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Problem Statement

m Goal: Infer the D-ary label yy from “test” feature vector ag € R given training {ym, am}%zl.
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m Linear classification: Estimate weight matrix X &€ , then predict yj = arg max, [X ao}d.

m Feature selection: Determine which subset of IV features is needed to accurately predict the label 1.

m We're especially interested in the case M < N (MVPA, text-mining, micro-array gene expression).
m Possible if “true” X is K-row-sparse with ' < M.

Multinomial Logistic Regression

m One approach to designing X is Multinomial Logistic Regression (MLR).
mIn MLR, we use the multinomial logistic likelihood:

eXP([Zm]ym)
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m Also, X is regularized through some prior px(X).

m Existing approaches to sparse MLR include SMLR [Krishnapuram Carin Figueiredo Hartemink 05], SBMLR
[Cawley Talbot Girolami 07], and GLMNET [Friedman Hastie Tibshirani 10|, which all employ a Laplacian

prior for px and MAP estimation to find X.

HyGAMP for MLR

m Assuming a separable likelihood Py | 7(y|Z) = Hmpy|z(ym | z/n) and prior px(X) = [[,, px(xn),
py x(y, X) can be represented by the following factor graph:

Py|z(Ym|Zm) = Cyme{l,...,D} where z, 2 X'a,,. (1)
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m [ hrough message passing, we break one large inference problem into many smaller inference problems.

m Under large i.i.d. A and scalar z,;, & x,,, we can apply generalized approximate message passing (GAMP)
[Rangan 11]. Has been used for binary logistic regression [Ziniel Schniter Sederberg 15].

m However, our z,, & X, are vector valued, so we instead apply hybrid GAMP (HyGAMP) [Rangan Fletcher
Goyal Schniter 12].

m MSA variant: computes MAP estimate of X.
m SPA variant: computes approximate marginal posteriors of 15 and X = approximately minimizes test-error rate!
m Passes O(M + N) messages in the form of D-dimensional Gaussian pdfs.

Algorithm Summary

m HyGAMP iteratively passes messages back and forth between the Py|z and px nodes until convergence.

m [ he algorithm can be divided into “linear” and “non-linear” steps.

Linear steps:
m Involve N+ M matrix inversions of size D x D.

m Identical for SPA and MSA variants of HyGAMP.

Non-linear steps:
m At each node n and m, HyGAMP approximates the posterior distributions as:

px\r(wn | Tn; Q;rq,) X px(CEn)N(CEn; Tn, Q;z) (2)
Paly p(Zm | Yms Prm; @) < Dyiz(Ym | 2m)N (Zim; P, Q) (3)

for p,,,, QN,, 71, QF, calculated in the linear steps.
m SPA variant: computes the means (x, and Z;,) and covariances (Q} and Q?%,) of above posteriors.
m MSA variant: computes the modes (x;, and Z,;) and inverse Hessians of above log posteriors.

m For MLR likelihood and most sparsity-inducing priors, there are no closed-form solutions. Need
approximations like numerical integration, importance sampling, Newtons method, minorize-maximization.

m Typically, to enforce sparsity, we use a Bernoulli-Gaussian prior in SPA-HyGAMP and a Laplacian prior in
MSA-HyGAMP.
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Simplified HyGAMP (SHyGAMP) for MLR

m Unfortunately, HyGAMP is not computationally competitive due to

m expensive linear steps (e.g., matrix inversion)
m expensive non-linear steps (e.g., iterative algorithms)
m numerical instabilities

m Our Solution: Assume all matrices () are diagonal.

m trivializes the linear steps (i.e., no matrix inversion)
m drastically simplifies the non-linear steps
m enables use of existing GAMPmatlab software framework [Rangan, Schniter, Parker, Ziniel, et al.]

SPA SHyGAMP

Non-linear z,,, steps:
m Simplified posterior mean /variance computations:
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m Investigated approaches based on numerical integration, importance sampling, Taylor series approximation
m Proposed novel Gaussian-mixture approximation with improved accuracy-runtime tradeoff

Non-linear x;, steps:
m Choosing separable prior allows further decoupling into D scalar inference problems
m Example: i.i.d. BG: py(2,4) £ BN (2,4;0,02) + (1 — B)d(x,q) Vn,d

m Parameters o2 and /3 can be tuned online via EM [Vila, Schniter 13].

MSA SHyGAMP

m Non-linear z,, steps: solved via component-wise Newton's method.
m Non-linear @,, steps: choose ¢ regularization, solve via soft-thresholding.
m )\ tuned online via variation on SURE procedure [Mousavi Maleki Baraniuk 13].

SURE tuning procedure
mldea: at each GAMP iteration, choose )\ to minimize the SURE of the thresholder.
m Challenge: objective function is highly non-smooth.

m Our Solution: approximate empirical data by GM distribution = smooth objective function. Minimize
using conventional techniques (e.g., gradient descent, bisection search).
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Classification Performance on Synthetic Data

Data generation model:

m features a, | (ym = d) ~ N (g, 021 y)

m feature means {“d}cll):l orthonormal with K non-zero entries
m balanced training labels

Average classification error and runtime vs M for fixed D =4, N = 10000, K = 10, 12 trials:
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SPA-SHyGAMP wins in error. MSA-SHyGAMP beats SBMLR and GLMNET in both error and runtime (for
large M).

Average classification error and runtime vs IV for fixed D =4, M = 200, K = 10, 12 trials:
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MSA-SHyGAMP beats SBMLR and GLMNET in both error and runtime (for large N).
Average classification error and runtime vs K for fixed D =4, M = 300, N = 30000, 12 trials:
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SPA-SHyGAMP wins overall in error. MSA-SHYyGAMP beats SBMLR and GLMNET in both error and

runtime.

Classification Performance on RCV1 Dataset

0.24 SPA SHYyGAMP |
—6&— MSA SHYyGAMP
SBMLR

m Features are word frequency; labels are
document subject (e.g., business).

mD =25 M., = 14147, N = 47236,
and Mtest = 469571.

m Shown is test error rate vs training time
for auto-tuned algorithms.
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Both MSA and SPA SHyGAMP converge to the final error rate faster than SBMLR.




