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Introduction and Motivation for Composite Penalties

Introduction

m Goal: Recover signal 2 € C" from noisy linear measurements
y=&x+weCY
where possibly M <« N.

m Approach: Solve optimization problem
T = argmin R(x) s.t. ||y — Pxlj2 <6
T

with ¢ selected based on statistics of ||w]||2.

m Question: How to choose penalty/regularization R(x)?
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Typical Choices of Penalty

Suppose Wz is (approximately) sparse for analysis operator ¥ € CL*N:

lp penalty: R(x) = ||Pxlo
m Impractical: optimization problem is NP hard

01 penalty (generalized LASSO): R(z) = ||¥z|;
m Tightest convex relaxation of ¢y penalty
m Fast algorithms: Douglas-Rachford, NESTA-UP, MFISTA, GAMP . ..

Many other penalties, such as R(x) = ||[¥z||, for p € (0,1).
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Choice of Analysis Operator

How to choose W in practice?

m Maybe a wavelet dictionary? Which one?
v,
m Maybe a concatenation of several dictionaries | : |7
¥p
m What if signal is more sparse in one dictionary than another?
Can we use this to our advantage?
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Introduction and Motivation for Composite Penalties

Example: Undecimated Wavelet Transform of MRI Cine

Note different sparsity rate in each subband of 1-level UWT:
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Composite /; Penalties

We propose to use composite ¢1 penalties of the form
D

R(z;A) 2 Mal|®azlli, Ag>0

d=1
where

m operators ¥, have unit-norm rows (but otherwise arbitrary),

m weights Ay are learned from the data.
We propose two algorithms to jointly estimate  and A = [\, ..., )\D]T:

Composite-¢; minimization (Co-L1)
lteratively reweighted composite-¢; minimization (Co-IRW-L1)
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The Co-L1 Algorithm

1: input: {\Ild}dDzl, Py, 6>0,¢e>0
2: initialization: A" =1 vd
3: for t=1,2,3,...

D
4 x®) argminZ)\((it)H‘I’dCBHl st fly —@xll; <9

50 ATV e — 1 d=1,...,D
¢ €+ [[@az® |y

6: end
7: output: x(®

m leverages existing {1 solvers,
m applies to both real- and complex-valued cases,

m reduces to IRW-L1 algorithm [Candes,Wakin,Boyd'08] when L; = 1 Vd
(single-atom dictionaries).
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The Co-IRW-L1 Algorithm

1 input: {P,}0,, ®, 9y, 6>0,
2: if £ € RV, use A = (1,00) and the real version of log p(x; A, €);
if . € CV, use A = (2,00) and the complex version of logp(x; A, €).
3: initialization: /\511) =1Vd, Wt(il) =1IVvd
4: for t=1,2,3,...

D
5. ) < arg minZ)\gt)HWfit)‘Pdl’\h st |ly — Pzl <46

xT

d=1
6: )\(t+1)7 Dy o ar ma lo w(t);)\ €),d=1,...D
( d €4 ) g)\deA,E},§>O g p( ,€)
1 1

7. witD ediag{ AR }, d=1,...,D

‘ S+ pgaa®] S 4 ] @)
8: end
9: output: =®

m IRW version of Co-L1: tunes both Ay and W, for all d.

m also tunes regularization parameters ¢4 for all d.
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Understanding Co-L1 and Co-IRW-L1

In the sequel, we provide four interpretations of each algorithm:
MM optimization of a particular non-convex penalty,
a particular approximation of £y minimization,
Bayesian estimation according to a particular hierarchical prior,
variational EM algorithm under a particular prior.
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© Co-L1 and its Interpretations
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Optimization Interpretations of Co-L1

Co-L1 is an MM approach to the weighted log-sum optimization problem
D
arg min > Lalog(e + [®qz1) st |ly — @zl < 0.
d=1

and

As € — 0, Co-L1 aims to solve the weighted /1 o problem
D

argmzin ZLd 1H‘I’d$||l>0 s.t. H’y — ‘I)CCHQ <.
d=1

Note: L, is the size of dictionary W, and 1 is the indicator function.
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Co-L1 and its Interpretations

Bayesian Interpretations of Co-L1

As ¢ — 0, Co-L1 is an MM approach to Bayesian MAP estimation under
an AWGN likelihood and the hierarchical prior

Dy La
p(x|A) = H <2d> exp (—Aal|[®az||1) i.i.d. Laplacian
d=1
1 :
— >0 Jeffrey's
Ad
Hp Aa), P(Ad) {() else ' non-informative

and

As € — 0, Co-L1 is a variational EM approach to estimating (determin-
istic) A under an AWGN likelihood and the prior

Dy N\ La
p(a; A) = H <2d> exp (—Aa|| Caz|1) i.i.d. Laplacian
d=1
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© Co-IRW-L1 and its Interpretations
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A Stepping Stone

The IRW version of real-valued Co-L1: tunes both inter-dictionary weights
Agq and intra-dictionary weights W, for given parameters €.

1: input: {\I’d}dDzl, P, y,6>0, ¢4 >0V,
2: initialization: A" =1vd, W =TI vd
3: for t=1,2,3,...
D
4 x® — arg minZ)\((it)HWg)‘I’dw\h st |ly—@xl2 <9
» d 1
A |¢dz D] B
5 Zlog 1+ === )| +1, d=1,..,D
1 1
6: W(t+1)<—diag{ } d=1,...D
¢ €4+ W’Lw(t” €4+ |1/’dT,Ld,93(t)|
7: end
8: output: =®
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Optimization Interpretations of real-Co-IRW-L1-¢

Real-Co-IRW-L1-¢ is an MM approach to the non-convex optimization
D Ly

WdT,W\ Ny — @2
arg min ZZlog ed+|¢dlw] Zlo T s.t <5

d=11=1

and

As € — 0, real-Co-IRW-L1-¢ aims to solve the £p+ weighted ¢ o problem
D

arg min [H‘I’CEHO +) L 1||\Ild:1:0>0] st. ||y — ®zl]2 < 4.
=1

Note: L, is the size of dictionary W4, and 1 is the indicator function.
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Bayesian Interpretations of real-Co-IRW-L1-¢

Real-Co-IRW-L1 is an MM approach to Bayesian MAP estimation under
an AWGN likelihood and the hierarchical prior
D Lq T —(Aa+1)
A €T
p(x|A) = H H 2 (1 + |¢dl> i.i.d. generalized-Pareto
2€4 €d
d=11=1
D 1
— XN>0
p(A) = Hp()\d), p(Ag) o< { Ad d , Jeffrey’s non-informative
=1 0 else

and

Real-Co-IRW-L1 is a variational EM approach to estimating (determin-
istic) A under an AWGN likelihood and the prior

D Lg T )\

Ag—1 x 4

pla; ) = H H d26d (1 + W)g |> i.i.d. generalized-Pareto
d=11=1
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The Co-IRW-L1 Algorithm

Finally, we self-tune ¢; and allow for real or complex quantities:

1: input: {\Ild}dDzl, D, y, 06>0,
2: if x € RY, use A = (1,00) and the real version of log p(x; A, €);
if £ € CN, use A = (2,00) and the complex version of log p(x; X, €).
3: initialization: )\;1) =1Vd, Wl(il) =1IVvd
4: for t=1,2,3,...

D
5. x®) argminZ)\g)HWg)‘I'del st. [y — @x|a <0

d=1
6: (/\Eltﬂ)7 efitﬂ)) — arg Ad£i§>ologp(w(t); Ae),d=1,..,D
1 1
7. witD %diag{ AR }, d=1,...D
‘ e T lplaa®] e g, @)

8: end
9: output: =®
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@ Numerical Experiments
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Numerical Experiments

Experiment: Synthetic finite difference image

a=1 o =27
| —II

m 48 x48 image with a total of
28 horiz & vert transitions.

L1
50| —©— Co-L1
- ¥ — IRW-L1
|| —9— Co-IRwW-L1

50% recovery SNR [dB]

A # vertical transitions ‘ ‘ ‘ ‘
" # horizontal transitions 5 015 20 25
transition ratio «

|_Iye%

m ‘“spread-spectrum” ®

= The composite algorithms

significantly outperform the
= AWGN @ 30 dB SNR non-composite ones

m sampling ratio % =03

m ¥, = vertical fipite difference, . Performance improves as sparsities
Wy = horizon. finite difference become more disparate!
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Experiment: Shepp-Logan Phantom
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® Spread-spectrum sampling ratio M /N
= AWGN @ 30 dB SNR . .
= The composite algorithms
m & c RN = 2D UWT-dbl, significantly outperform the
W, e RVXN vq non-composite ones

= Performance gap is larger for small
M/N
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Numerical Experiments

Experiment: Cameraman
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sampling ratio M /N

m ‘“spread-spectrum” ®

= AWGN @ 40 dB SNR
TNXN = The composite algorithms
= PER = 2D UWT-dbl, significantly outperform the

NXxN .
¥, eR vd non-composite ones

= Performance gap is larger for small
M/N
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Numerical Experiments

Experiment: 1D Dynamic MRI

x-y profile x-t profile k-t sampling

m 144 x 48
spatiotemporal
profile extracted
from MRI cine

m &®: variable density
random Fourier

= AWGN @ 30 dB
SNR

m U e RNVXN. 2D
[db1;db2;db3]
DWT
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Numerical Experiments

Experiment: 1D Dynamic MRI (cont.)

sampling ratio M/N = 0.3
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m The composite algs significantly outperform the non-composite ones
m Performance gap is larger for small M/N

m No advantage to Co-IRW-L1 over Co-L1 in this experiment

Phil Schniter (Ohio State) Composite £1 Regularization SAHD — July’'15 24 /31



Numerical Experiments

Runtimes for Previous Experiments

’ H Shepp-Logan | Cameraman ‘ dMRI ‘

L1 20.8s 23.1s 29.3s
Co-L1 32.7s 34.2s 86.4s
IRW-L1 45 9s 48.4s 54 1s
Co-IRW-L1 72.1s 96.4s 131s

The composite algs run 1.5-3x slower than the non-composite ones.
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Numerical Experiments

Conclusions

m We proposed a new “composite-L1" approach to L2-constrained
signal reconstruction that learns and exploits differences in sparsity
across sub-dictionaries.

m Relative to standard L1 methods, our composite L1 methods give
significant improvements in reconstruction SNR at low sampling
rates, at the cost of 1.5-3x slower runtimes.

m Our algorithms can be interpreted as MM approaches to non-convex
optimization, approximate £y methods, Bayesian methods, and
variational Bayesian methods.
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Numerical Experiments

Conclusions

Thanks!
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lteratively Reweighted ¢; (IRW-L1)

From [Candes, Wakin, Boyd, JFA'08] ...

1oinput: W =[¢,,....%, ], ® y,6§>0¢>0
2: initialization: WO =T
3: for t=1,2,3,...
4 20 argmin |[WOz|; st. |y — Sz, <

. (t+1) s 1 SR S }
5: 1774 <—dlag{€+|¢1w(t)|, ’6+|’(/)-£$(t)|
6: end

7: output: x(®

m behaves more like £y minimization than ¢; minimization alone,

m leverages existing £1 solvers.
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Majorize-Minimization (MM) Interpretation of IRW-L1

IRW-L1 is an MM approach to the log-sum optimization problem
argmin 337 log(e + 1] x|) sit. ||y — @ < 4.

How to see this? Reformulate as

arg min Zl:log(e + ) s.t. {

< argming(v)st.vel
v

ly — ®xl]2 <4
|11b2rm| S uy \V/l7

u
forv = , convex C, and concave g.
T

MM procedure: lterate for t =1,2,3,...

create surrogate g(v;v®) that majorizes g(v) at v®,

minimize the surrogate over v € C, producing v+,
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MM Interpretation of IRW-L1 (cont.)

Our concave g(v) is majorized by the tangent at v®). So MM becomes

v = arg migg(v(t)) + Vg Tv — 0v®)]

ve
_ inVa(oT
arg min Vg(v'”) v
o gD 1

. T
— arg min _— x| s.t. —Pxllo <6
min 3 ol sty — @l <

WO T,

Implications of MM:

m IRW-L1 convergence is guaranteed

m but possibly to a suboptimal local minimum (since non-convex).
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Approximate-/; Interpretation of IRW-L1

> log(e+ |ui)
l

= Zlog 1+ |w|/€) + const

Z log(1 + |u|/€)

t —
log(1 1 1/€) + cons

_ 3 S+ e 1]
4 T [ D 1]

e [
_;%Zm + const

~ li P t (f 1
p1_>1%2l3|ul| + const (for e < 1)

= As ¢ — 0, the log-sum
penalty becomes a scaled
and shifted version of the

4y penalty.
= ||u||o + const 0P Y
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