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In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy
linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference
procedure for a model where the matrix to be recovered is a product of random matrices. The results that we
obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate
Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select.
Top. Signal Process. 10, 795 (2016)]. We show the existence of two different types of phase transition and
their implications for the solvability of the problem, and we compare the results of our theoretical analysis to
the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix
compressed sensing are the same as those for a related but formally different problem of matrix factorization.
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I. INTRODUCTION

Recovering a sparse or a low-rank signal from as few
observations as possible is a class of problems that attracted
considerable attention in statistics and signal processing. Well-
known members of this class include compressed sensing [1]
and or matrix completion [2]. Another important member
of this class is the problem of matrix compressed sensing,
where one aims to recover a low-rank matrix X from a few
noisy linear measurements. We give a formal definition of
the problem in Sec. I A. The matrix compressed sensing
problem has a range of interesting applications, including
quantum state tomography [3], face recognition [4], sensor
localization [5], and many others [6]. We briefly discuss the
first three applications below.

In quantum state tomography, a mixed quantum state is
represented as a square positive semidefinite matrix X with unit
trace. A pure state yields a rank 1 matrix, and an approximately
pure state yields a low-rank matrix. An important practical
problem is that of recovering X from a set of linear mea-
surements. Since the size of X grows exponentially with the
number of particles in the system, compressed sensing is useful
to reduce the number of measurements [3]. In face recognition,
one can exploit the fact that, ideally, all images of a face under
varying illumination live in a nine-dimensional subspace (and
this would be exactly true if faces were convex Lambertian
bodies) [7]. Matrix compressive sensing thus makes it possible
to recover a representation of a given face from a relatively
small set of linear measurements, each under different (and
unknown) illumination conditions [4]. Such representations
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can then be used directly in compressed-sensing-based face
recognition [8]. For sensor localization, one can exploit the
fact that the matrix X of pairwise distances between sensors
in a D-dimensional space has a rank of at most D + 2. Thus,
to save bandwidth and energy, sensors could transmit a few
random combinations of the distances to their neighbors, rather
than the full distance vectors, to a gateway node that uses
compressive sensing to reconstruct the full X [5]. Several other
applications of matrix compressed sensing are discussed in
Ref. [6].

The main line of theoretical work related to matrix
compressed sensing is based on minimizing the nuclear norm
of the matrix (i.e., the sum of its singular values) subject to
the constraint that a set of linear measurements agree with
the measured values [9,10]. Nuclear norm minimization is
algorithmically tractable and provably recovers the unknown
matrix for an interesting range of parameters. The nuclear
norm is a common type of regularization that encourages
low-rank solutions. A rank R matrix X of dimension M × P

can be written as a product of two matrices X = UV� of sizes
M × R and R × P . However, the nuclear norm minimization
approach does not handle straightforwardly the case when
there are additional structures (such as sparsity) on the factors
U and V.

In the present paper we study the generalized matrix com-
pressed sensing problem, where general linear projections of
X are observed through a noisy, and possibly nonlinear, scalar
output channel. Our analysis is restricted to a probabilistic
setting where the components of the ground-truth factors U and
V are independent and identically distributed random variables
of known probability distribution, and where the probabilistic
nature of the scalar output channel is known. Under such
assumptions, the model is amenable to exact analysis via
the replica method developed in statistical physics [11,12].
The results stemming from the replica method are in general
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known to be in one-to-one correspondence with the analysis
of message-passing algorithms designed to solve the problem
in an optimal way, as illustrated for the compressed sensing
problem in Ref. [13] and for matrix factorization in Ref. [14]
and a number of other related problems. For the matrix com-
pressed sensing problem, such a message-passing algorithm,
called Parametric Bilinear Generalized Approximate Message
Passing (P-BiG-AMP), was derived and tested recently in
Ref. [6]. Results of the replica method can hence also be
viewed as an asymptotic analysis of the performance of this
algorithm for the assumed model. We compare the results of
the replica analysis to the performance of P-BiG-AMP and
indeed observe excellent agreement, as expected from previous
results for other models.

Our analysis reveals a striking connection between the
matrix compressed sensing problem and the problem of matrix
factorization as studied in Refs. [14–16]. These are two
different inference problems. In matrix compressed sensing,
we observe a set of linear projections of the matrix X, whereas
in matrix factorization we observe the elements of the matrix
X directly. Yet the replica analysis of the two problems yields
equivalent equations and hence the asymptotic behaviors
of the two problems, including their phase transitions, are
closely linked. Similar links were already noticed between the
nuclear-norm minimization approaches to matrix compressed
sensing and matrix denoising in Ref. [10] and between matrix
compressed sensing and matrix completion in Ref. [17].

Another main result of our work is establishing the
existence of a large “hard but possible” phase corresponding to
very sparse U and V. This may come as a surprise, because in
compressed sensing, perfect recovery from very sparse signals
is achievable from random initializations at very low mea-
surement rates. We show that, in matrix compressed sensing,
only informed initializations allow perfect reconstruction at
low measurement rates, even with very sparse signals.

A. Definition of the problem

Let X ∈ RM×P be a matrix of low rank R < min(M,P ).
It can thus be written as a product of two smaller matrices:
U ∈ RM×R and V ∈ RP×R ,

X = UV�. (1)

The low-rank matrix compressed sensing problem consists
in recovering X from a few noisy linear combinations of its
entries. We call A : RM×P → RL the linear operator, where

Z = A(X) ∈ RL (2)

and we call Y the measured version of Z after passing through
a component-wise measurement channel:

Y ∼ p0
Y |Z(Y|Z). (3)

This setting is shown in Fig. 1. The goal is to reconstruct U
and V (or sometimes only X) from the knowledge of Y.

We can rewrite (2) in a component-wise manner,

∀l ∈ [1,L], zl =
M∑

μ=1

P∑
p=1

A
μp

l xμp, (4)

where the coefficients A
μp

l parametrize A. Notice that these
coefficients define a three-way tensor A.

Sensing
pY |Z

X ∈ R
M×P Z ∈ R

L

Y ∈ R
L

Z = A(X)

known

unknown

A : R
M×P → R

L

V ∈ R
P×R

U ∈ R
M×R

X = UV�
Product Mixing

FIG. 1. The setting of generalized matrix compressed sensing.
A low-rank matrix X can be decomposed into a product of two
smaller matrices U and V. A linear operator A is applied to X,
producing an intermediary variable Z. A measurement Y of Z is
obtained through a noisy channel. The problem is closely linked to
other inference problems: dropping the “mixing” block, one recovers
a generalized matrix factorization problem. Dropping the “product”
block, one recovers a generalized linear model.

1. The probabilistic model and assumptions of our analysis

In order to enable the asymptotic analysis (i.e., when
M,P,L → ∞) via the replica method, we introduce the
following probabilistic model for matrix compressed sensing.

(i) We assume that elements of U and V are sampled
independently at random such that

U ∼
∏
μs

p0
U (uμs), V ∼

∏
ps

p0
V (vps). (5)

We assume the distributions p0
U and p0

V to have zero mean
and respective variances Q0

u and Q0
v of order one. These

distributions might not be known exactly: instead, we use
zero-mean priors pU and pV believed to be close to p0

U and
p0

V (in terms of Kullback-Leibler divergence).
(ii) We assume the output distribution p0

Y |Z to be separable,

p0
Y |Z =

∏
l

p0
Y |Z(yl|zl). (6)

In the inference we use a distribution pY |Z we believe to be
close to p0

Y |Z (in terms of Kullback-Leibler divergence).
(iii) We assume the tensor A of the linear operator A to be

normally distributed independent and identically distributed
elements with zero mean and variance 1/(RMP ), such that
the elements of Z have zero mean and variance Q0

uQ
0
v . A

similar assumption is often made in compressed sensing,
which differentiates the problem from matrix factorization,
in which A is the identity.

(iv) We assume the dimensions M , P , and L to be large,
but their following ratios to be of order one,

αU = L

RM
, αV = L

RP
. (7)

On the other hand, R can be small.

2. Measures of recovery and symmetries of the problem

Given the estimates (Û,V̂,X̂) that an algorithm returns for
(U,V,X), the following mean-squared errors (MSE) quantify
how close the estimates are from the real values:

MSEu = ‖U − Û‖2
F

MR
, MSEv = ‖V − V̂‖2

F

PR
,

(8)

MSEx = ‖X − X̂‖2
F

LR
,
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where || · ||F is the Frobenius norm of a matrix. Note that as
in matrix factorization, there is an inherent ill-posedness when
it comes to recovering the couple (U,V). As a matter of fact,
for any R × R invertible matrix C, the couple (UC,V(C−1)

�
)

generates the same X as (U,V). In some case, this symmetry
can be lifted thanks to the distributions p0

U and p0
V , but this

is not always the case and might nevertheless be a cause of
trouble. In that case, it is possible to have a very low MSEx

but high MSEu and MSEv .
In the setting where R = 1, U and Û are vectors and we can

consider the following definitions of normalized mean-squared
errors:

nMSEu = 1 − |U�Û|
||U||2||Û||2

, nMSEv = 1 − |V�V̂|
||V||2||V̂||2

,

(9)

that take values between 0 and 1 and take into account all
invariances of the problem: An nMSE of 0 indicates perfect
reconstruction up to the scaling invariance.

Note that the mentioned symmetry in the R > 1 case has to
be taken into account in the theoretical analysis of the problem
[see (B6)] in order to obtain the best achievable MSEs. In
contrast, in the P-BiG-AMP algorithm the symmetry is broken
spontaneously by the choice of the initialization.

B. Notations

We use bold letters for vectors and matrices and nonbold
letters for scalars. The elements of a vector x are noted as [x]i or
xi . The operator 	 is used for component-wise multiplication
of vectors or matrices. x−1, x2, and x� refer respectively to the
component-wise inverse, the component-wise square, and the
transpose of the vector (or matrix or tensor) x. If A is a linear
operator and A its tensor, we write A2 for the linear operator
associated to A2. We use the notation ı ≡ √−1. Estimators
X̂ and x̂ of a variable X are the minimal mean-squared
error (MMSE) estimators of estimated probability distribution
functions P̂ (x) and p̂(x). We note X̄ and x̄ the variances of
these distributions and refer to them as uncertainties, as they
are a measure of the uncertainty of the estimators X̂ and x̂.

Using the tensor A, we can define two auxiliary linear
operators AU : RP → RL×M and AV : RM → RL×P such
that

[AU (v)]lμ ≡
∑

p

A
μp

l vp, (10)

[AV (u)]lp ≡
∑

μ

A
μp

l uμ. (11)

We note x ∼ pX(x) a random variable x following the
probability distribution pX. This holds also for vectors and
matrices: x ∼ pX(x). In that case, we say that pX(x) is
separable if each component xi of x is sampled independently
from the others, ∀i, xi ∼ pXi

(xi), which we will note as pX as
well if the components are identically distributed.

We write f (x) ∝ g(x) when the functions f and g are equal
up to a multiplying constant that does not depend on x. We
write K = O(1) [respectively, K = O(M)] in order to signify
that K is of order 1 (respectively, M).

Let us introduce some useful functions that will be used
throughout the paper. We note N (x; x̂,x̄) the normalized
Gaussian with mean x̂ and variance x̄,

N (x; x̂,x̄) = 1√
2πx̄

e− (x−x̂)2

2x̄ . (12)

In integrals, we denotethe integration over a variable t with a
standard normal distribution as Dt :

Dt = dt N (t ; 0,1). (13)

For any function h and integer i, we define the ith moment of
the product of h multiplied by a Gaussian:

f h
i (x̂,x̄) =

∫
dx xih(x)N (x; x̂,x̄). (14)

With (14), we define the mean and the variance of the
distribution h(x)N (x;x̂,x̄)

f h
0 (x̂,x̄)

:

f̂ h(x̂,x̄) = f h
1 (x̂,x̄)

f h
0 (x̂,x̄)

, (15)

f̄ h(x̂,x̄) = f h
2 (x̂,x̄)

f h
0 (x̂,x̄)

− f̂ h(x̂,x̄)2, (16)

It can be verified that following relations hold:

∂

∂x̂
f h

i (x̂,x̄) = 1

x̄

[
f h

i+1(x̂,x̄) − x̂f h
i (x̂,x̄)

]
, (17)

∂

∂x̄
f h

i (x̂,x̄) = 1

2x̄2

[
f h

i+2(x̂,x̄) − 2x̂f h
i+1(x̂,x̄)

−(x̄ − x̂2)f h
i (x̂,x̄)

]
, (18)

∂

∂s
f h

i (
√

st,ρ − s) = −e
t2

2

2s

∂

∂t

[
e− t2

2
∂

∂t
f h

i (
√

st,ρ − s)

]
.

(19)

Finally, we introduce two further useful auxiliary functions:

ĝh(x̂,x̄) = f̂ h(x̂,x̄) − x̂

x̄
, ḡh(x̂,x̄) = f̄ h(x̂,x̄) − x̄

x̄2
. (20)

II. MESSAGE-PASSING ALGORITHM

In this paper, we will focus on an approximate message-
passing (AMP) algorithm. AMP algorithms originated in
studies of problems related to linear estimation [18–20]. For
the above probabilistic model of matrix compressed sensing,
AMP was derived and called P-BiG-AMP in Ref. [6]. In the
following, we explain its principle and expose the main steps
of its derivation.

In Bayesian inference, one seeks to produce estima-
tors Û and V̂ of U and V using the following posterior
probability:

p(U,V|Y,A) ∝ pU (U)pV (V)pY |Z(Y|A(UV�)). (21)

As explained above, the probability distributions used in (21)
ideally match the distributions (3) and (5) used for the
generation of the problem, in which case the inference is
said to be Bayes optimal. However, it is often the case that
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FIG. 2. Factor graph associated to the probability distribu-
tion (22). Here we used R = 2, M = 3, P = 4, L = 2. Circle
represent variables, squares represent constraints. The small squares
represent the priors on the variables u and v. Messages (m,m̃,n,ñ)
are sent along each edge of the factor graph.

these distributions are not known exactly: In this case, the
distributions used in (21) are assumptions that we make on the
signals’ distributions and on the measurement channel. Infer-
ence is in that case suboptimal. However, in similar problems
it has turned out that the results can still be satisfying despite
the mismatch between the priors and the actual probability
distributions. Furthermore, it is possible to parametrize the
priors and learn the parameters during inference, for example,
using an expectation maximization procedure [21], which has
proven to give satisfying results [13].

Starting from the posterior probability distribution (21),
two interesting questions are how to evaluate this quantity
and how to obtain estimators (Û,V̂) from it. For the second
point, we will use the MMSE estimator, as our goal is to
obtain low MSEs for (8). Concerning the first point, the
problem in estimating (21) is that it is a distribution in a
high-dimensional space. Although it is possible to sample
from such a distribution using a Monte Carlo Markov chain,
the procedure is very time consuming. Therefore we resort
to loopy belief propagation (BP) to estimate the marginals
of (21). Although not guaranteed to converge on this type of
problem, BP has proven to be very successful in a variety of
similar inference problems [13,22].

In order to derive the BP algorithm, we first rewrite (21) to
make all variables appear individually:

p(U,V,|Y,A) ∝
∏
μs

pU (uμs)
∏
ps

pV (vps)
∫ ∏

l

dzlpY |Z(yl|zl)

× δ

⎛
⎝zl −

P∑
p=1

M∑
μ=1

A
pμ

l

R∑
s=1

upsvμs

⎞
⎠. (22)

This probability distribution can be represented by the factor
graph in Fig. 2. On it, two types of message pairs (m,m̃) and
(n,ñ) are sent to and from the u and v variables, respectively.
As the roles of u and v are completely symmetric, we
will only treat explicitly the pair (m,m̃): The result can be
generalized straightforwardly to (n,ñ). The message-passing
update equations read as follows:

mt+1
μs→l(uμs) ∝ pU (uμs)

∏
l′ �=l

m̃t
l′→μs(uμs), (23)

m̃t+1
l→μs(uμs)

∝
∫ ⎡⎣∏

ps ′
dvps ′nt+1

ps ′→l(vps ′ )
∏

(s ′,μ′)�=(s,μ)

duμs ′mt+1
μs ′→l(uμs ′)

⎤
⎦

× dzpY |Z(yl|z)δ[z − A(UV�)], (24)

where the ∝ sign stands because (m,m̃) are probability dis-
tributions and must therefore be normalized. These equations
can be seen as fixed-point equations or as iterative equations
that constitute an algorithm. For notational lightness, we will
do the following calculations without time indices. However,
the correct time indices are crucial for the final algorithm to
converge.

A first simplification can be made by replacing the R(M +
P ) integrals in (24) by a single one over the variable z,
which is the sum of R(M + P ) − 1 random variables. In BP,
we assume these random variables to be independent, which
allows us to use the central limit theorem. Calling ûμs→l and
ūμs→l respectively the means and variances of the variable uμs

distributed according to the distribution mμs→l (and similarly
for the variables vps), the variable zl =∑μp A

μp

l

∑
s uμsvps

is a Gaussian variable with mean and variance:

Ẑl =
∑
μps

A
μp

l ûμs→l v̂ps→l , (25)

Z̄l =
∑
μps

(
A

μp

l

)2
[ūμs→l v̄ps→l + (ûμs→l)

2v̄ps→l

+ ūμs→l(v̂ps→l)
2]

+
∑
ps

∑
μ �=μ′

A
μp

l A
μ′p
l v̄ps→l ûμs→l ûμs ′→l

+
∑
μs

∑
p �=p′

A
μp

l A
μp′
l ūμs→l v̂ps→l v̂ps ′→l . (26)

However, in Eq. (24), uμs is fixed and thus (ûμs→l ,ūμs→l)
has to be replaced by (uμs,0) in (25) and (26). Defining
(Ẑl→μs,Z̄l→μs) to be (Ẑl,Z̄l) with (ûμs→l ,ūμs→l) = (0,0) and

Flμs =
∑

p

A
μp

l v̂ps→l , (27)

Hlμs = 2
∑

p

∑
μ′ �=μ

A
μp

l A
μ′p
l ûμs ′→l v̄ps→l , (28)

Glμs =
∑

p

(
A

μp

l

)2
v̄ps→l , (29)

one can rewrite (24) with a single integral over a variable z

following a Gaussian distribution. Using the definition (14),
the message (24) can be expressed as a simple function of the
mean and variance of this Gaussian:

m̃l→μs(uμs) ∝ f Y
0

(
Ẑl→μs + Flμsuμs,Z̄l→μs

+Hlμsuμs + Glμsu
2
μs

)
. (30)

Here we use the simplified notation f Y
i ≡ f

pY |Z
i . In Ap-

pendix A, we show how, by making a Taylor expansion of
this equation, we can express the message (23) as

mμs→l(uμs) ∝ p(uμs)N (uμs ; Ûμs→l ,Ūμs→l), (31)
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with

Ūμs→l = −
⎡
⎣∑

l′ �=l

(
F 2

l′μs + Gl′μs

)
ḡl′→μs + Gl′μsĝ

2
l′→μs

⎤
⎦

−1

,

(32)

Ûμs→l = Ūμs→l

∑
l′ �=l

Fl′μsĝl′→μs, (33)

where

ĝl′→μs = ĝY (Ẑl′→μs,Z̄l′→μs), ḡl′→μs = ḡY (Ẑl′→μs,Z̄l′→μs),
(34)

and (ĝY (·,·),ḡY (·,·)) are simplified notations for the functions
(ĝpY |Z (·,·),ḡpY |Z (·,·)) defined in (20).

This allows us to have a simple expression for the previously
introduced mean and variance ûμs→l and ūμs→l of the
message (31). Using the notations (15) and (16),

ûμs→l = f̂ U (Ûμs→l ,Ūμs→l), ūμs→l = f̄ U (Ûμs→l ,Ūμs→l),
(35)

where, as before, we introduce the simplifying notation f U ≡
f pU . As noted previously, the exact same thing can be done for
the messages (n,ñ). The result is an iterative set of equations
on a set of means and variances

(Ẑt
·→·,Z̄

t
·→·,ĝ

t
·→·,ḡ

t
·→·,Û

t
·→·,Ū

t
·→·,û

t
·→·,ū

t
·→·,V̂

t
·→·,

V̄ t
·→·,v̂

t
·→·,v̄

t
·→·) (36)

that constitute the message-passing algorithm.

Algorithm 1 P-BiG-AMP for matrix compressed sensing

Initialization:

Initialize the means (û0,v̂0,ĝ0) and the variances (ū0,v̄0) at random
according to the distributions p0

U and p0
V .

Main loop: while t < tmax, calculate following quantities:
X̄t+1 = ūt v̄�

t + ūt (v̂2
t )� + û2

t v̄�
t

X̂t+1 = ût v̂�
t

Z̄t+1 = A2(X̄t+1)
Ẑt+1 = A(X̂t+1) − ĝt 	 (ūt (AU (v̂t ) 	 AU (v̂t−1))�

+(AV (ût ) 	 AV (ût−1))v̄�
t )

ḡt+1 = ḡY (Ẑt+1,Z̄t+1)
ĝt+1 = ĝY (Ẑt+1,Z̄t+1)
Ūt+1 = −([AU (v̂t )2 + A2

U (v̄t )]ḡt+1 + A2
U (v̄t )ĝ2

t+1)−1

Ût+1 = Ūt+1 	 (AU (v̂t )ĝt+1 − ût 	 AU (v̂t )2ḡt+1

−ût−1 	 A2
U (v̄t−1)ĝt+1 	 ĝt )

ūt+1 = f̄ U (Ût+1,Ūt+1)
ût+1 = f̂ U (Ût+1,Ūt+1)
V̄t+1 = −([AV (ût )2 + A2

V (ūt )]ḡt+1 + A2
V (ūt )ĝ2

t+1)−1

V̂t+1 = V̄t+1 	 (AV (ût )ĝt+1 − v̂t 	 AV (ût )2ḡt+1

−v̂t−1 	 A2
V (ūt−1)ĝt+1 	 ĝt )

v̄t+1 = f̄ V (V̂t+1,V̄t+1)
v̂t+1 = f̂ V (V̂t+1,V̄t+1)

Result: (Û,V̂,X̂,Ẑ) are the estimates for (U,V,X,Z) and (Ū,V̄,X̄,Z̄)
are variances of these estimates.

This algorithm can be further simplified using the so-called
Thouless-Andersen-Palmer approximation introduced in the

study of spin glasses [23]. We refer the reader to other works in
which these simplifications are treated in detail [6,14] and only
give the resulting algorithm 1, in which only local quantities
and no messages are updated. This algorithm is a special case
of the “P-BiG-AMP” algorithm, introduced in Ref. [6].

As its counterparts for generalized linear models
(GAMP [20]) or matrix factorization [14,24], algorithm 1
needs some adaptations that improve its convergence. One very
simple damping scheme that allows us to improve convergence
(though not guaranteeing it) consists in damping a single
variable:

Ût+1 ← βÛt+1 + (1 − β)Ût , (37)

with β = 0.3, applied right after the calculation of Ût+1.
A more involved and better performing, adaptive damping
strategy is presented in Ref. [25]. Notice that we defined the
operatorsAU andAV used in algorithm 1 as linear applications
AU : RP → RL×M and AV : RM → RL×P in (10) and (11):
In the algorithm, we apply them row-wise on the matrices on
which they act.

III. ASYMPTOTIC ANALYSIS

The problem of low-rank matrix compressed sensing can
be analyzed with statistical physics methods in the thermody-
namic limit, i.e., when the dimensions of the signals M and
P and of the measurements L go to infinity. R can remain
finite or go to infinity as well. On the other hand, the ratios
defined in (7) have to be fixed and finite. As in related inference
problems, the analysis is done with the replica method. The
resulting state evolution equations describe the behavior of the
corresponding message-passing algorithm. In this section, we
will focus on the derivation of the replica analysis that results
in a simple set of state evolution equations. The analysis is very
similar to the one of related inference problems [12–14,26].

A. Replica analysis: Free entropy

Treating an inference problem as a statistical physics
problem reduces to writing an energy function corresponding
to the problem and studying the free energy of the system. We
are thus interested in calculating a partition function. Here the
relevant partition function is the normalization constant of the
probability distribution (21):

Z(Y,A) =
∫

dU pU (U)
∫

dV pV (V)

×
∫

dzpY |Z(Y|z)δ[z − A(UV�)]. (38)

The free entropy logZ(Y,A) of a given instance can be calcu-
lated from the marginals calculated by the belief propagation
equations.

However, one can also be interested in the average free
entropy of this problem. In order to do this, one needs to
average logZ(Y,A) over all possible realizations of A and
Y, for which we use the replica method [12,22]. It uses the
identity

〈logZ〉 = lim
n→0

∂

∂n
〈Zn〉, (39)
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where 〈·〉 denotes the average over A and Y and relies on the
fact that an expression for Zn can be found for integer n. This
expression is then used for calculating the n → 0 limit in (39).
Though not rigorous, this method has proven to give correct
results in a wide range of problems [12,22].

Let us therefore start by calculating

Z(Y,A)n =
∫ n∏

a=1

{dUa pU (Ua)dVa pV (Va)dzapY |Z(Y|za)

× δ[za − A(Ua(Va)�)]} (40)

and its average with respect to the realizations of Y, generated
by U0, V0, and A:

〈Zn〉 =
∫

dU0 p0
U (U0)dV0 p0

V (V0)dA p0
A(A)dY

× dz0pY |Z(Y|z0)δ[z0 − A(U0(V0)�)]Z(Y,A)n. (41)

The indices a represent so-called replicas of the system and
are initially independent from each other. Carrying on the
calculation requires us to couple them. To be more precise,
each variable za

l = [A(Ua(Va)�)]l is the sum of a large
number of independent random variables and can therefore be
approximated as a Gaussian random variable. This was done
in Sec. II already and allows again to considerably reduce the
number of integrals caused by the averaging over A. However,
za
l and zb

l are not independent, as they are produced with the
same operator A. We show in Appendix B that zl ≡ (z0

l . . . zn
l )

is a multivariate random Gaussian variable with mean 0 and
covariance matrix Qz ≡ Qu 	 Qv , where the elements of the
matrices Qu and Qv are given by

Qab
u ≡ 1

M

∑
μ

ua
μub

μ, Qab
v ≡ 1

P

∑
p

va
pvb

p. (42)

As in (41), these quantities can be anything, so we have to
integrate over them, such that

〈Zn〉 =
∫

dQu

⎡
⎢⎢⎢⎣
∫ ∏

a

dUa pa
U (Ua)

∏
s

a � b

δ

(
MQab

u −
∑

μ

ua
μsu

b
μs

)⎤⎥⎥⎥⎦

×
∫

dQv

⎡
⎢⎢⎢⎣
∫ ∏

a

dVa pa
V (Va)

∏
s

a � b

δ

(
PQab

v −
∑

p

va
psv

b
ps

)⎤⎥⎥⎥⎦

×
L∏

l=1

[∫
dzlN (zl ; 0,Qz)

∫
dylp

0
Y |Z
(
yl|z0

l

) n∏
a=1

pY |Z
(
yl|za

l

)]
. (43)

Here we use the convention that pa
U = pU if a �= 0. We now see that the different replicas are coupled via Qu and Qv in the

first two lines. As we did with zl , we now introduce the vector ups = (u0
ps · · · un

ps) (similarly for vμs) and we use the integral

representation of the δ function, introducing the conjugate variables Q̂u and Q̂v (details in Appendix B), which leads to

〈Zn〉 =
∫

dQudQ̂ue
− MR

2 Tr(QuQ̂u)

[∏
μs

duμspu(uμs)e
1
2 u�

μsQ̂uuμs

]∫
dQvdQ̂ve

− PR
2 Tr(QvQ̂v )

[∏
ps

dvpspv(vps)e
1
2 v�

psQ̂vvps

]

×
L∏

l=1

[∫
dzlN (zl ; 0,Qz)

∫
dylp

0
Y |Z
(
yl|z0

l

) n∏
a=1

pY |Z
(
yl|za

l

)]
. (44)

Finally, we assume the distributions of uμs’s, vps’s, and yl’s are the same for every coordinate. Using the notations

pu(u) = p0
U (u0)

∏
a>0

pU (ua), pv(v) = p0
V (v0)

∏
a>0

pV (va), py|z(y|z) = p0
Y |Z(y|z0)

∏
a>0

pY |Z(y|za), (45)

this leads to

〈Zn〉 =
∫

dQudQ̂ue
− MR

2 Tr(QuQ̂u)
[
dupu(u)e

1
2 u�Q̂uu]RM

∫
dQvdQ̂ve

− PR
2 Tr(QvQ̂v )

[
dvpv(v)e

1
2 v�Q̂vv]RP

×
[∫

dzN (z; 0,Qz)
∫

dypy|z(y|z)

]L

. (46)

In the “thermodynamic” limit, we take M , P , and L going to infinity with constant ratios. This motivates us to rewrite the last
equation under the form

〈Zn〉 =
∫

dQuQ̂uQvQ̂ve
−MR[Sn(Qu,Q̂u,Qv,Q̂v )] (47)
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and to use the saddle-point method, according to which

log(〈Zn〉) = −MR min
Qu,Q̂u,Qv,Q̂v

Sn(Qu,Q̂u,Qv,Q̂v). (48)

We are therefore left with a minimization problem over the
space of the matrices Qu, Q̂u, Qv , and Q̂v , representing
2(n + 1)(n + 2) parameters (as the matrices are symmetric).

B. Replica symmetric assumption

The idea of the replica symmetric assumption is that the
n replicas introduced in (40) are all equivalent, as they are
purely a mathematical manipulation. Based on this, we make
the assumption that a sensible matrix Qu does not make any
distinction between the n introduced replicas. We therefore
parametrize Qu and Q̂u in the following way:

Qu =

⎛
⎜⎜⎜⎝

Q0
u mu · · · mu

mu Qu · · · qu

...
...

. . .
...

mu qu · · · Qu

⎞
⎟⎟⎟⎠

Q̂u =

⎛
⎜⎜⎜⎝

Q̂0
u m̂u · · · m̂u

m̂u Q̂u · · · q̂u

...
...

. . .
...

m̂u q̂u · · · Q̂u

⎞
⎟⎟⎟⎠ (49)

and, similarly for Qv , allowing it to be left with 16 instead
of 2(n + 1)(n + 2) parameters over which to perform the
extremization (48). Furthermore, Q0

u and Q0
v are in fact known,

as they are the second moments of the priors p0
U and p0

V , and
therefore we set

Q̂0
u = 0, Q̂0

v = 0, (50)

and thus the extremization is only over 12 variables:
(mu,m̂u,qu,q̂u,Qu,Q̂u) and (mv,m̂v,qv,q̂v,Qv,Q̂v).

Let us now look in more detail at the function Sn to
extremize:

Sn(Qu,Qv,Q̂u,Q̂v)

≡
[

1

2
TrQuQ̂u − log

(∫
dupu(u)e

1
2 u�Q̂uu

)]

+ M

P

[
1

2
TrQvQ̂v − log

(∫
dvpu(v)e

1
2 v�Q̂vv

)]

− L

RP
log

(∫
dzN (z; 0,Qz)

∫
dypy|z(y|z)

)
. (51)

Thanks to the parametrization (49), the different terms have
simple expressions. The traces can simply be written as

TrQuQ̂u = 2nmm̂u + nQuQ̂u + n(n − 1)quq̂u, (52)

while we can use that

u�Q̂uu = Q̂0
u(u0)2 + (Q̂u − q̂u)

∑
a>0

(ua)2

+ q̂u

(∑
a>0

ua

)2

+ 2m̂uu
0
∑
a>0

ua (53)

and the Gaussian transformation eλα2 = ∫ Dx eα
√

2λx in order

to rewrite the integral
∫

duPu(u)e
1
2 u�Q̂uu as

In
U =

∫
Dt

∫
du0 p0

U (u0)

×
[∫

dupU (u)e
Q̂u−q̂u

2 u2+(t
√

q̂u+m̂uu
0)u

]n

. (54)

The third line in (51) can be simplified as well. The first step
consists in writing the coupled Gaussian random variables
z0 . . . zn as a function of n independent, standard Gaussian
random variables xa (a ∈ [1,n]) and one additional standard
random variable t that couples them all:

z0 =
√

Q0
z − m2

z

qz

x0 + mz√
qz

t, za =
√

Qz − qz xa + √
qz t.

(55)

Making the change of variables in the integral, we obtain the
following expression for

∫
dzN (z; 0,Qz)

∫
dyPy|z(y|z):

In
Z =

∫
dy

∫
Dt

[∫
Dx0 p0

Y |Z

(
y|
√

Q0
z−

m2
z

qz

x0+ mz√
qz

t

)]

×
[∫

Dx pY |Z(y0|
√

Qz − qz x + √
qz t)

]n

. (56)

Looking back at the replica trick (39), we have to study the
quantity limn→0

∂
∂n

Sn and therefore the quantities

IU (Q̂) = lim
n→0

∂

∂n
log In

U

=
∫

Dt

[∫
du0 p0

U (u0) log

×
[∫

dupU (u)e
Q̂−q̂

2 u2+(t
√

q̂+m̂u0)u

]]
, (57)

as well as its equivalent IV [obtained by replacing all us by vs
in (57)] and

IZ(Q) = lim
n→0

∂

∂n
log In

Z

=
∫

dy

∫
Dt f

Y,0
0

(
m√
q

t,Q0 − m2

q

)

× log[f Y
0 (

√
qt,Q − q)], (58)

where f
Y,0
i ≡ f

p0
Y |Z

i . In the end, we obtain the free entropy φ

as an extremum

φ = − extr

{[
mum̂u + 1

2
QuQ̂u − 1

2
quq̂u − IU (Q̂u)

]

+ M

P

[
mvm̂v + 1

2
QvQ̂v − 1

2
qvq̂v − IV (Q̂v)

]

− L

RP
IZ(Qu 	 Qv)

}
(59)

over a set of 12 variables. Note that the shift from a minimum
in (48) to an extremum in the equation above is a consequence
to the hazardous n → 0 limit in the replica method.
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1. Equivalence to generalized matrix factorization

It is interesting to notice that if L = MP and R = O(M),
this free entropy is the same as in generalized matrix
factorization [14]. This is not an entirely obvious fact, as the
two problems differ and they are identical only if A is the
identity: In generalized matrix factorization, Z = X.

In order to perform the theoretical analysis of generalized
matrix factorization as in Ref. [14], it is important to take the
limit R → ∞. In fact, it is this limit that ensures that each
entry of Z is the sum of a large number of random variables,
which allows us to consider that it has a Gaussian distribution.
This is a condition both in the derivation of the message-
passing algorithm and in the replica analysis. For that reason,
generalized matrix factorization with finite R leads to different
algorithms and theoretical bounds [27,28]. However, in matrix
compressed sensing, the mixing of coefficients with A ensures
that even if R = 1, then each element of Z can be considered to
have a Gaussian distribution. Thanks to this, both the algorithm
and the analysis are the same, independently of R. Note that
it would be natural to write the free entropy (59) with no
explicit R dependence by introducing a global measurement
ratio α ≡ L

R(M+P ) .
Let us examine the case in which L = MP and R =

O(M) and the two problems are strictly equivalent. What

differentiates the generalized matrix compressed sensing from
the generalized matrix factorization case is that A is not the
identity. However, as A’s coefficients are Gaussian indepen-
dent and identically distributed, it is with high probability a
bijection when L = MP , and in this sense the mixing step
does not introduce any further difficulty into the problem
compared to matrix factorization. If L > MP , then matrix
compressed sensing is not “compressive” and therefore easier
than the corresponding matrix factorization problem, because
more measurements are available. If L < MP , then matrix
compressed sensing is “compressive.”

C. State evolution equations

In the previous section, we have derived an expression of the
free entropy as an extremum of an action function over a set of
parameters. In this section, we find self-consistent equations
that hold at the values of those parameters extremizing the
action. Furthermore, these self-consistent equations can be
iterated in order to numerically obtain the extrema of the
action.

In order to find the extremum in (59), we simply set all
the partial derivatives of φ to 0. The difficult part is finding
expressions for the derivatives of the integrals IU , IV , and
IZ , which we detail here. First, we do the calculation for IU ,

∂

∂Q̂u

IU (Q̂u) =
∫

Dt

∫
du0p0

U (u0)

∫
dupU (u)u2e

Q̂u−q̂u
2 u2+(t

√
q̂u+m̂uu

0)u∫
dupU (u)e

Q̂u−q̂u
2 u2+(t

√
q̂u+m̂uu0)u

,

∂

∂q̂u

IU (Q̂u) =
∫

Dt

∫
du0p0

U (u0)

∫
dupU (u)

(− u2

2 + tu

2
√

q̂u

)
e

Q̂u−q̂u
2 u2+(t

√
q̂u+m̂uu

0)u

∫
dupU (u)e

Q̂u−q̂u
2 u2+(t

√
q̂u+m̂uu0)u

,

∂

∂m̂u

IU (Q̂u) =
∫

Dt

∫
du0u0p0

U (u0)

∫
dupU (u) u e

Q̂u−q̂u
2 u2+(t

√
q̂u+m̂uu

0)u∫
dupU (u)e

Q̂u−q̂u
2 u2+(t

√
q̂u+m̂uu0)u

. (60)

If we inject these expressions into the extremization equations of φ with respect to Q̂u, q̂u, and m̂u and use the update functions
defined in (14)–(16), then we obtain

mu =
∫

Dt

∫
du0 u0p0

U (u0)f̂ U

(√
q̂ut + m̂uu

0

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (61)

Qu − qu = 1√
q̂u

∫
Dt t

∫
du0p0

U (u0)f̂ U

(√
q̂ut + m̂uu

0

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (62)

Qu =
∫

Dt

∫
du0p0

U (u0)

[
f̄ U

(√
q̂ut + m̂uu

0

q̂u − Q̂u

,
1

q̂u − Q̂u

)
+
(

f̂ U

(√
q̂ut + m̂uu

0

q̂u − Q̂u

,
1

q̂u − Q̂u

))2
]
. (63)

These equations can be further simplified by using the transformation t ← t + m̂√
q̂
u0 and integrating by part Eq. (62):

mu =
√

q̂u

m̂2
u

∫
dt f

U,0
1

(√
q̂u

m̂u

t,
q̂u

m̂2
u

)
f̂ U

( √
q̂ut

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (64)

Qu − qu =
√

q̂u

m̂2
u

∫
dt f

U,0
0

(√
q̂u

m̂u

t,
q̂u

m̂2
u

)
f̄ U

( √
q̂ut

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (65)

qu =
√

q̂u

m̂2
u

∫
dt f

U,0
0

(√
q̂u

m̂u

t,
q̂u

m̂2
u

)[
f̂ U

( √
q̂ut

q̂u − Q̂u

,
1

q̂u − Q̂u

)]2

, (66)

and the same equations hold replacing u by v.
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Let us now come to the derivatives of IZ . To calculate them, we use the identity (19), taking s = q or s = m2

q
. After an

integration by parts, we obtain

∂

∂m
IZ(Q) = 1

m

∫
dy

∫
Dt

[
∂
∂t

f
Y,0
0

(
m√
q
t,Q0 − m2

q

)][
∂
∂t

f Y
0 (

√
qt,Q − q)

]
f Y

0 (
√

qt,Q − q)
, (67)

∂

∂q
IZ(Q) = − 1

2q

∫
dy

∫
Dt

[
∂
∂t

f Y
0 (

√
qt,Q − q)

f Y
0 (

√
qt,Q − q)

]2

f
Y,0
0

(
m√
q

t,Q0 − m2

q

)
, (68)

∂

∂Q
IZ(Q) =

∫
dy

∫
Dt f

Y,0
0

(
m√
q

t,Q0 − m2

q

)[ ∂
∂Q

f Y
0 (

√
qt,Q − q)

f Y
0 (

√
qt,Q − q)

]
. (69)

Injecting these expressions into the extremization equations of φ with respect to Q, q, and m, we obtain

m̂ = 1

m

∫
dy

∫
Dt

[
∂
∂t

f
Y,0
0

(
m√
q
t,Q0 − m2

q

)][
∂
∂t

f Y
0 (

√
qt,Q − q)

]
f Y

0 (
√

qt,Q − q)
, (70)

q̂ = 1

q

∫
dy

∫
Dt

[
∂
∂t

f Y
0 (

√
qt,Q − q)

f Y
0 (

√
qt,Q − q)

]2

f
Y,0
0

(
m√
q

t,Q0 − m2

q

)
, (71)

Q̂ = 2
∫

dy

∫
Dt f

Y,0
0

(
m√
q

t,Q0 − m2

q

)[ ∂
∂Q

f Y
0 (

√
qt,Q − q)

f Y
0 (

√
qt,Q − q)

]
, (72)

and remembering that m = mumv,q = quqv , Q = QuQv and
the definitions (7):

m̂u = αUmvm̂, q̂u = αUqvq̂, Q̂u = αUQvQ̂, (73)

m̂v = αV mum̂, q̂v = αV quq̂, Q̂v = αV QuQ̂. (74)

The equations (64)–(66) along with their equivalents for
v, the equations (70)–(72) and (73) and (74) constitute a
closed set of equations that hold at the extrema of φ in
Eq. (59).

When they are iterated, they constitute the so-called state
evolution equations. These can also be obtained by the analysis
of the BP algorithm and are known to accurately describe the
algorithm’s behavior when the replica symmetric hypothesis
is indeed correct.

As noted before, if L = MP , then these state evolution
equations are identical to the ones in matrix factorization [14].
Therefore, they reduce to the state evolution of GAMP when U

is known, which corresponds to fixing mu = qu = Qu = Q0
u

in the equations.

D. Bayes-optimal analysis

Until now, we have not supposed exact knowledge of
the true signal distributions and of the true measurement
channel. When this is the case, the state evolution equations
greatly simplify because of the so-called Nishimori condi-
tions [29]. In our case, these ensure that following equalities
hold:

Q = Q0, Q̂ = 0, m = q, m̂ = q̂, (75)

for both u and v. Then, we only need to keep track of the
variables (mu,m̂u,mv,m̂v), and the state evolution is obtained
by choosing initial values for (m0

u,m
0
v) and iterating for i � 0

the equations

m̂i+1 = 1

mi
um

i
v

∫
Dt

[
∂
∂t

f Y
0

(√
mi

um
i
vt,Q

0
uQ

0
v − mi

um
i
v

)]2
f Y

0

(√
mi

um
i
vt,Q

0
uQ

0
v − mi

um
i
v

) ,

(76)

mi+1
u = 1√

αUmi
vm̂

i+1

∫
dt

[
f U

1

(
t√

αU mi
vm̂

i+1
, 1
αU mi

vm̂
i+1

)]2
f U

0

(
t√

αU mi
vm̂

i+1
, 1
αU mi

vm̂
i+1

) ,

(77)

mi+1
v = 1√

αV mi
um̂

i+1

∫
dt

[
f V

1

(
t√

αV mi
um̂

i+1
, 1
αV mi

um̂
i+1

)]2
f V

0

(
t√

αV mi
um̂

i+1
, 1
αV mi

um̂
i+1

) ,

(78)

until convergence. From mu and mv , one can simply deduce
the mean-squared errors by the following relations:

MSEu = Q0
u − mu, MSEv = Q0

v − mv,

MSEx = Q0
uQ

0
v − mumv. (79)

The initialization values (mu,m̂u,mv,m̂v) indicate how close
to the solution the algorithm is at initialization. In case of
a random initialization of the algorithm, the expected initial
overlaps m0

u and m0
v are of order 1/M and 1/P , respectively,

and they should therefore be set to these values (or less) in the
state evolution equations.

Note that state evolution run with matching priors without
imposing the Nishimori conditions (75) should in principle
give the exact same results as the Bayes-optimal state
evolution analysis presented above and thus naturally follow
the “Nishimori line” defined by (75). However, as shown
in Ref. [30], the Nishimori line can be unstable: In that
case, numerical fluctuations around it will be amplified under
iterations of state evolution that will thus give a different result
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than its counterpart with imposed Nishimori conditions. This
instability of the Nishimori line seems to be the reason why
algorithm 1 as well as others of the same type do not converge
without damping of the variables.

IV. CASE STUDY

In this section, we focus on one specific setting for which
the state evolution equations are practical to implement. An
analysis of their fixed points leads to an understanding of
different phases and of the phase transitions between them.

We look at the setting in which both U and V follow a
Bernoulli-Gauss distribution:

pU (u) = (1 − ρu)δ(u) + ρu N (u; 0,1), (80)

pV (v) = (1 − ρv)δ(v) + ρv N (v; 0,1), (81)

and the measurements are taken through an additive white
Gaussian noise (AWGN) channel:

∀l ∈ [1,L], Yl = [A(UVT )]l + ξl, with ξl ∼ N (ξl ; 0,�).

(82)

Note that most previous works [9,31–33] consider this channel.
For the AWGN channel, Eq. (76) has a simple analytical
expression:

m̂i+1 = 1

� + ρuρv − mi
um

i
v

. (83)

Further simplifying the setting to the special case M = P

and ρu = ρv = ρ, the Bayes-optimal state evolution equa-
tions (76)–(78) can be written as one single equation,

m =
√

�+ρ2−m2

αum

∫
dt

[
f U

1

(√
�+ρ2−m2

αum
t,

�+ρ2−m2

αum

)]2
f0
(√

�+ρ2−m2

αum
t,

�+ρ2−m2

αum

) , (84)

in which the iteration time indices of m, i (left-hand side) and
i − 1 (right-hand side), are left out for better legibility. We can
define a global measurement rate

α ≡ L

2MR
= αu

2
, (85)

which is the natural quantity to which to compare ρ.

A. Phases and phase transitions

As in compressed sensing or in matrix factorization, the
analysis of the free entropy and state evolution equations
reveals the existence of different phases in which the difficulty
of the problem differs. In our case study, the free entropy φ

has the following expression:

φ(m) = −mm̂ − α

4
log[2π (� + ρ2 − m2)]

+ 2√
m̂

∫
dtf U

0

(
t√
m̂

,
1

m̂

)

×
[

t2

2
+ log

(√
2π

m̂
f U

0

(
t√
m̂

,
1

m̂

))]
(86)

−6 −4 −2 0
−2

−1

0

1

2

log10(nMSE)

φ

α = 0.8
α = 0.68
α = 0.49

FIG. 3. Free-entropy landscapes for ρ = 0.5, � = 10−5. Crosses
represent local maxima. There are three types of them: at nMSE = 1
(as for α = 0.49), at nMSE ≈ �, or in an intermediary region. In
case there are several local maxima (as for α = 0.68), the algorithm
will perform sub-optimally, getting stuck in the local maximum of
highest nMSE instead of converging to the global maximum (“hard
but possible” phase).

with

m̂ = 1

� + ρ2 − m2
. (87)

The integral can best be numerically evaluated replacing
∫

with 2(
∫ 20

0 + ∫ 20
√

1+m̂

20 ), which allows a reliable numerical
evaluation for all possible values of m̂.

Figure 3 shows the free-entropy landscapes for ρ = 0.1 and
different values of α. Instead of using m as x axes, we use the
normalized mean-squared error

nMSE = 1 − m

ρ
, (88)

which is a more natural quantity to measure the quality of
reconstruction.

We can define three different phases depending on the
positions of the free-entropy maxima. In the noiseless setting,
these are as follows:

(1) An “impossible” phase, in which the global maximum
of the free entropy is not at nMSE = 0. In that phase, no
algorithm can find the correct solution.

(2) A “hard but possible” phase, in which the free entropy
has its global maximum at nMSE = 0 but also a local
maximum at nonzero nMSE. In that phase, it is possible
to find the correct solution by correctly sampling from the
posterior distribution (21). However, algorithms such as P-
BiG-AMP get stuck in the local free-entropy maximum
instead of finding the global maximum.

(3) An “easy” phase, in which the free-entropy function
has a single maximum at nMSE = 0.

In a noisy setting as in Fig. 3, the lowest achievable nMSE
is of the order of the AWGN variance � instead of 0.

1. State evolution fixed points

The state evolution equation (84) can either be iterated
or considered as a fixed point equation. Figure 4 shows
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FIG. 4. Fixed points of the state evolution equation (84) for two different sparsities ρ. For values of α for which two stable fixed points
exist, the iterated state evolution equation converges to the one of higher nMSE if the initial nMSE is higher than the unstable fixed point and
to the one of lower nMSE if not.

the fixed points of (84), which are all local extrema of
the free entropy φ. The iterated state evolution equation
converges to one of the local maxima. Since the state
evolution for the matrix compressed sensing problem and
the dictionary learning problem are the same [provided L =
MP and R = O(M)], these diagrams and their analysis are
equivalent to those presented in previous work on the dic-
tionary learning [14]. Notably, Ref. [16] presented analogous
diagrams depicting the fixed points for the dictionary learning
problem.

The plots allow us to see more clearly the “impossible,”
“hard but possible,” and “easy” phases. In the “hard but
possible” phase, the state evolution has an unstable fixed point,
which corresponds to a local minimum of the free entropy.
Three interesting facts can be noticed:

(1) In the noiseless setting, the impossible-possible phase
transition (the apparition of the low nMSE fixed point) takes
place at α = ρ. This can be expected because it is the critical
α at which the number of available equations is equal to the
total number of nonzero components of the unknowns, just as
in compressed sensing.

(2) The fixed point at nMSE = 1 always exists and is stable
for α ∈ [0,1/2]. This is a rather remarkable fact that does not
appear in compressed sensing. A consequence of this is the
existence of a “hard but possible” phase that even for very
small values of ρ extends at least up to α = 1/2. This radically
differs from the low-ρ regime in compressed sensing, in which
the measurement rate α necessary for tractable recovery goes
to zero as ρ → 0.

(3) Increasing α starting below 1/2 and following the
high-nMSE branch, two successive phase transitions are
encountered. First, the nMSE = 1 fixed point disappears
at α = 1/2 and turns into an nMSE < 1 fixed point in a
second-order (i.e., continuous) phase transition. Second, the
upper branch disappears and the discontinuity of the nMSE
of the fixed point, jumping down to the lower branch, marks
a first-order phase transition. While these two transitions of
different types are clearly visible in Fig. 4(b), they are too close
together in Fig. 4(a) to be distinguished. They are separated
nonetheless, the easy-hard (first-order) phase transition always
takes place at α > 1/2.

Figure 5 shows the full phase diagram for the case-study
problem, with the easy, hard, and impossible phases. The
“uninformed” line is obtained by starting the state evolution
from nMSE = 1 − ε, with an infinitesimally small ε, and
defines the transition between the “easy” and the “hard”
phases. Interestingly, the entire region with α < 0.5 is in the
hard phase, even at low values of ρ, due to the existence
of the stable fixed point at nMSE = 1. In the “hard” phase,
inference is possible provided a good estimation of the signal
is already known. The effect of such a partial knowledge can be
simulated by running the state evolution equation (84) starting
with nMSE = 0.9, leading to the “informed” line, for which

0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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easy

hard

impossible
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FIG. 5. Phase diagram for the considered case study obtained
from the state evolution, Eq. (84). Noise variance is � = 10−12 and
success is defined by a final nMSE < 10−10. The disappearing of
the state evolution fixed point (or, equivalently, of a free-entropy
maximum) with nMSE of order 1 marks the frontier between the
“hard” and the “easy” phase (full line). The dashed line marks
the easy-hard phase boundary when an “informed” initialization
is provided (see text). The possible-impossible frontier represented
corresponds to the noiseless case.
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FIG. 6. Comparison of fixed points obtained by the state evolution and and values reached by the P-BiG-AMP algorithm. Parameters
are ρ = 0.1, � = 10−12 with (a) M = 50 and (b) M = 200. For each α there are 100 experimental points. The experimental fixed points are
relatively close to the fixed points of the state evolution. Note that the spreading around the theoretical line diminishes with growing M . In the
thermodynamic limit M → ∞, all experimental points would be on the fixed point of highest nMSE. At finite M , the probability to initialize
the algorithm below the unstable fixed point allows some instances to converge to the low-nMSE fixed point.

α → 0 when ρ → 0. The position of this line depends strongly
on the starting nMSE.

B. Comparison with algorithmic performances

Figures 6 and 7 presents a comparison of the theoretical
fixed point analysis performed above with the actual perfor-
mances of P-BiG-AMP.

For the experiments, rank R = 1 was used. In this setting,
the only invariance left is a scaling invariance: If (U,V) is the
true solution, then for every γ �= 0, (γ U, 1

γ
V) is a solution

as well. The final nMSE returned by the algorithm takes this
invariance into account and is the average of the error on U

and the error on V:

nMSE = 1
2 (nMSEu + nMSEv), (89)

which will be compared to the results obtained by the
theoretical expression (88). For each instance of the problem,
the algorithm was allowed up to 20 restarts from different
random initializations to reach a nMSE smaller than 10−6, and
the lowest of the reached nMSE was kept.

The results show that there is a good agreement between
the theory and the performance of P-BiG-AMP: Most of the
nMSEs reached by P-BiG-AMP correspond to a stable fixed
point of the state evolution. The agreement with the theory
becomes better with increasing system size. For smaller sizes,
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(a) ρ = 0.6, M = 50
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(b) ρ = 0.6, M = 200

FIG. 7. Comparison of fixed points obtained by the state evolution and values reached by the P-BiG-AMP algorithm. Parameters are
ρ = 0.6, � = 3.6 × 10−11 with (a) M = 50 and (b) M = 200. For each α there are 100 experimental points. Unlike for the ρ = 0.1 case in
Fig. 6, the algorithm fails for an important fraction of instances in the “easy” phase. This phenomenon is not explained by the state evolution
analysis and might be a finite-size effect. However, as α grows the probability of success goes to 1 [see Fig. 8(b)]. Unlike for ρ = 0.1, the
probability of recovery inside the “hard” phase is much smaller, due to the lower nMSE of the unstable fixed point. The thin dotted line marks
the position of the second-order phase transition, at which the nMSE stops being strictly equal to 1.
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FIG. 8. Empirical probability of success (defined by nMSE < 10−6) for the experiments presented on Figs. 6 and 7. Due to the finite size,
the position of the curves slightly vary for different values of M . Finite-size effects allow a fraction of successful instances inside the hard
phase for ρ = 0.1 but much less for ρ = 0.6.

the experimental points are more spread around the theoretical
fixed points. This can be well understood by analyzing the case
of fixed points with nMSE = 1. The “meaning” of such fixed
points is that the algorithm is unable to estimate the true signals
better than at random. In the M → ∞ limit, the nMSE between
the true signals and random signals is 1 with probability 1.
For finite values of M , however, the nMSE between true and
random signals follows a distribution on [0,1] that gets more
peaked on 1 as M increases. This explains the narrowing of
the spread of experimental points around the fixed points as
M increases.

1. Succeeding in the hard phase: Importance of the initialization

An interesting consequence of this finite-size effect is that
for small M , parts of the “hard” phase are quite easy. The
reason is that if the random initialization of the algorithm is
such that the nMSE is smaller than the nMSE of the unstable
fixed point, then the algorithm naturally converges to the low-
nMSE solution. Therefore, running the algorithm from a few
different initializations can allow us to converge to the correct
solution even in the “hard” phase, provided that M is small
enough and that the unstable fixed point has a high-enough
nMSE.

Figure 8 shows that this effect is quite important for ρ = 0.1
but nearly inexistent for ρ = 0.6. The reason for this is the
much higher nMSE of the unstable fixed point for ρ = 0.1
than for ρ = 0.6.

Remember that in P-BiG-AMP, the initial estimates of U
and V are random. While in some regions of the phase diagram
and with small signal sizes, running the algorithm from
several of those random initial estimates might be sufficient,
in general it would be preferable to have a procedure that
systematically produces good initializations. Previous works
stress this fact as well and often rely on an initialization
from spectral methods [9,31–33]. In addition to restarts from
random initializations, P-BiG-AMP uses a damping scheme

that is nontrivial to analyze. For this reason, we could not
check if the results presented on Fig. 8 are quantitatively in
agreement with the hypothesis that the finite effect described
above is the only reason for success in the hard phase.

As a matter of fact, other finite-size effects seem to exist
as well: another difference between Figs. 8(a) and 8(b) is that
in the latter, the algorithm fails for a significant fraction of
instances inside the “easy” phase, which is not the case in
the former. The fact that the fraction of such failed instances
decreases with increasing signal size M seems to indicate
that this is as well a finite-size effect. Unlike the previously
examined finite-size effect, this one cannot be explained from
the state evolution, as it has a unique fixed point in the “easy”
phase.

V. CONCLUSION

In this paper, we provide an asymptotic analysis of Bayesian
low-rank matrix compressed sensing. We employ the replica
method of statistical physics to obtain the so-called state
evolution equations, whose fixed points allow us to determine
if inference is easy, hard, or impossible. The state evolution
equations describe the behavior of the associated message-
passing algorithm P-BiG-AMP that was derived and studied
previously in Ref. [6]. This work inscribes in a line of
work where approximate message passing was derived and
analyzed on related estimation problems such as compressed
sensing [19,20] or matrix factorization [14,24,34].

An interesting point concerning the saddle-point equations
and the resulting state evolution equations and phase diagrams
is that they are the same as those for the matrix factorization
problem derived in Ref. [14]. Related observations were made
in Ref. [10].

Our analysis, just as the algorithm, is written for a generic
separable prior and output channel. We analyze in detail the
phase diagram for Gaussian noise on the output and Gauss-
Bernoulli prior on both the factors. A striking point in the phase
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diagram is that the α [Eq. (85)] needed for the recovery to be
tractable does not go to zero as the factors become very sparse.
This is a remarkable difference between the matrix and the
linear compressed sensing. We show numerically that there is
an excellent agreement between the theoretical analysis and the
performances of the P-BiG-AMP algorithm. We observe that
for the simulated system sizes, the algorithm performs better
than what could be expected from the asymptotic theoretical
analysis. However, we explain this as a finite-size effect in
terms of state evolution fixed points and stress the importance
of a good initial estimate in order to perform inference out-
side of the easy phase. Our analysis quantifies how “good” the
initialization needs to be for large systems to allow tractable
recovery.

The results obtained in compressed sensing using so-
called spatial coupling matrices have shown that for certain
types of carefully designed measurement matrices, perfect
signal recovery is possible in the hard but possible phase
despite uninformed initialization [13]. We expect that this is
the case as well for matrix compressed sensing. Verifying
this would be an interesting direction for further research,
especially in order to overcome the large hard phase for low ρ.
Another interesting type of measurement matrix is structured
measurement matrices, such as Fourier or Hadamard matrices.
Although these matrices are not random, it has been shown that
they lead to very similar results while allowing a considerable
speedup of the algorithm [35,36], while they stay analyzable
by the replica method as in Ref. [37,38].
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APPENDIX A: DETAILS FOR THE DERIVATION OF THE
MESSAGE-PASSING ALGORITHM

Here, we complete the derivation of the message-passing
algorithm starting with Eq. (30):

m̃l→μs(uμs) ∝ f Y
0

(
Ẑl→μs + Flμsuμs,Z̄l→μs + Hlμsuμs

+Glμsu
2
μs

)
. (A1)

We first make a Taylor expansion of this message at order 2
around uμs = 0. We drop all indices for this calculation and
use simplified notations f = f Y

0 (Ẑ,Z̄), ∂1 = ∂

∂Ẑ
, ∂2 = ∂

∂Z̄
:

m̃(u) ∝ f + u(F∂1f + H∂2f ) + 1
2u2(F 2∂2

1 f + H 2∂2
2 f

+ 2FH∂1∂2f + 2G∂2f ) + o(u2). (A2)

We can rewrite m̃ as a Gaussian,

m̃(u) ∝ N (u; p̂,p̄) + o(u2), (A3)

by identifying the coefficients of the Taylor expansion above
with the Taylor expansion of a Gaussian,

N
(

x;
a

b
, − 1

b

)
∝ 1 − ax + b + a2

2
x2 + o(x2). (A4)

Note that the form (A3) is only valid around u = 0: m̃ is
not Gaussian. However, this form makes calculations easier.
Identification of the coefficients in (A2) and (A4) leads to

p̄ = −
{

F 2

[
∂2

1 f

f
−
(

∂1f

f

)2
]

+ 2G
∂2f

f

+H 2

[
∂2

2 f

f
−
(

∂2f

f

)2
]

+ 2FH

(
∂1∂2f

f
− ∂1f

f

∂2f

f

)}−1

, (A5)

p̂ = −p̄

(
F

∂1f

f
+ H

∂2f

f

)
, (A6)

We can now treat the m messages from Eq. (23). The product
is easy to handle, as it is a product of Gaussians,∏

l′ �=l

m̃l′→μs(uμs) ∝
∏
l′ �=l

N (uμs ; p̂l′→μs,p̄l′→μs)

∝ N (uμs ; Ûμs→l ,Ūμs→l), (A7)

which allows us to write

Ūμs→l =
⎛
⎝∑

l′ �=l

p̄−1
l′→μs

⎞
⎠

−1

, (A8)

Ûμs→l = Ūμs→l

∑
l′ �=l

(
p̂l′→μs

p̄l′→μs

)
. (A9)

In the sums above, some of the non-leading-order terms
stemming from Eqs. (A5) and (A6) have a vanishing contribu-
tion in the limit where (M,P,L) → ∞ and will therefore be
neglected. The table below analyzes the orders of magnitude
and possible signs of all quantities in (A5) and (A6). In the third
and fourth lines, we use this to analyze the order of magnitude
of a sum of L of those terms, as appears in (A8) and (A9), and
what this leads to when L ∝ RM , which is the scaling we are
interested in.

F G H F 2 H 2 FH

Scales as: 1√
RP

1
RP

1
R

√
MP

1
RP

1
R2MP

1
R3/2P

Sign: ± + ± + + ±
Sum over L

√
L√

RP

L

RP

√
L

R
√

MP

L

RP

L

R2MP

√
L

R3/2P

L ∝ RP 1 1 1√
RM

1 1
RM

1
R

√
P

This analysis is based on the fact that
(i) A has random independent and identically distributed

elements of mean 0 and variance 1/(RMP );
(ii) U, V, and z have zero-mean elements of order 1, and

therefore all estimators of type û,Û, etc., are of order 1 as well,
either positive or negative;
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(iii) Variances of type ū,Ū, etc., are positive and of
order 1;

(iv) All quantities of the type ∂if

f
are of order 1.

With the help of the table, we can neglect all terms that have a
vanishing contribution. Furthermore, using the relations (17)
and (18) and the definition of the g functions (20), it can be
shown that

∂1f
Y

f Y
= ĝY , (A10)

∂2
1 f Y

f Y
−
(

∂1f
Y

f Y

)2

= ḡY , (A11)

∂2f
Y

f Y
= 1

2
[ḡY − (ĝY )2]. (A12)

In the end, the resulting expressions for (A8) and (A9) are
given in (32) and (33).

APPENDIX B: DETAILS FOR THE REPLICA
CALCULATION

a. Covariance matrix of zl . We treat za
l = [A(Ua(Va)�)]l

as a random variable of A and look at the covariance between
two of those variables:

〈
za
l z

b
l′
〉 =
〈(∑

μp

A
μp

l

∑
s

ua
μsv

a
ps

)⎛⎝∑
μ′p′

A
μ′p′
l′
∑
s ′

ub
μ′s ′v

b
p′s ′

⎞
⎠〉,
(B1)

=
〈∑

μμ′

∑
pp′

A
μp

l A
μ′p′
l′
∑
ss ′

ua
μsu

b
μ′s ′v

a
psv

b
p′s ′

〉
, (B2)

=
∑
μμ′

∑
pp′

〈
A

μp

l A
μ′p′
l′
〉∑

ss ′
ua

μsu
b
μ′s ′v

a
psv

b
p′s ′ . (B3)

As the elements of A are independent and identically dis-
tributed with zero mean and variance 1/(RMP ), we have
〈Aμp

l A
μ′p′
l′ 〉 = δl,l′δμ,μ′δp,p′ 1

RMP
and thus

〈
za
l z

b
l′
〉 = δl,l′

1

RMP

∑
ss ′

((∑
μ

ua
μsu

b
μs ′

)(∑
p

va
psv

b
ps ′

))
,

(B4)

= δl,l′

R

∑
ss ′

((
1

M

∑
μ

ua
μsu

b
μs ′

)(
1

P

∑
p

va
psv

b
ps ′

))
,

(B5)

We now make the following assumption:

1

M

∑
μ

ua
μsu

b
μs ′ =

{
Qab

u = O(1) if s = s ′(
Qab

u

)
ss ′ = O

(
1√
M

)
if s �= s ′ . (B6)

This assumption corresponds to breaking the column-
permutation symmetry and, more generally, the rotational
symmetry between different replicas. We thus assume that
the sth column of Ua is correlated to the sth column of Ub and
to none of the others. We make the same assumption for V.
Then,

〈
za
l z

b
l′
〉 = δl,l′

R

⎡
⎣∑

s

Qab
u Qab

v +
∑
s �=s ′

(
Qab

u

)
ss ′
(
Qab

v

)
ss ′

⎤
⎦.

(B7)

Due to the hypothesis (B6), the second term vanishes, and〈
za
l z

b
l′
〉 = δs,s ′Qab

u Qab
v . (B8)

Note that, by definition of Qab
u in (B6), Qab

u = Qba
u .

b. Introducing Q̂u. In Eq. (43), Dirac δ functions enforce
the relations (B6). We use the integral representation of these
δ functions to carry on the calculation:

δ

(
MQab

u −
∑

μ

ua
μsu

b
μs

)

= 1

2πı

∫
dQ̃ab

U e−Q̃ab
U (MQab

u −∑μ ua
μsu

b
μs ). (B9)

The product of all these δ functions thus gives

∏
a�b

δ

(
MQab

u −
∑

μ

ua
μsu

b
μs

)

∝
∫

dQ̃Ue−M
∑

a�b Q̃ab
U Qab

u e
∑

μ

∑
a�b Q̃ab

U ua
μsu

b
μs . (B10)

Note that because Qab
u = Qba

u , the replica indices in the sum
are a � b. Finally, we make a change of variables,

∀a, Q̂aa
U = 2Q̃aa

U , (B11)

∀(a,b) with a �= b, Q̂ab
U = 4Q̃ab

U , (B12)

which allows us to obtain the following formulas:

∑
a�b

Q̃ab
U Qab

u = 1

2
Tr(QuQ̂u), (B13)

∑
a�b

Q̃ab
U ua

μsu
b
μs = 1

2
u�

μsQ̂uuμs, (B14)

where we introduced the vector uμs = (u0
μs . . . un

μs)
�. We

change the integration variable from Q̃U to Q̂u, and we obtain
the expression (44).
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[13] F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L. Zdeborová,
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[29] L. Zdeborová and F. Krzakala, Adv. Phys. 65, 453 (2016).
[30] F. Caltagirone, L. Zdeborová, and F. Krzakala, in 2014 IEEE
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