σ2
w ≜ [1/σ̂2

z − 1/σ2
z ]

−1, y ≜ σ2
w(ẑ/σ̂

2
z − z/σ2

z) (4.87)

back to SLM-StRAPS, where they are used to construct the pseudo-measurement

model

y = Ax0 + σww, w ∼ N (0, I). (4.88)

The GLM-StRAPS algorithm is summarized as Alg. 9. There, the dashed blue

box surrounds the lines used for the EP update; all other lines are taken directly

from SLM-StRAPS. As can be seen, GLM-StRAPS performs one EP update per

SLM-StRAPS iteration. When py|z(y|z) = N (y; z, σ2
w), is it straightforward to show

that y = y and σ2
w = σ2

w for any z and σ2
z , in which case GLM-StRAPS reduces to

SLM-StRAPS.
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Algorithm 9 StRAPS for the GLM
Require: y,A, py|z, {σi}Ni=1, σ0 = 0, {γi},dθ(·|σ),
1: x̃N ∼ N (0, σ2

NI)
2: σN+1 =∞, xN+1 = 0
3: for i = N,N − 1, . . . , 1 do
4: // stochastic recursive update

5: σ2
i =

(
1

(1 + γi+1)2σ
2
i+1

+
1

σ2
i

)−1

6: xi =
σ2
i

(1 + γi+1)2σ
2
i+1

x̆i+1 +

(
1− σ2

i

(1 + γi+1)2σ
2
i+1

)
x̃i

7: x̆i = xi +
√

(1 + γi)2σ
2
i − σ2

iwi, wi ∼ N (0, I)
8: // unconditional denoising
9: x̂0|i = dθ(x̆i; (1 + γi)σi)

10: σ̂2
0|i ← ν̂ϕ((1 + γi)σi)

11: // EP update
12: z ← Ax̂0|i
13: σ2

z ← σ̂2
0|i ∥A∥2F/m ▷ Error variance of z

14: ẑj ← E{z0,j|yj; zj, σ2
z} ∀j = 1, . . . ,m ▷ Posterior mean estimation

15: σ̂2
z ← 1

m

∑m
j=1 var{z0,j|yj; zj, σ2

z} ▷ Averaged posterior variance of {z0,j}
16: σ2

w ← [1/σ̂2
z − 1/σ2

z ]
−1 ▷ Extrinsic variance

17: y ← σ2
w(ẑ/σ̂

2
z − z/σ2

z) ▷ Extrinsic mean
18: σ̂2

0|i = (∥y −Ax̂0|i∥2 −mσ2
w)/∥A∥2F

19: // approximate sampling from p(y|x0)p(x0|xi)
20: x̃0|i = argminx

{
1

2σ2
w
∥y −Ax∥2 + 1

2σ̂2
0|i
∥x− x̂0|i∥2

}
21: // annealing
22: x̃i−1 = x̃0|i + σi−1ni−1, ni−1 ∼ N (0, I)
23: return x̃0

4.3 Numerical Experiments

We use the 256×256 FFHQ dataset [158] with pretrained diffusion models from [76].

For linear inverse problems, we consider the following tasks: box inpainting with a

128 × 128 mask, Gaussian deblurring using a 61 × 61 blur kernel with a standard

deviation of 3 pixels, motion deblurring with a 61 × 61 blur kernel of intensity 0.5,

generated using [173], and 4× bicubic super-resolution.
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Table 4.1: Noisy FFHQ results with measurement noise standard deviation σw = 0.05.
Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4× Super-resolution

# NFEs Model PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

20
DiffPIR 21.86 0.2152 41.50 23.55 0.2720 31.21 27.32 0.2031 28.27 22.26 0.2979 44.69
DDRM 21.71 0.1551 40.61 25.35 0.2223 51.70 - - - 27.32 0.1764 45.82
StRAPS 21.99 0.1335 35.70 26.68 0.1712 32.25 26.77 0.1622 30.07 26.76 0.1822 35.49

100
DiffPIR 22.43 0.1883 31.98 24.57 0.2394 26.78 26.91 0.1952 24.67 24.89 0.2486 32.26
ΠGDM 21.41 0.2009 44.41 23.66 0.2525 45.33 25.14 0.2082 41.95 24.40 0.2520 51.40
StRAPS 22.74 0.1195 31.91 26.57 0.1584 26.20 26.82 0.1548 26.51 26.86 0.1701 29.65

1000
DPS 22.54 0.1368 29.97 25.70 0.1774 25.18 26.74 0.1655 27.17 26.30 0.1830 27.38
DAPS 23.61 0.1415 31.51 26.97 0.1827 31.10 27.13 0.1718 30.74 26.91 0.1885 30.83
StRAPS 23.36 0.1097 27.95 26.86 0.1527 26.85 27.14 0.1479 25.74 26.83 0.1635 27.21

We compare our approach against various baselines: DDRM [91] and DiffPIR [90]

at 20 NFEs, ΠGDM [93] and DiffPIR at 100 NFEs, and DPS [76] and DAPS [97] at

1000 NFEs.

We also consider phase retrieval with the shot-noise corruption mechanism from [56]

for both oversampled Fourier (OSF) and coded diffraction pattern (CDP) [156] A at 4×

oversampling with αshot = 8 and 45, respectively. Here, αshot is the shot-noise strength,

as detailed in Appendix F. We compare to prDeep [56], DOLPH [77], DPS, DAPS, and

the classical hybrid input-output (HIO) algorithm [49], using py|z(y|z) = N (y; |z|, σ2
w)

for all algorithms that accept a likelihood function. Since the chosen likelihood renders

the conditional mean and variance in lines 15-14 of Alg. 9 intractable, we employ the

Laplace approximation [157].

For StRAPS, we use a fixed γi across all iterations, tuned to minimize LPIPS [174]

on a separate 100-sample validation set. Appendix F provides the tuned γi values

along with additional implementation details for StRAPS and the competing methods.

For noisy linear inverse problems, Table 4.1 show PSNR, LPIPS, and FID [175] on

a 1000-sample test set for FFHQ data. DDRM was not applied to motion deblurring
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Table 4.2: Noisy FFHQ phase retrieval results

OSF CDP

# NFEs Model PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

- HIO 23.66 0.4706 130.58 17.59 0.5430 84.87
1000 DOLPH 14.73 0.7220 389.88 25.76 0.1686 32.93
1000 DPS 23.63 0.2908 53.91 29.19 0.1394 27.87
1000 DAPS 24.10 0.2891 57.73 28.26 0.1927 34.97
800 prDeep 30.90 0.1132 31.51 19.24 0.4183 59.44
800 StRAPS 33.52 0.0698 24.86 29.72 0.1367 24.52
100 StRAPS 27.91 0.1808 38.63 29.79 0.1395 26.42

due to the lack of an SVD. Table 4.1 show that, when comparing to competitors at

equal NFEs, StRAPS wins in most cases and otherwise performs well.

Fig. 4.2 shows image examples for inpainting and Gaussian deblurring, and Fig. 4.3

presents image examples for motion deblurring and 4× super-resolution on FFHQ.

The zoomed regions illustrate that StRAPS more effectively recovers fine details while

avoiding artifacts.

Table 4.2 shows performance on noisy FFHQ phase retrieval. For OSF A, we

see that StRAPS at 800 NFEs outperforms prDeep by a small margin and surpasses

DAPS, DPS, and DOLPH by a large margin. Also, StRAPS at 100 NFEs beats

DAPS, DPS, and DOLPH at 1000 NFEs. For CDP A, we see that StRAPS performs

similarly at 100 and 800 NFEs and that both outperform the other methods. Example

reconstructions for phase retrieval can be found in Fig. 4.4.
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4.4 Conclusion

Inspired by the idea of using a decoupled forward process during reverse diffu-

sion, we introduced a novel unsupervised diffusion posterior sampling approach called

Recursive Annealed Posterior Sampling (RAPS). By carefully restructuring the re-

verse process update equations, we demonstrated that RAPS aligns with the widely

used SMLD framework. We further extended RAPS by proposing StRAPS, which

incorporated key simplifications and enhancements, including automatic tuning of

the regularization weight and the introduction of stochasticity to mitigate discretiza-

tion and approximation errors during sampling. Our proposed framework can be

utilized to solve both linear and generalized-linear inverse problems, such as phase

retrieval. Experiments on box inpainting, Gaussian and motion deblurring, and 4×

super-resolution with FFHQ images demonstrated that StRAPS outperformed DAPS,

DPS, ΠGDM, DiffPIR, and DDRM at equal NFEs in terms of PSNR, LPIPS, and

FID in most cases. Additionally, evaluations on noisy FFHQ phase retrieval, including

both OSF and CDP variants, showed that StRAPS consistently surpassed DAPS,

DPS, DOLPH, prDeep, and HIO. Beyond its accuracy, StRAPS is computationally

efficient, supports batch generation, and benefits from SVD-based acceleration when

available, making it a practical and scalable solution for inverse problems. Future

work will extend StRAPS to nonlinear inverse problems beyond those that conform to

generalized-linear models.
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Figure 4.4: Example recoveries from noisy phase retrieval with FFHQ images.
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Appendix A: EC/VAMP error recursion

In this appendix, we establish the error iteration

e2 = V DV He1 + u. (A.1)

To begin, we write the estimation function f1 as

f1(r1; γ1) =
(
γwA

HA+ γ1I
)−1 (

γwA
Hy + γ1r1

)
(A.2)

= r1 +
(
γwA

HA+ γ1IN
)−1 (

γwA
Hy − γwA

HAr1
)

(A.3)

= r1 + γw (C + γ1IN)
−1AH(y −Ar1) (A.4)

for

C ≜ γwA
HA = V ΛV H. (A.5)

The right side of (A.5) is an eigendecomposition where V V H = V HV = I and

Λ = Diag([λ1, . . . , λN ]) is real-valued. Note also that V is the right singular vector
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matrix of A. Using this eigendecomposition, we can write

tr(∇f1(r1; γ1)) = tr(I − (C + γ1IN)
−1C) (A.6)

= tr(I − (V ΛV H + γ1IN)
−1V ΛV H) (A.7)

= tr(I − (Λ+ γ1IN)
−1Λ) (A.8)

= N −
N∑

n=1

λn

λn + γ1
(A.9)

= N(1− α) for α ≜
1

N

N∑
n=1

λn

λn + γ1
. (A.10)

Thus, lines 4-5 of Alg. 1 can be written as

x̂1 = r1 + γw (C + γ1IN)
−1AH(y −Ar1) (A.11)

η1 =
γ1N

tr(∇f1(r1; γ1))
=

γ1
1− α

(A.12)

and lines 7-8 as

γ2 = η1 − γ1 = γ1

(
1

1− α
− 1

)
= γ1

α

1− α
(A.13)

r2 =
η1x̂1 − γ1r1

γ2
=

1

α
x̂1 −

1− α

α
r1. (A.14)

Plugging (A.11) into (A.14), we get

r2 = r1 +
γw
α

(C + γ1IN)
−1AH(y −Ar1). (A.15)

Next, we express (A.15) in terms of the error vectors ei ≜ ri − xtrue for i = 1, 2.

Subtracting xtrue from both sides of (A.15) and applying y = Axtrue +w and the
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definition of C from (A.5), we get

e2 = e1 +
γw
α

(C + γ1IN)
−1AH(Axtrue +w −Ar1)

= e1 −
1

α
(C + γ1IN)

−1Ce1 + u (A.16)

= e1 −
1

α
V (Λ+ γ1IN)

−1ΛV He1 + u (A.17)

= V DV He1 + u, (A.18)

where

u ≜
γw
α

(
C + γ1IN

)−1
AHw (A.19)

D ≜ IN −
1

α
(Λ+ γ1IN)

−1Λ (A.20)

Notice that tr(D) = 0 due to the definition of α in (A.10).

123



Appendix B: EC/VAMP error analysis

We start with the fact [176] that, for any N ≥ 2, the elements vnj of uniformly

distributed orthogonal V ∈ RN×N obey

E(vnj) = 0 (B.1a)

E(vnjvmk) =
1
N
δn−mδj−k (B.1b)

E(v2njv2mk) =


3

N(N+2)
n = m & j = k

1
N(N+2)

n = m & j ̸= k
1

N(N+2)
n ̸= m & j = k

N+1
N(N+2)(N−1)

n ̸= m & j ̸= k

, (B.1c)

where δn is the Kronecker delta (i.e., δ0 = 1 and δn
∣∣
n̸=0

= 0). Equations (B.1) will be

used to establish the following lemma.

Lemma B.0.1. Suppose that f = V Diag(d)V ⊤e ∈ RN where d is deterministic

with elements obeying
∑N

j=1 dj = 0 and D ≜ limN→∞
1
N

∑N
j=1 d

2
j < ∞; e is random

with elements of finite mean and variance obeying ε ≜ limN→∞
1
N

∑N
j=1 e

2
j <∞; and

V is uniformly distributed over the set of orthogonal matrices and independent of e

up to the fourth moment, i.e., E(vnjvmkvn′j′vm′k′|e) = E(vnjvmkvn′j′vm′k′). Then, as

N →∞,

E(f |e) = 0 (B.2)

Cov(f |e) = εDIN . (B.3)
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Proof. Writing the nth element of f as

fn =
N∑
j=1

vnjdj

N∑
k=1

vkjek (B.4)

we can establish (B.2) via

E(fn|e) =
N∑
j=1

N∑
k=1

djek E(vnjvkj|e) (B.5)

(a)
=

N∑
j=1

N∑
k=1

djekδn−k
1

N
(B.6)

= en
1

N

N∑
j=1

dj
(b)
= 0 ∀n, (B.7)

where (a) used (B.1b) and the assumed independence of V and e and (b) used∑
j dj = 0.

To establish (B.3), we begin by using (B.4) and the assumed independence of V

and e to write

E(f 2
n|e) =

∑
j

∑
k

∑
j′

∑
k′

djdj′ekek′ E(vnjvkjvnj′vk′j′). (B.8)
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When k = n, the expectation will vanish unless k′ = n, and when k ̸= n, the

expectation will vanish unless k′ = k and j′ = j. Thus we have

E(f 2
n|e)

= e2n
∑
j

∑
j′

djdj′ E(v2njv2nj′) +
∑
k ̸=n

∑
j

d2jk
2 E(v2njv2kj) (B.9)

= e2n
∑
j

d2j E(v4nj) + e2n
∑
j

∑
j′ ̸=j

djdj′ E(v2njv2nj′)

+
∑
k ̸=n

∑
j

d2je
2
k E(v2njv2kj) (B.10)

(a)
=

3e2n
N(N + 2)

∑
j

d2j +
e2n

N(N + 2)

∑
j

dj
∑
j′ ̸=j

dj′

+
1

N(N + 2)

∑
j

d2j
∑
k ̸=n

e2k (B.11)

(b)
=

e2n
N + 2

( 1

N

∑
j

d2j
)
+

N

N + 2

( 1

N

∑
j

d2j
)( 1

N

∑
k

e2k
)

(B.12)

N→∞
= Dε, (B.13)

where (a) used (B.1c) and where (b) used
∑

j′ ̸=j dj′ = (
∑

j′ dj′) − dj = −dj and∑
k ̸=n e

2
k = ∥e∥2 − e2n. The limit as N →∞ follows from the definitions of D and ε,

and the fact that limN→∞ e2n/N = 0 due to the finite mean and variance of en. Thus

we have established the diagonal terms in (B.3).

The off-diagonal terms in (B.3) follow from analyzing

E(fnfm|e)
∣∣
n̸=m

=
∑
j

∑
k

∑
j′

∑
k′

djdj′ekek′ E(vnjvkjvmj′vk′j′). (B.14)
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In this case, the expectation will vanish unless k = n or k = m. When k = n, we also

need k′ = m, and when k = m, we also need k′ = n and j = j′. Thus we can write

E(fnfm|e)
∣∣
n̸=m

= enem
∑
j

∑
j′

djdj′ E(v2njv2mj′) + enem
∑
j

d2j E(v2njv2mj) (B.15)

= 2enem
∑
j

d2j E(v2njv2mj) + enem
∑
j

∑
j′ ̸=j

djdj′ E(v2njv2mj′) (B.16)

(a)
=

2enem
N(N + 2)

∑
j

d2j +
enem(N + 1)

N(N + 2)(N − 1)

∑
j

dj
∑
j′ ̸=j

dj′ (B.17)

(b)
=

N − 3

(N + 2)(N − 1)
enem

1

N

∑
j

d2j (B.18)

(c)
= O(1/N)

N→∞
= 0, (B.19)

where (a) used (B.1c), (b) used
∑

j′ ̸=j dj′ = (
∑

j′ dj′) − dj = −dj, and (c) used

1
N

∑
j d

2
j = O(1) from the definition of D and enem = O(1) from the finite mean and

variance of en. This establishes the off-diagonal terms in (B.3).

Lemma B.0.1 will now be used to establish

E(e2|e1)
N→∞
= 0 (B.20)

Cov(e2|e1)
N→∞
= ε2I (B.21)

for some ε2 > 0. To simplify the derivation, we first write (A.1) as

e2 = f + u for f ≜ V DV ⊤e1, (B.22)

and recall that tr(D) = 0. For the mean of e2|e1, we immediately have that

E(e2|e1) = E(f |e1) + E(u|e1) = 0 (B.23)

since E(f |e1) = 0 due to (B.2). Also, E(u|e1) = 0 from definition (A.19) and

E(w|e2) = 0. This establishes (B.20).
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To characterize the covariance of e2|e1, we write

Cov(e2|e1) = Cov(f) + E
[
fu⊤∣∣e1

]
+ E

[
uf⊤∣∣e1

]
+ Cov(u|e1) (B.24)

and investigate each term separately. For the first term in (B.24), equation (B.3) and

definition (B.22) imply that

Cov(f |e1)
N→∞
=

ε1
N

tr
[
D2

]
IN , (B.25)

for ε1 ≜ limn→∞
1
N

∑N
n=1 e

2
1n. For the second and third terms in (B.24), equation (B.2)

and definition (B.22) imply

E
[
fu⊤∣∣e1,u

] N→∞
= 0. (B.26)

For the last term in (B.24), we can use (A.5) and Cov(w|e1) = IM/γw to obtain

Cov(u|V , e1)

=
1

α

(
C + γ1IN

)−1
C
(
C + γ1IN

)−1 1

α
(B.27)

=
1

α
V
(
Λ+ γ1IN

)−1
Λ
(
Λ+ γ1IN

)−1
V ⊤ 1

α
(B.28)

= V ΣΛ−1ΣV ⊤ (B.29)

for

Σ ≜
1

α

(
Λ+ γ1IN

)−1
Λ = IN −D. (B.30)

Then we take the expectation of (B.29) over V to obtain

[Cov(u|e1)]n,m

=
N∑
j=1

(σj)
2

λj

E(vnjvmj|e1)
(a)
= δn−m

1

N

N∑
j=1

(σj)
2

λj

, (B.31)
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where σj ≜ [Σ]jj and where (a) follows from (B.1b) and the assumed independence of

V and e1. Consequently,

Cov(u|e1) =
1

N
tr
[
ΣΛ−1Σ

]
IN . (B.32)

Combining (B.24)–(B.32), we have

Cov(e2|e1) = ε2IN (B.33)

for

ε2 ≜
ε1
N

tr
[
(IN −Σ)2

]
+

1

N
tr
[
ΣΛ−1Σ

]
. (B.34)

The expression for ε2 can be simplified as follows.

ε2 =
(ε1 − 1/γ1)

N
tr
[
(IN −Σ)2

]
+

1

γ1N
tr
[
(IN −Σ)2 + γ1ΣΛ−1Σ

]
(B.35)

=
(ε1 − 1/γ1)

N

N∑
n=1

(
1− λn/α

λn + γ1

)2

+
1

γ1N
tr
[
IN − 2Σ+Σ

(
IN + γ1Λ

−1
)
Σ
]
. (B.36)

Leveraging (B.30) to simplify the last term, we get

ε2 =
(ε1 − 1/γ1)

N

N∑
n=1

(
λn(1− 1/α) + γ1

λn + γ1

)2

+
1

γ1N
tr
[
IN + (1/α− 2)Σ

]
(B.37)

(a)
=

(ε1 − 1/γ1)

N

N∑
n=1

(
λn(1− 1/α) + γ1

λn + γ1

)2

+
1

γ1

(
1

α
− 1

)
(B.38)

(b)
=

(ε1 − 1/γ1)

N

N∑
n=1

(
1− λn/γ2
1 + λn/γ1

)2

+
1

γ2
, (B.39)
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where (a) used the fact that tr(Σ) = N and (b) used (A.10).

Finally, notice that the elements of e2 come from a sum of the form

e2n = un +
N∑
j=1

ξnjej for ξnj = [V DV ⊤]nj, (B.40)

where, for any fixed e1, the elements {ξnj}Nj=1 are zero mean, O(1/N) variance, and

uncorrelated. Because un are Gaussian, it can be argued using the central limit

theorem that the elements of e2 become Gaussian as N → ∞. Combining this

result with (B.20)–(B.21), we have that, given e1, as N →∞, the elements of e2 are

marginally zero-mean Gaussian and uncorrelated.
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Appendix C: Experimental Setup for MR Image Recovery

C.1 Multicoil MRI experiments

In this section we detail the experimental setup for the multicoil experiments in

Sections 2.3.2, 2.3.3, and 2.3.4.

C.1.1 Data

For our multicoil experiments, we used 3T knee and brain data from fastMRI [30].

For knee training data, we randomly picked 28 volumes and used the middle 8 slices

from each volume, while for knee testing data we randomly picked 4 other volumes

and used the middle 4 slices from each. Only non-fat-suppressed knee data was used.

For brain training data, we randomly picked 28 volumes and used the bottom 8 slices

from each volume, while for brain testing data we randomly picked 4 other brain

volumes and used the bottom 4 slides from each. Only axial T2-weighted brain data

was used. Starting with the raw fastMRI data, we first applied a standard PCA-based

coil-compression technique [177, 178] to reduce the number of coils from C = 15 to

C = 8. Then we Fourier-transformed each fully-sampled coil measurement to the

pixel domain, center-cropped down to size 368× 368 so that all images had the same

size, and Fourier-transformed back to k-space, yielding fully sampled multicoil k-space

measurement vectors yfull ∈ CNC with N = 3682 = 135424 entries.
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C.1.2 Ground-truth extraction

To extract the ground-truth image xtrue from yfull, we first estimated the coil

sensitivity maps {sc}Cc=1 from the central 24×24 region of k-space using ESPIRiT4 [143].

We then modeled yfull ≈ Afullxtrue, where according to the definition of A we have

Afull ≜

F Diag(s1)...
F Diag(sC)

 = (IC ⊗ F )S for S ≜

Diag(s1)...
Diag(sC)

 , (C.1)

and we used least-squares to extract the ground-truth images as follows:

xtrue ≜ (AH
fullAfull)

+AH
fullyfull (C.2)

= (SHS)+SH(Ic ⊗ F H)yfull (C.3)

(a)
= SH(Ic ⊗ F H)yfull (C.4)

= AH
fullyfull, (C.5)

where (a) holds because ESPIRiT guarantees that, for each index pixel index n, the

coil maps are either all zero (i.e., [sc]n = 0 ∀c) or they have a sum-squared value of

one (i.e.,
∑C

c=1 |[sc]n|2 = 1).

C.1.3 Noisy, subsampled, k-space measurements

To create the noisy subsampled k-space measurements, we started with the fully

sampled fastMRI yfull from above, applied a sampling mask M of acceleration rate R,

and added circularly symmetric complex-valued WGN w to obtain y. The sampling

densities that generated the 2D point and 2D line masks were obtained from the genPDF

function of the SparseMRI package5 with the same settings used in the VDAMP code6,

4We used the default ESPIRiT settings from:
https://sigpy.readthedocs.io/en/latest/generated/sigpy.mri.app.EspiritCalib.html.

5http://people.eecs.berkeley.edu/~mlustig/Software.html
6https://github.com/charlesmillard/VDAMP
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except that the 2D line masks used a 1D sampling density while the 2D point masks

used a 2D sampling density. The variance on the noise was adjusted to reach a desired

signal-to-noise ratio (SNR), where SNR ≜ ∥y − w∥2/∥w∥2. With multicoil data,

we used masks with a fully sampled central 24 × 24 autocalibration region, as in

Fig. 2.1(b)-(c) to facilitate the use of ESPIRiT for coil estimation.

C.1.4 Algorithm details

For D-GEC, we used the 2D Haar wavelet transform of depth D = 4, giving L = 13

wavelet subbands. When evaluating f1, we use 150 CG iterations in Section 2.3.2

and 10 in Sections 2.3.3 and 2.3.4. Also, we use the damping scheme from [127] with

a damping factor of 0.3 and run the D-GEC algorithm for 20 iterations. For the

experiments in Section 2.3.2, we used the auto-tuning scheme from [166] to adjust γ1

and γ2.

C.1.5 Denoiser details

As described in Section 2.3.1, our corr+corr denoiser was built on bias-free DnCNN

[142]. For the multicoil experiments, the images were complex-valued and so DnCNN

used two input and output channels: one for the real part and one for the imaginary

part. When extending DnCNN to corr+corr, we added a single noise channel, since we

assumed that the real and imaginary parts of the noise had the same noise statistics.

Prior to training, each ground-truth image was scaled so that the 98th percentile

of its pixel magnitudes equaled 1. While training, we used standard deviations

{1/√γℓ}Lℓ=1 drawn independently from a uniform distribution over a specified interval

[SDmin, SDmax]. Despite the use of a bias-free DNN, we found that it did not work well

to train a single denoiser over a very wide range of SDs, and so we trained five different
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denoisers, each over a different range of subband SDs: [0, 10/255], [10/255, 20/255],

[20/255, 50/255], [50/255, 120/255], and [120/255, 500/255]. In each case, we used the

training procedure described in Section 2.3.1, with ℓ2 loss, 20 epochs, a minibatch

size of 128, the Adam optimizer, and a learning rate that started at 10−3 and was

reduced by a factor of 2 at the 8th, 12th, 14th, 16th, 18th, and 19th epochs. The

denoisers were trained using 64 × 64 image patches, of which we obtained 645 792

from the training images using a stride of 10× 10 and standard data-augmentation

techniques like rotation and flipping. Although we cannot guarantee that the test

images will be scaled in the same way, this is not a problem because bias-free DnCNN

obeys f2(αu, αN) = αf2(u,N) for all α > 0. It took approximately 24 hours to

train each denoiser on a workstation with a single NVIDIA RTX-A6000 GPU.

C.2 Single-coil MRI experiments

In this section we detail the experimental setup for the single-coil experiments

used in Section 2.3.5.

C.2.1 Data

For our single-coil experiments, we used MRI images from the Stanford 2D FSE

dataset [31]. We used the same train/test/validation split from [101]: for testing, we

used the 10 images shown in Fig. 2.3, for training we used 70 other images, and for

validation we used 8 remaining images. All images were real-valued and 352×352. For

each ground-truth image, the fully sampled k-space data was created via yfull = Fxtrue

using 2D discrete Fourier transform F .
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C.2.2 Noisy, subsampled, k-space measurements

To create the noisy subsampled k-space measurements, we started with the full

sampled Stanford yfull from above, applied a 2D point sampling mask M of acceleration

rate R, and added circularly symmetric complex-valued WGN to obtain y. The

variance on the noise was adjusted to reach an SNR of 45 dB. With single-coil data,

we do not need a fully sampled central autocalibration region and so we use masks

similar to that shown in Fig. 2.1(a).

C.2.3 Algorithm details

For D-GEC, we used the 2D Haar wavelet transform of depth D = 4, giving L = 13

wavelet subbands. When evaluating f1, we used 10 CG iterations. Also, we used the

auto-tuning scheme from [166] to adjust γ1 and the damping scheme from [127] with a

damping factor of 0.5. We ran the D-GEC algorithm for a maximum of 200 iterations.

C.2.4 Denoiser details

As described in Section 2.3.1, our corr+corr denoiser was built on bias-free DnCNN

[142]. For the single-coil experiments, the images were real-valued and so the standard

DnCNN uses one input and output channel. When extending that DnCNN to

corr+corr, we added a single noise channel. The training of the denoiser was identical

to that used in the multicoil case, described in Appendix C.1.
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Appendix D: Variance of p(zi|yi; z(1)

i , v(1))

For brevity, we omit the variable index “i” since the development is identical for

all indices i, as well as the superscript (·)(1). We set v̂ at the approximation of the

posterior variance given by the Laplace approximation [157], which is

tr{H(ẑ)−1} for H(ẑ) ≜ ∇2
z(− ln p(z|y; z, v))

∣∣
z=ẑ

, (D.1)

where ẑ is the MAP estimate given in (3.36), i.e.,

ẑ =
vy + 2v|z|
v + 2v

ej∠z, (D.2)

and ∇2
z denotes the Hessian with respect to the real and imaginary parts of z.

In Appendix E, tr{H(ẑ)−1} is derived to be

tr
{
H(ẑ)−1

}
= v

2 |ẑ|
y
− v

v+2v

v+2v
v

|ẑ|
y
− 1

(D.3)

Assuming that y ≥ −2v|z|/v, we have

2
|ẑ|
y
− v

v + 2v
=

2v + 4v|z|/y
v + 2v

− v

v + 2v
=

v + 4v|z|/y
v + 2v

(D.4)

and

v + 2v

v

|ẑ|
y
− 1 =

v + 2v

v
· v + 2v|z|/y

v + 2v
− 1 =

2v|z|/y
v

(D.5)

so that

tr
{
H(ẑ)−1

}
= v

v + 4v|z|/y
v + 2v

· v

2v|z|/y
=

v(vy + 4v|z|)
2|z|(v + 2v)

. (D.6)
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Appendix E: Derivation of the Trace Inverse Hessian

Here we derive ∇2
z(− ln p(z|y; z, v)), the Hessian of − ln p(z|y; z, v) with respect to

the real and imaginary components of z ∈ C. We will use zr and zj to denote the

real and imaginary components of z, and zr and zj to denote the real and imaginary

components of z, respectively. We have

− ln p(z|y; z, v) = 1

2v
(y − |z|)2 + 1

v
|z − z|2 + const (E.1)

=
1

2v

(
y −

√
z2r + z2j

)2

+
1

v

(
(zr − zr)

2 + (zj − zj)
2
)

+ const. (E.2)

This implies that

− ∂

∂zr
ln p(z|y; z, v)

=
1

v

(√
z2r + z2j − y

)1
2
(z2r + z2j )

−1/22zr +
2

v
(zr − zr) (E.3)

=
1

v

(
1− y√

z2r + z2j

)
zr +

2

v
(zr − zr), (E.4)

and similarly that

− ∂

∂zj
ln p(z|y; z, v) = 1

v

(
1− y√

z2r + z2j

)
zj +

2

v
(zj − zj). (E.5)
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The second derivatives are

− ∂2

∂z2r
ln p(z|y; z, v)

=
∂

∂zr

(
1

v

(
1− y√

z2r + z2j

)
zr +

2

v
(zr − zr)

)
(E.6)

=
1

v

(
1− y√

z2r + z2j
+

yzr
2[z2r + z2j ]

3/2
2zr

)
+

2

v
(E.7)

=
1

v

(
1−

y(z2r + z2j )

[z2r + z2j ]
3/2

+
yz2r

[z2r + z2j ]
3/2

)
+

2

v
(E.8)

=
1

v

(
1−

yz2j
|z|3

)
+

2

v
, (E.9)

and

− ∂2

∂z2j
ln p(z|y; z, v) = 1

v

(
1− yz2r
|z|3

)
+

2

v
, (E.10)

and

− ∂2

∂zj∂zr
ln p(z|y; z, v)

=
∂

∂zj

(
1

v

(
1− y√

z2r + z2j

)
zr +

2

v
(zr − zr)

)
(E.11)

=
1

v

yzr
2[z2r + z2j ]

3/2
2zj =

yzrzj
v|z|3

, (E.12)

and so the Hessian matrix is

H(z) =

[
− ∂2

∂z2r
ln p(z|y; z, v) − ∂2

∂zj∂zr
ln p(z|y; z, v)

− ∂2

∂zj∂zr
ln p(z|y; z, v) − ∂2

∂z2j
ln p(z|y; z, v)

]

=

[
1
v

(
1− yz2j

|z|3
)
+ 2

v

yzrzj
v|z|3

yzrzj
v|z|3

1
v

(
1− yz2r

|z|3
)
+ 2

v

]
(E.13)

=

(
1

v
+

2

v

)
I2 −

y

v|z|3

[
zj
−zr

] [
zj −zr

]
. (E.14)

Using the matrix inversion lemma,

tr
{
(aI2 + bcc⊤)−1

}
= tr

{
1

a

(
I2 −

bcc⊤

a+ bc⊤c

)}
(E.15)

=
1

a

(
2− bc⊤c

a+ bc⊤c

)
=

2 + a−1bc⊤c

a+ bc⊤c
. (E.16)
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Applying this to (E.14) using

a =
1

v
+

2

v
=

v + 2v

vv
(E.17)

bc⊤c = − y

v|z|3
[
zj −zr

] [ zj
−zr

]
= − y

v|z|
, (E.18)

we get

tr
{
H(z)−1

}
=

2− vv
v+2v

y
v|z|

v+2v
vv
− y

v|z|
= v

2 |z|
y
− v

v+2v

v+2v
v

|z|
y
− 1

. (E.19)
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Appendix F: Implementation details of StRAPS and baseline

methods

F.1 Inverse problems

For the linear inverse problems, the measurements were generated as

y = Ax0 + σww, w ∼ N (0, I) (F.1)

with appropriate A. For box inpainting, Gaussian deblurring, and super-resolution

we used the A and A⊤ implementations from [179]. For motion deblurring, we

implemented our own A and A⊤ with reflect padding. All methods used these

operators implementations except DiffPIR, which used the authors’ implementations.

Motion-blur kernels were generated using [173].

For phase retrieval, the measurements were generated using the method from [56]:

y2j = |z0,j|2 + wj, wj ∼ N (0, α2
shot|z0,j|2), j = 1, . . . ,m, (F.2)

where αshot controls the noise level and z0 = Ax0, with the values of x0 scaled to lie in

the range [0, 255]. This is an approximation of the Poisson shot-noise corruption model

in that the intensity y2j/α
2
shot is approximately Poisson((|z0,j|/αshot)

2) distributed for

sufficiently small values of αshot. We implemented the oversampled-Fourier A by zero-

padding the image by 2× in each direction and then passing the result through a unitary
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FFT. For CDP phase retrieval, we set A = [A⊤
1 , . . . ,A

⊤
L ]

⊤ for Al = L−1/2F Diag(cl),

where F is a d× d FFT and cl contain i.i.d. random entries uniformly distributed on

the unit circle in the complex plane, and where L = 4. In both cases, A⊤A = I.

F.2 Evaluation protocol

For the linear inverse problems, we run each method once for each measurement

y in the 1000-sample test set and compute average PSNR, average LPIPS, and FID

from the resulting recoveries.

For OSF phase retrieval, following [76], we run each algorithm four times and

keep the reconstruction x̂ that minimizes the measurement residual ∥y − |Ax̃0|∥.

Performance metrics are then evaluated after resolving the inherent spatial shift and

conjugate flip ambiguities associated with phase retrieval (see, e.g., [162]). Note global

phase ambiguity is not an issue due to the non-negativity of our images. For the CDP

experiments, we run each algorithm only once and don’t perform ambiguity resolution,

because it is unnecessary.

F.3 Unconditional diffusion model

For the FFHQ experiments, all methods used the pretrained model from [76] with

T = 1000.

F.4 Recovery methods

StRAPS. Our Python/Pytorch codebase is a modification of the DPS codebase

from [159]. For σ̂2
0|i estimation, we approximate ∥A∥2F using 1

L

∑L
l=1 ∥Awl∥2 with i.i.d.

wl ∼ N (0, I) and L = 25. For the linear inverse problems, we use conjugate gradient

(CG) without SVD, and a fixed γi across all iterations. The values are selected from a
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grid of 15 logarithmically spaced points ranging from 10−1.5 ≈ 0.0316 to 100.5 ≈ 3.1622,

tuned to minimize LPIPS [174] on a 100-sample validation set (see Table F.1). For

phase retrieval, we use 800 NFEs (to ensure fair comparison with prDeep) along with

stochastic denoising [171], and similarly employ a fixed γi across all iterations, selected

from a logarithmic grid spanning 10−1.5 ≈ 0.0316 to 100.75 ≈ 5.6234 (see Table F.2).

Neither CG nor SVD is required, as (4.71) can be solved analytically.

Table F.1: Hyperparameter γ values used for SLM-StRAPS.

# NFEs Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4× Super-resolution

20 0.4394 0.0316 0.0316 0.0316
100 0.2276 0.0439 0.0611 0.0848
1000 0.0848 0.0316 0.0316 0.0316

Table F.2: Hyperparameter γ values used for Phase Retrieval StRAPS.

# NFEs OSF CDP

100 1.2798 0.8840
800 0.4217 1.2798

DDRM. We use the authors’ implementation from [179] with minor changes to

work in our codebase.

DiffPIR. We use the authors’ implementation from [180] without modification.

Hyperparameters were set according to the reported values in [90].
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ΠGDM. Since the authors do not provide a ΠGDM implementation for noisy

problems in [181], we wrote our own ΠGDM implementation that computed (AA⊤ +

ζkI)
−1 using the efficient SVD implementation of A from the DDRM codebase at [179]

on problems for which an SVD is available, and otherwise used CG.

DPS. For the linear inverse problems, we use the authors’ original implementation

from [159] without modification. For all problems, we use the suggested scale factors

from [76, Sec. D.1].

For phase retrieval, we made minor adjustments to the DPS authors’ implemen-

tation to accommodate the likelihood py|z(y|z) = N (y; |z|, σ2
w) (used by all methods

for fairness). We used grid-search to find the scale factor that minimized LPIPS on a

100-image validation set. The resulting values were 0.0075 for OSF and 0.05 for CDP.

DAPS. For linear inverse problems, we use the authors’ implementation from [182]

with minor modifications to integrate it into our codebase.

For phase retrieval, we apply similar adjustments as those made for DPS to ensure

fairness.

DOLPH. As the DOLPH implementation is not publicly available, we implemented

DOLPH in Python/PyTorch and used grid-search to find the step-size that minimized

LPIPS on a 100-image validation set. The resulting step-sizes were 5× 10−6 for OSF

and 5× 10−7 for CDP.

HIO. We translated the MATLAB implementation of HIO from [164] to Python

and set the step-size parameter to 0.9. We then followed the runtime procedure

described in [56]: For the OSF experiments, HIO is first run 50 times, for 50 iterations
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each, from a random initialization. The estimate x̂ with the lowest measurement

residual ∥y − |Ax̂|∥ is then used to reinitialize HIO, after which it is run for 1000

more iterations. Finally, the second and third color channels in the result are shifted

and flipped as needed to best match the first color channel. For the CDP experiments,

HIO is run once for 200 iterations from a random initialization.

prDeep. We used the Python implementation from [165]. As recommended in [56],

we initialized prDeep with the HIO estimate for OSF experiments and with an all-ones

initialization for CDP experiments. (Note that only prDeep uses the HIO initialization;

DPS, DAPS, DOLPH, and StRAPS do not.) We tuned λ on a grid to minimize LPIPS

on a 100-image validation set, which led to λ = 0.1σw for OSF and λ = 0.01σw for

CDP.
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