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Introduction and Motivation for Composite Penalties

Introduction

Goal: Recover signal x ∈ C
N from noisy linear measurements

y = Φx+w ∈ C
M

where possibly M ≪ N .

Approach: Solve optimization problem

x̂ = argmin
x

R(x) s.t. ‖y −Φx‖2 ≤ δ

with δ selected based on statistics of ‖w‖2.

Question: How to choose penalty/regularization R(x)?
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Introduction and Motivation for Composite Penalties

Typical Choices of Penalty

Suppose Ψx is (approximately) sparse for analysis operator Ψ ∈ C
L×N :

ℓ0 penalty: R(x) = ‖Ψx‖0

Impractical: optimization problem is NP hard

ℓ1 penalty (generalized LASSO): R(x) = ‖Ψx‖1

Tightest convex relaxation of ℓ0 penalty

Fast algorithms: Douglas-Rachford, NESTA-UP, MFISTA, GAMP . . .

Many other penalties, such as R(x) = ‖Ψx‖p for p ∈ (0, 1).
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Introduction and Motivation for Composite Penalties

Choice of Analysis Operator

How to choose Ψ in practice?

Maybe a wavelet dictionary? Which one?

Maybe a concatenation of several dictionaries





Ψ1...
ΨD



?

What if signal is more sparse in one dictionary than another?
Can we use this to our advantage?
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Introduction and Motivation for Composite Penalties

Example: Undecimated Wavelet Transform of MRI Cine

Note different sparsity rate in each subband of 1-level UWT:
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Introduction and Motivation for Composite Penalties

Composite ℓ1 Penalties

We propose to use composite ℓ1 penalties of the form

R(x;λ) ,

D∑

d=1

λd‖Ψdx‖1, λd ≥ 0

where

operators Ψd have unit-norm rows (but otherwise arbitrary),

weights λd are learned from the data.

We propose two algorithms to jointly estimate x and λ = [λ1, . . . , λD]
T:

1 Composite-ℓ1 minimization (Co-L1)

2 Iteratively reweighted composite-ℓ1 minimization (Co-IRW-L1)
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Introduction and Motivation for Composite Penalties

The Co-L1 Algorithm

1: input: {Ψd}
D
d=1, Φ, y, δ ≥ 0, ǫ ≥ 0

2: initialization: λ
(1)
d = 1 ∀d

3: for t = 1, 2, 3, . . .

4: x(t) ← argmin
x

D∑

d=1

λ
(t)
d ‖Ψdx‖1 s.t. ‖y −Φx‖2 ≤ δ

5: λ
(t+1)
d ←

Ld

ǫ+ ‖Ψdx(t)‖1
, d = 1, . . . , D

6: end
7: output: x(t)

leverages existing ℓ1 solvers,

applies to both real- and complex-valued cases,

reduces to IRW-L1 algorithm [Candes,Wakin,Boyd’08] when Ld = 1 ∀d
(single-atom dictionaries).
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Introduction and Motivation for Composite Penalties

The Co-IRW-L1 Algorithm

1: input: {Ψd}
D
d=1, Φ, y, δ ≥ 0,

2: if x ∈ R
N , use Λ = (1,∞) and the real version of log p(x;λ, ǫ);

if x ∈ C
N , use Λ = (2,∞) and the complex version of log p(x;λ, ǫ).

3: initialization: λ
(1)
d = 1 ∀d, W

(1)
d = I ∀d

4: for t = 1, 2, 3, . . .

5: x(t) ← argmin
x

D∑

d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1 s.t. ‖y −Φx‖2 ≤ δ

6: (λ
(t+1)
d , ǫ

(t+1)
d )← arg max

λd∈Λ,ǫd>0
log p(x(t);λ, ǫ), d = 1, ..., D

7: W
(t+1)
d ← diag

{

1

ǫ
(t+1)
d + |ψT

d,1x
(t)|

, · · · ,
1

ǫ
(t+1)
d + |ψT

d,Ld
x(t)|

}

, d = 1, ..., D

8: end
9: output: x(t)

IRW version of Co-L1: tunes both λd and W d for all d.

also tunes regularization parameters ǫd for all d.
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Introduction and Motivation for Composite Penalties

Understanding Co-L1 and Co-IRW-L1

In the sequel, we provide four interpretations of each algorithm:

1 MM optimization of a particular non-convex penalty,

2 a particular approximation of ℓ0 minimization,

3 Bayesian estimation according to a particular hierarchical prior,

4 variational EM algorithm under a particular prior.
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Co-L1 and its Interpretations

Optimization Interpretations of Co-L1

Co-L1 is an MM approach to the weighted log-sum optimization problem

argmin
x

D∑

d=1

Ld log(ǫ+ ‖Ψdx‖1) s.t. ‖y −Φx‖2 ≤ δ.

and

As ǫ→ 0, Co-L1 aims to solve the weighted ℓ1,0 problem

argmin
x

D∑

d=1

Ld 1‖Ψdx‖1>0 s.t. ‖y −Φx‖2 ≤ δ.

Note: Ld is the size of dictionary Ψd, and 1� is the indicator function.
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Co-L1 and its Interpretations

Bayesian Interpretations of Co-L1

As ǫ→ 0, Co-L1 is an MM approach to Bayesian MAP estimation under
an AWGN likelihood and the hierarchical prior

p(x|λ) =
D∏

d=1

(
λd

2

)Ld

exp
(
−λd‖Ψdx‖1

)
i.i.d. Laplacian

p(λ) =
D∏

d=1

p(λd), p(λd) ∝

{
1
λd

λd > 0

0 else
,

Jeffrey’s
non-informative

and

As ǫ→ 0, Co-L1 is a variational EM approach to estimating (determin-
istic) λ under an AWGN likelihood and the prior

p(x;λ) =

D∏

d=1

(
λd

2

)Ld

exp
(
−λd‖Ψdx‖1

)
i.i.d. Laplacian
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Co-IRW-L1 and its Interpretations

A Stepping Stone

The IRW version of real-valued Co-L1: tunes both inter-dictionary weights
λd and intra-dictionary weights W d for given parameters ǫd.

1: input: {Ψd}
D
d=1, Φ, y, δ ≥ 0, ǫd > 0 ∀d,

2: initialization: λ
(1)
d = 1 ∀d, W

(1)
d = I ∀d

3: for t = 1, 2, 3, . . .

4: x(t) ← argmin
x

D∑

d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1 s.t. ‖y −Φx‖2 ≤ δ

5: λ
(t+1)
d ←

[

1

Ld

Ld∑

l=1

log

(

1 +
|ψT

d,lx
(t)|

ǫd

)]−1

+ 1, d = 1, ..., D

6: W
(t+1)
d ← diag

{
1

ǫd + |ψ
T
d,1x

(t)|
, · · · ,

1

ǫd + |ψ
T
d,Ld

x(t)|

}

, d = 1, ..., D

7: end
8: output: x(t)
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Co-IRW-L1 and its Interpretations

Optimization Interpretations of real-Co-IRW-L1-ǫ

Real-Co-IRW-L1-ǫ is an MM approach to the non-convex optimization

argmin
x

D∑

d=1

Ld∑

l=1

log

[
(
ǫd+|ψ

T
d,lx|

)
Ld∑

i=1

log

(

1+
|ψT

d,ix|

ǫd

)]

s.t.
‖y −Φx‖2

≤ δ

and

As ǫ→ 0, real-Co-IRW-L1-ǫ aims to solve the ℓ0+ weighted ℓ0,0 problem

argmin
x

[

‖Ψx‖0 +
D∑

d=1

Ld 1‖Ψdx‖0>0

]

s.t. ‖y −Φx‖2 ≤ δ.

Note: Ld is the size of dictionary Ψd, and 1� is the indicator function.
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Co-IRW-L1 and its Interpretations

Bayesian Interpretations of real-Co-IRW-L1-ǫ

Real-Co-IRW-L1 is an MM approach to Bayesian MAP estimation under
an AWGN likelihood and the hierarchical prior

p(x|λ) =
D∏

d=1

Ld∏

l=1

λd

2ǫd

(

1 +
|ψT

d,lx|

ǫd

)−(λd+1)

i.i.d. generalized-Pareto

p(λ) =

D∏

d=1

p(λd), p(λd) ∝

{
1
λd

λd > 0

0 else
, Jeffrey’s non-informative

and

Real-Co-IRW-L1 is a variational EM approach to estimating (determin-
istic) λ under an AWGN likelihood and the prior

p(x;λ) =
D∏

d=1

Ld∏

l=1

λd − 1

2ǫd

(

1 +
|ψT

d,lx|

ǫd

)−λd

i.i.d. generalized-Pareto
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Co-IRW-L1 and its Interpretations

The Co-IRW-L1 Algorithm

Finally, we self-tune ǫd and allow for real or complex quantities:

1: input: {Ψd}
D
d=1, Φ, y, δ ≥ 0,

2: if x ∈ R
N , use Λ = (1,∞) and the real version of log p(x;λ, ǫ);

if x ∈ C
N , use Λ = (2,∞) and the complex version of log p(x;λ, ǫ).

3: initialization: λ
(1)
d = 1 ∀d, W

(1)
d = I ∀d

4: for t = 1, 2, 3, . . .

5: x(t) ← argmin
x

D∑

d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1 s.t. ‖y −Φx‖2 ≤ δ

6: (λ
(t+1)
d , ǫ

(t+1)
d )← arg max

λd∈Λ,ǫd>0
log p(x(t);λ, ǫ), d = 1, ..., D

7: W
(t+1)
d ← diag

{

1

ǫ
(t+1)
d + |ψT

d,1x
(t)|

, · · · ,
1

ǫ
(t+1)
d + |ψT

d,Ld
x(t)|

}

, d = 1, ..., D

8: end
9: output: x(t)
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Numerical Experiments
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Numerical Experiments

Experiment: Synthetic finite difference image

α = 1 α = 27

48×48 image with a total of
28 horiz & vert transitions.

α ,
# vertical transitions

# horizontal transitions

“spread-spectrum” Φ

sampling ratio M
N

= 0.3

AWGN @ 30 dB SNR

Ψ1 = vertical finite difference,
Ψ2 = horizon. finite difference
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⇒ The composite algorithms
significantly outperform the
non-composite ones

⇒ Performance improves as sparsities
become more disparate!
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Numerical Experiments

Experiment: Shepp-Logan Phantom

96× 96 image

“spread-spectrum” Φ

AWGN @ 30 dB SNR

Ψ ∈ R
7N×N = 2D UWT-db1,

Ψd ∈ R
N×N ∀d
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⇒ The composite algorithms
significantly outperform the
non-composite ones

⇒ Performance gap is larger for small
M/N
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Numerical Experiments

Experiment: Cameraman

96× 104 image

“spread-spectrum” Φ

AWGN @ 40 dB SNR

Ψ ∈ R
7N×N = 2D UWT-db1,

Ψd ∈ R
N×N ∀d
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⇒ The composite algorithms
significantly outperform the
non-composite ones

⇒ Performance gap is larger for small
M/N
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Numerical Experiments

Experiment: 1D Dynamic MRI

x-y profile x-t profile k-t sampling

144× 48
spatiotemporal
profile extracted
from MRI cine

Φ: variable density
random Fourier

AWGN @ 30 dB
SNR

Ψ ∈ R
3N×N : 2D

[db1;db2;db3]
DWT
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Numerical Experiments

Experiment: 1D Dynamic MRI (cont.)

sampling ratio M/N = 0.3

L1 Co-L1 IRW-L1 Co-IRW-L1
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The composite algs significantly outperform the non-composite ones

Performance gap is larger for small M/N

No advantage to Co-IRW-L1 over Co-L1 in this experiment
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Numerical Experiments

Runtimes for Previous Experiments

Shepp-Logan Cameraman dMRI

L1 20.8s 23.1s 29.3s

Co-L1 32.7s 34.2s 86.4s

IRW-L1 45.9s 48.4s 54.1s

Co-IRW-L1 72.1s 96.4s 131s

The composite algs run 1.5–3× slower than the non-composite ones.
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Numerical Experiments

Conclusions

We proposed a new “composite-L1” approach to L2-constrained
signal reconstruction that learns and exploits differences in sparsity
across sub-dictionaries.

Relative to standard L1 methods, our composite L1 methods give
significant improvements in reconstruction SNR at low sampling
rates, at the cost of 1.5–3× slower runtimes.

Our algorithms can be interpreted as MM approaches to non-convex
optimization, approximate ℓ0 methods, Bayesian methods, and
variational Bayesian methods.
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Numerical Experiments

Conclusions

Thanks!
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Numerical Experiments

Iteratively Reweighted ℓ1 (IRW-L1)

From [Candes, Wakin, Boyd, JFA’08] . . .

1: input: Ψ = [ψ1, . . . ,ψL]
T, Φ, y, δ ≥ 0, ǫ ≥ 0

2: initialization: W (1) = I
3: for t = 1, 2, 3, . . .
4: x(t) ← argmin

x

‖W (t)
Ψx‖1 s.t. ‖y −Φx‖2 ≤ δ

5: W (t+1) ← diag

{
1

ǫ+ |ψT
1x

(t)|
, · · · ,

1

ǫ+ |ψT
Lx

(t)|

}

6: end
7: output: x(t)

behaves more like ℓ0 minimization than ℓ1 minimization alone,

leverages existing ℓ1 solvers.
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Numerical Experiments

Majorize-Minimization (MM) Interpretation of IRW-L1

IRW-L1 is an MM approach to the log-sum optimization problem

argmin
x

∑L
l=1 log(ǫ+ |ψ

T
l x|) s.t. ‖y −Φx‖2 ≤ δ.

How to see this? Reformulate as

argmin
x,u

∑

l

log(ǫ+ ul) s.t.

{

‖y −Φx‖2 ≤ δ

|ψT
l x| ≤ ul ∀l,

⇔ argmin
v

g(v) s.t. v ∈ C

for v =

[
u

x

]

, convex C, and concave g.

MM procedure: Iterate for t = 1, 2, 3, . . .

1 create surrogate g(v;v(t)) that majorizes g(v) at v(t),

2 minimize the surrogate over v ∈ C, producing v(t+1).
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Numerical Experiments

MM Interpretation of IRW-L1 (cont.)

Our concave g(v) is majorized by the tangent at v(t). So MM becomes

v(t+1) = argmin
v∈C

g(v(t)) +∇g(v(t))T[v − v(t)]

= argmin
v∈C
∇g(v(t))Tv

⇔ x(t+1) = argmin
x

∑

l

1

ǫ+ |ψT
l x

(t)|
|ψT

l x|

︸ ︷︷ ︸

‖W (t)
Ψx‖1

s.t. ‖y −Φx‖2 ≤ δ

Implications of MM:

IRW-L1 convergence is guaranteed

but possibly to a suboptimal local minimum (since non-convex).

Phil Schniter (Ohio State) Composite ℓ1 Regularization SAHD — July’15 30 / 31



Numerical Experiments

Approximate-ℓ0 Interpretation of IRW-L1

∑

l

log(ǫ+ |ul|)

=
∑

l

log(1 + |ul|/ǫ) + const

∝
∑

l

log(1 + |ul|/ǫ)

log(1 + 1/ǫ)
+ const −→

=
∑

l

limp→0
1
p

[
(1 + |ul|

ǫ
)p − 1

]

limp→0
1
p

[
(1 + 1

ǫ
)p − 1

]

+ const

= lim
p→0

∑

l

[
(1 + |ul|

ǫ
)p − 1

]

[
(1 + 1

ǫ
)p − 1

] + const

≈ lim
p→0

∑

l

|ul|
p + const (for ǫ≪ 1)

= ‖u‖0 + const

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

eps=1e-13
eps=0.001
eps=0.1
ell1
ell0

⇒ As ǫ → 0, the log-sum
penalty becomes a scaled
and shifted version of the
ℓ0 penalty.
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