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Abstract

Recovering an unknown vector from its noisy linear measurements is an important

problem that arises in many fields. In linear inverse problems, the forward operator

is perfectly known, whereas in bilinear inverse problems, the forward operator has

some unknown parameters. Most existing recovery algorithms are either slow to

converge or give a final solution that is not accurate. In this dissertation, we develop

algorithms using Approximate Message Passing (AMP) methods to solve linear and

bilinear inverse problems.

First, we consider the computationally efficient Vector Approximate Message Pass-

ing (VAMP) algorithm, which is based on the Expectation Propagation framework.

VAMP minimizes a cost function, also known as the Gibbs free energy in statistical

physics, under moment-matching constraints. It iteratively calls a denoiser that is

chosen based on prior knowledge about the unknown vector that we want to recover.

VAMP has a remarkable property, that when the sensing matrix is a typical instance

of a large right-rotationally invariant random matrix, the per-iteration macroscopic

behaviour of VAMP can be exactly predicted by a set of scalar equations that yield

the so called state-evolution (SE). The state-evolution can be used to predict the

MSE performance of VAMP at each iteration. The SE was first proven for separable

Lipschitz denoisers. In this work, we extend the state-evolution to a larger class of

non-separable Lipschitz denoisers. Empirical results show that the SE also accurately
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predicts VAMP’s performance in bilinear problems solved that have been converted

to linear problems using the “lifting” technique.

In bilinear inverse problems, the forward operator is written as a linear combina-

tion of known matrices with unknown weights. Problems such as dictionary learning,

CS with matrix uncertainty, self-calibration, are all instances of bilinear inverse prob-

lems. We propose a new algorithm called Bilinear Adaptive Vector Approximate

Message Passing (BAd-VAMP). Our method is based on the EM-VAMP algorithm,

where Expectation Maximization (EM) is combined with VAMP to estimate the un-

known parameters in the likelihood and prior. We show that our BAd-VAMP method

is efficient and robust to the conditioning of the forward operator, which is a common

problem with algorithms based on the earlier AMP algorithm.

Finally, we consider the problem of magnetic resonance imaging (MRI). MRI is a

safe, non-invasive method to capture internal images of our body. MRI’s long data-

acquisition time is one of its biggest drawbacks. In accelerated MRI, a small number

of samples in k-space are acquired and the goal is to accurately reconstruct the image

from these few measurements. We develop two algorithms for MRI reconstruction

using Approximate Message Passing methods with non-separable denoisers. Our first

algorithm is a modification of the existing AMP algorithm, where we propose a scaling

in k-space to debias the denoiser input error. Our second algorithm is a modification

of VAMP where we propose a robust damping scheme to stabilize VAMP in MRI.

We compare our algorithms against conventional plug-and-play algorithms on the

fastMRI knee dataset.
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Chapter 1: Introduction

In many problems of interest in science and engineering we need to reliably recover

an unknown high-dimensional vector from noisy measurements. The unknown vector

could denote model parameters, sensor data, etc. This type of problem commonly

arises in several areas of computational imaging such as tomographic imaging, radar,

magnetic resonance imaging (MRI), etc. Several technological advancements in the

last two decades has made it possible to solve these complex problems by designing

efficient computational algorithms.

In these problems, we have some knowledge of the underlying process that gener-

ated the observed measurements from the signal, i.e., we have some knowledge of the

likelihood function. Assuming the true signal that we are interested to recover is x,

then the observations y ∈ R
M are generated according to the model

y = A(x) +w, (1.1)

where A is the forward operator and w is measurement noise. The goal in (1.1) is

to recover the signal x from measurements y. These type of problems are known as

“inverse problems” as we aim to invert the measurement process to recover the signal

that generated it.
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The physics of the measurement device decides A. In this dissertation, we pri-

marily focus on linear A. In some applications, we have perfect knowledge of A and

in some cases it could be an approximation of reality. When it is perfectly known,

the measurements y are a linear combination of x and such problems are also called

“linear inverse” problems. We also consider the case when A is known up to some

unknown parameters b. We represent the parametric forward operator as Ab. The

unknown parameters capture the uncertainy in A, and we aim to jointly recover the

signal x and learn the parameters b.

Inverse problems are often ill-posed [91] because the forward operator is non-

invertible which makes it hard to solve. We need to design recovery algorithms that

are robust to noise, model mismatches and ill-conditioning of the problem because in

applications such as medical imaging a false diagnosis based on the recovered image

can be fatal.

In this dissertation, we develop algorithms for solving linear and bilinear inverse

problems using the Approximate Message Passing framework. We develop some the-

oretical results on the VAMP [73] algorithm. We propose a computationally efficient

algorithm called BAdVAMP for solving bilinear inverse problems. In MRI, we modify

the AMP [32] and VAMP [73] algorithms by using a robust damping scheme and scal-

ing the k-space measurements and we empirically compare the performance against

well-known plug-and-play algorithms such as PnP-ADMM [95] and PnP-FISTA [44].
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1.1 Standard Linear Model

In a Standard Linear Model (SLM), A is a linear operator that can be represented

as a matrix A ∈ R
M×N . We can write (1.1) as,

y = Ax+w, w ∼ N (0, σ2I). (1.2)

Compressive Sensing [19, 31] is a well known application where the number of mea-

surements are less than the unknowns, i.e., M ≪ N . In this case, (1.2) represents an

under-determined system of equations and so it is not possible to recover x unless it

has some known structure. In Compressive Sensing, x is known to be sparse, meaning

only a subset of its elements are non-zero. One approach to recover x is to solve,

x̂ = argmin
x

‖x‖0 s.t. ‖y −Ax‖2 ≤
√
Mσ. (1.3)

In (1.3), we seek the sparsest x that is consistent with the measurements by exhaus-

tively searching over all possible solutions. This approach is known to be NP-hard [60]

making it intractable even for moderately sized problems. Lasso is a popular alter-

native approach that recovers x by solving the ℓ1-regularized least squares problem,

x̂ = argmin
x

‖y −Ax‖22 + λ‖x‖1. (1.4)

ISTA [27], AMP [32], VAMP [73], etc., are some algorithms for solving the Lasso opti-

mization problem (1.4). WhenA satisfies the Restricted Isometry property (RIP) [34]

and x is sparse enough, there exists theoretical guarantees on the achievable recovery

performance of Lasso.

The measurement model in (1.2) is also applicable in several modalities of medical

imaging, e.g., Computation Tomography (CT), Magnetic Resonance Imaging (MRI),
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etc. In CT, A is the Radon transform and in MRI A is a sub-sampled DFT matrix.

Images typically admit a sparse representation under a suitable basis, hence a popular

approach to solve these imaging problems is using Compressive Sensing. If x is sparse

with respect to basis Φ, then there exists two approaches to recover x; i) synthesis,

and ii) analysis approach. Formally, the synthesis approach is to solve

α̂ = argmin
α

‖y −AΦα‖22 + λ‖α‖1 (1.5a)

⇒ x̂ = Φα̂. (1.5b)

Whereas in the analysis approach we solve

x̂ = argmin
x

‖y −Ax‖22 + λ‖ΦHx‖1. (1.6)

The two approaches are equivalent when Φ is an orthonormal basis. These methods

have led to the advancement in computational imaging for several years. A com-

mon drawback is that in many practical problems of interest x may have a more

complicated structure than sparsity in a known basis.

To solve (1.4), one usually uses an iterative algorithm where one of the steps

in the algorithm involves a proximal operator that enforces prior knowledge of x.

The proximal operator can also be identified as a signal denoiser. It was shown in

[79, 95] that we can solve any linear inverse problem if we have a good denoiser for

the class of signals we are interested in recovering. In the age of “Big Data”, we

may have access to several examples of x’s from the signal class that we can use to

train a sophisticated denoiser using deep learning [104]. This approach has led to the

development of “Plug-and-Play” algorithms achieving superior results.
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1.2 Standard Bilinear Model

If the forward operator is not completely known, the inverse problem becomes

more challenging. In a bilinear model, the forward operator is a matrix valued linear

function,

Ab = A0 +

Q∑

i=1

biAi, (1.7)

where {Ai} are known matrices and b are unknown parameters. In some applications,

we have tuples of multiple signal and measurements {(yl,xl)}Ll=1, also known as the

multiple measurement vector (MMV) model. We can stack them column wise to

construct the measurement matrix Y and the signal matrix X

Y = [y1, . . . ,yL] ∈ R
M×L (1.8a)

X = [xl, . . . ,xL] ∈ R
N×L. (1.8b)

The goal is to jointly recover X and b from measurements Y = Ab(X) +W , where

W is AWGN noise. It is said to be bilinear because the measurements Y are lin-

ear in X for fixed b and linear in b for fixed X. This problem has applications in

matrix completion [21], robust principle component analysis (RPCA) [20], dictionary

learning [81], self-calibration [51], blind deconvolution [47], joint-channel/symbol es-

timation, compressive sensing with matrix uncertainty [105], and many other tasks.

1.3 Outline and Contribution

In this section, we provide a brief overview of our contributions and the outline

of this dissertation.
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1.3.1 State Evolution of VAMP

VAMP [73] is a computationally efficient algorithm to solve linear inverse prob-

lems. At every iteration t, VAMP generates pseudo-measurements rt
1 and scalar

precision γt
1 such that for certain large random A, it ensures the statistical model

rt
1 = x+N (0, I/γt

1). (1.9)

Moreover, the mean squared error (MSE) performance of VAMP can be exactly pre-

dicted by a set of scalar equations known as “state evolution” (SE). These simpler SE

equations can be used to study the convergence properties and the accuracy of VAMP

in the high dimensional regime for different problems. The state evolution of VAMP

was earlier proven for separable Lipschitz denoisers in [73]. In chapter 2, we extend

the state evolution of VAMP from separable to a larger class of non-separable Lips-

chitz denoisers. We also consider bilinear problems such as self-calibration [51] and

CS with matrix uncertainty [105], and apply the “lifting” method from [3, 23, 28, 51]

to transform it into a linear inverse problem. We then use VAMP to solve the lifted

problem and empirically show that the state evolution prediction holds.

1.3.2 The BAdVAMP Algorithm

In chapter 3, we propose the Bilinear Adaptive Vector Approximate Message Pass-

ing (BAd-VAMP) algorithm to solve bilinear recovery problems. We combine varia-

tional inference with maximum likelihood (ML) estimation to develop our algorithm.

We assume the prior density of X is known up to some parameters θx and the mea-

surement noise is AWGN with unknown noise precision γw. Our goal is to estimate

the parameters Θ , {b,θx, γw} and recover the unknown matrix X ∈ R
N×L from

6



measurements Y ∈ R
M×L,

Y =

(
A0 +

Q∑

i=1

biAi

)
X +W (1.10a)

X ∼ pX(·;θx) (1.10b)

W
i.i.d.∼ N (0, 1/γw), (1.10c)

where {Ai} are known matrices. We seek to learn the ML estimate of the parameters

Θ and, under that estimate, compute the minimum mean-squared error (MMSE)

estimate of X. We solve several bilinear problems such as dictionary learning, cali-

bration in tomography, CS with matrix uncertainty, etc. We demonstrate numerically

that the proposed approach is competitive with other state-of-the-art approaches to

bilinear recovery, including lifted VAMP and Bilinear GAMP.

1.3.3 VAMP for MRI

In chapter 4, we consider the problem of image reconstruction in Magnetic Res-

onance Imaging (MRI). MRI is a non-invasive method to generate high resolution

internal images of our body. The MRI scanner produces measurements y ∈ C
M

which are noisy sub-sampled Fourier samples of the unknown image x. The goal is

to reconstruct the image x ∈ C
N from y ∈ C

M ,

y = SFx+w, (1.11)

where F is the DFT matrix, S is a sampling matrix and w is white Gaussian noise.

To generate high quality images and reduce the data acquisition time, most modern

commercially available MRI scanners use multiple receiver coils in which case the

7



measurements y ∈ C
M take the form

y =



SFC1

...
SFCK


x+w (1.12)

where {Ck}Kk=1 are diagonal matrices representing the coil’s sensitivity maps.

We develop algorithms based on the Approximate Message Passing [32] framework

using a plug-and-play (PnP) manner. PnP method allows us to use traditional opti-

mization algorithms by calling a powerful image denoiser at every iteration inside the

algorithm. The AMP [9] and VAMP [73] algorithms are based on the sensing matrix

A in (1.2) being i.i.d. Gaussian and right rotationally invariant, respectively, which

generally doesn’t include the sensing matrix in MRI. As a result, these algorithms

are known to diverge. In this work, we introduce some adaptive damping schemes to

improve their convergence properties in MRI. In VAMP, to solve the LMMSE sub-

problem, we use fast iterative solvers such as conjugate gradient [7] or LSQR [65].

In AMP, motivated by the VDAMP [57] algorithm, we use a similar scaling in the

k-space which improves the accuracy of the final result. We use the recently released

fastMRI [103] dataset for validation.

1.4 Notation

We use boldface uppercase letters to denote matrices (e.g., X), and we use tr{X},

XH, XT to denote the trace, conjugate-transpose and transpose of the matrix X

respectively. We denote vectors by boldface lowercase letters (e.g., x) and scalars by

non-bold letters (e.g., x). Given a matrix X, we use xl to denote the lth column

and xnl to denote the element in the nth row and lth column. We use ‖X‖∗ to

denote the nuclear norm of X, i.e., sum of its singular values. For a square matrix

8



X ∈ R
N×N , we use diag(X) to denote the vector of elements on the diagonal of X

and we use 〈X〉 , 1
N

∑N
i=1 xii to denote the average of the diagonal elements of X.

For a random vector x with density b, we use E[f(x)|b] to denote the expectation of

f(x), i.e., E[f(x)|b] =
∫
f(x)b(x) dx, and we use var[f(x)|b] for the corresponding

variance. We denote the density of a Gaussian random vector with mean µ and

covariance Σ as N (µ,Σ). We use Diag(x) to denote the diagonal matrix created

from vector x.
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Chapter 2: Vector Approximate Message Passing

2.1 Introduction

In this chapter, we will discuss a computationally efficient algorithm to solve the

linear inverse problems mentioned in chapter 1. Recall that in linear inverse problems,

our goal is to recover the unknown vector x ∈ R
N from measurements y ∈ R

M ,

y = Ax+w, (2.1)

where A ∈ R
M×N is a known matrix and w

i.i.d.∼ N (0, γ−1
w ) is additive white Gaussian

noise of precision γw. We assume that the unknown vector x has a known prior

density px(·) which encodes all our prior knowledge about x. We aim to compute the

minimum mean-squared error (MMSE) estimate of x, i.e.,

x̂
MMSE

, E[x|y]. (2.2)

The expectation is taken over the posterior density

px|y(x|y) =
1

Z(y)
px(x)py|x(y|x), (2.3)

using the likelihood function

py|x(y|x) = N (y;Ax, γ−1
w I) (2.4)
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and the normalization constant Z(y) given as

Z(y) = py(y) (2.5a)

=

∫
px(x)py|x(y|x) dx. (2.5b)

For high dimensional x, the integrals in (2.2) and (2.5b) are difficult to compute

directly. Thus we need to use alternate methods. Vector Approximate Message

Passing (VAMP) [75] is a computationally efficient iterative algorithm to compute

the maximum a posteriori (MAP) estimate or approximately compute the MMSE

estimate of the unknown x in case of infinitely large right rotationally invariant A.

2.2 Variational Inference

Variational inference (VI) [98] can be used to bypass the computation of Z(y). For

example, notice that the true posterior px|y can be recovered by solving the variational

optimization (over densities)

q̂ = argmin
q

DKL(q ‖ px|y), (2.6)

where DKL(q ‖ p) denotes the KL divergence from p to q, i.e.,

DKL(q ‖ p) ,
∫

q(x) ln
q(x)

p(x)
dx. (2.7)

Substituting px|y from (2.3) into (2.7) gives us

DKL(q ‖ px|y) = DKL(q ‖ px) +DKL(q ‖ py|x) +H(q) + lnZ(y) (2.8)

where H(q) , −
∫
q(x) ln q(x) dx is the differential entropy of the random vector x

with density q. Thus it follows from (2.6) and (2.8) that

q̂ = argmin
q

{
DKL(q ‖ px) +DKL(q ‖ py|x) +H(q)

}
, (2.9)
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which bypasses Z(y). Still, solving (2.9) is difficult in most cases of interest. The

typical response is to constrain q to be in a certain family of distributions, F , by

solving

q̂ = argmin
q∈F

{
DKL(q ‖ px) +DKL(q ‖ py|x) +H(q)

}
. (2.10)

Some popular choices of F are,

i. Mean Field Approximation: family of separable densities

F = {q(·) | q(x) =
N∏

i=1

qi(xi)} (2.11)

ii. Exponential Family : specified by sufficient statistics φ(·) and parameters η,

F = {q(·) | q(x) = exp{ηTφ(x)− lnZ(η)}} (2.12)

which includes normal, Dirichlet, gamma, etc.

One should choose F such that (2.10) can be solved analytically and it should be

powerful enough to capture the useful components of the true posterior px|y. Since a

bad choice of F can compromise q̂ in (2.10) and its mean, we take a different approach.

2.3 Expectation Consistent Approximate Inference

Using the “Gibbs free energy”

J(q1, q2, q3) , DKL(q1‖px) +DKL(q2‖py|x) +H(q3), (2.13)

one can rewrite (2.9) as

argmin
q1

min
q2

max
q3

J(q1, q2, q3) (2.14a)

s.t. q1 = q2 = q3. (2.14b)
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Algorithm 1 EC algorithm [75]

1: initialize:

r0
1, γ

0
1

2: for t = 0, . . . , Tmax do

3: xt
1 = g1(r

t
1, γ

t
1)

4: 1/ηt1 = 〈g′
1(r

t
1, γ

t
1)〉/γt

1

5: γt
2 = ηt1 − γt

1

6: rt
2 = (ηt1x

t
1 − γt

1r
t
1)/γ

t
2

7: xt
2 = g2(r

t
2, γ

t
2)

8: 1/ηt2 = 〈g′
2(r

t
2, γ

t
2)〉/γt

2

9: γt+1
1 = ηt2 − γt

2

10: rt+1
1 = (ηt2x

t
2 − γt

2r
t
2)/(η

t
2 − γt

2)
11: end for

We minimize over q1 and q2 because DKL(q1‖px) and DKL(q2‖py|x) are convex, while

we maximize over q3 because H(q3) is concave. But, as discussed earlier, (2.14) is

difficult to solve.

In the expectation consistent approximate inference (EC) scheme proposed by

Opper and Winther in [63], the density constraint (2.14b) is relaxed to the first and

second moment matching constraints, i.e.,

argmin
q1

min
q2

max
q3

J(q1, q2, q3) (2.15a)

s.t. E[x|q1] = E[x|q2] = E[x|q3] (2.15b)

tr{Cov[x|q1]} = tr{Cov[x|q2]} = tr{Cov[x|q3]}, (2.15c)

where E[x|qi] denotes E[x] under x ∼ qi. This yields stationary points of the form

q1(x) ∝ px(x) exp
(
−γ1

2
‖x− r1‖22

)
(2.16a)

q2(x) ∝ py|x(y|x) exp
(
−γ2

2
‖x− r2‖22

)
(2.16b)

q3(x) ∝ exp
(
−η

2
‖x− x̂‖22

)
, (2.16c)
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for {r1, γ1, r2, γ2, x̂, η} that lead to satisfaction of (2.15b)-(2.15c). There are several

algorithms whose fixed points are the stationary point of EC (e.g., ADATAP [64],

S-AMP [17]).

Various approaches can be used to solve for {r1, γ1, r2, γ2, x̂, η}. One is to alternate

the update of {(r1, γ1), (x̂, η)} and {(r2, γ2), (x̂, η)} such that, at each iteration, the

moments of q3 are consistent with either q1 or q2. This approach is summarized in

Alg. 1 using

g1(r1, γ1) ,

∫
x px(x)N (x; r1, I/γ1) dx∫
px(x)N (x; r1, I/γ1) dx

(2.17)

g2(r2, γ2) ,

∫
x py|x(y|x)N (x; r2, I/γ2) dx∫
py|x(y|x)N (x; r2, I/γ2) dx

, (2.18)

which, under these definitions of g1 and g2, can be recognized as an instance of

expectation propagation (EP) [58, Sec. 3.2], [41, 86]. In lines 4 and 8 of Alg. 1,

g′
i(ri, γi) ∈ R

N denotes the diagonal of the Jacobian matrix of gi(·, γi) at ri, i.e.,

g′
i(ri, γi) , diag

(
∂gi(ri, γi)

∂ri

)
, (2.19)

and 〈x〉 denotes the average coefficient value, i.e., 〈x〉 , 1
N

∑N
i=1 xi for x ∈ R

N .

Recall the likelihood function for the standard linear model,

py|x(y|x) = N (y;Ax, γ−1
w I). (2.20)

Using the definition of g2(·) in (2.18) and the likelihood function in (2.20), we see

that g2 is performing an LMMSE estimation whose closed form solution is

g2(r2, γ2) = (γ2I + γwA
TA)−1(γ2r2 + γwA

Ty) (2.21)

〈g′
2(r2, γ2)〉 = γ2 tr

{
(γ2I + γwA

TA)−1
}
/N. (2.22)

Meanwhile, the form of g1 depends on px through (2.17).
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Algorithm 2 EP algorithm (SVD Form) [75]

1: define:

Economy SVD: A = U Diag(s)V T ∈ R
M×N

R = rank(A)
ỹ = Diag(s)−1UTy

2: initialize:

r0, γ0

3: for t = 0, . . . , Tmax do

4: xt = g1(r
t, γt)

5: αt = 〈g′
1(r

t, γt)〉
6: r̃t = (xt − αtrt)/(1− αt)
7: γ̃t = γt(1− αt)/αt

8: dt = γw Diag(γws
2 + γ̃t1)−1s2

9: γt+1 = γ̃tR〈dt〉/(N −R〈dt〉)
10: rt+1 = r̃t + N

R
V Diag(dt/〈dt〉)(ỹ − V Tr̃t)

11: end for

Using the definition of g2 in (2.21), we see that in line 7 of Alg. 1 a matrix inversion

of complexity O(N3) is needed at every iteration, which can significantly slow down

the algorithm. However, if we were to pre-compute the (economy) SVD A = USV T,

then the per iteration cost of VAMP is dominated by O(RN), where R is the rank of

A. The SVD version of Alg. 1 is summarized in Alg. 2.

Based on the description above, one might wonder whether the EC stationary

point x̂ = E[x|q1] = E[x|q2] = E[x|q3] is a good approximation of the true conditional

mean E[x|y], and additionally one might question whether Algorithm 1 converges to

this x̂. Both of these concerns were resolved in the VAMP paper [75]. In particular,

[75] showed that, when A is right rotationally invariant and asymptotically large,

the per-iteration behavior of Alg. 1 with g2 from (2.21) and Lipschitz g1 is exactly

predicted by a scalar state evolution. Furthermore, in the case where g1 is matched to

px, the prior of x, as in (2.17), and where g2 uses the true AWGN precision γw <∞
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as in (2.18), the MSE of the fixed point x̂ of Alg. 1 was shown in [75] to match the

MMSE predicted by the replica method [93]. This replica prediction is conjectured to

be correct [77], in which case the x̂ generated by Alg. 1 under (2.17) and (2.21) will

be MMSE for infinitely large, right rotationally invariant A when the state evolution

has unique fixed points. Note that, for infinitely large i.i.d. A, the replica prediction

has been proven to be correct [6, 78].

In the sequel, we will refer to Alg. 1 with generic Lipschitz g1 as the VAMP

algorithm, noting that it coincides with EP in the special case of Bayesian g1 from

(2.17). VAMP is more general than EP because it can be used with denoisers g1 that

are MAP [36], or that have no probabilistic interpretation, and still lead to precisely

predictable behavior under infinitely large right rotationally invariant A [35, 75].

In Algorithm 1, lines 6 and 10 perform what is referred to as Onsager correction

in statistical physics [90]. It ensures that, under a certain large random A, the VAMP

quantity (rt
1, γ

t
1) obeys the following AWGN statistical model at every iteration:

rt
1 = x0 +N (0, γt

1I), (2.23)

where x0 is the true vector we are interested in recovering in (2.1). This AWGN-like

property is one of the main reasons for VAMP’s fast convergence properties. There

are several ways to interpret Algorithm 1; one can interpret it as an instance of ex-

pectation propagation (EP) [63,89], or as an instance of belief-propagation (BP) on a

non-loopy factor graph with vector-valued nodes [73], or as a variant of alternating di-

rection method of multipliers (ADMM) [14] involving two dual updates with adaptive

step size [36]. Another intuitive interpretation of Algorithm 1 is the following:
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(i) In line 3, the function g1 estimates the signal assuming from AWGN-corrupted

measurements rt
1 = x0 +N (0, I/γt

1).

(ii) Lines 5 & 6 compute rt
2, γ

t
2 to yield the model x0 = rt

2 +N (0, I/γt
2).

(iii) In line 7, g2 performs LMMSE estimation of x from y under the model

y = Ax0 +N (0, I/γw), x0 = rt
2 +N (0, I/γt

2).

(iv) Lines 9 & 10 compute rt+1
1 , γt+1

1 such that the AWGN like model in step (i)

holds.

The above discussion suggests that g1 is performing a denoising operation. In the

next section, we provide a rigorous analysis of the AWGN-like property of VAMP.

2.4 State Evolution

Under some conditions, the noise precision in the AWGN model in (2.23) can be

exactly predicted by a set of scalar recursive equations known as the “state-evolution”

(SE). This state-evolution formalism allows us to predict the MSE performance of

VAMP at every iteration and study its asymptotic convergence properties. In this

section, we introduce the SE formalism in VAMP and the conditions under which it

is guaranteed to be true. The SE of VAMP was first proven for separable g1 in [73].

The following results are from our work in [35], where we extended the SE analysis

to the non-separable case. We first briefly describe the “large system limit” model

and then state the main results.
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2.4.1 Large System Limit

We consider a sequence of problems defined by the problem size, N . For each

N , we assume x0 ∈ R
N is a “true” vector that we are interested in recovering from

measurements y ∈ R
M generated according the linear model,

y = Ax0 +w, w ∼ N (0, γ−1
w0I). (2.24)

The “true” noise precision is γw0, which could be different from the assumed noise

precision used in (2.21) and (2.22). Here, we assumeM = N without loss of generality.

We can easily extend the following results to the case M 6= N , by zero padding s [73].

We assume the SVD of A takes the form,

A = U Diag(s)V T, s = (s1, . . . , sN), (2.25)

where U ∈ R
N×N is any arbitrary orthogonal matrix, s is i.i.d. with components

si ∈ [0, smax] almost surely, and V ∈ R
N×N is Haar distributed. The latter means

that V is uniformly distributed on the set ofN×N orthogonal matrices, which implies

A is right rotationally invariant, meaning if we right multiply A by any deterministic

orthogonal matrix V0 then the distribution of AV0 is the same as A, i.e., AV0
d
= A.

We also assume that the quantities {x0,w, s,V } are all independent. In the large

system limit, we let N → ∞ and study the performance of VAMP averaged over

the random quantities {w, s,V }. We next introduce two important definitions the

denoiser g1 needs to satisfy.

Definition 1. A denoiser g(·, ·) is uniformly Lipschitz continuous if there exists con-

stants A, B and C > 0, such that ∀r1, r2 ∈ R
N , γ1, γ2 > 0 and N , we have,

‖g(r2, γ2)− g(r1, γ1)‖ ≤ (A+ B|γ2 − γ1|)‖r2 − r1‖+ C
√
N |γ2 − γ1|. (2.26)
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Definition 2. A denoiser g(·, ·) and vector u ∈ R
N are said to be convergent under

Gaussian noise if the following condition holds: Let z1, z2 ∈ R
N be two i.i.d. sequences

with

[
z1

z2

]
∼ N (0,S ⊗ I) for some positive definite matrix S ∈ R

2×2. Then, all the

following limits must exist almost surely ∀ γ1, γ2 > 0, S:

lim
N→∞

1

N
g(u+ z1, γ1)

Tg(u+ z2, γ2), lim
N→∞

1

N
g(u+ z1, γ1)

Tu, (2.27a)

lim
N→∞

1

N
uTz1, lim

N→∞

1

N
‖u‖2 (2.27b)

lim
N→∞

〈∇g(u+ z1, γ1)〉 =
1

NS12

g(u+ z1, γ1)
Tz2. (2.27c)

Moreover, the limiting values are continuous in S, γ1 and γ2.

Several denoisers used in practice satisfy the above definitions. In Appendix A.1,

we show that the singular value thresholding denoiser, commonly used in low rank

matrix recovery [16], satisfy (2.26) and (2.27a).

Given a denoiser satisfying definitions 1 and 2, and an assumed noise precision

γw, we run Algorithm 1 with the initialization,

r0
1 = x0 +N (0, τ 01 I), (2.28)

for some initial error variance τ 01 . In addition, we assume

lim
N→∞

γ0
1 = γ0

1, (2.29)

almost surely for some γ0
1 ≥ 0. To measure the performance of VAMP, we define two

error functions, E1(·) and E2(·). The error function E1(·),

E1(γ1, τ1) , lim
N→∞

1

N
‖g1(x0 + z1, γ1)− x0‖2 (2.30a)

z1 ∼ N (0, τ1I) (2.30b)

19



characterizes the MSE of the denoiser g1(·, ·) whereas E2(·),

E2(γ2, τ2) , lim
N→∞

1

N
E ‖g2(x0 + z2, γ2)− x0‖2 (2.31a)

z2 ∼ N (0, τ2I) (2.31b)

y = Ax0 +N (0, γ−1
w0I). (2.31c)

characterizes the MSE of the linear estimator g2(·, ·). The limit (2.30b) exists almost

surely due to the assumption of g1(·, ·) being convergent under Gaussian noise. We

also define the sensitivity functions as

Ai(γi, τi) := lim
N→∞

〈∇gi(x0 + zi, γi)〉, zi ∼ N (0, τiI). (2.32)

2.4.2 State Evolution of Non-Separable VAMP

Consider the following error vectors in VAMP,

pt , rt
1 − x0 (2.33a)

qt , V T(rt
2 − x0). (2.33b)

At iteration t, the error in the input to the denoiser g1(·, ·) is pt and the transformed

error in the input to the LMMSE estimator g2(·, ·) is qt. In the state evolution

analysis, we show that asymptotically these errors are Gaussian. Moreover, we can

also exactly predict the error precisions (2.33) via the following recursive scalar state

evolution equations initialized with t = 0, τ 01 in (2.28) and γ0
1 in (2.29):

αt
1 = A1(γ

t
1, τ

t
1), ηt1 =

γt
1

αt
1

, γt
2 = ηt1 − γt

1 (2.34a)

τ t2 =
1

(1− αt
1)

2

[
E1(γt

1, τ
t
1)− (αt

1)
2τ t1
]
, (2.34b)

αt
2 = A2(γ

t
2, τ

t
2), ηt2 =

γt
2

αt
2

, γt+1
1 = ηt2 − γt

2 (2.34c)

τ t+1
1 =

1

(1− αt
2)

2

[
E2(γt

2, τ
t
2)− (αt

2)
2τ t2
]

(2.34d)
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We can now state our main result.

Theorem 1. Assume that the true vector x0 and the denoiser g2(·, ·) satisfies def-

initions 1 and 2. Also assume that for all iterations t, the solution αt
1 from the SE

equations (2.34) satisfies αt
1 ∈ (0, 1) and γik > 0. Then,

(a) The error vectors pt and qt defined in (2.33) satisfy,

lim
N→∞

1

N
‖pt − p̃t‖2 = 0 (2.35)

lim
N→∞

1

N
‖qt − q̃t‖2 = 0 (2.36)

where, p̃t ∼ N (0, τ t1I), q̃
t ∼ N (0, τ t2I) and p̃t, q̃t are independent.

(b) For any iteration t, and i = 1, 2, we have, almost surely

lim
N→∞

1

N
‖xt

i − x0‖2 =
1

ηti
, lim

N→∞
(αt

i, η
t
i , γ

t
i) = (αt

i, η
t
i, γ

t
i). (2.37)

Proof. See [35].

Theorem 1 thus shows that the error vectors pt and qt in (2.33) are approximately

i.i.d. Gaussian in a certain high dimensional limit. This result is an extension of the

main result in [73] from separable denoisers to non-separable denoisers. The error

variances and the mean squared error (MSE) of the VAMP estimates (xt
1,x

t
2) can be

exactly predicted by (2.34), which are the same as the SE equations in [73].

2.5 Numerical Experiments

2.5.1 Image Recovery via Non-Separable VAMP

We consider the problem of recovering an image x0 ∈ R
N from measurements

y = Ax0 + w ∈ R
M when M ≪ N . This problem is commonly seen in computed
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original PSNR: 34.03 dB

Figure 2.1: Image reconstruction using BM3D-VAMP at undersampling ratio of 0.5.

tomography, magnetic resonance imaging, etc., where A depends on the application.

In this experiment, we provide empirical evidence of the state evolution in VAMP.

We randomly generated A ∈ R
M×N from i.i.d. N (0, 1) for M/N = 0.5 and set the

noise precision γw that achieved 40 dB signal to noise ratio (SNR),

SNR ,
E ‖Ax0‖2
E ‖w‖2 . (2.38)

We used the Barbara image of size 128×128 (i.e., N = 1282) as the true vector x0 and

BM3D [26] as the denoiser g1(·, ·) in VAMP. Figure 2.2 shows the PSNR1 predicted

by the state evolution and the PSNR in VAMP at every iteration averaged over 10

random draws of A and w. The state evolution accurately predicts the PSNR in

VAMP at every iteration.

1We define the PSNR as
maxi |x0,i|
‖x̂−x0‖

.
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Figure 2.2: SE prediction in VAMP for image recovery

2.5.2 Bilinear Estimation via Lifting

We now use the standard linear inverse model (2.1) to tackle problems in bilin-

ear estimation through a technique known as “lifting” [3, 23, 28, 51]. In doing so,

we are motivated by applications like blind deconvolution [11], self-calibration [51],

compressed sensing (CS) with matrix uncertainty [105] and joint channel-symbol es-

timation [88]. All cases yield measurements y of the form

y =
(∑L

l=1 blAl

)
c+w ∈ R

M , (2.39)

where {Al}Ll=1 are known, w ∼ N (0, I/γw), and the objective is to recover both

b , [b1, . . . , bL]
T and c ∈ R

P . This bilinear problem can be “lifted” into a linear
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Figure 2.3: SE prediction in VAMP for CS with matrix uncertainty

problem of the form (2.1) by setting

A = [A1, . . . ,AL] ∈ R
M×LP (2.40a)

x = vec(cbT) ∈ R
LP , (2.40b)

where vec(X) vectorizes X by concatenating its columns. When b and c are i.i.d.

with known priors, the MMSE denoiser g1(r1, γ1) = E(x|r1 = x + N (0, I/γ1)) can

be implemented near-optimally by the rank-one AMP algorithm from [72] (see also

[30, 48, 55]), with divergence estimated as in [56].

We first consider CS with matrix uncertainty [105], where b1 is known. For these

experiments, we generated the unknown {bl}Ll=2 as i.i.d. N (0, 1) and the unknown

c ∈ R
P as K-sparse with N (0, 1) nonzero entries. For b1 =

√
20, L = 11, P = 256,

K = 10, i.i.d. N (0, 1) matrices {Ai}, and SNR = 40 dB, Fig. 2.3 shows that the
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NMSE on x of lifted VAMP is very close to its SE prediction. We then compared

lifted VAMP to PBiGAMP from [66], which applies AMP directly to the (non-lifted)

bilinear problem, and to WSS-TLS from [105], which uses non-convex optimization.

We also compared to MMSE estimation of b under oracle knowledge of c, and MMSE

estimation of c under oracle knowledge of support(c) and b. Fig. 2.4 shows the

normalized MSE on b and c versus sampling ratio M/P ,

NMSE(b̂) ,
E ‖b̂− b‖2
E ‖b‖2 . (2.41)

This figure demonstrates that lifted VAMP and PBiGAMP perform close to the

oracles and much better than WSS-TLS.

Although lifted VAMP performs similarly to PBiGAMP in Fig. 2.4, its advantage

over PBiGAMP becomes apparent with non-i.i.d. A. For illustration, we repeated the

previous experiment, but with A constructed using the SVD A = U Diag(s)V T with

Haar distributed U and V and geometrically spaced s. Also, to make the problem

more difficult, we set b1 = 1. Figure 2.5 shows the normalized MSE on b and c versus

cond(A) at M/P = 0.6. There it can be seen that lifted VAMP is much more robust

than PBiGAMP to the conditioning of A.

We next consider the self-calibration problem [51], where the measurements take

the form

y = Diag(Hb)Ψc+w ∈ R
M . (2.42)

Here the matrices H ∈ R
M×L and Ψ ∈ R

M×P are known and the objective is to

recover the unknown vectors b and c. Physically, the vector Hb represents unknown

calibration gains that lie in a known subspace, specified by H . Note that (2.42) is
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an instance of (2.39) with Al = Diag(hl)Ψ, where hl denotes the lth column of H .

Different from “CS with matrix uncertainty”, all elements in b are now unknown,
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Figure 2.6: Success rate vs. sparsity K and subspace dimension L in self-calibration

and so WSS-TLS [105] cannot be applied. Instead, we compare lifted VAMP to the

SparseLift approach from [51], which is based on convex relaxation and has provable

guarantees.

For our experiment, we generated Ψ and b ∈ R
L as i.i.d. N (0, 1); c as K-sparse

with N (0, 1) nonzero entries; H as randomly chosen columns of a Hadamard matrix;

and w = 0. Figure 2.6 plots the success rate versus L and K, where “success” is

defined as E ‖ĉb̂T − cbT‖2F/E ‖cbT‖2F < −60 dB. The figure shows that, relative to

SparseLift, lifted VAMP gives successful recoveries for a wider range of L and K.
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Chapter 3: Bilinear Recovery using Adaptive Vector

Approximate Message Passing

3.1 Introduction

In this chapter, we are interested in problems that can be formulated as estimation

of an unknown structured matrix Z from noisy or incomplete measurements. The

type of structure in Z determines the specific subproblem to be solved.

For example, when Z has a low-rank structure and only a subset of its entries are

observed, the problem is known as matrix completion [21]. When Z = L+S for low-

rank L and sparse S, the problem of estimating L and S is known as robust principle

components analysis (RPCA) [20]. When Z = BC with sparse C, the problem of

estimating B and C is known as dictionary learning [81]. When Z = BC with

nonnegative B and C, the problem is known as nonnegative matrix factorization

(NMF) [47].

Sometimes Z has a more complicated structure. For example, the problems of

self-calibration and blind (circular) deconvolution [51] can be formulated using Z =

Diag(Hb)ΨC, where H and Ψ are known and b and C are to be estimated. The

problem of compressive sensing (CS) with matrix uncertainty [105] can be formulated

using z =
∑

i biAic, where {Ai} are known and where b and sparse c are to be
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estimated. The latter covers the problem of joint channel-symbol estimation [43], in

which case bi are the data symbols, c contains (possibly sparse) channel coefficients,

and the known {Ai} are determined by the modulation scheme. The more general

problem of matrix CS [22, 100] results from

zm = tr{AT

m(L+ S)} for m = 1, . . . ,M, (3.1)

where {Am} are known and the goal is to estimate low-rank L and sparse S.

3.2 Prior Work

Many algorithms have been developed to solve the above problems. Some solve

a convex relaxation of the original problem, while others attack non-convex formula-

tions via alternating methods, greedy methods, variational methods, message-passing

methods, and other techniques.

For matrix completion, well-known approaches include the nuclear-norm-based

convex optimization method IALM [50], the non-convex successive over-relaxation

approach LMAFit [101], the Grassmanian gradient-descent approach GROUSE [5],

the greedy hard-thresholding approach Matrix-ALPS [46], and the variational-Bayes

method VSBL [4]. For RPCA, there are also versions of IALM [50], LMaFit [101],

and VSBL [4], as well as a robust cousin of GROUSE, called GRASTA [39]. For

dictionary learning, there is the greedy K-SVD algorithm [2], the online SPAMS

approach [54], and the ER-SpUD approach from [87]. A unified approach to matrix

completion, RPCA, and dictionary learning was proposed in [42, 67, 68] using an

extension of the approximate message-passing (AMP) methodology from [32,71]. The

resulting “bilinear generalized AMP” (BiGAMP) algorithm was compared to the

aforementioned methods in [68] and found (empirically) to be competitive, if not
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superior, in phase transition and runtime. A related approach known as LowRAMP

was proposed [55] and analyzed in [49,59].

For self-calibration and blind deconvolution, well-known approaches include the

convex relaxations from [3,13,51] and the alternating method from [40]. For CS with

matrix uncertainty, there is the award-winning non-convex method [105]. For ma-

trix CS, the well-known papers [1, 22, 102] proposed convex approaches and [46, 100]

proposed greedy approaches. See the recent overview [28] for many other works. An

AMP-based approach to self-calibration, blind deconvolution, CS with matrix uncer-

tainty, and matrix CS was proposed in [66] and analyzed in [85]. This “parametric

BiGAMP” (PBiGAMP) was compared to the above works in [66] and found to yield

improved empirical phase transitions.

More recently, AMP methods for bilinear inference were proposed using the “lift-

ing” approach (see, e.g., [3,23,28,51] for seminal papers on lifting). We used the lifting

method in chapter 2 to solve some bilinear problems by framing it as a linear inverse

problem. We illustrate the main idea behind lifting here. Suppose the measurement

vector y ∈ R
M takes the form

y =

Q∑

i=1

N∑

j=1

biai,jcj +w, (3.2)
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where ai,j ∈ R
M is known for all i, j and the goal is to recover b = [b1, . . . , bQ]

T and

c = [c1, . . . , cN ]
T in the presence of white noise w. Rewriting the measurements as

y =

Q∑

i=1

bi
[
ai,1, · · · ,ai,N

]
︸ ︷︷ ︸

, Ai

c+w (3.3)

=
[
A1 · · ·AQ

]
︸ ︷︷ ︸

, A



b1c
...

bQc


+w (3.4)

= Ax+w for x = b⊗ c = vec(cbT), (3.5)

we see that the noisy bilinear recovery problem (3.2) can be rewritten as the noisy

linear recovery problem (3.5) with a rank-one structure on (the matrix form of) x.

Thus, if this low-rank signal structure can be exploited by a linear inference algorithm,

then bilinear inference can be accomplished. This is precisely what was proposed in

[80], building on the non-separable-denoising version of the AMP algorithm from [56].

A rigorous analysis of “lifted AMP” was presented in [12].

The trouble with AMP is that its behavior is understood only in the case of

large [83] or infinitely large, i.i.d. (sub) Gaussian A [8,9]. Even small deviations from

this scenario (e.g., mildly ill-conditioned and/or non-zero-mean A) can cause AMP

to diverge [18, 74, 96]. The Vector AMP (VAMP) algorithm discussed in chapter 2

addresses this issue. In [75], it was first established that, if A is an infinitely large

right-rotationally invariant2 random matrix and the denoising function used by VAMP

is separable and Lipschitz, then VAMP’s performance can be exactly predicted by

a scalar state-evolution that also provides testable conditions for optimality. Since

the class of right-rotationally invariant matrices is much larger than the class of

2If A is right-rotationally invariant then its singular value decomposition A = USV T has Haar
distributed V , i.e., V is uniformly distributed over the group of orthogonal matrices.
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i.i.d. Gaussian matrices, VAMP is much more robust than AMP with regards to

the construction of A. For example, VAMP has no problem with ill-conditioned or

mean-shifted matrices [75].

In chapter 2 Sec. 2.4, we performed a rigorous analysis of VAMP under non-

separable Lipschitz denoisers, showing that—here too—VAMP’s behavior is exactly

predicted by a scalar state-evolution when A is infinitely large and right-rotationally

invariant. Moreover, we also demonstrated the success of lifted VAMP on bilinear

problems such as self-calibration and CS with matrix uncertainty. In addition, we

gave evidence that, like AMP, the PBiGAMP algorithm is sensitive to deviations from

the i.i.d. assumptions used in its derivation [66] and analysis [85]. For this reason,

lifted VAMP significantly outperformed PBiGAMP in some cases.

In our numerical experiments (Sec. 2.5), we showed that lifted VAMP has good

performance and a rigorous analyses under infinitely large right-rotationally invariant

random A. However, it suffers from computational issues brought on by the lifting

itself: The N + Q unknowns [b, c] in the bilinear problem (3.2) manifest as NQ

unknowns x after lifting to (3.5). This is a serious problem when N and Q are both

large. As a concrete example, consider the application of lifting to (square) dictionary

learning, where the goal is to recover B ∈ R
N×N and sparse C ∈ R

N×L from noisy

measurements Y = BC +W . This bilinear relationship can be lifted via

Y =
∑

ij

bi,jAi,jC +W (3.6)

= [A1,1 · · ·AN,N ]︸ ︷︷ ︸
, A ∈ R

N×N3

(
b⊗C

)
︸ ︷︷ ︸
, X ∈ R

N3×L

+W , (3.7)

whereAi,j ∈ R
N×N is constructed with a 1 in the (i, j)th position and zeros elsewhere,

and where b = [b1,1, . . . , bN,N ]
T ∈ R

N2

. Even at the relatively small patch size of 8×8
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(i.e., N = 64), the matrix A has dimension 64×262 144, and the unknown matrix X

has dimension 262 144×L. The rule-of-thumb L = 5N lnN [87] then gives L = 1331,

in which caseX contains 3.5×108 entries, which leads to difficulties with computation

and memory.

3.3 Contributions

In this chapter, we present a novel VAMP-based approach to bilinear recovery.

With the aim of computational efficiency, we avoid lifting and instead build on the

recently proposed Adaptive VAMP framework from [37]. However, different from [37],

which focused on noisy linear recovery, we focus on noisy bilinear recovery.

In particular, we focus on recovering the unknown parameters {bi}Qi=1 and the

unknown random matrix C ∈ R
N×L from noisy measurements Y ∈ R

M×L of the

form

Y =

Q∑

i=1

biAiC +W , (3.8)

where {Ai} are known and W is additive white Gaussian noise (AWGN). Note

that (3.8) is a multiple-measurement vector (MMV) extension of (3.3), and that

it covers all of the motivating problems discussed in Sec. 3.1. For example, in self-

calibration, where we estimate b and C from Y = Diag(Hb)ΨC + W , we can

set Ai = Diag(hi)Ψ, where hi is the ith column of H . Or, in dictionary learning,

where we estimate B and C from Y = BC +W , we can write B =
∑MN

i=1 biAi for

Ai = e〈i−1〉MeT

⌊(i−1)/M⌋, where 〈i〉M denotes i-modulo-M , ⌊·⌋ denotes floor, and {ei}

is the standard basis.
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When deriving3 the proposed method, we treat {bi} as deterministic unknowns

and the entries of C as random variables. The prior distribution on C is assumed to

be known up to some (possibly) unknown hyperparameters, which are learned jointly

with {bi} and C. Also, W is treated as additive white Gaussian noise (AWGN) with

an unknown variance that is also learned. More details are provided in the sequel.

We show (empirically) that the proposed Bilinear Adaptive VAMP (BAd-VAMP)

method performs as well as the EM-PBiGAMP algorithm from [66], with regard to

accuracy and computational complexity, when the underlying matrices are i.i.d., as

assumed for the derivation of PBiGAMP. However, we will show that BAd-VAMP

outperforms EM-PBiGAMP when the underlying matrices become ill-conditioned.

In the ill-conditioned case, we show that BAd-VAMP performs as well as, and some-

times significantly better than, lifted VAMP. However, BAd-VAMP is much more

computationally efficient due to its avoidance of lifting. In this sense, the proposed

BAd-VAMP is shown to be accurate, robust, and computationally efficient.

3.4 Problem Formulation

In an effort to make our algorithmic development more consistent with our discus-

sion on VAMP in chapter 2, we now make the following notational changes relative

to (3.8):

(a) We will use the notation A(b) ,
∑

i biAi to be concise.

(b) The quantities bi and C in (3.8) will be changed to θA,i and X respectively.

3Although the derivation treats the entries of C as random variables and the associated denoiser
as Bayesian, the final algorithm is more general in that it only requires the denoiser to be Lipschitz.
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We can thus state our problem of interest as follows: estimate the matrix X ∈

R
N×L and learn the parameters Θ , {θA,θx, γw} in the statistical model

Y = A(θA)X +W (3.9a)

xl ∼ px(·;θx) ∀l ∈ {1, . . . , L} (3.9b)

wml
i.i.d.∼ N (0, γ−1

w ), (3.9c)

where A(·) is a known matrix-valued linear function, and px(·;θx) is a prior density

on X parameterized by the unknown vector θx. Here, γw is the noise precision, i.e.,

the inverse noise variance.

More precisely, we aim to compute the maximimum-likelihood (ML) estimate of

Θ and, under that estimate, compute the minimum mean-squared error (MMSE)

estimate of X, i.e.,

Θ̂ML = argmax
Θ

pY(Y ;Θ) (3.10)

X̂MMSE = E[X|Y ; Θ̂ML]. (3.11)

In (3.10), pY(Y ;Θ) is the likelihood function of Θ, which can be written as

pY(Y ;Θ) =

∫
pX(X;Θ) pY|X(Y |X;Θ) dX. (3.12)

In (3.11), the expectation is taken over the posterior density

pX|Y(X|Y ; Θ̂ML) =
pX(X; Θ̂ML)pY|X(Y |X; Θ̂ML)

pY(Y ; Θ̂ML)
. (3.13)

The statistical model (3.9) implies that4

pY|X(Y |X;Θ) =
L∏

l=1

py|x(yl|xl;Θ) (3.14)

4In (3.14)-(3.16), to promote notational simplicity, the left side of the equation is written using
Θ even though the right side depends on a subset of Θ.
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where each factor becomes

py|x(y|x;Θ) = N
(
y;A(θA)x, I/γw

)
. (3.15)

Since the columns {xl}Ll=1 are independently drawn from density px(·;θx), we have

pX(X;Θ) =
L∏

l=1

px(xl;θx) (3.16)

for some density px(·;θx) parameterized by θx. In this case, the posterior density pX|Y

decouples across the columns of X and Y as

pX|Y(X|Y ;Θ) ∝
L∏

l=1

px(xl;Θ)py|x(yl|xl;Θ). (3.17)

3.5 Expectation Maximization

We can use maximum likelihood (ML) estimation to learn the unknown parameters

Θ in (3.9). From (3.10) and (3.12), we have

Θ̂ML = argmin
Θ

− ln

∫
pX(X;Θ)pY|X(Y |X;Θ) dX, (3.18)

but (3.18) is impractical to optimize directly due to the high dimensional integral.

Expectation-maximization (EM) [29] is a well known iterative approach to ML

that alternates between the following two steps:

(a) Minimizing an upper-bound of the negative log-likelihood.

(b) Tightening the upper-bound.

The EM algorithm is usually written as

Q(Θ; Θ̂t) , −E
[
ln pX,Y(X,Y ;Θ)

∣∣Y ; Θ̂t
]

(3.19a)

Θ̂t+1 = argmin
Θ

Q(Θ; Θ̂t). (3.19b)
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Letting qt = pX|Y(·|Y ; Θ̂t), we can write

Q(Θ; Θ̂t) = −E
[
ln pX(X;Θ)

∣∣Y ; Θ̂t
]

− E
[
ln pY|X(Y |X;Θ)

∣∣Y ; Θ̂t
]

(3.20a)

= −E
[
ln pX(X;Θ)

∣∣ qt
]

− E
[
ln pY|X(Y |X;Θ)

∣∣ qt] (3.20b)

= J(qt, qt, qt;Θ) + const. (3.20c)

where J is the Gibbs free energy from (2.13) where there were no unknown parameters.

In the presence of unknown parameters Θ, it takes the form

J(q1, q2, q3;Θ) , DKL(q1‖pX(·,Θ)) +DKL(q2‖pY|X(Y |·;Θ)) +H(q3). (3.21)

Thus, (3.19) can also be written as the following two steps [61]:

qt = pX|Y(·|Y ; Θ̂t) (3.22a)

Θ̂t+1 = argmin
Θ

J(qt, qt, qt;Θ). (3.22b)

EM is an type of Majorization-Minimization algorithm as it minimizes an upper

bound to the actual cost function that we want to minimize. We can show that

J(qt, qt, qt;Θ) is an upper bound on − ln pY(Y ;Θ) for any qt since

J(qt, qt, qt;Θ) = − ln pY(Y ;Θ) +DKL(q
t ‖ pY|X(Y |·;Θ)) (3.23)

(a)

≥ − ln pY(Y ;Θ), (3.24)

where (a) follows from DKL ≥ 0 by construction. Thus, while the specific choice of qt

in (3.22a) yields a tight upper bound in that

J(qt, qt, qt; Θ̂t) = − ln pY(Y ; Θ̂t), (3.25)
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Algorithm 3 Bilinear EM-VAMP

1: initialize:

∀l : r0
1,l, γ

0
1,l,θ

0
x,θ

0
A, γ

0
w

2: for t = 0, . . . , Tmax do

3: ∀l : xt
1,l = g1(r

t
1,l, γ

t
1,l;θ

t
x)

4: ∀l : 1/ηt1,l = 〈g′
1(r

t
1,l, γ

t
1,l;θ

t
x)〉/γt

1,l

5: qt1(X) ∝∏L
l=1 px(xl;θ

t
x)e

− 1

2
γt
1,l‖xl−rt

1,l‖
2

6: θt+1
x = argmaxθx E[ln pX(X;θx)|qt1]

7: ∀l : γt
2,l = ηt1,l − γt

1,l

8: ∀l : rt
2,l = (ηt1,lx

t
1,l − γt

1,lr
t
1,l)/γ

t
2,l

9: ∀l : xt
2,l = g2,l(r

t
2,l, γ

t
2,l;θ

t
A, γ

t
w)

10: ∀l : 1/ηt2,l = 〈g′
2,l(r

t
2,l, γ

t
2,l;θ

t
A, γ

t
w)〉/γt

2,l

11: qt2(X) ∝∏L
l=1 py|x(yl|xl;θ

t
A, γ

t
w)e

− 1

2
γt
2,l‖xl−rt

2,l‖
2

12: θt+1
A = argmaxθA E[ln pY|X(Y |X;θA, γ

t
w)|Y , qt2]

13: γt+1
w = argmaxγw E[ln pY|X(Y |X;θt+1

A , γw)|Y , qt2]

14: ∀l : γt+1
1,l = ηt2,l − γt

2,l

15: ∀l : rt+1
1,l = (ηt2,lx

t
2,l − γt

2,lr
t
2,l)/γ

t+1
1,l

16: end for

other choices of bounding qt can also be used in EM [61]. EM is used in many pa-

rameter estimation problems in signal processing most notable being training hidden

Markov Models in speech [69]. In the next section, we will use the variational inter-

pretation of EM to develop an algorithm to solve the bilinear recovery problem in

(3.9).

3.6 Bilinear EM-VAMP

From the descriptions of VAMP in chapter 2 and EM algorithm in Sec. 3.5, we

see that both the algorithms minimize the same Gibbs free energy cost J(q1, q2, q3;Θ)

from (3.21), but w.r.t. different variables. VAMP minimizes J w.r.t. the beliefs

{q1, q2, q3} under the first and second moment-matching constraints for a given value

of Θ. Meanwhile, EM minimizes J w.r.t. the parameters Θ for a given beliefs
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{q1, q2, q3}. As a result, the two approaches can be straightforwardly merged for

joint estimation of {q1, q2, q3} and Θ. In doing so, the goal is to solve the following

constrained optimization problem

argmin
Θ,q1

min
q2

max
q3

J(q1, q2, q3;Θ) (3.26a)

s.t. E[x|q1] = E[x|q2] = E[x|q3] (3.26b)

tr{Cov[x|q1]} = tr{Cov[x|q2]} = tr{Cov[x|q3]}, (3.26c)

and the proposed methodology is to “interleave” the VAMP and EM algorithms, as

specified in Alg. 3. In lines 3-4 of Alg. 3, the estimation function g1 is similar to that

in VAMP (2.17) but with parameters θx,

g1(r1,l, γ1,l;θx) ,

∫
x px(x;θx)N (x; r1,l, I/γ1,l) dx∫
px(x;θx)N (x; r1,l, I/γ1,l) dx

. (3.27)

And in lines 9-10, the estimation function g2,l is the MMV version of the linear

estimator g2 from (2.18) and it is defined as

g2,l(r2,l, γ2,l;θA, γw) ,

∫
x py|x(yl|x;θA, γw)N (x; r2,l, I/γ2,l) dx∫
py|x(yl|x;θA, γw)N (x; r2,l, I/γ2,l) dx

. (3.28)

It is the LMMSE estimator applied on each column xl in the model

yl = A(θA)xl +wl (3.29a)

xl ∼ N (r2,l, I/γ2,l) (3.29b)

wl ∼ N (0, I/γw). (3.29c)

The other lines in Alg. 3 will be detailed in sections from 3.7.1 to 3.7.3.
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3.7 Bilinear Adaptive VAMP

Assume at every iteration t, the following conditions are satisfied in BAdVAMP

i) The matrix A(θt
A) is infinitely large and right-rotationally invariant.

ii) The estimation functions g1 and {g2,l}Ll=1 are “matched” (i.e., MMSE) for the

statistical model generating (X,Y ).

Then, the VAMP state-evolution from (2.34) shows that at every iteration t, the

VAMP quantities {(rt
1,l, γ

t
1,l, r

t
2,l, γ

t
2,l)}Ll=1 obey the statistical model

rt
1,l = xl +N (0, I/γt

1,l) ∀l (3.30a)

xl = rt
2,l +N (0, I/γt

2,l) ∀l, (3.30b)

where xl is the lth column of the true signal realization X that we aim to recover.

That is, rt
1,l is an AWGN-corrupted version of the true signal xl with known AWGN

precision γt
1,l, and the true signal xl is an AWGN-corrupted version of rt

2,l with known

AWGN precision γt
2,l. In the context of EM-VAMP under (3.9), this “matched”

condition requires that θt
A, θ

t
x, and γt

w are all perfect estimates. When θt
A, θ

t
x, or γ

t
w

are not perfect, so that g1 and g2,l are mismatched, the VAMP state-evolution shows

that rt
1,l is still an AWGN corrupted version of xl, but with an AWGN precision

different than γt
1,l.

In the mismatched case, the impact on EM-VAMP is the following. While the

algorithm is trying to learn Θ = {θA,θx, γw}, the value of γt
i,l does not correctly

characterize the noise precision in rt
i,l. As a result, the beliefs qt1 and qt2 in lines 5 and

11 of Alg. 3 become mismatched, which compromises the EM updates of Θt.

40



To remedy this situation, it was proposed in [45] (in the context of EM-GAMP

[97]) to explicitly estimate the precision of the AWGN corruption on rt
1,l and rt

2,l and

use it in place of the AMP-supplied estimates γt
1,l and γt

2,l. This approach was coined

“Adaptive” GAMP in [45] and later extended to (linear) Adaptive VAMP in [37].

For Bilinear Adaptive VAMP, the first goal is to replace the estimation of θt
x in

line 6 of Alg. 3 with the joint ML estimation

(θt
x,γ

t
1) = argmax

θx,γ1

p(Rt
1;γ1,θx) (3.31)

under the following statistical model

rt
1,l = xl +N (0, I/γ1,l) ∀l (3.32)

xl ∼ px(·;θx) ∀l, (3.33)

with independence across l = 1, . . . , L. For this subproblem, we propose to use (inner)

EM iterations indexed by τ , i.e.,

(θτ+1
x ,γτ+1

1 ) = argmax
θx,γ1

E
[
ln p(X,Rt

1;γ1,θx)
∣∣Rt

1;γ
τ
1 ,θ

τ
x

]
(3.34)

= argmax
θx,γ1

{
E
[
ln p(X;θx)

∣∣Rt
1;γ

τ
1 ,θ

τ
x

]

+ E
[
ln p(Rt

1|X;γ1)
∣∣Rt

1;γ
τ
1 ,θ

τ
x

]}
. (3.35)

From (3.32), we can write the following

p(Rt
1|X;γ1) =

L∏

l=1

p(rt
1,l|xl; γ1,l) (3.36)

=
L∏

l=1

N (rt
1,l;xl, I/γ1,l). (3.37)

The optimization problem in (3.34) decouples into

θτ+1
x = argmax

θx
E
[
ln p(X;θx)

∣∣Rt
1;γ

τ
1 ,θ

τ
x

]
(3.38)
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and

γτ+1
1 = argmax

γ1

E
[
ln p(Rt

1|X;γ1)
∣∣Rt

1;γ
τ
1 ,θ

τ
x

]
(3.39)

= argmax
γ1

L∑

l=1

E
[
ln p(rt

1,l|xl; γ1,l)
∣∣ rt

1,l; γ
τ
1,l,θ

τ
x

]
, (3.40)

where the latter optimization decouples further into

γτ+1
1,l = argmax

γ1,l

{
N

2
ln γ1,l −

γ1,l
2

E
[
‖xl − rt

1,l‖22
∣∣ rt

1,l; γ
τ
1,l,θ

τ
x

]}
(3.41)

= N
{
E
[
‖xl − rt

1,l‖22
∣∣ rt

1,l; γ
τ
1,l,θ

τ
x

]}−1
(3.42)

=

{
1

N

N∑

n=1

E
[
(xnl − rt1,nl)

2
∣∣ rt

1,l; γ
τ
1,l,θ

τ
x

]
}−1

(3.43)

=

{
1

N
‖xτ

1,l − rt
1,l‖2 +

1

ητ1,l

}−1

, (3.44)

for l = 1, . . . , L and

xτ
1,l , E

[
xl

∣∣rt
1,l; γ

τ
1,l,θ

τ
x

]
(3.45)

= g1(r
t
1,l, γ

τ
1,l;θ

τ
x) (3.46)

1/ητ1,l , tr
{
Cov

[
xl

∣∣rt
1,l; γ

τ
1,l,θ

τ
x

]}
/N (3.47)

= 〈g′
1(r

t
1,l, γ

τ
1,l;θ

τ
x)〉/γτ

1,l. (3.48)

Above, we detailed the re-estimation of γt
1. A similar procedure can be used for

re-estimation of the precisions γt
2. The resulting Bilinear Adaptive VAMP (BAd-

VAMP) is summarized in Alg. 4 using τ1,max EM iterations for the first inner loop

and τ2,max EM iterations for the second inner loop. To avoid the complications of

a dual-index notation (i.e., t and τ), we use only the single index t in Alg. 4 and

over-write the quantities in each inner loop. Note that, when τ1,max = τ2,max = 0,

BAd-VAMP (i.e., Alg. 4) reduces to bilinear EM-VAMP (i.e., Alg. 3). In practice, we
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noticed that re-estimating the precision γ1 is important especially in problems like

dictionary learning and often a single EM iteration for γ1 (i.e., τ1,max = 1) suffices.

Re-estimating the precisions γ2 in VAMP can be very computationally expensive as

it involves a matrix inversion, however, in many applications we noticed that γ2 is

often accurate and we can skip it.
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Algorithm 4 Bilinear Adaptive VAMP

1: initialize:

∀l : r0
1,l, γ

0
1,l,θ

0
x,θ

0
A, γ

0
w

2: for t = 0, . . . , Tmax do

3: for τ = 0, . . . , τ1,max do

4: ∀l : xt
1,l ← g1(r

t
1,l, γ

t
1,l;θ

t
x)

5: ∀l : 1/ηt1,l ← 〈g′
1(r

t
1,l, γ

t
1,l;θ

t
x)〉/γt

1,l

6: ∀l : 1/γt
1,l ← 1

N
‖xt

1,l − rt
1,l‖2 + 1/ηt1,l

7: qt1(X) ∝∏L
l=1 px(xl;θ

t
x)e

− 1

2
γt
1,l‖xl−rt

1,l‖
2

8: θt
x ← argmaxθx E[ln pX(X;θx)|qt1]

9: end for

10: θt+1
x = θt

x

11: ∀l : γt
2,l = ηt1,l − γt

1,l

12: ∀l : rt
2,l = (ηt1,lx

t
1,l − γt

1,lr
t
1,l)/γ

t
2,l

13: for τ = 0, . . . , τ2,max do

14: ∀l : xt
2,l ← g2,l(r

t
2,l, γ

t
2,l;θ

t
A, γ

t
w)

15: ∀l : 1/ηt2,l ← 〈g′
2,l(r

t
2,l, γ

t
2,l;θ

t
A, γ

t
w)〉/γt

2,l

16: ∀l : 1/γt
2,l ← 1

N
‖xt

2,l − rt
2,l‖2 + 1/ηt2,l

17: qt2(X) ∝∏l py|x(yl|xl;θ
t
A, γ

t
w)e

− 1

2
γt
2,l‖xl−rt

2,l‖
2

18: θt
A ← argmaxθA E[ln pY|X(Y |X;θA, γ

t
w)|Y , qt2]

19: γt
w ← argmaxγw E[ln pY|X(Y |X;θt

A, γw)|Y , qt2]
20: end for

21: θt+1
A = θt

A

22: γt+1
w = γt

w

23: ∀l : γt+1
1,l = ηt2,l − γt

2,l

24: ∀l : rt+1
1,l = (ηt2,lx

t
2,l − γt

2,lr
t
2,l)/γ

t+1
1,l

25: end for
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We now provide additional details on the steps in Alg. 4.

3.7.1 Estimating the Matrix X

Recalling the definition of g2,l in (3.28), the form of py|x in (3.15) implies that

g2,l(r
t
2,l, γ

t
2,l;θ

t
A, γ

t
w) = Ct

l

(
γt
2,lr

t
2,l + γt

wA(θt
A)

Tyl

)
(3.49)

〈g′
2,l(r

t
2,l, γ

t
2,l;θ

t
A, γ

t
w)〉 = γt

2,l tr
{
Ct

l

}
/N (3.50)

for the covariance matrix

Ct
l ,

(
γt
2,lIN + γt

wA(θt
A)

TA(θt
A)
)−1

. (3.51)

To avoid computing a separate matrix inverse (3.51) for each column l = 1, . . . , L,

one could instead compute the eigenvalue decomposition

A(θt
A)

TA(θt
A) = U t Diag(st)U tT, (3.52)

and then leverage the fact that

Ct
l =
(
γt
2,lI + γt

wU
t Diag(st)U tT

)−1
(3.53)

=
(
U t
(
γt
2,lI + γt

w Diag(st)
)
U tT

)−1
(3.54)

=U t Diag(γt
2,l1+ γt

ws
t)−1U tT, (3.55)

which reduces to the inversion of a diagonal matrix for each l = 1, . . . , L.
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3.7.2 Learning the Parameters θA

We now provide details on the update of θA line 18 of Alg. 4. Given the form of

pY|X in (3.14)-(3.15), we have that

ln pY|X(Y |X;θA, γw) =
ML
2

ln γw − γw
2
‖Y −A(θA)X‖2F + const (3.56)

= ML
2

ln γw − γw
2

(
tr{Y Y T} − 2 tr{A(θA)XY T}

+ tr{A(θA)XXTA(θA)
T}
)
+ const. (3.57)

Since the first and second moments of belief qt2 are the following

E
[
X
∣∣qt2
]
= X t

2 (3.58)

E
[
XXT

∣∣qt2
]
=

L∑

l=1

E
[
xlx

T

l

∣∣qt2,l
]
= X t

2X
t
2
T
+

L∑

l=1

Ct
l

︸ ︷︷ ︸
, Ct

, (3.59)

we have that

E
[
ln pY|X(Y |X;θA, γw)

∣∣Y , qt2
]

=
ML

2
ln γw −

γw
2

(
tr
{
Y Y T

}
− 2 tr

{
A(θA)X

t
2Y

T
}

+ tr
{
A(θA)X

t
2X

t
2
T
A(θA)

T
}
+ tr

{
A(θA)C

tA(θA)
T
})

(3.60)

=
ML

2
ln γw −

γw
2

(
‖Y −A(θA)X

t
2‖2F

+ tr
{
A(θA)C

tA(θA)
T
})

+ const. (3.61)

To maximize (3.61) over θA = [θA,1, . . . , θA,Q] with fixed γw, we consider the affine-

linear model

A(θA) = A0 +

Q∑

i=1

θA,iAi, (3.62)

46



noting that non-linear models could be handled using similar techniques. Plugging

(3.62) into (3.60), we get

E
[
ln pY|X(Y |X;θA, γw)

∣∣Y , qt2
]

= const− γw
2

Q∑

i=1

Q∑

j=1

θA,i tr{Ai(C
t +X t

2X
t
2
T
)AT

j }θA,j

− γw

Q∑

i=1

θA,i

(
tr{Ai(C

t +X t
2X

t
2
T
)AT

0 } − tr{AiX
t
2Y

T}
)

(3.63)

= −γw
2

(
θT

AH
tθA − 2θT

Aβ
t
)
+ const (3.64)

for the quantities H t and βt defined as

[H t]ij , tr
{
Ai(C

t +X t
2X

t
2
T
)AT

j

}
(3.65)

= tr
{
AT

j Ai(C
t +X t

2X
t
2
T
)
}

(3.66)

[βt]i , tr
{
AiX

t
2Y

T
}
− tr

{
Ai(C

t +X t
2X

t
2
T
)AT

0

}
(3.67)

= tr
{
Y TAiX

t
2

}
− tr

{
AT

0Ai(C
t +X t

2X
t
2
T
)
}
, (3.68)

where AT
j Ai and Y TAi can be pre-computed to speed up the algorithm. We can find

the maximizer of (3.64) by computing its gradient w.r.t. θA and setting it to zero.

We then get the update θt+1
A as

H tθt+1
A = βt (3.69)

⇒ θt+1
A = (H t)−1βt. (3.70)

A special case of (3.62) is where A(·) has no structure, i.e.,

A(θA) =
M∑

m=1

N∑

n=1

θA,m,neme
T

n . (3.71)

where em denotes the mth standard basis vector. In this case, it can be shown that

A(θt+1
A ) = Y X t

2
T
(
Ct +X t

2X
t
2
T
)−1

. (3.72)
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3.7.3 Learning the Noise Precision γw

We now provide details on the update of the noise precision γw in line 19 of Alg. 4.

To maximize (3.61) over γw with fixed θA = θt+1
A , we search for the values of γw that

zero the derivative of (3.61). The unique solution is straightforwardly shown to be

1/γt+1
w =

1

ML

(
‖Y −A(θt+1

A )X t
2‖2F + tr

{
A(θt+1

A )CtA(θt+1
A )T

})
. (3.73)

In Alg. 5, BAd-VAMP is rewritten with detailed expressions for the updates of

xt
2,l, η

t
2,l, θ

t
A, and γt

w.
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Algorithm 5 Bilinear Adaptive VAMP (Detailed)

1: initialize:

∀l : r0
1,l, γ

0
1,l,θ

0
x,θ

0
A, γ

0
w

2: for t = 0, . . . , Tmax do

3: for τ = 0, . . . , τ1,max do

4: ∀l : xt
1,l ← g1(r

t
1,l, γ

t
1,l;θ

t
x)

5: ∀l : 1/ηt1,l ← 〈g′
1(r

t
1,l, γ

t
1,l;θ

t
x)〉/γt

1,l

6: ∀l : 1/γt
1,l ← 1

N
‖xt

1,l − rt
1,l‖2 + 1/ηt1,l

7: qt1(X) ∝∏L
l=1 px(xl;θ

t
x)e

− 1

2
γt
1,l‖xl−rt

1,l‖
2

8: θt
x ← argmaxθx E[ln pX(X;θx)|qt1]

9: end for

10: θt+1
x = θt

x

11: ∀l : γt
2,l = ηt1,l − γt

1,l

12: ∀l : rt
2,l = (ηt1,lx

t
1,l − γt

1,lr
t
1,l)/γ

t
2,l

13: for τ = 0, . . . , τ2,max do

14: ∀l : Ct
l ←

(
γt
2,lIN + γt

wA(θt
A)

TA(θt
A)
)−1

15: ∀l : xt
2,l ← Ct

l

(
γt
2,lr

t
2,l + γt

wA(θt
A)

Tyl

)

16: ∀l : 1/ηt2,l ← tr{Ct
l }/N

17: Ct ←∑L
l=1C

t
l

18: ∀i, j : [H t]ij ← tr
{
AT

j Ai(C
t +X t

2X
t
2
T
)
}

19:
∀i : [βt]i ← tr

{
Y TAiX

t
2

}

− tr
{
AT

0Ai(C
t +X t

2X
t
2
T
)
}

20: θt
A ← (H t)−1βt

21:
1/γt

w ← 1
ML

(
‖Y −A(θt)X t

2‖2F
+tr

{
A(θt

A)C
tA(θt

A)
T
})

22: end for

23: θt+1
A = θt

A

24: γt+1
w = γt

w

25: ∀l : γt+1
1,l = ηt2,l − γt

2,l

26: ∀l : rt+1
1,l = (ηt2,lx

t
2,l − γt

2,lr
t
2,l)/γ

t+1
1,l

27: end for
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3.7.4 Algorithm Enhancements

We now propose several enhancements to the BAd-VAMP algorithm presented in

Alg. 4 and detailed in Alg. 5.

Damping

For fixed Θt and infinitely large right-rotationally invariant A(θt
A), the state-

evolution of VAMP guarantees its convergence. But when A(θt
A) deviates from this

assumption, damping the VAMP iterations can help maintain convergence [75]. With

damping, lines 25-26 of Alg. 5 (or lines 23-24 of Alg. 4) would be replaced by

γt+1
1,l = (1− ζ)γt

1,l + ζ(ηt2,l − γt
2,l) (3.74)

rt+1
1,l = (1− ζ)rt

1,l + ζ(ηt2,lx
t
2,l − γt

2,lr
t
2,l)/(η

t
2,l − γt

2,l) (3.75)

for some ζ ∈ (0, 1). We can perform a similar damping on {(rt
2,l, γ

t
2,l)}Ll=1 and replace

lines 11-12 of Alg. 5 (or lines 11-12 of Alg. 4) by the following,

γt
2,l = (1− ζ)γt−1

1,l + ζ(ηt1,l − γt
1,l) (3.76)

rt
1,l = (1− ζ)rt−1

1,l + ζ(ηt1,lx
t
1,l − γt

1,lr
t
1,l)/(η

t
1,l − γt

1,l). (3.77)

The case ζ = 1 corresponds to no damping.

Negative precisions

Sometimes the precisions {γ1,l, γ2,l}Ll=1 can be negative. To avoid the precisions

from being negative, we suggest to restrict them to the interval [γmin,∞), for very

small γmin > 0, in lines 11 and 25 of Alg. 5 (or lines 11 and 23 of Alg. 4).
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Restarts

Due to the non-convex nature of the bilinear inference problem, the algorithm

may get stuck at local minima or slowed by saddle points. To mitigate these issues,

it sometimes helps to restart the algorithm. For each restart, we suggest to initialize

θ0
A at the final estimate of θA returned by the previous run.

3.8 Relation to Previous Work

The proposed Bilinear Adaptive VAMP algorithm extends the (linear) Adaptive

VAMP algorithm of [37] from the case where A(θA) is known to the case where

A(θA) is unknown. In the known-A(θA) setting, where A(θA) is infinitely large and

right-rotationally invariant, it was rigorously established in [37] that Adaptive VAMP

obeys a state-evolution similar to that of VAMP, and that its estimates of {θx, γw}

are asymptotically consistent if certain identifiability conditions are met, i.e., they

converge to the true values as t → ∞. As future work, it would be interesting to

understand whether Bilinear Adaptive VAMP also obeys a state evolution for certain

classes of A(·).

The proposed BAd-VAMP algorithm targets the same class of bilinear recovery

problems as the EM-PBiGAMP algorithm from [66], and both leverage EM for au-

tomated hyperparameter tuning. The BiGAMP algorithm [67]- [68] is a special case

of the PBiGAMP algorithm [66]. BiGAMP applies to the recovery of A and X from

measurements of the form Y = AX +W , whereas PBiGAMP applies to the recov-

ery of b and X from Y = A(b)X + W under known affine linear A(·). Both can

be combined with EM for hyperparameter learning. Note that the “AMP” aspects

of these algorithms are fundamentally different. PBiGAMP treats the vectors {ai,j}
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in (3.2) as i.i.d. Gaussian for its derivation, whereas BAd-VAMP treats the matrix

A(b) =
∑Q

i=1 biAi as right rotationally-invariant for its derivation. The latter allows

more freedom in the singular values of A(b), which leads to increased robustness in

practice, as demonstrated by the numerical experiments in Sec. 3.9.

BAd-VAMP and lifted VAMP both leverage the VAMP approach from [75] to

solve bilinear inference problems. However, they do so in very different ways. As dis-

cussed in Sec. 3.1, lifted VAMP “lifts” the bilinear problem into a higher-dimensional

linear problem, and then uses non-separable denoising to jointly estimate b and c

in (3.5). An unfortunate consequence of lifting is a possibly significant increase in

computational complexity and memory. In contrast, BAd-VAMP avoids lifting, and

it employs EM to estimate b and VAMP to estimate c. Interestingly, Sec. 3.9 shows

BAd-VAMP performing equal or better to lifted VAMP in all experiments.
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3.9 Numerical Experiments

In this section, we present the results of numerical experiments that study the

behavior of the BAd-VAMP algorithm from Alg. 5, in comparison to other state-

of-the-art algorithms, on several bilinear recovery problems. In all cases, we ran

BAd-VAMP with τ1,max = 1 and τ2,max = 0 inner EM iterations and we assumed that

the signal prior px is fully known (i.e., θx is known). We nominally used a damping

coefficient of ζ = 0.8 and minimum precision of γmin = 10−6. We initialized BAd-

VAMP by γ0
w = 0.1, γ0

1,l = 10−3 ∀l, and we set r0
1,l and θ0

A to random vectors drawn

i.i.d. from N (0, 10) and N (0, 1) respectively. Unless otherwise noted, no restarts were

used in that experiment.

3.9.1 CS with Matrix Uncertainty

We consider the compressive sensing (CS) with matrix uncertainty [105] problem

that we discussed in Sec. 2.5.2. We describe the problem formulation here for con-

venience. The goal is to recover the K-sparse signal c ∈ R
N and the uncertainty

parameters b ∈ R
Q from length-M measurements y,

y = A(b)c+w (3.78a)

w ∼ N (0, I/γw) (3.78b)

A(b) = A0 +

Q∑

i=1

biAi, (3.78c)

where {Ai}Qi=0 are known matrices. For our experiments, we used Q = 10, N = 256

and K = 10. We selected the noise precision γw so that the SNR as defined is 40 dB,

SNR ,
E[‖A(b)c‖2]
E[‖w‖2] (3.79)

=
γw
M

E[‖A(b)c‖2]. (3.80)
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Figure 3.1: CS with matrix uncertainty: Median NMSE (over 50 trials) on signal c
and uncertainty parameters b versus sampling ratio M/N .

Also, the uncertainty parameters b were drawn N (0, I), and c was drawn with uni-

formly random support and with K non-zero elements from N (0, I). We measured

performance of our algorithm using the following metrics

NMSE(b̂) ,
‖b̂− b‖2
‖b‖2 (3.81)

NMSE(ĉ) ,
‖ĉ− c‖2
‖c‖2 . (3.82)

As a reference, we considered two oracle estimators: the MMSE estimator for b

assuming c is known, and the MMSE estimator for c assuming b and the support of

c are known.
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For our first experiment, the elements of {Ai}Qi=1 were drawn i.i.d. N (0, 1) and

the elements of A0 were drawn N (0, 20). BAd-VAMP was run for a maximum of 200

iterations with a maximum of 2 restarts and damping ζ = 0.86.

Figure 3.1 shows that the AMP-based algorithms gave near-oracle performance

for the tested range of M/N , although lifted VAMP performed slightly worse than the

others when M/N = 0.2. In contrast, the performance of WSS-TLS from the award-

winning paper [105] was significantly worse than the AMP approaches. WSS-TLS

aims to solve the non-convex optimization problem

(b̂, ĉ) = argmin
b,c

∥∥∥∥∥

(
A0 +

Q∑

i=1

biAi

)
c− y

∥∥∥∥∥

2

+ ‖b‖2/γw + λ‖c‖1 (3.83)

using alternating minimization. For WSS-TLS, we used oracle knowledge of γw, oracle

tuning of the regularization parameter λ, and code from the authors’ website.

For our second experiment, we tested algorithm’s robustness to non-zero mean in

A(b)5, since this is a known issue with many AMP algorithms [18, 74, 96]. For this,

we fixed the sampling ratio at M/N = 0.6, drew the elements of {Ai}Qi=1 from i.i.d.

N (µ, 1), and drew the elements of A0 from i.i.d. N (µ, 20). Figure 3.2 reports the

median NMSE versus mean µ, and shows that BAd-VAMP is much more robust to

µ > 0 than the other tested AMP algorithms as well as WSS-TLS.

Figure 3.3 shows the runtime of the algorithms in Figure 3.1. Our implementation

used MATLAB (R2015b) on an RHEL workstation with an 8-core Intel i7 processor.

Although, for WSS-TLS, we used a grid-search to optimize λ in (3.83), Figure 3.3

5For the simpler case where b is known and the objective is to recover c from y = Ac + w,
modifications of AMP that temporarily remove the mean from A have been proposed [96]. However,
it is not clear how to extend this approach to the bilinear problem of recovering b and c from
y = A(b)c+w.
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Figure 3.2: CS with matrix uncertainty: Median NMSE (over 50 trials) on signal c
and uncertainty parameters b versus mean of matrices Ai at M/N = 0.6.

only shows the runtime of WSS-TLS after λ was chosen. Figure 3.3 shows BAd-

VAMP running much faster than lifted VAMP and WSS-TLS, and slightly slower

than PBiGAMP.

3.9.2 Self-Calibration

We consider the self-calibration problem [51] that we also discussed earlier in

Sec. 2.5.2. We present the problem formulation here for convenience. The goal

is to recover the K-sparse signal vector c and the calibration parameters b from

measurements of the form y = Diag(Hb)Ψc with knownH ∈ R
M×Q andΨ ∈ R

M×N .

Here, Hb represents an unknown vector of gains on the measurements, where the gain

vector is believed to lie in the Q-dimensional subspace spanned by the columns of H .

For our experiment, M = 128, N = 256, Ψ and b where drawn i.i.d. N (0, 1), H was
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Figure 3.3: CS with matrix uncertainty: Median run-time in seconds (over 10 trials)
versus sampling ratio M/N .

constructed using Q randomly selected columns of the Hadamard matrix, and c was

drawn with uniformly random support and with K non-zero elements from N (0, I).

Figure 3.4 shows the rate of successful recovery versus subspace dimension Q and

sparsity K for several algorithms. A recovery (b̂, ĉ) was considered “successful” when

‖b̂ĉT − bcT‖2F/‖bcT‖2F ≤ −50 dB. From the figure, we see that the performance of

BAd-VAMP is similar to that of EM-PBiGAMP, and even slightly better when Q is

small and K is large. Meanwhile, BAd-VAMP appears significantly better than both

lifted VAMP and SparseLift from [51]. SparseLift is a convex relaxation with provable

guarantees [51]. For computational reasons (recall the discussion in Sec. 3.2), it was

difficult to simulate lifted VAMP for Q ≥ 10.
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3.9.3 Calibration in Tomography

We consider the problem of reconstructing an image from a sequence of tomo-

graphic projections, where the projections along each direction are scaled by an un-

known calibration gain. In particular, let Ψω be the tomographic projection matrix

corresponding to angle ω ∈ [0, π]. We used the matrix form of the Radon transform

instead of the operator form (i.e., Radon transform) to avoid numerical error when

implementing the adjoint. Our goal is to reconstruct the image x from measurements

y =



b1Ψω1

...
bKΨωK


x+w (3.84a)

w ∼ N (0, I/γw), (3.84b)

where bk ∼ N (1, σ2
b ) are the unknown gains unknown. Note that, by defining

Ak =




0
...

Ψωk

...
0




for k = 1, . . . , K (3.85)

we can write y = A(b)x+N (0, I/γw) for A(b) =
∑K

k=1 bkAk, which matches (3.8).

In an attempt to solve the above problem, we used BAd-VAMP to recover the

image x while simultaneously learning the calibration gains b. For this, we used BAd-

VAMP in “plug-and-play” mode briefly described in Sec. 1.1, where the BM3D image

denoiser [26] was used to implement the g1(·) function in Alg. 1. There is an inherent

scaling ambiguity of the problem, i.e., if (x̂, b̂) is a solution then so is (αx̂, α−1b̂) for

any α > 0. To avoid the scaling problem, we scaled the image estimate x̂ by the α

that minimized ‖x− αx̂‖ before computing the PSNR.

As baselines, we also tested the VAMP [75], total variation (TV) [10, 82] and

regularization-by-denoising (RED) [76,79] approaches (see descriptions below). These
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approaches all assume a noisy linear data model of the form y = Âx +N (0, γ−1
w I)

with known Â. To apply them to (3.84b), we considered two cases: the genie-

calibrated (GC) case, where a genie supplies the true gains b and the algorithm uses

Â = A(b), and the un-calibrated (UC) case, where b is unknown and the algorithms

assume Â = A(1). In the latter case, the Â-based model is mismatched to the

data-generation model (3.84b). For fair comparison, we scaled the GC and UC image

estimates x̂ by the α that minimized ‖x− αx̂‖2 before computing the PSNR.

We now provide additional details on the experimental setup. For x, we used the

modified Shepp-Logan phantom of size 64×64, shown in the top-left panel of Fig. 3.5.

For A(·), we used K = 25 projections spaced uniformly in ω ∈ [0, π]. The calibration

gains b
iid∼ N (1, σ2

b ) were generated using σb = 0.06, and the noise precision γw was set

to achieve an SNR of E[‖A(b)x‖2]/E[‖w‖2] = 40 dB. The TV method [82] computes

x̂ = argmin
x

{
1

2
‖y − Âx‖22 + λt‖∇x‖2,1

}
(3.86)

for the isotropic TV operator

‖∇x‖2,1 =
∑

i,j

√
(xi,j − xi,j−1)2 + (xi,j − xi−1,j)2. (3.87)

We solved (3.86) using FASTA [38], and tuned λt to maximize the PSNR. RED [76,79]

solves the fixed-point equation

ÂH(Âx̂− y) + λr(x̂− ρ(x̂, τ)) = 0 (3.88)

for x̂, where ρ(·, τ) is an image denoising algorithm with noise-variance τ . For our

experiment, we used BM3D for ρ(·, τ), solved (3.88) using the ADMM method from

[79] with 200 iterations, and tuned both λr and τ to maximize PSNR. For BAd-

VAMP, we initialized b to 1, used damping ζ = 0.1, assumed known noise precision
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Table 3.1: PSNR (dB) in the tomography experiment

measurements BAd-VAMP VAMP RED TV
genie calibrated (GC) — 39.57 36.56 33.27
un-calibrated (UC) 38.27 31.62 31.24 26.79

γw, and used at most 100 iterations. For VAMP, we initialized γ0
1 = 10−4 and used

at most 100 iterations.

Table 3.1 reports the median PSNR achieved by each algorithm across 10 random

draws of b and w, Fig. 3.5 shows example image recoveries, and Fig. 3.6 shows the

corresponding error images. From Table 3.1, we see that the PSNR performance of

BAd-VAMP (which does not know b) is nearly as good as genie-calibrated VAMP,

and 1.7 dB better than genie-calibrated RED. Furthermore, the PSNR performance

of BAd-VAMP is more than 6.6 dB better than un-calibrated VAMP and 7 dB bet-

ter than un-calibrated RED. The uncalibrated VAMP, RED, and TV recoveries in

Fig. 3.5 are plagued by either streaking artifacts and/or loss of detail (e.g., note the

disappearance of the small white dots in uncalibrated TV). But the BAdVAMP image

recovery in Fig. 3.5 shows no streaking artifacts and a high level of detail. Likewise,

Fig. 3.6 shows that TV has trouble correctly recovering the white outer ellipse, RED

has trouble in the interior region, but BAd-VAMP does well throughout.
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Original BAdVAMP: 38.54, 0.99

VAMP (GC): 39.22, 0.99 RED (GC): 35.79, 0.96 TV (GC): 31.87, 0.97

VAMP (UC): 32.02, 0.96 RED (UC): 30.11, 0.91 TV (UC): 25.22, 0.93

Figure 3.5: Calibration in tomography: Reconstruction PSNR in dB and SSIM of
64 × 64 Shepp-Logan phantom from 25 equally spaced tomographic projections. In
the genie-calibrated (GC) case, Â = A(b), while in the un-calibrated (UC) case,

Â = A(1).
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Figure 3.6: Calibration in tomography: Error images for the reconstructions shown
in Fig. 3.5.
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3.9.4 Noiseless Dictionary Learning

In dictionary learning (DL) [81], the goal is to find a dictionary matrix A ∈

R
M×N and a sparse matrix X ∈ R

N×L such that a given matrix Y ∈ R
M×L can

be approximately factored as Y ≈ AX. In this section, we test the proposed BAd-

VAMP algorithm for DL by generating Y = AX such that X has K-sparse columns,

and measuring the NMSE on the resulting estimates of A and X.

We consider two cases: i) where the true A is structured as A =
∑Q

i=1 biAi

with known {Ai}Qi=1 (recall (3.62)), and ii) where the true A is unstructured (recall

(3.71)). In either case, the pair (A,X) is recoverable only up to an ambiguity: a

scalar ambiguity in the structured case and a generalized permutation ambiguity in

the unstructured case. Thus, when measuring reconstruction quality, we consider

NMSE(Â) , min
λ∈R

‖A− λÂ‖2F
‖A‖2F

(3.89)

in the structured case and

NMSE(Â) , min
P∈P

‖A− ÂP ‖2F
‖A‖2F

(3.90)

in the unstructured case, where P denotes the set of generalized permutation matri-

ces.6 For our experiments, we drew the coefficients of {Ai}Qi=1 and b as i.i.d. N (0, 1)

with Q = N in the structured case, and we drew the coefficients of A as i.i.d. N (0, 1)

in the unstructured case.

In our first experiment, we fixed the sparsity rate at K/N = 0.2 and we varied

both the dictionary dimension N and the training length L. The top-right panel of

Fig. 3.7 suggests that, as the dimension N grows, a fixed training length L is sufficient

6If P is a generalized permutation matrix then P = ΠD, where Π is a permutation matrix and
D is a diagonal matrix.
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to successfully recover A in the structured case with Q = N . By “successfully

recover,” we mean that NMSE(Â) ≤ −50 dB. Note that this latter prescription

for L is consistent with the theoretical analysis in [87]. In the unstructured case, the

bottom panel of Figure 3.7 shows the median NMSE(Â) versys N when L = 6N lnN .

Together, the top-left and bottom panels of Fig. 3.7 suggest that a training length of

L = O(N lnN) suffices to successfully recover A.

In our second experiment, we focused on the unstructured case, fixed the training

length at L = 5N lnN , and varied both the dictionary dimension N and the sparsity

K in the columns of X. Figure 3.8 shows that BAd-VAMP performed similarly

to EM-BiGAMP [68] for all but very small N , and much better than K-SVD [2]

and SPAMS [54]. The advantage of BAd-VAMP over EM-BiGAMP for DL will be

illustrated in the sequel.

3.9.5 Noisy, Ill-Conditioned Dictionary Learning

In this section, we show the robustness of BAd-VAMP over EM-BiGAMP [67]

when learning ill-conditioned dictionaries from noisy measurements. To do so, we

generated the measurements as Y = AX+W and tested the algorithms in recovering

A and X (up to appropriate ambiguities). The elements of W were drawn i.i.d.

N (0, 1/γw) with γw chosen to achieve SNR , E[‖AX‖2F ]/E[‖W ‖2F ] = 40 dB. The

true dictionary was generated as A = U Diag(s)V T, where U and V were drawn

uniformly over the group of orthogonal matrices, and where the singular values in s

were chosen so that si/si−1 = ρ ∀i. The values of s0 and ρ were selected to obtain a

desired condition number κ(A) while also ensuring ‖A‖2F = N .
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Figure 3.9 reports median NMSE(Â) and NMSE(X̂) versus condition number

κ(A) for the recovery of A ∈ R
N×N and K-sparse X ∈ R

N×L from noisy measure-

ments Y . For this figure, we used K = 13, N = 64, L = 5N lnN , the unstructured

definition of NMSE(Â) from (3.90), and a similar definition for NMSE(X̂). In ad-

dition to showing the performance of BAd-VAMP and EM-PBiGAMP, the figure

shows the performance of the known-X oracle for the estimation of A, as well as the

known-A and known-support oracle for the estimation of X. Figure 3.9 shows that

EM-BiGAMP gave near-oracle NMSE for κ(A) ≤ 40, but its performance degraded

significantly for larger κ(A). In contrast, BAd-VAMP gave near-oracle NMSE for

κ(A) ≤ 110, which suggests increased robustness to ill-conditioned dictionaries A.
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Figure 3.7: BAd-VAMP dictionary learning with N × N dictionary A and N × L
code matrix X with sparsity rate K/N = 0.2. Top left: success-rate for unstructured
dictionary versus N and L. Top right: success-rate for structured dictionary with
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Chapter 4: Image Reconstruction in Magnetic Resonance

Imaging

4.1 Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive technique used in radiol-

ogy to generate internal images of the body. It uses a combination of strong static

magnetic field, gradient magnetic field, and a sequence of RF pulses to capture mea-

surements. The underlying physics of MRI is a complex quantum mechanical phe-

nomenon. In classical physics, a static magnetic field magnetizes the atomic nucleus

which causes all the nuclei to spin coherently at an angular frequency proportional

to the external magnetic field. When an RF pulse of the same frequency is applied,

the nuclei get excited to a higher energy state and upon relaxation emit signals mea-

sured by receiver coils in the MRI scanner. The gradient magnetic fields are used to

spatially encode the signal. Since our body has an abundance of Hydrogen atoms,

MRI mostly maps the location of water molecules and fat tissues in the body.

Unlike CT, which uses high energy ionizing X-rays, MRI is considered to be much

safer. MRI provides better contrast between fat, water, muscle and other soft tissue

structures, making it the most preferred imaging method for knee, brain, etc.
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There are several challenges in MRI. Data acquisition is a very slow process, e.g.,

an MRI scan of the pelvic area can take more than 60 minutes and the patient has

to remain still in a long narrow tube for the entire duration. Any small motion can

cause undesirable artifacts in the image. For this reason, there has been a lot of

research in accelerating MRI. The MRI scanner measures the image in the spatial

Fourier domain, also known as the “k-space”. In the ideal case, if we were to measure

the entire k-space, then we could reconstruct the image exactly by taking the inverse

Fourier transform of the measurements. However, in that case, the data acquisition

would be extremely slow. In accelerated MRI, we acquire a relatively small number

of samples in k-space and reconstruct the image from these few measurements. To

increase the number of measurements without compromising the acquisition time, a

popular technique is parallel MRI, in which k-space data is simultaneously acquired

using multiple receiver coils. Each receiver coil has a different sensitivity map, which

acts as a spatial encoding.

In this chapter, we will develop algorithms to reconstruct images in accelerated

MRI using the Approximate Message Passing framework, for both single-coil and

multicoil MRI. We will assume that the coil sensitivity maps are perfectly known. In

practice, they can be estimated with techniques like ESPIRIT [94].

4.2 Measurement Model

With known coil maps, we can formulate MRI image reconstruction as a linear

inverse problem. The measurements are noisy, subsampled, k-space data. In single-

coil MRI, the measurements acquired by the coil can be mathematically modeled as

71



y = SF︸︷︷︸
A

x+w, w ∼ N (0, I/γw) (4.1a)

⇒ y = Ax+w, (4.1b)

where F is the N × N 2D or 3D DFT matrix, S ∈ R
M×N is a sampling mask

constructed by selectingM random rows from theN×N identity matrix, andw ∈ C
M

is AWGN measurement noise. The ratio R , N/M is called the acceleration rate.

In parallel MRI, we have K > 1 receiver coils acquiring subsampled k-space data

points simultaneously. Each coil applies a spatial encoding represented by a diagonal

coil sensitivity matrix Ci and all the coils have the same sampling mask S. The

measurement yi from the ith coil can be modeled as

yi = SFCix+wi (4.2a)

wi ∼ N (0, I/γw). (4.2b)

We then stack all the coil measurements {yi}Ki=1 into a single column vector y which

yields



y1
...

yK




︸ ︷︷ ︸
y

=



SFC1

...
SFCK




︸ ︷︷ ︸
A

x+



w1
...

wK




︸ ︷︷ ︸
w

(4.3a)

⇒ y = Ax+w ∈ C
MK . (4.3b)

The sampling mask in k-space can take several forms; random uniformly chosen

points, non-uniform variable density [57], or random vertical or horizontal lines in

k-space with a fully sampled central region. The uniform and variable density sam-

pling masks make A in (4.3b) “incoherent”, which is helpful for compressive sensing
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Uniform Variable Density Cartesian

Figure 4.1: Example sampling masks for acceleration rate R = 4

based methods. Taking vertical lines in k-space sampling is called “Cartesian sam-

pling” and is the most dominant method in clinical practice, mainly due its robustness

to various system defects.

4.3 Signal Denoiser

From (4.1) and (4.3b), we see that image reconstruction in MRI is a linear inverse

problem. Figure 4.2 shows that for high acceleration rates, the matrix A is ill-

conditioned, so using prior knowledge of MR images will lead to better reconstruction

performance. If px is a prior density over x, the maximum a posteriori (MAP)

estimate of x is

x̂MAP , argmin
x
− ln px|y(x|y) (4.4a)

= argmin
x
− ln py|x(y|x)− ln px(x). (4.4b)

The likelihood function function from (4.3b) is

py|x(y|x) = N (y;Ax, I/γw), (4.5)
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Figure 4.2: Condition number of A vs acceleration rate R in multicoil MRI for
Cartesian sampling and 4 receiver coils.

in which case Equation (4.4b) simplifies to

x̂ = argmin
x

γw
2
‖y −Ax‖2 + λρ(x), (4.6)

where ρ(x) , − 1
λ
ln px(x) and λ > 0. In CS based reconstruction methods [53],

sparsity of transform coefficients for some transform ΦH, e.g. a wavelet transform, is

used as the prior, in which case ρ(·) typically takes the form

ρ(x) = ‖ΦHx‖1. (4.7)

The ℓ1 norm yields a convex regularization that encourages solutions with sparse

transform coefficients.

As we increase the acceleration rate, we need more powerful priors to accurately

reconstruct the MR image. Designing a prior distribution px for images is difficult in

practice. However, most iterative optimization algorithms don’t require an explicit
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knowledge of px. Rather, they use a signal denoiser, which implicitly uses some prior

px and which is much easier to design in practice. A Gaussian denoiser is defined as

a function that recovers x from its AWGN corrupted version r:

r = x+ q, q ∼ N (0, I/γ). (4.8)

There have been many papers on image denoising, e.g., [15, 26, 52, 92, 104], some of

which solve a MAP optimization problem of the form (4.6) with A = I, whereas

some are algorithmic [26,52,92] or deep learning based [52,104]. In the next section,

we will describe in detail how a denoiser is used to solve linear inverse problems7.

4.4 Plug-and-Play Algorithms

To solve convex problems of the form (4.6), a commonly used algorithm is al-

ternating direction method of multipliers (ADMM) [14] which converts (4.6) into a

constrained optimization problem using the variable splitting technique,

min
x,v

γw
2
‖y −Ax‖2 + ρ(v) (4.9a)

subject to x = v. (4.9b)

and solves it using the augmented Lagrangian

min
x,v

max
u

{γw
2
‖y −Ax‖2 + λρ(v) + Re{uH (x− v)}+ c

2
‖x− v‖2

}
, (4.10)

7We saw an example of this earlier in Sec. 2.5
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where u is a Lagrange multiplier and c > 0 is a tuning parameter that does not affect

the fixed point. ADMM solves the following sequence of sub-problems at iteration t,

xt+1 = argmin
x

γw
2
‖y −Ax‖2 + c

2
‖x− vt + ũt‖2 (4.11a)

vt+1 = argmin
v

λρ(v) +
c

2
‖v − xt+1 − ũt‖2 (4.11b)

ũt+1 = ũt +
(
xt+1 − vt+1

)
. (4.11c)

where ũt , (1/c)ut. Under mild conditions on convex ρ, it can be shown that ADMM

converges to the solution of (4.6). Using the definition of the proximal operator

proxφ(r) , argmin
x

φ(x) +
1

2
‖x− r‖2, (4.12)

we can rewrite the ADMM iterations in (4.11) as

xt+1 = prox γw
c
f (v

t − ũt) (4.13a)

vt+1 = proxλ
c
ρ(x

t+1 + ũt) (4.13b)

ũt+1 = ũt +
(
xt+1 − vt+1

)
, (4.13c)

where f(x) , 1
2
‖y −Ax‖2 is the data fidelity term.

We can interpret the proximal operator proxλ
c
ρ as a Gaussian denoiser. For

example, it is the MAP estimator of x from the AWGN corrupted measurement

r = x + N (0, I/γ) with prior density px(x) ∝ e−λρ(x). Using this interpretation,

Bouman et. al. [95] suggested to replace (4.13b) with any suitable image denoiser,

g(r, γ). In this way, ADMM can be used with denoisers that are neither optimization

based nor have any statistical interpretation, e.g., block-matching and 3D filtering

(BM3D) [26], non-local means (NLM) [15], denoising convolutional neural network

(DnCNN) [104], etc.
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The variable splitting technique in ADMM decouples the prior image knowledge

from data consistency. It solves two subproblems at every iteration; (4.13a) enforcing

data consistency and (4.13b) enforcing the prior knowledge. Many other iterative

solvers for linear inverse problems also decouple the two stages using some variable

splitting method. Though the authors in [95] originally used ADMM, their approach

can be easily generalized to other iterative algorithms, which led to the development

of so called plug-and-play (PnP) algorithms. PnP-FISTA [44], RED [76, 79], PnP-

PDS [62] are examples of some other popular PnP algorithms.

Another advantage of any PnP algorithm is that the denoiser is not tied to any

particular choice of A. This is very beneficial in computational imaging, where the

forward operatorA depends on the application. We use this PnP approach to develop

our reconstruction algorithm for MRI using the AMP framework.

4.5 Our Approach

In most PnP algorithms, the denoiser input variance (often adjustable) is fixed

over all iterations. But the denoiser variance affects their fixed point and convergence

speed [25]. AMP based algorithms don’t have this issue, because the denoiser input

noise variance is automatically estimated by the algorithm at every iteration, leading

to fast convergence and accurate solutions with large random A. However, AMP

based algorithms are not designed to use the structured A typically used in MRI.

Thus, their noise-variance estimates may not be accurate and the algorithm may

even diverge.
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Some existing AMP based algorithms for MRI are Variable Density AMP (VDAMP)

[57], which uses soft-thresholding of the wavelet coefficients for denoising, and BM3D-

AMP-MRI [33] which uses a modified version of the BM3D [26] denoiser to handle

complex-valued images. VDAMP neither supports multicoil MRI nor Cartesian sam-

pling mask and BM3D-AMP-MRI is for single-coil MRI. To the best of our knowledge,

we are the first to propose an AMP based algorithm using a generic denoiser for image

reconstruction in multicoil MRI using generic k-space sampling masks.

4.5.1 AMP for MRI

In this section, we discuss problems with the conventional AMP algorithm [32] for

MRI and propose steps to rectify them. AMP recovers x ∈ C
N from measurements

y ∈ C
M in (4.6) using the following iterations

vt = y −Axt +
N

M
vt−1

〈
g

′t(rt−1)
〉

(4.14a)

rt = xt + βAHvt (4.14b)

xt+1 = gt(rt) (4.14c)

where v−1 = 0 and for i.i.d. Gaussian zero-mean A the scalar β is set to N
‖A‖2

F

. We

later describe the effect of β on AMP. The denoiser gt may depend on iteration t,

and its divergence
〈
g

′t(r)
〉
is the average of diagonal elements of the Jacobian of gt,

that can be approximated using the Monte-Carlo method [70]

〈
g

′t(r)
〉
≈ 1

Nǫ
qH
[
gt(r + ǫq)− gt(r)

]
, (4.15)

using small ǫ > 0 and random q such that E[qqH] = I.
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The rightmost term in (4.14a) is known as the Onsager correction term from

statistical physics, which ensures that for zero-mean i.i.d. Gaussian A, as the dimen-

sions M,N grow to infinity (fixed M/N), the denoiser input error satisfies the AWGN

property,

rt = x0 + et, et ∼ N (0, I/γt). (4.16)

Additionally, the errors {et} are independent across iterations t. See [9] for details.

The version of AMP in (4.14) is usually seen in the literature and it expects

‖A‖2F ≈ N . When it is not the case, the scalar β in (4.14) compensates for the

mismatch. To understand how this happens, let A be drawn from i.i.d. N (0, σ2
a) and

x0 be the true vector, and consider the following error terms in AMP:

et , rt − x0 (denoiser input error) (4.17a)

ǫt , xt − x0 (denoiser output error), (4.17b)

which evolve according to

ǫt+1 = gt(x0 + et)− x0 (4.18a)

et+1 = (I − βAHA)ǫt+1 + β
N

M
AHvt

〈
g

′t(x0 + et)
〉
+ βAHw. (4.18b)

In the first iteration, t = 0, since we initialize using v−1 = 0, we see that the denoiser

input error is

e0 =
(
I − βAHA

)
ǫ0 + βAHw. (4.19)
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Figure 4.3: NMSE (dB) of AMP in MRI for different type of scaling in k-space

If we assume ǫ0 is independent of {A,w} and we take the expectation conditioned

on ǫ0, then we get

E[e0 | ǫ0] = E
[(
I − βAHA

)
ǫ0 | ǫ0

]
+ β E

[
AHw

]
︸ ︷︷ ︸

0

(4.20a)

(a)
= E

[(
I − 1

σ2
aM

AHA

)]
ǫ0 (4.20b)

=

(
I − 1

σ2
aM

σ2
aMI

)
ǫ0 (4.20c)

= 0, (4.20d)

where in (a) we used β = N
‖A‖2F

= 1
σ2
aM

. Equation (4.20) shows that this choice of the

scalar β is necessary for the denoiser input to be an unbiased estimate of x0.

In MRI, A is not i.i.d. Gaussian, so if we run AMP with β = N
‖A‖2

F

= R , N
M
,

it doesn’t work well and often diverges. An existing method BM3D-AMP-MRI [33]

sets β = 1, which empirically helps to stabilize AMP but its final solution is not quite

accurate. For single-coil knee MRI, Cartesian sampling of R = 4 and SNR=40 dB,
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Fig. 4.3 shows the NMSE of AMP for β = 1, β = R, and another type of scaling in

k-space that we propose next.

Scaling in k-space

It is not clear how to achieve (4.16) in MRI, but if one scales the k-space mea-

surements in a certain way, one can still have the unbiased property satisfied. We are

going to assume that the coil sensitivities satisfy:

K∑

i=1

CH

i Ci = I. (4.21)

Coil sensitivities estimated by ESPIRIT [94] guarantees the above scaling.

Consider generating the sampling mask S by randomly selecting rows from the

N ×N identity matrix such that the probability of selecting the ith row is pi, where

pi > 0 ∀i. Let P ∈ R
N×N be a diagonal matrix with the probabilities {pi}Ni=1 along its

diagonal, i.e., P , Diag(p). In the conventional AMP iterations, instead of scaling

the k-space residual vt in line (4.14b) by the scalar β, we propose to scale it by

SP−1ST. In other words, we replace line (4.14b) by

rt = xt +AH(SP−1STvt). (4.22)

In this case, at iteration t = 0, the denoiser input error becomes

e0 =
(
I −AHSP−1STA

)
ǫ0 +AHSP−1STw. (4.23)
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And the expected error is

E[e0 | ǫ0] = E
[
I −AHSP−1STA

]
ǫ0 + E

[
AHSP−1STw

]
(4.24a)

= E

[
I −

K∑

i=1

CH

i F
HSTSP−1STSFCi

]
ǫ0

+ E
[
AHSP−1ST

]
E [w]︸ ︷︷ ︸

0

(4.24b)

=

(
I −

K∑

i=1

CH

i F
H
E
[
STSP−1STS

]
FCi

)
ǫ0 (4.24c)

=

(
I −

K∑

i=1

CH

i F
H
E
[
SP−1S

]
FCi

)
ǫ0 where S , STS (4.24d)

=

(
I −

K∑

i=1

CH

i F
H
E
[
S
]
P−1FCi

)
ǫ0 (4.24e)

(a)
=

(
I −

K∑

i=1

CH

i F
HPP−1FCi

)
ǫ0 (4.24f)

=

(
I −

K∑

i=1

CH

i Ci

)
ǫ0 (4.24g)

(b)
= 0, (4.24h)

where (a) follows from E
[
S
]
= P and (b) follows from the property (4.21). Our

proposed algorithm, Debiased Denoising AMP (DD-AMP) is summarized in Algo-

rithm 6.

Another way to derive Alg. 6 is to left multiply (4.1) by P− 1

2ST, in which case

we get the following equivalent measurement model,

ỹ = Ãx+ w̃, (4.25)
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Algorithm 6 DD-AMP (Debiased Denoising AMP) for MRI

1: define:

B = SP−1ST

2: initialize:

x0,v−1 = 0

3: for t = 0, . . . , Tmax do

4: vt = y −Axt + N
M
vt−1

〈
g

′t(rt−1)
〉

5: rt = xt +AHBvt

6: xt+1 = gt(rt)
7: end for

where ỹ , P− 1

2STy, Ã , P− 1

2STA and w̃ , P− 1

2STw. Taking expectation over

the random quantities {S,w}, the noise in (4.25) is additive white noise,

E
[
w̃w̃H

]
= E

[
P− 1

2STwwHSP− 1

2

]
(4.26a)

= E

[
P− 1

2ST
E[wwH]SP− 1

2

]
(4.26b)

=
1

γw
E

[
P− 1

2STSP− 1

2

]
(4.26c)

=
1

γw
E

[
P− 1

2SP− 1

2

]
, where S , STS (4.26d)

=
1

γw
E
[
SP−1

]
(4.26e)

= I/γw. (4.26f)

If we run the traditional AMP algorithm (4.14) using β = 1 on the scaled measurement

model (4.25), we get Algorithm 6 after a variable change.

VDAMP (Alg. 7) [57] also uses a scaling by P−1, but they do not apply it to the

AMP or VAMP algorithms. They recover the wavelet coefficients of the image. In

Alg. 7, gsoft-thresh is the soft-thresholding function, and ⊙ , ⊘, denote element-wise

product and element-wise division respectively. The operator B performs block-wise

averaging, where one block is a wavelet band. In Alg. 7, line 5 is a linear estimator

similar to AMP, whereas line 12 is an Onsager correction step similar to VAMP. Their
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Algorithm 7 VDAMP from [57]

1: define:

Ψ: wavelet transform
H = |FΨH|2 (element-wise squared)
B,B∗: block averaging operator, and its adjoint

2: initialize:

r̃0

3: for t = 0, . . . , Tmax do

4: zt = y − SFΨHr̃t

5: rt = r̃t +ΨF HP−1STzt

6: τ t = HTSTSP−1
[
(P−1 − I)ST|zt|2 + 1/γw

]

7: τ t = B(τ t)
8: wt = gsoft-thresh(r

t, τ t)
9: αt = B (diag {∂g′

soft-thresh
(rt, τ t)/∂r})

10: αt = B∗(αt)
11: ct = 1⊘ (1−αt)
12: r̃t = ct ⊙ (wt −αt ⊙ rt)
13: xt = ΨHwt + F HST

(
y − SFΨHwt

)

14: end for

algorithm is a hybrid of AMP and VAMP, and does not apply to the multicoil case.

We show in numerical experiments that our approach achieves superior results even

for the single-coil case.
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4.5.2 VAMP for MRI

VAMP has provable convergence guarantees when A is right rotationally invari-

ant (RRI) and the denoiser g1 is separable [73] and non-separable (chapter 2). For

arbitrary A and non-expansive denoiser g1, VAMP is known to converge with ap-

propriate damping [36]. In MRI, the RRI property does not hold, and empirically

damping helps but we have no proof.

A damping scheme was proposed in [36] under which VAMP is guaranteed to

converge with any non-expansive denoiser. They fixed the precisions in VAMP

(γt
1, γ

t
2, η

t
1, η

t
2) = (γ1, γ2, γ1+γ2, γ1+γ2) for arbitrary γ1,γ2 > 0, and then the damping

factor ζ was calculated such that each iteration of damped VAMP was a contraction

mapping. The expression for ζ is

ζ =
2

1 + max
{

γ1
γ2
, γ2
γ1

} . (4.27)

Though the damping factor was computed for fixed precisions, in practice ζt is cal-

culated using the precisions at iteration t. Algorithm 8 shows the damped version of

VAMP from [36]. However, this damping scheme doesn’t work in some cases, espe-

cially in MRI with Cartesian sampling mask. VAMP can be unstable and diverge for

high acceleration rates R and challenging sampling masks.

We propose a different damping scheme to stabilize VAMP and make it more

robust. In Alg. 8, the precisions (γ1, γ2) control how much the denoiser g1 and linear

estimator g2 act on their corresponding inputs in lines 10 and 5 respectively. VAMP

usually becomes unstable when the precisions change rapidly between iterations. Thus

it is important to damp the precisions too. The precisions γ1 and γ2 are calculated

using the divergences α1 and α2 in lines 8 and 15 respectively. The divergences
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(α1, α2) are computed using the Monte-Carlo method as shown in (4.15). Since g2 is

linear, its divergence α2 is quite accurate, whereas the divergence of g1 is not. To fix

this, one could perform multiple Monte-Carlo draws to get a better estimate of α1 or

use a damping on α1. In practice, multiple Monte-Carlo draws are expensive, so we

choose to damp α1.

Finally, it is important to note that the pseudo-measurements (r1, r2) are ampli-

tudes, the precisions (γ1, γ2) are inverse variances and the divergences (α1, α2) are

variance scalings. This should be taken into account when damping, i.e.,

rt+1
2 ← ζtrt+1

2 + (1− ζt)rt
2 (4.28a)

γt+1
2 ←

{
ζt√
γt+1
2

+
1− ζt√

γt
2

}−2

(4.28b)

αt
1 ←

{
θ(αt

1)
1

2 + (1− θ)(αt−1
1 )

1

2

}2

, (4.28c)

where ζt is the damping factor computed similar to (4.27) using the precisions at

iteration t, that can also be written in terms of the divergences as,

ζt =
2

1 + max
{

γt
1

γt
2

,
γt
2

γt
1

} (4.29a)

(a)
=

2

1 + max
{

1−αt
2

αt
2

,
1−αt

1

αt
1

} (4.29b)

=
2

max
{

1
αt
2

, 1
αt
1

} (4.29c)

= 2min
{
αt
1, α

t
2

}
, (4.29d)

where (a) follows from lines 15 and 8 in Alg. 8.
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Algorithm 8 Damped VAMP (dGEC) from [36]

1: require:

damping factor: ζ ∈ (0, 1]
2: initialize:

r0
2, γ

0
2

3: for t = 0, . . . , Tmax do

4: //Linear Stage
5: xt

2 = g2(r
t
2, γ

t
2)

6: αt
2 = 〈g′

2(r
t
2, γ

t
2)〉

7: rt
1 = (xt

2 − αt
2r

t
2)/(1− αt

2)
8: γt

1 = γt
2(1− αt

2)/α
t
2

9: //Denoising
10: xt

1 = g1(r
t
1, γ

t
1)

11: αt
1 = 〈g1(r

t
1, γ

t
1)〉

12: ζt = 2min{αt
1, α

t
2}

13: rt+1
2 = (xt

1 − αt
1r

t
1)/(1− αt

1)
14: rt+1

2 = ζtrt+1
2 + (1− ζt)rt

2

15: γt+1
2 = γt

1(1− αt
1)/α

t
1

16: end for

Using fast solvers in the Linear Stage

Recall that, in VAMP, the linear estimator g2 solves the following problem

argmin
x

γw
2
‖y −Ax‖2 + γt

1

2
‖x− rt

1‖2. (4.30)

Its closed-form solution in (2.18) involves a matrix inverse that is expensive in high

dimensions. So one can use a fast iterative solver such as LSQR [65] or conjugate

gradient [7] to solve (4.30) approximately, as mentioned in [84]. Let glinear-solver(r
t
1, γ

t
1)

denote the solution of a fast iterative solver for (4.30). Our proposed algorithm,

Damped Denoising VAMP (DD-VAMP), is summarized in Alg. 9.
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Algorithm 9 Damped Denoising-VAMP (DD-VAMP)

1: require:

damping factor: θ = 0.1
ζmin = 0.2, ζmax = 0.3

2: initialize:

r0
2, γ

0
2

3: for t = 0, . . . , Tmax do

4: //Linear Stage
5: xt

2 = glinear-solver(r
t
2, γ

t
2)

6: αt
2 = 〈g′

linear-solver
(rt

2, γ
t
2)〉

7: rt
1 = (xt

2 − αt
2r

t
2)/(1− αt

2)
8: γt

1 = γt
2(1− αt

2)/α
t
2

9: //Denoising
10: xt

1 = g1(r
t
1, γ

t
1)

11: αt
1 = 〈g′

1(r
t
1, γ

t
1)

12: αt
1 = {θ(αt

1)
1

2 + (1− θ)(αt−1
1 )

1

2}2
13: ζ

t
= 2min{αt

1, α
t
2}

14: ζt = max{ζmin,min{ζmax, ζ
t}}

15: rt+1
2 = (xt

1 − αt
1r

t
1)/(1− αt

1)
16: rt+1

2 = ζtrt+1
2 + (1− ζt)rt

2

17: γt+1
2 = γt

1(1− αt
1)/α

t
1

18: γt+1
2 = {ζt(γt+1

2 )−
1

2 + (1− ζt)(γt
2)

− 1

2}−2

19: end for
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Original Cartesian Sampling Mask Variable Density Mask

Figure 4.4: Ground truth, and Cartesian sampling and variable density sampling
masks of acceleration R = 4

4.6 Numerical Experiments

In this section, we present the results of numerical experiments that study the

behavior of our proposed algorithms, DD-AMP (Alg. 6) and DD-VAMP (Alg. 9), in

comparison to PnP-ADMM [95], VDAMP [57] and BM3D-AMP-MRI [33] algorithms

on image reconstruction in MRI. We considered both single-coil and multicoil MRI,

and used real-valued images from the fastMRI [103] knee dataset. We considered

real-valued images due to the lack of a good denoiser for complex valued images. As

a future work, we aim to test our algorithms on the more challenging complex valued

images.

For our experiments, we used a non fat-suppressed mid-slice knee MR image of

size 128 × 128, and Cartesian and variable density sampling masks of acceleration

R = 4, shown in Fig. 4.4. The noise precision γw was set to achieve SNR=40 dB. We

tuned PnP-ADMM to maximize the PSNR.
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4.6.1 Single-Coil MRI

We first tested our algorithms on single-coil MRI, where the measurements y

are generated according to (4.1). Figure 4.5 shows the reconstruction PSNR and

SSIM [99] of different plug-and-play algorithms for Cartesian sampling mask. Here, we

used the BM3D [26] denoiser in DD-AMP, DD-VAMP and PnP-ADMM algorithms.

VDAMP was designed for variable density sampling masks (Fig. 4.1) and doesn’t work

well with Cartesian masks. In Fig. 4.6, we used the DnCNN [104] denoiser included

in the D-AMP toolbox8. Using a more powerful denoiser increased the accuracy of

the algorithms, as expected. In Fig. 4.7, we used the DnCNN denoiser and variable

density sampling mask. From Figures 4.5, 4.6 and 4.7, we see that the performance

of DD-VAMP and PnP-ADMM is very similar and that DD-AMP performed a little

worse.

8github.com/ricedsp/D-AMP Toolbox
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Zero-Filled: 22.252, 0.662 VDAMP: 20.391, 0.468 BM3D-AMP-MRI: 29.412, 0.857

PnP-ADMM: 36.171, 0.943 DD-AMP: 36.007, 0.942 DD-VAMP: 36.222, 0.943

PnP-ADMM DD-AMP DD-VAMP

Figure 4.5: Reconstruction PSNR (dB) and SSIM of single-coil knee MRI for Carte-
sian sampling mask of acceleration R = 4. Using BM3D denoiser in DD-AMP,
DD-VAMP and PnP-ADMM algorithms. Figures in last row are the error images.
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PnP-ADMM: 37.020, 0.9421 DD-AMP: 36.936, 0.9397 DD-VAMP: 37.180, 0.9487

PnP-ADMM DD-AMP DD-VAMP

Figure 4.6: Reconstruction PSNR (dB) and SSIM of single-coil knee MRI for Carte-
sian sampling mask of acceleration R = 4. Using DnCNN denoiser in DD-AMP,
DD-VAMP and PnP-ADMM algorithms. Figures in last row are error images.
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Zero-Filled: 24.639, 0.711 VDAMP: 27.790, 0.783 BM3D-AMP-MRI: 39.310, 0.958

PnP-ADMM: 40.181, 0.964 DD-AMP: 39.481, 0.956 DD-VAMP: 40.147, 0.962

PnP-ADMM DD-AMP DD-VAMP

Figure 4.7: Reconstruction PSNR (dB) and SSIM of single-coil knee MRI using vari-
able density sampling mask of acceleration R = 4. Using DnCNN denoiser in DD-
AMP, DD-VAMP and PnP-ADMM algorithms. Figures in last row are the error
images.
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Coil 1 Coil 2 Coil 3 Coil 4

Figure 4.8: Coil sensitivities in multicoil MRI

4.6.2 Multicoil MRI

For our next experiment, we used K = 4 receiver coils and generated the coil

sensitivity maps shown in Fig. 4.8 using the Biot-Savart law. VDAMP and BM3D-

MRI-AMP are not applicable in this case, so we compared our algorithms against

PnP-ADMM. We used Cartesian sampling and the BM3D denoiser in Fig. 4.9, and

the DnCNN denoiser included in the D-AMP toolbox9 in Fig. 4.10. In Fig. 4.11, we

used the variable density sampling and DnCNN denoiser. Similar to the single-coil

case, the performance of DD-VAMP and PnP-ADMM is similar and that DD-AMP

performed a little worse.

9github.com/ricedsp/D-AMP Toolbox
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Original Cartesian Sampling Mask Zero-Filled: 23.464, 0.699

PnP-ADMM: 40.443, 0.966 DD-AMP: 39.474, 0.953 DD-VAMP: 40.453, 0.966

PnP-ADMM DD-AMP DD-VAMP

Figure 4.9: Reconstruction PSNR (dB) and SSIM of multicoil knee MRI for 4 receiver
coils and Cartesian sampling of acceleration R = 4. Using BM3D denoiser in DD-
AMP, DD-VAMP and PnP-ADMM. Figures in last row are the error images.
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Original Cartesian Sampling Mask Zero-Filled: 23.464, 0.699

PnP-ADMM: 40.791, 0.967 DD-AMP: 39.949, 0.959 DD-VAMP: 40.807, 0.967

PnP-ADMM DD-AMP DD-VAMP

Figure 4.10: Reconstruction PSNR (dB) and SSIM of multicoil knee MRI for 4 receiver
coils and Cartesian sampling of acceleration R = 4. Using DnCNN denoiser in DD-
AMP, DD-VAMP and PnP-ADMM algorithms. Figures in last row are the error
images.
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Original Variable Density Mask Zero-Filled: 26.200, 0.775

PnP-ADMM: 41.793, 0.971 DD-AMP: 40.513, 0.961 DD-VAMP: 41.739, 0.971

PnP-ADMM DD-AMP DD-VAMP

Figure 4.11: Reconstruction PSNR (dB) and SSIM of multicoil knee MRI for 4 receiver
coils and variable density sampling of acceleration R = 4. Using DnCNN denoiser in
DD-AMP, DD-VAMP and PnP-ADMM algorithms. Figures in last row are the error
images.
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4.6.3 Randomized Single-Coil MRI

In this experiment, we used a different measurement model in single-coil MRI,

y = SFJDx+w, (4.31)

where J is a random permutation matrix, i.e., a random shuffling of the columns of

I, and D = Diag{d1, . . . , dN} for di uniformly sampled from {−1, 1}. The matrix

JD randomizes the measurements y. This measurement model is not commonly seen

in practice but we consider it to see whether the algorithms benefit from a simple

randomization of the measurement operator.

We compared DD-AMP and DD-VAMP with PnP-ADMM using model (4.31).

For single-coil MRI, Cartesian sampling mask of R = 4 and DnCNN denoiser,

Fig. 4.12 shows the PSNR (dB) and SSIM performance of the algorithms. We see

that the randomization in MRI helps AMP-type algorithms such as DD-AMP and

DD-VAMP outperform PnP-ADMM. If one could implement the randomization JD

in a real-life MRI scanner, then it would be very beneficial to AMP-type algorithms.
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Original Cartesian Sampling Mask Zero-Filled: 11.833, 0.134

PnP-ADMM: 39.139, 0.960 DD-AMP: 40.131, 0.964 DD-VAMP: 40.992, 0.969

PnP-ADMM DD-AMP DD-VAMP

Figure 4.12: Reconstruction PSNR (dB) and SSIM of single-coil knee MRI with ran-
dom coding, and Cartesian sampling of acceleration R = 4. Using DnCNN denoiser
in DD-AMP, DD-VAMP and PnP-ADMM algorithms. Figures in last row are the
error images.
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Chapter 5: Conclusions

In this dissertation, we considered several linear and bilinear inverse problems and

proposed algorithms to solve them using the Approximate Message Passing frame-

work. We first proposed some theoretical results on the VAMP [73] algorithm, where

we extended its state evolution (SE) analysis from separable to non-separable Lip-

schitz denoisers. Using the SE formalism, when the forward operator is right rota-

tionally invariant (RRI), we can accurately predict the MSE performance of VAMP

in high dimensions.

Next, we proposed the BAdVAMP algorithm for solving bilinear inverse prob-

lems. BAdVAMP jointly recovers the vector b and the matrix C from noisy mea-

surements Y = A(b)C +W , where A(·) is a known affine linear function of b (i.e.,

A(b) = A0 +
∑Q

i=1 biAi with known matrices Ai). To solve this problem, we com-

bined the VAMP algorithm [75], the EM algorithm [61], and variance auto-tuning [45]

in a manner appropriate for bilinear recovery. We demonstrated numerically that the

proposed approach has robustness advantages over other state-of-the-art bilinear re-

covery algorithms, including lifted VAMP [35] and EM-PBiGAMP [66]. As future

work, we hope to rigorously analyze BAd-VAMP through the state-evolution formal-

ism.

100



Lastly, we proposed image reconstruction algorithms in MRI by modifying the

existing AMP [32] and VAMP [73] algorithms. In AMP, we scaled the measurements

in k-space by the inverse probability of the random sampling mask to debias the de-

noiser input error, which led to a significant increase in the reconstruction accuracy.

In VAMP, we proposed an improved damping scheme that empirically stabilizes it

for MRI. We numerically demonstrated that our proposed algorithms are more ac-

curate than existing AMP-based algorithms in single-coil MRI. We showed that our

algorithms are also applicable to multicoil MRI with known coil sensitivities. As a

future work, we hope to do the following: rigorous analysis of the proposed damping

scheme in VAMP; using ideas from BAdVAMP, learn the coil sensitivities and recover

the image simultaneously in VAMP; design a good denoiser for complex-valued MR

images and apply our algorithms.

101



Appendix A: Signal Denoisers

A.1 Singular Value Thresholding

Consider the estimation of a low-rank matrix X0 from linear measurements y =

A(X0), where A is some linear operator [16]. Writing the SVD of R as R =

∑
i σiuiv

T
i , the SVT denoiser is defined as

g1(R, γ) ,
∑

i

(σi − γ)+uiv
T

i , (A.1)

where (x)+ , max{0, x}. To show that g1(·) in (A.1) is uniformly pseudo-Lipschitz,

we first note that g1(·) is the proximal operator of the nuclear norm ‖ · ‖∗, i.e.,

g1(R, γ) = argmin
X∈RN1×N2

γ‖X‖∗ +
1

2
‖X −R‖2F .

Define 〈·, ·〉 to be the standard inner product, i.e., 〈R1,R2〉 = tr{RT
2R1}. From [24],

we have that g1(·) is non-expansive because the nuclear norm is convex and proper,

i.e., we can write

‖g1(R1, γ)− g1(R2, γ)‖2F ≤ 〈R1 −R2, g1(R1, γ)− g1(R2, γ)〉

⇒ ‖g1(R1, γ)− g1(R2, γ)‖F ≤ ‖R1 −R2‖F . (A.2)
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Let the SVD of R2 ∈ R
N1×N2 be

∑min{N1,N2}
i=1 σiuiv

T
i . We can generalize the Lipschitz

condition in (A.2) into

‖g1(R1, γ1)− g1(R2, γ2)‖F = ‖g1(R1, γ1)− g1(R2, γ1) + g1(R2, γ1)− g1(R2, γ2)‖F

≤ ‖g1(R1, γ1)− g1(R2, γ1)‖F + ‖g1(R2, γ1)− g1(R2, γ2)‖F

≤ ‖R1 −R2‖F + ‖g1(R2, γ1)− g1(R2, γ2)‖F
(a)
= ‖R1 −R2‖F

+

∥∥∥∥∥∥

min{N1,N2}∑

i=1

((σi − γ1)+ − (σi − γ2)+)uiv
T

i

∥∥∥∥∥∥
F

≤ ‖R1 −R2‖F +

min{N1,N2}∑

i=1

|(σi − γ1)+ − (σi − γ2)+|

≤ ‖R1 −R2‖F +min{N1, N2}|γ1 − γ2|
(b)

≤ ‖R1 −R2‖F +
√
N |γ1 − γ2|,

where in (a) we have used the the definition of g1(·) from (A.1) and the SVD of R2,

and in (b) we used min{N1, N2} ≤
√
N1N2 =

√
N . Next, we show that g1(·) also

satisfies the convergence conditions in Definition 2. Let Z1 and Z2 be two sequences

constructed according to Definition 1 and let x0 be the true signal. Assume that

lim
N→∞

1

N
‖X0‖2F and lim

N→∞

1

N
〈X0,Z1〉 exist almost surely. (A.3)

If we write g̃(R, γ) = vec(g1(R, γ)) , [g1,1(R, γ), . . . , g1,N (R, γ)]T, then the fol-

lowing series converges because it is bounded:

lim
N→∞

1

N

N∑

i=1

|g̃i(X0 +Z1, γ1)g̃i(X0 +Z2, γ2)|

≤ lim
N→∞

1

N
‖g̃(X0 +Z1, γ1)‖2‖g̃(X0 +Z2, γ2)‖2

≤ lim
N→∞

√
1

N
‖X0 +Z1‖2F

√
1

N
‖X0 +Z2‖2F

(a)
< ∞,
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where (a) follows from the assumption (A.3). Since absolute convergence implies

convergence, the following series also converges:

lim
N→∞

1

N
〈g1(X0 +Z1, γ1), g1(X0 +Z2, γ2)〉

= lim
N→∞

1

N

N∑

i=1

g̃i(X0 +Z1, γ1)g̃i(X0 +Z2, γ2). (A.4)

If we choose the covariance matrix in Definition 1 to be S = [ 1 0
0 0 ], then we get

lim
N→∞

1

N
〈g1(X0 +Z1, γ1),X0〉 = lim

N→∞

1

N
〈g1(X0 +Z1, γ1), g1(X0 +Z2, 0)〉. (A.5)

Thus, (A.5) also converges since it is a special case of (A.4). Similarly, it can be

shown that 1
N
〈Z2, g1(X0 +Z1, γ1)〉 is uniformly Lipschitz.
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