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ABSTRACT

The presence of multiple users in a network provides us with a valuable resource
known as multiuser diversity. With information on the instantaneous states of the
channels, multiuser diversity can be tapped by opportunistic multiuser scheduling.
It is important that the channel state information is acquired in a cost-effective way
so that the losses involved in this operation do not offset the gains promised by op-
portunistic scheduling. For various network environments of practical interest, this
dissertation models the radio frequency links with memory, and studies the modalities
to exploit the channel memory to simultaneously estimate channel state information,
while performing opportunistic multiuser scheduling. The data transmission at any
point of time is shown to be associated with two potentially contradicting objectives:
opportunistic scheduling for immediate gains and channel exploration for future gains.
Thus the joint scheduling problem is a dynamic program, specifically a partially ob-
servable Markov decision process that is traditionally known to be intractable or com-
putationally expensive to implement. For various networks, we study these processes
in an optimality framework and whenever possible, derive the optimal scheduling pol-
icy in closed form. In other cases, strongly founded on the optimality framework, we
derive computationally inexpensive scheduling policies with near-optimal numerical

performances.
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By appropriately exploiting the memory in the fading channels, significant sys-
tem level gains can be achieved using opportunistic scheduling, even with minimal
feedback, and a considerable portion of these gains can be realized even with sub-
optimal policies that are computationally inexpensive to implement — This is the

central message of this dissertation.
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CHAPTER 1

INTRODUCTION

Recent years have witnessed a large-scale deployment of wireless networks, thanks
to a surge in the demand for wireless “anytime, anywhere”, high data rate services
such as the wireless broadband access, multimedia services (MMS), video chat, mo-
bile HDTV, teleconferencing, gaming and so on. Driven by this demand, spectrally
efficient communication techniques have been progressively built into generations of
wireless networks. These techniques are typically characterized by intelligent design
paradigms across the OSI layers, such as rate adaptation, incremental redundancy
ARQ), turbo coding, multiple input multiple output (MIMO) smart antennas, oppor-
tunistic multiuser scheduling, to name a few.

Among these, opportunistic multiuser scheduling aims to improve the network
utilization by taking advantage of the fluctuations in the wireless channel across
users, across time. Fluctuations in wireless channels are induced by a well-known
phenomenon called multipath fading — when a transmitted signal traverses multiple
paths (occurs when the signal reflects from obstructions like vehicles or buildings)
and hence multiple copies reach the destination, they interfere constructively or de-
structively leading to fluctuations in channel strength. This is illustrated in Fig. 1.1.
Traditionally considered a disadvantage, fading has been shown by Knopp and Hum-

1



transmitter

reflector

receiver time

Figure 1.1: Illustration of the multipath fading phenomenon.

blet [1] to be beneficial in a wireless network, if appropriately exploited. They showed
that, by scheduling transmission to the network user experiencing the best channel
strength at the moment, significant system level gains can be realized. Thus fading
essentially gives an opportunity for the network to ride on the peak channel condition
at all times, as illustrated in Fig. 1.2. The resource that is tapped here is called
multiuser diversity and the intelligent resource allocation is commonly referred to as
opportunistic multiuser scheduling.

Opportunistic multiuser scheduling has since been a topic of great interest to re-
searchers, (e.g., [2]- [7]). While a majority of the literature on the topic studied the
means to exploit the multiuser diversity already present in the network, some liter-
ature (e.g., [3]) propose strategies to artificially introduce multiuser diversity in the
network, when the channel fading is not large enough (happens when a significantly
strong line of sight component exists leading to low scattering) and hence the amount

of multiuser diversity in the network is too small to be meaningfully exploited. An



time

Figure 1.2: Ilustration of opportunistic scheduling by ‘riding the peak’ of the channel
strengths. Fach circle indicates a user.

instance of commercial deployment of opportunistic scheduling strategy is the pro-
portional fair schedulers implemented in cellular systems. Here users are prioritized,
at the base station, based on the ratio of their instantaneous channel strengths to a
measure of service received so far by the user. This scheduler aims to strike a bal-
ance between overall network throughput and network level fairness when the channel

statistics of the users are asymmetric.

1.1 Motivation

The success of opportunistic scheduling, understandably, banks heavily on the
availability of reliable information on the instantaneous channel strengths of the users,
at the scheduler. A majority of the available literature, while being instrumental
in enhancing our understanding of multiuser diversity and the means to exploit it,
makes the following simplifying assumption: information on the channel strengths is
readily available at the scheduler or the resources spent in acquiring this information

is negligible. In reality, however, at regular intervals, each network user must spend



valuable resources in measuring the channel strength and reporting this information
back to the scheduler. In addition, the overhead caused by this feedback creates
additional strain on the reverse link that may be as scarce as the forward link. This
is particularly true in recent and upcoming applications like mobile teleconferencing,
video chat, gaming etc. Thus the loss of network resources associated with measuring
and reporting the channel strengths to the scheduler has the potential to offset the
gains associated with opportunistic scheduling [7]. It follows that the problem of
acquiring channel state information is tightly coupled with the problem of exploiting
multiuser diversity and it is therefore the need of the hour to design efficient joint
channel information acquisition - opportunistic scheduling mechanisms.

Towards this end, we take a step back and focus on the channel modeling phi-
losophy at the physical layer. The physical channels in the network, that suffer
from fading and shadowing effects of the environment, are traditionally abstracted
by Rayleigh or Rician flat fading models, depending on the strength of the line of
sight component. It is assumed, in a flat fading model, that the fading coefficient
evolves from one slot to another independently, i.e., without any memory. The re-
ality, however, is different. There is a non-negligible amount of time correlation,
i.e., memory in the channels, requiring the use of more realistic fading models. It
has been reported [8,9] that the first order, finite state Markov chain (Fig. 1.3) is
known to abstract the fading channels with reasonable accuracy. A new line of work
(e.g., [10-14]) have recognized this and adopted the first order, finite state, Markov
chain to represent fading channels with memory and studied opportunistic multiuser

scheduling in various networks. Despite capturing the memory in the channels, these



Figure 1.3: A first order, finite state Markov chain with state space S.

works assume that the channel state information is readily available at the sched-
uler. Another line of work (e.g., [15,16]), however, does not make this simplifying
assumption and attempts to exploit the memory in the Markov-modeled channels to
gather the channel state information, for purposes unrelated to opportunistic mul-
tiuser scheduling. These two lines of work can be combined to create a new design
paradigm: model the channels with memory and use this memory to estimate the
channel state information for opportunistic scheduling. This forms the central theme

of this dissertation.

1.2 Contributions and Outline

We consider network models with the following common elements:

e Networks are centralized, i.e., communication happens between a central entity

(the scheduler) and multiple users.

e Time is slotted and the channels between the users and the scheduler are mod-
eled by first order, finite state Markov chains — not necessarily independent or

identical across users.



Figure 1.4: An Illustration of the general one-to-many scheduling model.

The scheduler in each slot must schedule transmission to one of the users, with-
out actual knowledge on the instantaneous channel state of the users and based
solely on the belief values of the channels. The overall goal of the scheduler is

to maximize the system sum-throughput.

The scheduled user, at the end of the transmission slot, sends accurate feedback
on the channel state in that slot to the scheduler. This end-of-slot feedback, un-
der specific network environments, could be visualized as the Automatic Repeat

reQuest (ARQ) feedback that is prevalent in communication protocols.

The scheduler uses the feedback from the scheduled user, along with the memory
inherent in the Markovian channels, to create belief values of the channels, which

are, in turn, used for future scheduling decisions.

Thanks to the last element in the model, in any slot, scheduling transmission to a

user is associated with the following two (potentially contradicting) objectives:
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e Exploitation: Schedule the user with the best (perceived) channel condition

at the moment — this corresponds to immediate gains in throughput.

e Exploration: Schedule a user and thus probe a user’s channel to gain better
overall understanding of the network channels, and hence better opportunistic
scheduling, in the future. This, however, may require a compromise on the

immediate gains in throughput.

We capture this trade-off by modeling the scheduling problem as a Partially Observ-
able Markov Decision Process (POMDP) ([17]- [22]). In POMDPs, a system controller
must take an action based on partial observations of the underlying system state. Af-
ter each action, the controller accrues an immediate reward that is a function of the
underlying state and the action taken. The system then evolves to the next state,
probabilistically dependent on the current state and action. A simple illustration of
a POMDP is provided in Fig. 1.5.

It must be noted that POMDPs are traditionally known to be analytically in-
tractable and computationally expensive to solve. Although various ‘one-size-fits-all’
exact and approximate numerical solutions are available in the literature, they do not
usually provide insights into the problem at hand. Taking note of these, we adopt

the following approach in our study of opportunistic scheduling in various networks:

e Study the scheduling problem in an optimality framework that results in iden-
tifying crucial structural properties of the optimal scheduling policy.

e Analytically characterize the optimal scheduler whenever possible.

e In other cases, strongly founded on the optimality framework, derive near-
optimal scheduling policies that are computationally inexpensive to implement.

7
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Figure 1.5: Illustration of a partially observable Markov decision process. Dotted
arrows indicate probabilistic connections



Specifically, in Chapter 2, we consider opportunistic scheduling using 1-bit chan-
nel feedback in broadcast networks modeled by Markovian channels. Here, we ad-
dress throughput/energy aware scheduling where, during every scheduling slot, the
scheduler either transmits data to all users or stays idle. While a transmit deci-
sion corresponds to throughput gain, idle decision corresponds to energy savings. If
one considers the set of all broadcast users as a single user and the idle decision as
transmitting to a virtual user with time-invariant channel state, then this scheduling
problem is essentially opportunistic multiuser scheduling in the traditional sense. By
formulating the scheduling problem as a POMDP over an infinite horizon with dis-
counted reward, we obtain the following main results: For particular ranges of the
system parameters, we show that the optimal scheduling policy is greedy or partially
greedy, depending on the case. For the general scenario, using an indirect approach,
we perform an optimality analysis of the scheduling problem and derive a threshold
scheduling policy that is easy to implement and near-optimal.

In Chapter 3, we study opportunistic scheduling using ARQ feedback in cellular
downlink modeled by Markovian channels. We consider a general setup where the
ARQ feedback from the users is assumed to be delayed randomly. We show that,
despite the complicated dynamics between the channel information acquisition and
scheduling mechanisms, a simple greedy policy is optimal when the number of down-
link users is two. For higher number of users, we show that the greedy policy is
strictly suboptimal and that it has near-optimal performance. We then study the
structure of the greedy policy and show that it can be implemented via a simple
algorithm that does not require the statistics of the underlying Markov chain nor the

statistics of the feedback delay. By establishing an equivalence between the downlink



and a genie-aided system, we perform a fundamental capacity region analysis of the
downlink.

In Chapter 4, we study opportunistic scheduling in cellular downlink when the
channel state feedback is instantaneous (i.e., end of slot) and the channel is modeled
by three-states. The purpose of this model is to study the effect of increasing the
Markovian channel state space on the scheduling problem studied in Chapter 3. It
turns out, many of the elegant structural results identified in Chapter 3 vanishes even
when the size of the state space is increased by one. We then study the structural
properties of the greedy policy and derive simple algorithms for its implementation.

In Chapter 5, we study opportunistic scheduling in multi-cellular downlink as-
suming the ARQ feedback is instantaneous. We focus on a two-cellular system since
our analysis can be readily extended to the multi-cellular systems. We address the
scheduling problem by following a two layered approach: the well established ‘cell
breathing’ based inter-cell interference (ICI) control mechanism is adopted and as-
sumed to be in place. On top of this layer we optimize ARQ based scheduling across
the cells. We consider two scenarios: when the cooperation between the cells is
asymmetric and when it is symmetric. Under asymmetric cooperation, the optimal
scheduling policy has a greedy flavor and is simple to implement. Under symmetric
cooperation, however, since a direct optimality analysis appears difficult, we formulate
the scheduling problem as a more general variant of the restless multiarmed bandit
processes [23] and study it from the perspective of Whittles indexability. Whittles
indexability is an important condition that is known to predispose the Whittles index

policy towards optimality in various RMAB processes. By linking the indexability

10



analysis to the broadcast scheduling problem studied in Chapter 2, we propose an
index policy that is easy to implement and has near-optimal performance.
We summarize our work along with a discussion on future directions for this

research topic in Chapter 6.
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CHAPTER 2

OPPORTUNISTIC SCHEDULING USING 1-BIT
FEEDBACK IN BROADCAST NETWORKS

2.1 Background

In this chapter we study energy aware, joint channel estimation - opportunistic
scheduling in broadcast networks with Markov-modeled channels. We first give a brief
background on broadcast networks and related literature. In broadcast networks, a
designated source node (scheduler) attempts to transmit a packet to all users in the
network. An integral component of mobile ad-hoc and sensor networks [24], broad-
cast plays a crucial role in a variety of protocols that provide basic functionality to
higher layer services (e.g., [25]). In sensor networks, broadcast is used for coordinated
and distributed computing (e.g., [26]). Thanks to the limited life of the mobile node
batteries and a limited ability to replenish these batteries, energy aware transmission
scheduling in broadcast networks is an important design consideration. This is par-
ticularly true in sensor networks where nodes are often deployed in hard to access or
hostile environments. A large volume of work (e.g., [27]- [33]) is available for energy
efficient communication in wireless networks - broadcast and otherwise. The reader

is directed to [34] for an excellent exposition on the topic. Much of these works, while
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providing valuable insights into energy efficient network design, are lacking in one
of two ways: the physical channel considerations are disregarded and the problem is
studied exclusively at the upper layers or, if the physical channel is indeed included
in the design, the instantaneous channel state is assumed to be readily available at
the scheduler. We address both of these issues in this chapter. The detailed problem

setup is described next.

2.2 Problem Setup

2.2.1 Channel Model

We consider an N user broadcast. As mentioned in Chapter 1, the channel between
the base station and each broadcast user is modeled by an 4.7.d two-state Markov chain
(GE model, [35]). Assuming packetized data transmissions, each state corresponds
to the degree of decodability of the packet sent through the channel. State 1 (ON)
corresponds to full decodability, while state 0 (OFF) corresponds to zero decodability.
Time is slotted and the channel of each user remains fixed for a slot and moves into
another state in the next slot following the state transition probability of the Markov
chain. The time slots of all users are synchronized. The two-state Markov channel is

characterized by a 2 x 2 probability transition matrix

P - {f iﬂ, (2.1)
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where

p := prob(channel is in ON state in the current slot|
channel was in ON state in the previous slot)
r := prob(channel is in ON state in the current slot|

channel was in OFF state in the previous slot).

Note that the Markov channel states can be interpreted as a quantized representation
of the underlying channel strength lying on a continuum. Since, in realistic scenar-
ios, the channel strength can be expected to evolve gradually over time (positive

correlation), we assume p > r throughout this chapter.
2.2.2 Scheduling Problem

In each time slot, the scheduler makes one of the following two decisions: (1)
transmit (broadcast) a packet to the users, or (2) stay idle. While a broadcast trans-
mission is associated with a throughput gain (and a concurrent energy loss), an idle
decision corresponds to energy savings (and a concurrent loss in throughput). Our
reward structure reflects this trade-off — Upon transmit decision, the scheduler ac-
crues a reward of 1 for each user that successfully decodes the broadcast packet. If an
idle decision is made, a reward of W (reward for passivity - corresponding to energy
savings) is accrued at the scheduler. The exact reward structure will be described
in the next subsection. The packets to be broadcast to the users are stored in an
infinite queue at the scheduler. Upon transmit decision, the scheduler broadcasts the
head of line packet to the users and drops it from the queue. At the end of the slot,
each user attempts to decode the packet and sends back bit 1 (decoding success) or
bit 0 (decoding failure) to the scheduler, over an error-free feedback channel. By the
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Figure 2.1: Illustration showing the broadcast scheduling model as a special case of
the general one-to-many scheduling model.

definition of the two-state Markov channel defined earlier, this 1-bit feedback from
an user at the end of a slot gives the state of the channel of that user in that slot.
The scheduler collects this state feedback from all the users and creates a belief value
of the channel state of the users in the next slot, using the Markov channel statistics.
These belief values are used by the scheduler to make transmit/idle decisions in future
slots. The scheduling problem is thus a dynamic program [36], more specifically a
partially observable Markov decision process [17]. Also, note that, we can consider
the idle decision as scheduling transmission to a virtual user with constant reward
(W), and the transmit decision as scheduling to a single cumulative user made up of
all the broadcast users. Thus the broadcast scheduling problem fits into the general
scheduling model described in Chapter 1. This is illustrated in Fig. 2.1.

We now formally define the problem below.
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2.2.3 Formal Problem Definition

Horizon: The number of consecutive time slots over which the scheduling decisions

are made is the horizon. Throughout this chapter, we focus on the infinite horizon

scenario.
Belief vector: Let m = (my,...,7n) € [0,1]" be the vector of belief values in the
current slot with m; denoting the belief value of the channel of user i € {1,..., N}.

It is well known [18] that the belief values are sufficient statistics to any information
about the channels in the past slots, in our case, the scheduling decisions and the
1-bit feedbacks from the past. Thus the scheduling decision in any slot can be solely
based on the belief values for that slot and (instead of the past schedule or feedback
information).

Action: Let a € {0,1} indicate the action (scheduling decision) taken in the
current slot. Let a = 1 correspond to the transmit decision and a = 0 correspond to
the udle decision.

1-bit feedback: Upon the transmit decision, at the end of the slot, each user ¢
in the broadcast determines if the reception was successful and sends back a 1-bit
feedback f; (1 for success and 0 for failure). Feedback f; is one-to-one mapped to the
state of the channel of user ¢ in the corresponding slot.

Ezxpected immediate reward: In each slot, if a transmit decision is made, the
scheduler accrues a reward of 1 for each user that successfully decodes the broadcast
packet. If an idle decision is made, a reward of W (reward for passivity - corresponding

to energy savings) is accrued at the scheduler. Thus the expected immediate reward
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accrued by the scheduler as a function of the belief vector and action is given by

- TG, ifa=1
R(m,a) = {WZ/Z a0 (2.2)

Stationary scheduling policy: A stationary scheduling policy @ is a stationary

mapping from the belief vector 7 to an action as follows:
qd:7m—ac{01}.

Expected total discounted reward under @: Under a policy @, for initial belief vector

7, the expected (infinite horizon) total discounted reward is given by
Va(m) = R(m,a)+ BE[Vg(rT)] (2.3)

where a = @(7) and § € [0,1) is the discount factor that determines the rela-
tive weight between the immediate and the future rewards. The expectation is
over the belief vector in the next slot, i.e., 77, which in turn is a function of the
scheduling decision a and (upon the transmit decision) the 1-bit feedback from the
users. We now proceed to explicitly express the total discounted reward under 4.
For notational simplicity, we first define a few quantities. Let IIg = (r,7,...,7r,7),
Iy = (ryry...,mp), Iy = (ryr,...,pyr),. ., lov_y = (p,p,...,p,p). Let Py(m) =
(1-—m)(l—=m)...(1l=7n_1)(1 —7n), Pi(m) = (1 —m)(1 —ma)...(1 —7n_1)(7n),
Py(m) = (1 —=m)(1 —m)...(7n_1)(1 —7Nn), ..., Pon_y(m) = mma...Ty_17y. De-
fine the operator T'(.) as the evolution of the belief value of a Markov channel to
the next slot under the idle decision. Thus, if = € [0,1] is the belief value, then

T(x) = zp+ (1 —2z)r. The total discounted reward under @ is now explicitly given by

Va () :{zimﬁzjza Py(m)Va(IL,), if a = A(r) = 24)

1
W + BVg(T' (7)), if a =4(mr) =0.
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Optimal scheduling policy: For a given belief vector 7, the optimal total discounted
reward (henceforth, simply the total discounted reward), V (), is given by the Bellman

equation [36]
2N 1
V(r) = max{> m+8> Pi(m)V(L),W +BV(T(r))}. (2.5)
i =0
By standard dynamic programming theory [36], a stationary policy @* is optimal if
and only if the total discounted reward under @7, i.e., Vg«(m), satisfies the Bellman

equation in (2.5) for every m € [0, 1], i.e., @ is optimal if and only if

2N 1

Var(m) = max(3m+ 83" B(m)Va (L)W + B (T()}. (26)

2.3 Optimal Scheduling Policy - Partial Characterization and
Thresholdability Properties

2.3.1 Partial Characterization of the Optimal Scheduling Pol-
icy

Define V(7) as the expected total discounted reward upon the transmit (active)

decision in the current slot and optimal decisions in all future slots and V?(r7) as the

expected total discounted reward upon idle (passive) decision in the current slot and

optimal decisions in all future slots, i.e.,

Vi) = Yomt8 Y BV,
VP(r) = W+ BV(T(r)). (2.7)

Let A and P be the regions in the state space, [0, 1], where it is optimal to transmit

and udle, respectively. Formally,

A, it Ve(r) > VP(r)
e {73, if Ve(n) < V(). (2:8)
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We now report our result on the optimal scheduling policy when the reward for

passivity W & (Nr, Np).

Proposition 1. When W & (Nr, Np), the optimal scheduling policy is greedy, i.e.,

rc .A, ZfZZﬂ'ZZW
P, ZfZZﬂ'Z<W

~

Proof. Consider the greedy policy, @ : (m, W) — arg max,c(1,0y (R(m, a)) where R(7, 1) =
> ;m and R(m,0) = W. In order to prove the optimality of the greedy policy, it is
sufficient to prove that the total discounted reward achieved by the greedy policy

satisfies the Bellman equation [36], i.e.,

Va(m) = max{z T+ 0 2_: Py(m)Vg (L), W + BVg(T())}- (2.9)

Since the scheduling problem is a discounted reward dynamic program, the infinite
horizon reward can be interpreted as a limit on the finite horizon reward [36]. Thus
the first quantity in the max{.,.} operator in (2.9) can be interpreted as the limiting
value (as horizon — oo) on the total discounted reward over a finite horizon when the
transmit decision is made in the current slot and the greedy policy is implemented
in all future slots until the horizon. Likewise, the second quantity corresponds to the
limit on the total discounted reward when the idle decision is made in the current
slot and the greedy policy is implemented in all future slots.

Now, note that, with 7 being the current belief vector, in any future slot, indepen-
dent of whether a transmit or idle decision was made in the current slot, the belief

vector lies in the following set:

{T"(m) |u=(1,2,.3, T (To) lvego,1,.. 35 - - - T (Hon _1) |vego,..3 }- (2.10)
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For any vector, (z1,...,zy), in the preceding set, Nr < > . z; < Np since T'(z) =
xp+ (1 —x)r € [r,p].

Consider the case W < Nr. From the preceding discussion, the sum of belief
values in any future slot is at least as high as W and hence the greedy policy would
choose to tramnsmit in all future time slots independent of whether the scheduler
decides to transmit or idle in the current slot. Now, since the underlying Markov
channel behavior is unchanged by the scheduling decisions, the future discounted
reward, under the greedy policy in all future slots, is the same after transmit or idle
decision in the current slot. Likewise, when W > Np, in any future slot, the sum of
the belief values is no more than W. Thus, the greedy policy would choose to stay
tdle in all future slots independent of the current scheduling decision. This equates
the future discounted rewards after transmit and idle decisions in the current slot, if
the greedy policy is implemented in all future slots. Thus Z?Zo_ ! Pj(ﬂ-)vg(ﬂj) =
ﬁVQ(T(T[‘)) when W ¢ (Nr, Np). The condition for optimality of the greedy policy,

when W ¢ (N7, Np), is now rewritten from (2.9) as

Va

() = {ZimjtﬁZ?:Jle(ﬂ)Vg(Hj)a it >m =W (2.11)

W + BV (T'(m)), if Y.m <W.
This is indeed satisfied by the definition of the greedy policy, thus establishing the

proposition. ]

We now introduce some preparatory results on the structure of the optimal reward

functions.
Lemma 1. The total discounted reward V (my, ..., mx) is component-wise convex over
the N-dimensional state space, i.e., for anyi € {1,..., N} and (71, ..., Ti_1, Tiz1,---,TN)
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fixed,

OéV(?Tl, ey T, Ly T4 1, - - .,7TN) + (1 — Oé)V(ﬂ'l, ey T Yy T 1y - - - ,7TN)

> V(my, .o mion, arg + (1 — @)y, Mg, -, TN)

for any o € [0,1] and x;,y; € [0, 1].

Proof. Reinterpreting the infinite horizon total discounted reward [36] as the limit on

the finite horizon reward, we have

V(r) = lim V() (2.12)

with

Vi(m) = max{V(m), V"(m)}

Vi(m) = Zm+ﬁZP Wi (IL)
Vi(m) = W+6%_1( ()). (2.13)

We have used the convention of decreasing time index up to the horizon at ¢t = 1.
Note that V;* and V' are defined along the lines of V* and V? in (2.7). The terminal

reward, i.e., the value function at the horizon, is given by
Vi(m) = max{z i, W (2.14)

Note, from (2.13), that V,*(n) is linear in m; with 7;,Vj # 4, fixed.
Now, assume the following condition holds (induction hypothesis (Hy)): Fort > 2,

Vi_1(m) is component-wise convez.
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With VP (7) = W + gV,_1(T(n)), it follows that, for i € {1,..., N},

d‘/tp(ﬂ-) _ 6d%—1(T(7Tl)v ce >T(7Ti)v s >T(7TN)) dT(ﬂ-z)
d’n‘i a dT(’ﬂ'l) dﬂ'i
_ ﬁ(p _ ’[“) d‘/t—l(T(ﬂ-l)a e ,T(’]Ti_cllz;ﬂi, T(7TZ'+1), e ,T(’]TN)) |m(p_r)+r

(2.15)

where we have used T'(x) = xz(p — r) + r. Differentiating again with respect to m;,

PV ()
dn?

APV (T(m1), ..., T(m_1), 7, T(miga), ..., T(w
— Bp—rPth 1(T'(m) ( d1722 (7i41) (N))|m(p_r)+r

%

> 0 (2.16)

since V;_; is component-wise convex (hypothesis (Hp)). Thus V' is component-wise
convex.

With the optimal reward given by Vi(7) = max(V,(r), V{¥(7)) and since V;* is
component-wise linear and V¥ is component-wise convex, we have V; is component-
wise convex. Note that the terminal reward, V;(m) = max{) . m;, W}, is linear in 7
and hence can be considered to be component-wise convex. Thus, using induction,
Vi(m), for any t € {1,2,...} and hence V(7) (from 2.12) is component-wise convex.

This establishes the lemma. O

We now compare the future discounted reward corresponding to the transmit
decision in the current slot with that of the idle decision in the current slot. Intuition
suggests that probing the channels at the end of the slot (associated with the transmit
decision) results in a higher future reward than when probing is not performed (idle).

We formally establish this using the component-wise convexity property of V' below.
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Lemma 2. For any belief vector w, the future discounted reward after a transmit
decision in the current slot is at least as high as the future discounted reward after an

idle decision, i.c., 32" Py(m)V(IL;) > BV(T()).

Proof. Consider the future discounted reward after transmit decision;

3 2%; P (m)V(1L;)
; ﬁ(PO(w)V(HO) T P2N_1(7T)V(H2N_1)))
= B =m0 =m)... (L =y )(L = m)V (7,7, 7)
(1= m) (L =) .. (1= ay )TV (7, p)
(1= ) =) (o) (L — )V (. 7o)

—|—...+7T17T2...WNV(p,p,...,p,p,p))

> 5((1 (L= ma) .o (L= )V (r, 7. o, T ()
(1= 1) A =) o () (1,7, p, T(x)
oMV (R pp T(nn))

> > BV(T(m), ..., T(ry))

= BV(T(m)) (2.17)

which gives the future discounted reward after idle decision. Note that we have used

the component-wise convexity property of V' (Lemma 1) in (2.17). O

From the preceding lemma, we readily conclude that, if the immediate reward
corresponding to transmit decision is at least as high as the immediate reward cor-
responding to an idle decision, then it is optimal to transmit, thus giving a partial

greedy flavor to the optimal scheduling policy. We formalize this below.
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Proposition 2. For any W, the optimal policy has the following partial structure
TEA if Y m=W (2.18)

It is worth noting that the energy loss per broadcast action (transmit) and hence
W is independent of the number of broadcast users, N. Thus as N increases, the
throughput gain (transmit) progressively outweighs the energy savings (idle). It
follows that the optimal policy would increasingly choose to transmit than idle, with
increasing broadcast size. This intuition is supported by the result in Proposition 2.
2.3.2 Thresholdability Properties of the Optimal Policy in
the Two User Broadcast
We now proceed to establish structural properties of the value functions V', V@

and VP and hence the optimal scheduling policy in the two-user broadcast.

Lemma 3. With my = mk+c, the reward functions V*(my, m = mk+c), VP(m, mg =
mk+c) and V(my, my = mk+c) are convex and increasing in my for k > 0. Fork <0,
Ve(my, e = mk+c) is concave in m while VP(my, my = mik+c) and V (71, my = mk+c)
are piecewise concave in w1 . When k = —1, VP and V attain their maximum at

T = Mo, 1.€.,

argmax VP (m, my = —my + ¢) =
™1

N NO

argmax V (m, Mo = —m 4+ ¢) =
™1

The quantities v = V(p,p) + V(r,r) — 2V (p,r) and o = V(p,r) — V(r,r) are non-

negative.

Proof. The proof is tedious and is therefore moved to the appendix. The proof pro-
ceeds by carefully reinterpreting the infinite horizon problem as a limit on the finite
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horizon problem. We then study the reward functions over the two dimensional state
space by sweeping over m; € [0,1] with my along specific directions/azes given by
my = mk + ¢ for k,¢c € R. The lemma is then established using backward induc-

tion. O

We now identify a crucial structure in the evolution of the state pair under con-

secutive idle decisions.

Lemma 4. Under consecutive idle decisions, the state pair (71, ) € [0, 1] progres-
sively evolves towards the steady state (Tss, Tss) and falls on the line segment between
(71, ) and (7, Tss). Mathematically, with T*(.) denoting the k—step state evolution

operator under k consecutive idle decisions,
(T5H(m), T* () € L{(TH(m), TH(72)), (s Ts)) (2.19)
where L(x,y) is the line segment between x and y.

Proof. We first show that, for k > 0, T*"!(m, 7;) falls on the line segment between
(T*(m1), T*(m5)) and (s, 7ss). The vector from (T*(my), T*(ms)) to (T* (), THH (1))

is represented by

(TF(mry) = TF(my), T () — T*(2))
= (T*m)(p—7)+7r—Tm), T"m)(p—r) +r—T(m))
= (r=T"m)(1—(p—r)),r=Tm)(1—-(p—r)))

= (1 - (p - T))(ﬂ-ss - Tk(ﬂ'l)a Tss — Tk(7T2)) (220)

where (g, — T%(m1), m5s — T"(m2)) represents the vector from (T*(m), T*(m)) to

(ss, Tss). Thus, since (1—(p—r)) > 0, TF+1(7, 72) falls on the line segment between
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Figure 2.2: Tllustration of the regions R;, R}; and R?,.

(T*(my), T*(ms)) and (7, Tss), for any k& > 0. Also, for progressively increasing k,
(T* (1), T*(ms)) progressively moves towards the steady state. This establishes the

lemma. O

Using the structural results established so far, we now proceed to show that the
optimal scheduling policy in the two-user broadcast is provably thresholdable! in spe-
cific regions of the two dimensional state space. We first classify the broadcast into

two types based on the optimal scheduling decision at steady state, as below:
e Type L: If (745, 7ss) € A
o Type II: If (mys, 7ss) € P

Referring to Fig. 2.2, let R; denote the region {(my, ma); M1 € [mss, 1], ma € [mss, 1]}. Let
Ry denote the union of the regions R}, = {(m1,ma); 71 € [0, Tss), T2 € [Tss, 275 — 71}
and R?; = {(m1,ma);my € [0, Tas), M1 € [Tss, 27ss — Mo}

IThe definition of thresholdable will soon be revealed within context.

26



We now record our result on the thresholdability property of the optimal schedul-

ing policy in the Type-I two-user broadcast.

Proposition 3. If the two-user broadcast is Type I, i.e., V (g5, Tss) > VP (s, Tss),

then
(1) Ry C A
(2) Va(ﬂ-ssaﬂ-ss) = Vp(ﬂ-ssaﬂ-ss) = RII C P

(3) VT, Tss) > VP(Tss, Tss) = (thresholdability property) In the region R}, if for
ke [—1,0], 3 an} and 7 = ik + 7 (1 —k) such that V*(nf,m3) = VP(x},75),

then

A, if m € (7], Tss)

, =mk+ (1 —k)) €
T P

If B such a (7},73), then

(m1,my =mk +7mss(1 — k) € AV 1y € [0, 7.

Similarly, in the region R3;, if for k € [-1,0], 3 a w5 € [0,7s] and 7f =

ok + mss(1 — k) such that V(nf,w5) = VP(n], 7)), then

A, if mo € (7], Tss)

= k‘—l— 581—]{3, c .

If B such a (7}, 73), then

(m1 = mok + mes(1 — k), me) € AV my € [0, 7).

Proof. The proposition is established using Lemma 3 and Lemma 4. The proof is
tedious and hence moved to the appendix. O
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Call the set of points (7], 75) in R;; given by the third part of Proposition 3 as

the threshold boundary. We now characterize this threshold boundary in region Rj;.

Corollary 1. Within region Ryy, the threshold boundary is given by the upper segment

of the hyperbola
Vi(my,m) = W+ BVYT(m), T (7))
where

Vi zy1,m3) = x + 22+ 5[(1 — 1) (1 = 22)V(r,7) + (1 — 1) (22)V (1, p)

+a1(1 — 22)V(p, 1) + 2122V (D, p),

T(x) =xz(p—r)+r, and “upper segment” indicates the segment of the hyperbola that

lies in the first quadrant around the asymptotes.

Proof. A point (7§, 75) in region Rj; that falls on the threshold boundary, by defini-
tion, satisfies V(n},m5) = VP(x}, m5) and the thresholdability property reported in
Proposition 3. Thus, since (T'(7}), T(73)) € L((7],73), (Tss, Tss)), We have from the

thresholdability property in Proposition 3, (T'(n7), T (7)) € A. Therefore,

Vi, mg) = W+ BV(T(r),T(m))

= W+ pVHT(m), T(m)) (2.21)

Substituting V? in the equation V*(ny,m5) = VP(n}, m3), the threshold boundary is
given by V(m,m) = W + V(T (m),T(m2)). With algebraic manipulation, and

using the expression for V¢ from 2.7, the threshold boundary equation can be written
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as (mf + m3)A + mjms B = C, which is a hyperbola with

A = 14 pa—pBp—r)(1+B(rv+a))

B = (1-8(p—r))By

C = W+B@2r(l+pa)+r*yp). (2.22)
The asymptotes of the hyperbola are given by m; = _751 and my = %' The slope of

dry _ —A%2_BC
dmy — (A+7‘r13)2'

the hyperbola with respect to m; is given by Since 7, @ > 0 (lemma

5) and (1 — B(p —r)?) > 0, we have B > 0 and C > 0. Thus the hyperbola has

a negative slope with respect to m; and hence lies in the first and third quadrants

—A —A)

around (57, 7). We now proceed to show that the threshold boundary in R;; is

given by the upper segment (first quadrant) of the hyperbola. Consider the following

inequality involving the asymptote _TéA‘
_A _
7T88
B
(:)_1+ﬁa—ﬁ(p—r)(1+ﬁ(m+oz)) r

(1-08(p—1r)*)py IL—(p—r)
S —1+a—-Blp—r)A+60ry+a)l—(p—r) < r(l—-pB(p—r)*)5y

& —(1+8a)1 = (p—7)+6(p—r)1+50y+a))
—Bp—r)*(1+Pa) —rBy < 0
“ 1= (p=r)|~(1=Bp-r)=rdy-Fa(l—(p-7))] < 0 (2.23)
The last statement is indeed true. Thus % < 7gs and hence the lower segment of the
hyperbola that lies in the third quadrant centered at (_Tf, %) does not intersect the

region Rj;. Therefore, the threshold boundary in R;; is given by the upper segment

of the hyperbola. This completes the proof. O

An illustration of the threshold boundary in R;; is provided in Fig. 2.3(a).
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Figure 2.3: Ilustration of the threshold boundaries when the broadcast is (a) Type
I, (b) Type IL

We now record our result on the thresholdability of the optimal policy when the

two-user broadcast is Type II.
Proposition 4. If the two-user broadcast is Type 11, then
(1) (my,m) € P, Vmy + my < 27y
(2) (Thresholdability property) In the region Ry, if for k > 0, 3 a 7] and 7 =

ik + mss(1 — k) such that V(n},m%) = VP(ny,7}), then

-Aa Zf T € [ﬂ-i 1]

, *k+ ssl_k €
(71, Tk + s ( ) {73, if T € [Tss, TT)

If } such a (7}, 73), then

(m1,m = mk+7mes(1 — k) € PV 7 € [7ss, 1].

Proof. The proposition is established along similar lines to Proposition 3. The reader

is referred to the appendix for details. O
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We proceed to characterize the threshold boundary in region R; below.

Corollary 2. Within region R;, the threshold boundary is given by the upper segment

of the hyperbola
W
Va(ﬂ'l, 7T2) = m
where

Vi zy1,m3) = x + 22+ 5[(1 — 1) (1 = 22)V(r,7) + (1 — 1) (22)V (7, p)

+z1(1 — 29)V(p, 1) + 2122V (D, D).

Proof. A point (7f,73) in region R; that falls on the threshold boundary, by defi-
nition, satisfies V(n}, m3) = VP(7}, m5) and the thresholdability property of Propo-
sition 4. We can write (7], 75) as (7], 77k + mss(1 — k)) for some k& > 0. Then,
from the thresholdability result of Proposition 4, since 7y < T'(7f) < 77 (Lemma 4),
(T'(w7), T(m5)) € P. Therefore, the total reward corresponding to inactivate decision

at (m],m5) is given by

Vi, m3) = W+ pVH(T(m), T(x3))
W
= W‘Fﬂﬂ
w

where V?(T(r7),T(m3)) = 125 comes from (T'(r}), T'(r3)) € P for I > 1. Sub-
stituting V? in the equation V*(nf,m5) = VP(x},m}) the threshold boundary is

given by V%(mwy,m) =

% where V® is given in (2.7). With algebraic manipula-

tion, the threshold boundary equation can be written in the form of a hyperbola:

31



(r] + m3) A+ mimy B = C where

A = 14 pa
B = [y
C = % — BV (r,r). (2.25)

with asymptotes given by 7 = _T§4 and mp, = _754' Since v, a > 0 (Lemma 3), we have
A >0 and B > 0. Note that, from Proposition 4, (T'(r),T'(r)) € P VI € {0,1,...},
since r < TYr) < 7 and hence 2T (r) < 2m,,. Thus V(r,r) = % and hence
C= %—ﬁV(T,T) = %(1—@ > 0.

It follows that the first derivative of the hyperbola with respect to m; given by

—A2-BC

AtmB)? < 0. Thus the hyperbola has a negative slope and hence lies in the first and

third quadrants around (%, }?A). Since _TéA < 0, the lower segment of the hyperbola

(third quadrant) does not intersect the region R;. Thus the threshold boundary in

R; is given by the upper segment of the hyperbola. This completes the proof. 0
An illustration of the threshold boundary in R; is provided in Fig. 2.3(b).

2.4 Threshold Scheduling Policy

We now proceed to use the structural results of the optimal scheduling policy,
derived in the preceding section, to develop a threshold scheduling policy. We first

consider the two-user broadcast and conjecture the following:

Conjecture 1. The thresholdability property of the optimal scheduling policy reported
in Proposition 3 and Proposition 4, in regions Rrr and Ry, respectively, extends to

the entire state space [0,1]?.
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Figure 2.4: Illustration of the extrapolation of the threshold boundaries to the entire
two-dimensional state space, when the broadcast is (a) Type I, (b) Type II.

Under Conjecture 1, the extrapolated threshold boundary spanning the entire
state space is given by Corollary 1 and Corollary 2 for Type I and Type II systems,
respectively. Fig. 2.4 illustrates this extrapolation. It is worth comparing it to Fig. 2.3.

Now, for a given belief vector (w1, ), with the system type identified and the
value functions V(I1(0))...V(II(3)) evaluated, the threshold policy is implemented

by the following two steps:

e Evaluate

k* = argmax

Ve (kmy, kmy) = W + V(T (km), T(kmy)), if Type I
kER %,

Va(k’ﬂ'l, k‘ﬂ'g) = if Type I1.
Note that, for both system types, the corresponding equations solved to evaluate
k* are two-dimensional polynomials. This can be verified by examining the

expression for V* in (eq 5).

33



e The threshold policy is given by

Transmit, if £* <1

Idle, if &* > 1

Note that the first step identifies the point on the extrapolated threshold boundary
along the direction of the belief vector (my,m2). The maxyecp follows from the result
(Corollary 1 and Corollary 2) that the threshold boundary is given by the upper
segment of the hyperbola. The second step determines the location of the belief
vector with respect to the extrapolated threshold boundary.

We now extend, heuristically, the preceding threshold policy to the N-user broad-
cast. First, we generalize the two-user broadcast classification to the N-user case: The
N-user broadcast is defined as Type L if V(mgs, ..., mss) > VP(7gs, ..., Tss) and Type
IT otherwise. This definition can be simplified with the following arguments: Denot-
ing (mss ... mss) simply by 7gs, we have VP(7mss) = W + fmax(VP(wss), V*(mss)) since
T(mss) = mss. Thus, VP(mg) > % Now, if V(7) < %, then V(my) < VP(mgs).
Thus 7y € P and the system is Type II. Consider the case V(mgs) > % We have
V(mss) > W 4 BV mss). Note that VP(me) = W + V% (7my,) (since, VP(rmys) =
W + BV (mss) results in VP(mg) > %, while VP?(rg,) = W 4 SVP(mys) results in
VP(mss) = %) From the preceding arguments, we have V(rg) > VP(7ss). Thus,
Ve (mes) > % = 7, € A and the system is Type I. We summarize the simplified

definition below:

I, ifVe(my,) > W
T = ’ 5= -8 2.26
ype {H, if V(7)< 155 (2.26)
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With W € (Nr, Np),? the threshold scheduling policy for the N-user broadcast is

implemented in the following steps:

ZNote that if W ¢ (N7, Np) the optimal policy is greedy as proved in Section 2.3.1.
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Step 0: Initialization

e Fwvaluate the quantities V(Ily), ...,V (Ilgn_q):
Note that, by the inherent symmetry in the underlying Markov channel
statistics of the users, we have the following property (P): For any per-
mutation ¥ on belief vector z, we have V(z) = V(¥(x)). Thus the 2
quantities, V(Ily), ...,V (Il,n_;), can be obtained by evaluating only the
following N + 1 quantities: {V(Il5i_yy}, i € {0,1,2,..., N}. Interpreting
the infinite horizon discounted rewards as limits on the finite horizon re-
wards, as we did in the proof of Lemma 3, evaluate V (Ily) = lim; ., V;(Ilp),
o V(Ignv_q) = limy_ o Vi(Ilyn_y), using an appropriate measure of con-
vergence. The finite horizon reward V;(x) is given by the finite horizon
Bellman equation [36]

2N 1

Vi(z) = maX(meLﬁZP Wi (IL), W+ BV, 1 (T()) ).

(2.27)

o [dentify the system type:
With 7gs = (g, - - ., Tss), the system type is identified using the simplified
rule (2.26), reproduced below:

I, if V(7)) > 25
Type = { o a(ﬁ )= W
]I, 1fV (WSS)<T5'
where V%(m,,) is evaluated using (5), simplified using property (P) as
N
Vimy) = N+ 8 NCj(1—m )N Irl V(II(2) - 1)), (2.28)
=0

with V(T1(0)) ... V(II(2Y — 1)) evaluated earlier.

36




Step 1: Threshold scheduling policy on belief vector m = (7q,...,7y)
o If Y. m > W, transmit (follows from Proposition 2). Skip to Step 2

e Otherwise, evaluate k* by solving a N-dimensional polynomial in k, as
below:

Ve(kr) = BV(T(km)), if Typel

+
2.29
Ve(kr) = %, if Type 11 (229)

keR

E* = argmax{

where

2N -1
Vi(z) = Y w+ By Px)V(I()), (2.30)
i §=0
with V(T1(0)) ... V(IT(2Y — 1)) evaluated in Step 0
e The threshold policy is given by
Transmit, if £* <1
Idle, if £* > 1
Step 2: State evolution

e If transmit decision was made, at the end of the slot, collect the 1-bit

feedback, f1,..., fn, from the broadcast users and update the belief values
as below.
L (2.31)
r, if ;=0

e If idle decision was made, update the belief vector as m « T'(m)

e Repeat Step 1 in the next slot.

Remark: The convexity of the threshold boundary renders optimality properties
to the threshold policy in the following sense. Consider two belief vectors 79 and
7" such that Y 79 = > «". Thus, if the broadcast state is in any of these two

states, the immediate rewards upon transmit decisions are the same. Indeed, the
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Figure 2.5: Ilustration of the connection between the threshold scheduling decision
and the entropy of the broadcast system state.

immediate rewards upon idle decisions are equal to W in both states. Let the entropy
of the broadcast in state w9 be lower than when the broadcast is in state ", i.e.,
Yo H(m9(i)) < >, H(m9(7)), where H(z) indicates the entropy [37] of a channel with
belief x. It is intuitive to see that if it is optimal to transmit at state 79, then it is
optimal to transmit at state n". This is because, with the ‘exploitation’ end of the
trade-off equalized between 79 and 7" (since Y 79 = Y 7"), the exploration end of
the tradeoff is more pronounced in 7" due to its higher entropy, essentially making
it optimal to transmit, i.e., explore at «", if it is optimal to explore at n9. Since
the threshold boundary in the proposed threshold policy is convex, if the threshold
decision at 79 is to transmit, then the threshold decision at 7« is also to transmit.

An illustration of 79, 7" along with the convex threshold boundary is provided in
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Fig. 2.5. Thus the threshold policy, thanks to the optimality framework in which it

is derived, exhibits an implementation structure similar to that of the optimal policy.

2.5 Numerical Results and Discussion

We now proceed to illustrate, via numerical experiments, that the proposed thresh-
old policy has near-optimal performance. We first study the finite horizon perfor-
mance of the proposed policy in Fig. 2.6. The discounted reward of the proposed
policy over a finite horizon m (denoted by Violicy(m)) is plotted alongside the to-
tal discounted reward corresponding to the optimal policy® over horizon m (denoted
by V(m)). Note that Vjicy(m) is indistinguishable from V(m). Recall that the
threshold policy was derived by extrapolating the structural properties of the opti-
mal policy from the two-user broadcast to the general N-user broadcast. The superior
performance of the threshold policy, indicated by Fig. 2.6 (and subsequent numerical
results), suggests that the structural properties indeed can be generalized and hence
justifies our approach.

In the rest of this analysis, we will focus on the infinite horizon performance of the
proposed policy, compared with various system level performance limits. Note that
the infinite horizon reward can be approximated by evaluating finite horizon rewards
over a ‘sufficiently’ large horizon. From exhaustive simulations, we observed that the
reward functions achieve reasonable convergence around m = 7 (also seen in Fig. 2.6).
We therefore approximate the infinite horizon rewards by the rewards evaluated at
m = 7 in the rest of this analysis. In Table 2.1, we report the % suboptimality of the
proposed policy. The quantity %subopt::% x 100% quantifies the degree of

3The optimal policy is implemented using the finite horizon Bellman equation in (38)
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users.
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4% P r I6; V Voolicy Y%subopt

3.2323 0.8147 0.7380 0.2762 4.4651 4.4651 0%
3.8261 0.9575 0.9239 0.2946 5.4227 5.4227 0%
1.6813 0.4218 0.3862 0.6753 5.6400 5.6399 0.0018 %
0.9212 0.2769 0.0128 0.2583 2.3176 2.3176 0%
1.5327 0.4387 0.1674 0.6593 4.4950 4.4950 0%
2.2140 0.6491 0.4750 0.5886 5.3344 5.3253 0.1706 %
1.9074 0.6868 0.1260 0.4211 4.0446 4.0446 0%

1.1852 0.4868 0.2122 0.4681 3.8936 3.8935 0.0026 %
1.8291 0.6443 0.2439 0.6869 6.5860 6.5726 0.2035 %
1.7714 0.6225 0.3654 0.3246 2.7002 2.7002 0%

Table 2.1: Illustration of the near optimal performance of the proposed threshold
policy. Total reward values are truncated to four decimal places. Each row cor-
responds to a fixed set of randomly generated system parameters and initial belief
values. Number of broadcast users = 4.

suboptimality of the proposed policy. Each row in Table 2.1 corresponds to randomly
generated system parameters with N = 4. The near optimal performance of the
proposed policy is once again evident from Table 2.1.

In Table 2.2, we study the gains achieved by using 1-bit feedback from the users.
The quantity Vgenie corresponds to the total discounted reward under optimal schedul-
ing in the genie-aided system defined as follows: at the end of each slot — independent
of whether a transmit or idle decision was made in that slot — the scheduler learns
about the channel states of all the users in that slot. The quantity V,.g, is the to-
tal discounted reward when the scheduler rejects the feedback information from the
scheduled users and schedules solely based on the knowledge of the system level pa-

rameters, i.e., N, W, 3 and the statistics of the Markov channels, i.e., p and r. Thus
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W p T ﬁ Vgenie ‘/policy Vnofb %fbgaln

0.8139 | 0.4456 | 0.2880 | 0.6256 | 2.2523 | 2.2446 | 2.0923 | 95.1679 %

0.4801 | 0.2630 | 0.1720 | 0.6135 | 1.2585 | 1.2570 | 1.2017 | 97.4352 %

0.7949 | 0.6477 | 0.2921 | 0.5282 | 1.9907 | 1.9788 | 1.8996 | 86.9424 %

1.5819 | 0.5469 | 0.5236 | 0.7789 | 6.8312 | 6.7480 | 6.0094 | 89.8665 %

2.2272 | 0.8003 | 0.1135 | 0.4531 | 4.2901 | 4.2875 | 4.0562 | 98.8572 %

1.3724 | 0.5085 | 0.2597 | 0.6906 | 4.5968 | 4.5653 | 4.1031 | 93.6145 %

1.8299 | 0.5085 | 0.2597 | 0.6906 | 6.0284 | 6.0083 | 5.4709 | 96.3937 %

2.3315 | 0.7513 | 0.1916 | 0.5036 | 4.9462 | 4.9347 | 4.6579 | 96.0039 %

0.7165 | 0.4709 | 0.1085 | 0.7066 | 2.8552 | 2.8015 | 2.2272 | 91.4621 %

1.1834 | 0.6948 | 0.2203 | 0.7701 | 8.4060 | 8.4045 | 7.6546 | 99.8030 %

2.0542 | 0.4898 | 0.2182 | 0.5878 | 5.3549 | 5.3510 | 4.8626 | 99.2000 %

oy oy Ot | | ] co| wo| w| o no| o =

0.3981 | 0.1190 | 0.0593 | 0.7758 | 3.4376 | 3.3988 | 1.4755 | 98.0243 %

Table 2.2: Illustration of the gain associated with 1-bit feedback. Each row cor-
responds to a fixed set of randomly generated system parameters and initial belief
values. Reward values are truncated to four decimal places.

1-87

5 where the steady state probability

with horizon m = 7, Vyop, = max{W, N7

of the Markov channels, 7, = The gain corresponding to the 1-bit feed-

1-(p—r)"
back from each user, at the end of slots when transmit decision was made, is now
quantified by the quantity %fbgain:‘m%lﬁ x 100%. The high value of %fbgain
reported in Table 2.2, for various randomly generated system parameters, underlines
the significance of using the 1-bit feedback as well as the near-optimal performance
of the proposed policy.

In Fig. 2.7(a), for increasing values of the discount factor, 3, we plot the optimal
discounted reward alongside Vjoiicy and Viana - the total discounted reward under
random scheduling, i.e., in each slot the scheduler randomly decides to transmit or idle

with equal probabilities, without any regard to the belief values on the user channels.

Note that as ( increases, the effect of the future discounted reward, and hence the
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significance of the channel feedback, on the total discounted reward increases. Since
the random policy throws away the channel feedback information, the gap between
optimal reward V' (similarly Violicy) and Viang is expected to increase with increasing
3, as observed in Fig. 2.7(a). In Fig. 2.7(b), we plot V', Violicy and Vianq for increasing
system ‘memory’. We define system memory as (p — r). In the plot, the system
memory is varied from 0 to 1 by assuming » = 1 — p and varying p from 0.5 to
1. Similar to our discussion in Fig. 2.7(a), as memory increases, the significance of
the channel feedback on the performance of a policy increases. Thus with increasing
system memory the gap between V' (similarly Vioiicy) and Viana increases, as observed
in Fig. 2.7(b).

Remark on Complexity: The proposed threshold policy is also computationally
inexpensive to implement, having polynomial complexity in the number of broadcast
users. Contrast this with the complexity of the optimal POMDP solutions: for finite
horizon POMDPs, the optimal solution is, in general, PSPACE-hard to compute [38],

whereas infinite horizon POMDPs are, in general, undecidable [39].

2.6 Summary

The ‘exploitation vs exploration’ trade-off vastly simplifies for special cases of
broadcast parameters, with ‘greedy type’ policies turning out to be optimal. For
the general broadcast, the trade-off is not as simple. We therefore approached the
problem indirectly by first studying scheduling in the two-user broadcast. We es-
tablished structural properties of the optimal policy in the two-user broadcast and,
based on these structural properties, proposed a threshold scheduling policy for the

general broadcast. Extensive numerical results suggest near-optimal performance of

43



15 T T

- - -V
10H B Vpolicy ,,,,,,,,,,,, B
Y S
O Yrand —
[} TS g ,,/’/D/ """"""" ¢
gl o
G O © ;
0 i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
B
4.5 T T T T T T T T T
]
4 o T TET o
,,,,,,,,, g e i S T T 4
p—— "8
........... (0}
,,,,,,,,,,,,,,,,,,,,,,, O i O ]
35q: o © |
3 i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
memory:=(p-r)

Figure 2.7: 'V, Violicy and Viana versus (a) discount factor 3, (b) system memory
(p — ). Same set of system parameters used within each subplot.
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the proposed threshold policy. In addition, the proposed threshold policy is easy to
implement, having complexity polynomial in the number of broadcast users. Nu-
merical results further suggest that significant system level gains are associated with
exploiting channel memory for opportunistic scheduling, even with minimal feedback

(delayed, and obtained only during transmit slots).
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CHAPTER 3

OPPORTUNISTIC SCHEDULING USING RANDOMLY
DELAYED ARQ FEEDBACK IN CELLULAR DOWNLINK

3.1 Background

In the preceding chapter, we observed that, in a broadcast network with Markov
modeled channels, opportunistic scheduling using 1-bit feedback from the users pro-
vides significant system level gains. While it is reasonable to assume that this 1-bit
feedback is almost ‘cost-free’ in most networks and applications, this may not be the
case in certain upcoming applications when both the forward and the reverse channels
are equally in high demand. Fortunately, there is a strong consensus among the net-
working community [40] that the future wireless standards will increasingly support
Automatic Repeat reQuest (ARQ) based error control (e.g., [41-44]) at the data link
layer. From the scheduling point of view, the ARQ feedback is effectively the 1-bit
feedback considered in the previous chapter, and is available free of cost.

In this chapter, we study joint channel estimation - opportunistic scheduling in a
downlink system with an in-built ARQ feedback mechanism. We consider the general
case when the ARQ feedback arrives at the scheduler with a random delay that is i.i.d

across users and time. It must be noted that a related work [45] studies opportunistic
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spectrum access in a cognitive radio setting — a setup mathematically equivalent to
our scheduling problem when the ARQ feedback is instantaneous — and showed that
a simple greedy scheduling policy is optimal. In our setup, we consider the general
problem when the ARQ feedback is randomly delayed. The delay in the feedback
channel is an important consideration that cannot be overlooked in many realistic
scenarios: one such instance being when the feedback signals suffer from significant
propagation delay.

Despite the random delay, the ARQ feedback can be used for opportunistic schedul-
ing to achieve significant performance gains. A sample of this gain is illustrated in
Fig. 3.1 for a specific set of system parameters to be defined in the next section.
Fig. 3.1 plots the sum (over all the downlink users) rate of successful transmission
of packets over a length of m slots under optimal opportunistic scheduling when the
scheduler has: (a) randomly delayed channel state information (CSI) from all the
downlink users, (b) randomly delayed CSI from the scheduled user, i.e., randomly
delayed ARQ feedback, and (c) no CSI, i.e., random scheduling. We make two ob-
servations from the figure: (1) The use of delayed ARQ feedback for opportunistic
scheduling can achieve a performance close to opportunistic scheduling using de-
layed, perfect, CSI from all users, and (2) a 49% gain (when m = 7) in the sum rate
is associated with opportunistic scheduling using delayed ARQ relative to random
scheduling. These observations motivate our approach: exploit multiuser diversity in
Markov-modeled downlink channels using the already existing (albeit delayed) ARQ

feedback mechanisms. We describe the problem setup next.
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Figure 3.1: Ilustration of the gains associated with opportunistic scheduling using
randomly delayed ARQ feedback. System parameters used: p = 0.8700 r» = 0.1083
PD(d:O> = %, PD(d: 1) = %, PD(d: 2) = %, PD(d> 2) :0, Tm =
[0.3358 0.1851 0.5483].
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3.2 Problem Setup

3.2.1 Channel Model

We consider a downlink system with /N users. For each user, there is an associ-
ated queue at the base station (henceforth the scheduler) that accumulates packets
intended for that user. We assume that each queue is infinitely backlogged. As be-
fore, the channel between the scheduler and each user is modeled by an i.i.d two-state
Markov chain, where each state corresponds to the degree of decodability of the data
sent through the channel. State 1 (ON) corresponds to full decodability, while state
0 (OFF) corresponds to zero decodability. Time is slotted and the channel of each
user remains fixed for a slot and moves into another state in the next slot following
the state transition probability of the Markov chain. The time slots of all users are
synchronized. The two-state Markov channel is characterized by a 2 x 2 probability

transition matrix

P = [p 1_1’], (3.1)

r 1—r

where the probabilities p and r retain their definitions from Chapter 2. Similar to

Chapter 2, we assume positively correlated Markov channels, i.e., p > 7.
3.2.2 Scheduling Problem

The scheduler is the central controller that controls the transmission to the users in
each slot. In any time slot, the scheduler must schedule the transmission of the head-
of-line packet of exactly one user. Thus, a TDMA styled scheduling is performed here.
The power spent in each transmission is fixed. At the beginning of a time slot, the

head-of-line packet of the scheduled user is transmitted. The scheduled user attempts
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to decode the received packet and based on the decodability of the packet sends back
ACK(bit 1)/NACK(bit 0) feedback signals to the scheduler at the end of the time slot,
over an error-free feedback channel. The feedback channel is assumed to suffer from a
random delay that is i.i.d across users and time. This delayed feedback information,
along with the label of the time slot from which it is acquired, will be used by the
scheduler in scheduling decisions. The scheduler aims to maximize the sum of the
rate of successful transmission of packets to all the users in the system. Note that
the downlink scheduling problem directly fits into our general model, discussed in

Chapter 1. We formally define the scheduling problem below.
3.2.3 Formal Problem Definition

Since the scheduler must make scheduling decisions based only on a partial obser-
vation* of the underlying Markov chain, the scheduling problem can be represented
by a Partially Observable Markov Decision Process (POMDP). We now formulate our
problem in the language of POMDPs.

Horizon: We consider the finite horizon scenario. Time slots are indexed in de-
creasing order with slot 1 corresponding to the end of the horizon. Throughout this
chapter, the horizon is denoted by m, i.e., the scheduling process begins at slot m.

Feedback arriving at slot t: For some slot ¢, t < m, let n(t) be the number of
ARQ feedback bits ({0,1}) arriving at the end of slot ¢ from the users scheduled in
the previous slots. Due to the random nature of the feedback delay, n(t) can take
values in the set {0,...,m —t + 1}. Let F} represent all the ARQ feedback arriving
at the end of slot ¢. Thus F, € {0,1}"®, if n(t) > 0 and F, = 0, if n(t) = 0. The

ARQ feedback is time-stamped and thus, since the scheduler has a record on which

4In this case, the set of time-stamped binary delayed feedback on the channels.
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users were scheduled in the past slots, it can map the feedback bits F; to the users
and slots they originated from. Let fj be the feedback that originated during slot k,
where k£ < m. Note that since in each slot one and only one user is scheduled, f; is
neither empty nor has multiple values, i.e., fr € {0,1} with bit 0 mapped to NACK
and bit 1 to ACK feedback.

Delay of feedback from user i in slot t: Let D(i,t) be the random variable corre-
sponding to the delay, in number of slots, experienced by the feedback sent by user ¢
in slot ¢. Let D(i,t) = 0 correspond to the case when the ARQ feedback originating
from user ¢ in slot ¢ arrives at the scheduler at the end of the same slot . We assume
the distribution of D(i,t) to be i.i.d across users i and time ¢ throughout this work,
and let Pp(d), d € {0,1,...} denote the probability mass function of D.

Belief value of user i in slot t - m;(i): This represents the probability that the
channel of user i € {1... N}, in slot ¢, is in the ON state, given all the past feedback
about the channel. Define T%(.), for u € {0,1,...}, as the u-step belief evolution
operator given by T%(z) = T(T® V(x)) = T® (T (z)) with T(z) = zp + (1 — 2)r
and T°(z) = z for € [0,1]. Now if, at the end of slot ¢ + 1, the arriving feedback
F, 11 contains the ARQ feedback from user ¢ from slot k € {m,m —1,...,t+ 1}, i.e.,
fr, then, if k is the latest slot from which an ARQ feedback from user i has arrived,
then m(7) is obtained by applying the 1-step belief evolution operator repeatedly over

all the time slots between ‘now’ (slot ¢) and slot k, i.e.,

LT p), it fi=1
m(i) = (k—t—1) .
T (r), if fr =0.

(3.2)
If k& is not the latest slot from which an ARQ feedback from user ¢ has arrived (possible
since the random nature of the feedback delay can result in out-of-turn arrival of

ARQ feedback), then due to the first-order Markovian nature of the channels, this
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ARQ feedback does not have any new information to affect the belief value, and so
(i) = T(m41(7)). Similarly, if Fy; does not contain any feedback from user ¢, then
(i) = T(m41(4)).
Reward structure: In any slot t, a reward of 1 is accrued at the scheduler when
the channel of the scheduled user is found to be in the ON state, else 0 is accrued.
Scheduling Policy @x: A scheduling policy @ in slot k£ is a mapping from all
the information available at the scheduler in slot k along with the slot index k to a

scheduling decision a;. Formally,

gk : ([ﬂ-mv Tm—1y - - 77Tk]k7 {am7 Am—1y-- -y ak—l—l}) — A
Vk € [1,m],m € [0, 1]V. (3.3)
where {@,, m_1,...,ars1} are the past scheduling decisions and [, 71, . . ., 7]~

are the belief values of the channels of all users, corresponding to slots {m,m —
1,...,k}, held by the scheduler at the moment (slot k).

Total expected reward in slot t, V;: With the scheduling policy, {@}:_,, fixed,
the total expected reward in slot t, i.e., V;, is the sum of the reward expected in the
current slot ¢ and the total reward expected in all the future slots k < t. Formally,

with a; denoting the scheduling decision in slot &,

‘/;([ﬂ-ma Tm—1y - 77Tt]ta {a'ma Am—1,y - - - 7a't+l}7 {gk}};:l)
= Rt(’ﬂ't, CLt) + E [‘/f,—l([ﬂ-mu Tim—1 -+« T, 71-t—l]t_lv
{a'ma Am—1y 5 At41, at}v {gk}llfg_:ll)L

(3.4)

where R;(m;,a;) is the expected immediate reward and the expectation in the future
reward is over the feedback received in slot ¢, i.e., F}, along with the originating
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slot indices. Note that the belief vector [m,,, Tn_1, ..., T]" is up-to-date based on all
previous scheduling decisions and the ARQ feedback received before slot t. With the

reward structure defined earlier, the expected immediate reward can be written as
Rt(ﬂ-tu at) = Wt(at)-

Performance Metric: For a given scheduling policy {@x}7,, the performance
metric is given by the sum throughput (sum rate of successful transmission) over a

finite horizon, m:

Vi (70m, {@}121)

o, (Y = elem), (35)

where 7, is the initial belief values of the channels.

3.3 Greedy Policy - Optimality, Performance Evaluation and
the Implementation Structure

3.3.1 On the Optimality of the Greedy Policy

Consider the following policy:

@k DT — ap = argmax Ry (my, ar = 1)
= argmaxm(i) Vk>1,m € [0,1]V.

(3.6)

Since the above given policy attempts to maximize the expected immediate reward,
without any regard to the expected future reward, it follows an approach that is
fundamentally greedy in nature. We henceforth call {@k}?zl the greedy policy and
let a; denote the scheduling decision in slot k£ under the greedy policy. We now proceed
to establish the optimality of the greedy policy when N = 2. We first introduce the
following lemma.
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Lemma 5. For any u,v € {0,1,2,...} and any z,y € [0,1] with z > vy,

T(p) = T""(x)

() < T*(x)

T(x) = T"(y)
T"(p) > T°(r). (3.7)
Proof. The proof is moved to Appendix B.1. O

The results of Lemma 5 can be explained intuitively. Note that 7%(x) is the belief
value of the channel (probability that the channel is in the ON-state) in the current
slot given the belief value, u slots earlier, was x. Also note that T%(p) (similarly
T*(r)) gives the belief value in the current slot given the channel was in the ON state
(similarly OFF state) u+ 1 slots earlier. Now, since the Markov channel is positively
correlated (p > r), the probability that the channel is in the ON state in the current
slot given it was in the ON state u + 1 slots earlier (T%(p)) is at least as high as the
probability that the channel is ON in the current slot given it was ON with probability
x € [0,1], u+1slots earlier (T (z)). This explains the first inequality in Lemma 5.
The second and third inequalities can be explained along similar lines. Regarding the
last inequality, consider slots ¢, k such that ¢t > k. Due to the Markovian nature of the
channel, the closer slot £ is to ¢, the stronger is the memory, i.e., the dependency of
the channel state in k with that of ¢. Now, since the channel is positively correlated,
if the channel was in the ON state in slot ¢, the closer k is to ¢, the higher is the
probability that the channel is ON in slot k. By definition, this probability is given
by T%(p) with w = t — k — 1. Thus T%(p) monotonically decreases with u. Using
a similar explanation, T%(r) monotonically increases with w. The limiting value of
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both these functions, as u — oo, is the probability that the channel is ON when no
information on the past channel states is available. This is given by the steady state

probability®. This explains T%(p) > T%(r) for any u,v € {0,1,...}.

Proposition 5. For N = 2, the sum throughput, nsym(m, {3} ,), of the system is

mazimized by the greedy policy {@k}}j;l for any ARQ delay distribution.

Proof. Consider a slot t < m. Fix a sequence of scheduling decisions a;.; =
{@m,@m-1,-..,a;:1}. Recall the definition of Fy,;, the feedback arriving at the end
of slot t 4+ 1, from Section 3.2.3. Let 7., denote the originating slots corresponding
to feedback F,q, i.e., if the feedback from users a, and a,, for m > u > v >t + 1,
both arrive at slot ¢ + 1, then Fy.q; = [f, f,] and 7,11 = [u v]. Also define k; €
{0,m,m —1,...,t+ 1} as the latest slot from which the ARQ feedback of user 1 is
available at the scheduler by (the beginning of) slot ¢. Formally, if at least one ARQ

feedback from user 1 has arrived at the scheduler by slot ¢, then

kL = min k.
ke{m,m—1,...,t+1} s.t ap=1, fx has arrived by slot ¢

(3.8)

If no ARQ feedback from user 1 has arrived by slot ¢, i.e., if # a k such that ‘k €
{m,m —1,...;t + 1} st a. = 1, f; has arrived by slot ¢, then k; = (. Let [, =
ki —t—1, when k; # (), be a measure of ‘freshness’ of the latest feedback from user 1.
Let I; = () when k; = (). Similarly define k,, [y for user 2. With these definitions, the
proof proceeds in two steps: In step 1, we show that the greedy decision in slot ¢, given
the ARQ feedback and the scheduling decision from slot min(ky, k»), is independent of
the feedback and scheduling decision corresponding to slot max(k, ko). In step 2, we
5We will discuss the steady state probability in Section 3.4.

25



show that, if the greedy policy is implemented in slot £, then the expected immediate
reward in slot ¢ is independent of the scheduling decisions a;;;. We then provide
induction based arguments to establish the proposition.

Step 1: Let Fyyy = {F,, Fu_1,..., F1} and 71 .= {7, Tn—1, - - -, Tex1 }- The
greedy decision in slot t, conditioned on the past feedback and scheduling decisions

is given by

a | Fip1,me41,0041,mm at|fk1 kg ol1sl2,00 4 1,m - (3'9)

The preceding equation comes directly from the first order Markovian property of the
underlying channels. Consider the case when k1 < ks <m (=11 <ly) or ky = ko =10
(= 13 = Iy = (). The belief values in slot ¢ as a function of feedback fx, and f, is

given below:

(Tll(p)vTZQ(p))v if fk1 :17fk2 =1
(Tll(p)vTZQ(T))J if fk1 :17fk2 =0
(Tll (p)v T(m_t) (Wm(2)))7 if fk1 =1, k2 =0
= (Tll(r)vTIQ(p))7 if fk1 :vakz =1
(Tll(r)va(r))7 if fk1 :vakz =0
(T4 (r), T (7 (2))), if fr, =0,ka =0
(T (1)), T (70(2))), i Ky = 0, k2 = 0
(3.10)
Using Lemma 5, the greedy decision can be written as
dt|fk1 frglisl2,ae41,mm
1, if fr, =1
= 42, if fr, =0 (3.11)

arg max;e(1 2} (mm(4)), if k1 =0, ko = 0.
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Thus the greedy decision is independent of feedback fy, if k1 < k2. We now proceed
to generalize equation (3.11). Let k* denote the latest slot for which an ARQ feedback

is available from one of the users by slot t, i.e.,

min{kl, ]{72}, if ]fl # @, /{32 7A (Z)

kf* _ klv 1f kl # ®7 k2 == (Z) (312)
k27 1fkl:®7k:27é®
0, if k1 =0,k = 0.

Let | = k*—t—1for k* # () and [ = () for k* = () be a measure of freshness of the

latest ARQ feedback. Thus, using the preceding discussion, we have

at | Ty frgsl15l2,@041,7m

&t|fk*,l,a,t+1,7rm
Qjex s if k* 40, fr =1
arg max;e(12} (mm (1)), if k* =0
(3.13)
where ay- is the user not scheduled in slot k*. This completes step 1 of the proof.
Step 2: 1f the greedy policy is implemented in slot ¢, the immediate reward ex-

pected in slot ¢, conditioned on scheduling decisions a;,; and initial belief m,, can be

rewritten as

Em|at+1,7rm Rt(ﬂ-h &t)
Eﬂt‘l:@)at+l7ﬂm(Rt(7rt7 &t))P(l = ®|a’t+17 7Tm)

+ El,l;é@laHler Ewt\l,l#@,at+1,7rm (Rt (ﬂ-tu &t))a (314)
where [ is defined after (3.12). Note that

B i=tar1.mm (Be(m,80)) = max T (m,,(i)) (3.15)

7
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since, with [ = (), i.e., no past feedback at the scheduler, the belief values at slot ¢ is
independent of the past scheduling decisions and is simply given by 7, = T™ ) (x,,).

Now rewriting the second part of (3.14),

El,l75(8|a,t+1,7rm E7r,5|l,l;é@,at+1,7rm (Rt (ﬂ-t’ dt))

= El,l#(ﬂlatﬂﬂrm Em+t+1\l,l7ﬁ0,at+177rm E7rt|7rz+t+1vl7l7é@7at+1,7fm(Rt(ﬂ-b at))' (316)

Consider Er,jx, 1 11%0,ais1,mm (B¢ (Te, @;)). From the first step of the proof, the greedy
decision in slot ¢ can be made solely based on the latest feedback, i.e., fy+—;1syr1. This
was recorded in (3.13). Thus, if the feedback fi+ is an ACK (occurs with probability
Tit+1(@r4¢41)) reschedule the user a;y;11 in slot t. Conditioned on fi+« = 1, the belief
value 7;(a;1441) and hence the expected immediate reward in slot ¢ is given by T'(p).
If the feedback is a NACK, schedule the other user denoted by a;1;+1. Conditioned on

fi= = 0, the belief value m;(a;141+1) and hence the expected immediate reward in slot

t is given by T (1441 (@14441)) = Mot (@) TH D) + (1 = Tigesr (Grges))T(r).

Averaging over fi«—;is11, we have

B lriyosndiist0,a0s1,mm (FRe (T, Gr))
= M1 ()T (P) + (1 = T (@raes)) X
(s (@) T ) + (1= mrsea (@) ')
= P{Sire41(1) = 1U Spp41(2) = 1}
Tistrts L # 0, @pr, 7)) T (p)
+P({S1411(1) = 0N Spy411(2) = 0}
Tt LU # 0, @, 7)) TH(r)

(3.17)
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where Si(7) is the 1/0 state of the channel of user ¢ in slot k. From (3.16),

Evit0aimmn Erltiz0.aimn (Be(m, ac))
= Bz mm Emppo|Li#0,a000,mm
(P({Sl+t+1(1) = 1U S441(2) = Ve, 1,1 # 0, @1, 7)) T ()
+P({Sis1(1) = 00 Siprar(2) = 0} migsn, L1 # 0, @, ﬁm)Tl(r)>
= Eupstpamn (P51 (1) = 1U St (2) = 1L 0, @00,m) T'(2)
+P({Sies1(1) = 0N Sippsr(2) = O}E, L £ 0, @, wm)Tl(r)>
= Euzjarimm (P({Sl—i-t—i-l(l) = 1U Si3111(2) = 1}|m) T'(p)

FP({Skets1(1) = 00 Spppi1(2) = 0}|7rm)Tl(r)> (3.18)

We have used the following argument in the last equality: the event ({S;1441(1) = 1U
Si+1+1(2) = 1}) is controlled by the underlying Markov dynamics and is independent
of the scheduling decisions a;;,. Likewise, this event is independent of the value
of [ since we have assumed that the feedback channel and the forward channel are
independent.

Recall D(i, k) is the random variable indicating the delay incurred by the ARQ
feedback sent by user ¢ in slot k. Let L be the random variable corresponding to
the quantity [, the degree of freshness of the latest ARQ feedback, and P (.) be the

probability mass function of L.
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Therefore, for 0 <1 <m —t—1,

Pr(l|agy, )
= P({D(ajsri1, L+t +1) <1, D(aryy, L+ 1) > (1 — 1),
D(ape1, l+t—1)>(1—2)),...,
D(ai1,t+ 1) > 0} a1, 7Tm)
= P({D(ajsrir, L +t+1) <1, D(arys, L+ ) > (1 — 1),
D(ape1, 1+t —1)>(1—2)),...,
D(agyq,t+1) > O}|at+1)
t+1
= P(D(L1+t+1)<l) [] P(D(Lk)>k—t—1)

k=t+l1

(3.19)
where we have used the independence between the forward and the feedback channel

to remove the condition on m,, in the second equality. The last equality comes from

the assumption that the ARQ delay is 4.i.d across users and time®. Similarly

t+1

Pyl =0aw, ) = ] P(D(ak)>k—t—1)
k=m
(3.20)

SNote: here we do not require the ARQ delay to be identically distributed across time.
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Applying the preceding equations in (3.14), we have

Emlat+1 \TTm Rt (7Tt ’ at)
t+1

— H P(D(ag, k) >k —t—1) m?xT(m_t)(Wm(i))
k=m

m—t—1 t+1
+> PD(LI+t+1) <D[[PDLE) > k—t—1)
=0 k=t+1

(P({Sl-i-t-i-l(l) =1US411(2) = 1}|7Tm)Tl(p)

+P({Sirs1(1) = 00 Siper (2) = 0}|7Tm)Tl(r)) (3.21)

The expected reward in slot ¢ is thus independent of the actions {a,, Gpm_1 ... a1}
if the greedy policy is implemented in slot ¢. By extension, the total reward expected
from slot ¢ until the horizon is independent of the scheduling vector a;.; if the greedy
policy is implemented in slots {¢,t —1,...,1}, i.e,
1 1

> Bryjarimn Be(mh k) = Y Bryjr, Ri(m, ). (3.22)

k=t k=t
Thus, if the greedy policy is optimal in slots {¢,¢ — 1,...,1}, then, it is also optimal
in slot t+ 1. Since t is arbitrary and since the greedy policy is optimal at the horizon,
by induction, the greedy policy is optimal in every slot {m,m — 1,...,1}. This

establishes the proposition. O

Remarks: From the discussion following (3.19), the ARQ delay need not be
identically distributed across time for the preceding proof to hold. Thus, the greedy
policy is optimal for N = 2 even when the ARQ delay distribution is time-variant.
Also, since m is arbitrary, the greedy policy maximizes the sum throughput over an

infinite horizon. We record this below.
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Corollary 3. For N = 2, the greedy policy is optimal when the performance metric

is the sum throughput over an infinite horizon, i.e.,

(@ }e>1 = arg max lim Vi (7, { @ F 1)

{4 > M0 m

(3.23)
for any initial belief 7.

The optimality of the greedy policy does not extend to the case N > 2. We record

this in the following proposition.

Proposition 6. The greedy policy is not, in general, optimal when there are more

than two users in the downlink.

Proof outline: We establish the proposition using an analytic counterexample. For
N = 3, horizon m = 4 and deterministic ARQ delay of D =1, i.e., Pp(d=1) =1, we
explicitly evaluate the total expected reward, Vi, (mm, {@c}™,), corresponding to the
greedy policy @, and the total expected reward, V,,(m,, {@k}kmzl), corresponding to
an arbitrarily defined policy @k, as a function of the system parameters p, 7, T, |m=4-
For specific sets of system parameters we show that the total expected reward corre-
sponding to the greedy policy is less than that of the policy @k, thus establishing the
sub-optimality of the greedy policy. A formal proof can be found in Appendix B.2.

It is interesting to contrast this result with that in [45]. Here, the authors showed
that, with the ARQ feedback being instantaneous, i.e., end-of-slot, the greedy policy is
optimal for any number of users. We have now shown that, when the ARQ is randomly
delayed, the greedy policy is optimal when N = 2 and not, in general, optimal
when N > 2. Thus, minimal generalization from both the systems disturbs the

optimality properties of the greedy policy, as illustrated in Fig. 3.2. This essentially
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N =2
random ARQ delay

general N users
ARQ delay=1

greedy optimal greedy optimal

increase N increase delay

N=3
ARQ delay=2

greedy not optimal

Figure 3.2: Hlustration showing the volatility of the greedy policy optimality.

underlines the volatile dynamics of optimal scheduling in networks with Markov-
modeled channels.
Despite the suboptimality of the greedy policy, numerical studies suggest that the

greedy policy has near-optimal performance. We discuss this in the next subsection.
3.3.2 Performance Evaluation of the Greedy Policy

Table 3.1 and Table 3.2 provide a comparison of the total expected reward over a
horizon m under the greedy policy, i.e., (V,,(m,,, greedy)) and the reward under the
optimal policy, i.e., (Vi (7, 0pt)). The optimal reward is evaluated by a brute-force

search over the scheduling decisions in every slot t € {m,m —1,...,1}. The quantity

Vi (7rm ,Opt) —Vm (7Tm ,greedy

G ont) ) % 100% captures the degree of suboptimality of the

%subopt=
greedy policy. The system parameters p,r, 7, are (uniform) randomly generated.
Fixing a value for the maximum ARQ delay, the delay probability mass function is

constructed as follows: for each value of d, Pp(d) is generated randomly (uniform over
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p = 0.7965, r =0.1365, N =3
mm = [0.1351 0.2523 0.2410]
Pp(2)=1,Pp(d#2)=0
m | Vi(Tm,opt) | Vi (mm, greedy) %subopt
1 0.2523 0.2523 0 %
2 0.5553 0.5553 0 %
3 0.8918 0.8918 0 %
4 1.3022 1.3022 0 %
) 1.7405 1.7345 0.3500 %
6 2.2011 2.1805 0.9400 %
7 2.6728 2.6553 0.6500 %
p=0.9172, r =0.2858, N =3
T = [0.7572 0.7537 0.3804]
Pp(0) = 0.8822, Pp(1) = 0.1178
Pp(d>1) =0
m | Vi(Tm,opt) | Vi (mm, greedy) %subopt
1 0.7572 0.7572 0 %
2 1.6230 1.6230 0 %
3 2.5074 2.5067 0.0261 %
4 3.3957 3.3948 0.0263 %
) 4.2861 4.2851 0.0235 %
6 5.1780 5.1769 0.0207 %
7 6.0707 6.0696 0.0182 %
p=0.6619, r =0.2389, N =3
Tm = [0.7678 0.1459 0.7698]
Pp(0) = 0.5908, Pp(1) = 0.3959
Pp(2) = 0.0132, Pp(d > 2) = 0
m Vi (o, Opt) Vi (7, greedy) Y%subopt
1 0.7698 0.7698 0 %
2 1.3785 1.3785 0 %
3 1.9315 1.9312 0.0155 %
4 2.4584 2.4573 0.0447 %
5 2.9735 2.9720 0.0504 %
6 3.4843 3.4825 0.0517 %
7 3.9933 3.9914 0.0476 %

Table 3.1: Illustration of the near optimal performance of the greedy policy. Each
table corresponds to a fixed set of system parameters. Three users in the downlink.
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»— 04109, r = 0.0226, N — 4
Tm = [0.3869 0.8476 0.8608 0.8535]
Pp(1)=1,Pp(d#1)=0
m | Vi(Tm,opt) | Vi (mm, greedy) %subopt
1 0.8608 0.8608 0 %
2 1.2176 1.2176 0 %
3 1.3967 1.3967 0 %
4 1.5179 1.5162 0.1072 %
) 1.6061 1.5945 0.7179 %
6 1.6694 1.6558 0.8188 %
7 1.7219 1.7069 0.8715 %
p=0.9464, r = 0.1666, N =4
Tm = [0.6898 0.6996 0.0619 0.4757]
Pp(0) = 0.5387, Pp(1) = 0.4613
Pp(d>1) =0
m | Vi(Tm,opt) | Vi (mm, greedy) %subopt
1 0.6996 0.6996 0 %
2 1.4988 1.4988 0 %
3 2.3743 2.3715 0.1179 %
4 3.2675 3.2596 0.2418 %
) 4.1651 4.1558 0.2233 %
6 5.0662 5.0558 0.2053 %
7 5.9700 5.9586 0.1910 %
p=0.9281, r=0.2824, N =4
Tm = [0.4541 0.6528 0.6477 0.5767]
Pp(0) = 0.6647, Pp(1) = 0.1844
Pp(2) = 0.1510, Pp(d > 2) = 0
m Vi (o, Opt) Vi (7, greedy) Y%subopt
1 0.6528 0.6528 0 %
2 1.4533 1.4533 0 %
3 2.3190 2.3170 0.0844 %
4 3.2070 3.2015 0.1699 %
) 4.1006 4.0936 0.1705 %
6 4.9965 4.9888 0.1533 %
7 5.8934 5.8854 0.1364 %

Table 3.2: Illustration of the near optimal performance of the greedy policy. Each
table corresponds to a fixed set of system parameters. Four users in the downlink.
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(A) (B)

V(T genie) | 2 3 4 5 6 7
-V (T opt)
0. V(T greedy)
~ - -V (T, rand) (D)
3 T

Figure 3.3: Total expected reward of the greedy policy in comparison with system-
level performance limits. System parameters used: plot (A) N = 3, p =
0.4070, » = 0.1999, Pp(0) = 0.3379, Pp(1) = 0.5666, Pp(2) = 0.0954, 7, =
[0.7487 0.8256 0.7900], (B) N = 3, p = 0.9930, r = 0.1267, Pp(0) = 0.8855, Pp(1) =
0.1145, m, = [0.3631 0.2662 0.3857], (C) N = 3, p = 0.9694, r = 0.1556,
Pp(0) = 0,Pp(1) = 1, m,, = [0.1207 0.1962 0.1791], (D) N = 3, p = 0.7965,
r = 0.1365, Pp(0) =0, Pp(1) =0, Pp(2) = 1, m,, = [0.1351 0.2523 0.2410].
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0, 1]) and normalized by ), (Pp(d)). We see that the value of %subopt is below 1%
for all the system parameters considered, thus suggesting near optimal performance
of the greedy policy.

We study the performance of the greedy policy in a larger perspective in Fig. 3.3.
Here V,,, (7, greedy) is plotted alongside V,, (7., opt), Vi, (mm, genie) and V,, (7, rand).
Vi (7, genie) corresponds to the total expected reward when, for any k, feedback
fr includes the channel state information, corresponding to slot k, of not only the
scheduled user a; but also that of all the users in the system. We call this the genie-
aided system. The quantity V,,(m,,,rand) is the total expected reward when random
scheduling is performed. From Fig. 3.3 we observe that the greedy policy achieves a
performance comparable to that of the optimal policy in both the original and the
genie-aided systems, while V,,(m,,,rand) is significantly lower than V,,(m,,, greedy).
These observations, apart from demonstrating the near optimality of the greedy pol-
icy, underline the effectiveness of our larger approach: exploit multiuser diversity and

use delayed ARQ feedback for that purpose.

3.3.3 Structure of the Greedy Policy

Motivated by the near optimal performance of the greedy policy, we proceed to
study its structure, which turns out to be very amenable for practical implementation.
We begin by defining the following quantity:

Schedule order vector, Oy, in slot t: The user indices in decreasing order of m,(i), i.e.,

O,(1) = argmaxm()

ON) = argminm(i).
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Thus, the greedy decision in slot t is a; = Oy(1).

Now, in any slot ¢t < m, any user ¢ falls under one of the following two cases:

1) The scheduler has received at least one ARQ feedback from user i by the
beginning of slot ¢t. Let k;, for m > k; > t, be the latest slot for which the
ARQ feedback from user i is available at the scheduler. Since the channel is
first-order Markovian, the belief value of the channel of user 7 in the current

slot t is dependent only on the feedback fj, and k;. The belief value is given by

L TR p) it i =1
(i) = {T’“_t_l(r) if fi, = 0. (3:24)

2) The scheduler does not have any ARQ feedback from user i by the beginning

of slot ¢. In this case
(i) = TV, (4). (3.25)

Recall that m,,(¢) is the initial belief value of the channel of user i when the

scheduling process started at slot m.

At slot ¢, let A; denote the set of users, 7, whose latest feedback, f,, is an ACK. Let
N; denote the set of users, j, whose latest feedback, fr;» is a NACK. Let the users
from whom the scheduler has not yet received any feedback constitute set &;. From

(3.24) and (3.25), using Lemma 5, the greedy decision in slot ¢ can be written as

arg minge 4, k; it Ay # 0
ay = { argmax;ey, (i) if A, =0 and X, # () (3.26)
arg max;en;, k; if A, =0 and &, = 0.

Now, for ease of implementation, we visualize the sets A;, X, and N, as queues with

elements ordered in the following specific ways: Let A,(i) denote the i" element of
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queue A; and the elements be ordered such that k 4,1y < k4,2 - -- < k4, (n(4,)), Where
n(A) denotes the cardinality of set A. Note that the user that gave an ACK from
the most recent slot lies at the head of queue A;. The elements of X; are ordered
such that 7, (X (1)) > 7 (Xi(2)) ... > mu(X(n(X}))). The elements of N; satisty
Exiy > Eny@) - - > knmvy), i-e., the user with the oldest NACK feedback lies on
top of queue N;. Define a combined queue constructed by concatenating the queues
A, X and N, in that order. From (3.24) and (3.25), using Lemma 5, we see that
the users in the combined queue are arranged in decreasing order (top-down) of belief
values with the top-most user being the greedy decision in slot . Thus the combined
queue is, in fact, the schedule order vector O;.

We now discuss the evolution of the schedule order vector. For every user a whose
ARQ feedback is contained in F}, implement the following procedure: Let ¢, indicate
the originating slot for the ARQ feedback from user a contained in F;. Now, if t, is
the latest slot from which the ARQ feedback of user a is available at the scheduler,
then k, = t,. The new schedule order vector O,_; is formed by removing user a from
its current position (in O;) and placing it in the sub-queue A;—; (if fx, = 1) or in the
sub-queue NV;_; (if fx, = 0) at an appropriate location (so that the ordering based on
k; is not violated). If ¢, # k,, i.e., t, is not the latest slot, then user a is not moved.
Similarly, users whose ARQ feedback are not contained in F; are not moved. The last

two statements are direct consequences of the following facts:

e For an user a whose ARQ feedback is contained in F} but is not the latest feed-
back from that user, the belief value evolves as m;_1(a) = T(m¢(a)). Similarly,
for an user b whose ARQ) feedback is not contained in F}, the belief value evolves

as m—1(b) = T'(m(b)). Both these cases were discussed in Section 3.2.3.
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Beginning of slot ¢

‘ Schedule the user on top (a¢

ki, 1 € At Remove a from its
At
increases current position.
Insert here such that
set Ay A_
ka, <ka<ka
+ _
mm (i), i € X¢
decreases
set X¢
ki, i € N¢
decreases
Remove a from its
Ny
set N¢ current position.
N Insert here such that
— kn, >ka > kn_
Oy

NO

End of slot t.

F; received

For every user a
whose ARQ feedback

is contained in Ft

If
this is the latest
feedback for

user a

NO

Leave a

in its

current position

Figure 3.4: Greedy policy implementation under random ARQ delay.
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e From Lemma 5, if x > y, then T'(x) > T'(y).

Now, at slot t — 1, the user on top of O;_; is the greedy decision. Thus the greedy
decision in any slot is determined by the latest ARQ feedback and the corresponding
originating slot index of all the users in the system. Note that this implementation
does not require the Markov channel statistics (other than the knowledge that p > r)
and the statistics of the ARQ feedback delay. An illustration of the greedy policy
implementation is provided in Fig. 3.4.

For the special case of deterministic ARQ feedback delay D = d, the evolution
from O; to O;_ is greatly simplified as follows. At the end of slot t, since D = d,
F; contains feedback only from the user scheduled in slot ¢ + d, i.e., user a;;4. Thus
F, = fiiq. The feedback bits f,., fin_1,- .-, frrar1 from users G, Gm_1,-- ., Grrds1
have already arrived at the end of slots m —d,m — 1 —d,...,t+ 1 and the feedback
from users sy q_1, 0142, ... are yet to arrive. Thus F; = f;,4 from user a;,4 is the
latest feedback available from any user. Thus, recalling the ordering rules for A;_;
and N;_1, if F, = 1, user a,y4 is removed from its current position and placed on
top in the updated schedule order vector, i.e., Oy 1 = [Grya  O; — Giyal, T (User Gyyq
becomes the greedy decision in slot ¢t — 1). If F; = 0, G;14 is placed at the bottom,
ie, Oy = [Of — Ggrq  Gprq). When there is no ARQ delay (D = d = 0), the
implementation becomes even simpler: on receiving an ACK, O;_; = O, and on
NACK, O;—1 =[O — O(1)  O4(1)], since Gy1q = a; = Oy(1). This results in a simple
round robin implementation of the greedy policy as discussed in [7,45]. Fig. 3.5 and
Fig. 3.6 illustrate the greedy policy implementation in the deterministically delayed
ARQ and instantaneous ARQ) systems, respectively.

"If Z = [21 22 23] then Z — 29 := [21 23] and hence |22 Z — 23] = [22 21 23]
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3.4 On Downlink Sum Capacity and Capacity Region

We now proceed to study the fundamental limits on the downlink system perfor-

mance — the sum capacity and the capacity region.
3.4.1 Sum Capacity of the Downlink

The sum capacity of the downlink is defined as the maximum sum throughput
over an infinite horizon with steady state initial conditions. Formally, with N users

in the system,

Csum(N) = max lim vm(ﬂss’{gk}kzl), (3.27)

{@y > M0 m

where Vi € {1,..., N}, ms(i) = ps, the steady state probability of the Markov
channel. We now proceed to derive p;,. The Markov chain transition matrix P =

[I; 1 : I; } can be expressed as P = UAV, where

=
|

1 0
A= 0 p—r}
B S
I+ |1 1)
. 10 -
with VU = 01 . Assuming® p+ (1 —r) < 2,
U T
lim P* = [1—(5)—7”) 1—(};—7”)]
oo o T e
N r
ps = T
1—(p—r)

8p+(1—7r)=2leads to P = {(1) ﬂ , a trivial case with no steady state.
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Beginning of slot t End of slot t

‘ Schedule the user on top (a¢)

Remove a;4 4 from its Ft = fi4q received
current position. from us

er 4z q

Place on top

YES If

NO

Remove a; 4 from its
current position.

Place at the bottom

O¢

Figure 3.5: Greedy policy implementation under deterministically delayed ARQ), i.e.,
D =d.
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We now define the genie-aided system formally as follows: In any slot k&, the feedback
fr contains the channel state information, corresponding to slot k, of not only the
scheduled user but also that of all the users in the system. We retain the delay profile
from the original system. Thus, in the genie-aided system, the cumulative feedback
fr arrive at the scheduler with delay D(ay, k) that is i.i.d across scheduling choice ay
and originating slot & with the probability mass function Pp(d). We now report our

result on the sum capacity of the downlink with two users.

Proposition 7. When N = 2, the sum capacity of the Markov-modeled downlink
with randomly delayed ARQ equals that of the genie-aided system. This sum capacity

equals

Csum(N = 2)
00 -1
= > [pT'w) + (= pop| PO <D ] P(D > a). (3.28)
=0 d=0

Furthermore, the greedy policy achieves this sum capacity.

Proof. Recall the definition of the genie-aided system: the feedback fj from any slot
k contains the channel state information, corresponding to slot k, of not only the
scheduled user but also that of all the users in the system. Thus, in the genie-aided
system, since the delay of the (cumulative) feedback fy is 7.i.d across the scheduling
choice, the scheduling decision in the current slot does not affect the information
available for scheduling in future slots. Hence, the greedy policy is optimal in the
genie-aided system.

We now focus on the sum throughput of the greedy policy in the genie-aided

system. Recall, from Section 3.3.1, the quantity L — the measure of freshness of the
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Beginning of slot ¢ End of slot t

‘ Schedule the user on top (a¢)

a¢ remains on top. Fy = fy received

It will be rescheduled from user a¢

in the next slot

YES If

NO

Place a; at the bottom

O¢

Figure 3.6: Greedy policy implementation under instantaneous (end of slot) ARQ),
ie, D=0.
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latest ARQ feedback. We defined L such that L = [ = the latest feedback is [ + 1
slots old. We extend the meaning of L to the genie-aided system. Due to the first
order Markovian nature of the channels, in the genie-aided system, conditioned on the
latest feedback, fi1;41 (with ¢ denoting the current slot), the belief values (and hence
the greedy scheduling decision) in the current slot are independent of the feedback
from previous slots, i.e., fxg>t4i+1. Thus, with Rggfgjy(l, N) denoting the conditional
(conditioned on L = [) immediate reward corresponding to the greedy policy, in the

N-user genie-aided system with steady state initial conditions, the sum capacity of

the genie-aided system can be written as

CEMie(N) = B RE“Y (], N). (3.29)

sum genie

We now evaluate Rgiffify(l, N). From Lemma 5, the belief value (in the current slot)
of an user with an ON channel [ + 1 slots earlier, i.e., T'(p), is higher than the belief

value of an user with an OFF channel [ + 1 slots earlier, i.e., T'(r). Thus, in steady

state,

reed
Rgeniey(L N)
= P(at least one of the N users has an ON channel in

steady state)T" (p)

+P(all users have OFF channels in steady state)T"(r)

= (1= @1 =p)"T(p) + (1 —p)"T'(r). (3.30)

We now focus on the probability P(L = [). With t as the current slot, the latest
feedback is [ + 1 slots old if (a) the feedback from slot ¢ + 1 4+ 1 (fi441) arrives at

the scheduler by the end of slot ¢t 4+ 1, and (b) the feedback from the later slots
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(t+1,...,t+ 1) do not arrive at the scheduler by the end of slot ¢ + 1. Since the
feedback delay is i.i.d across users and time, events (a) and (b) are independent with
probabilities given by P(D < [) and Hfi_:lo P(D > d), respectively. Thus the sum

capacity of the genie-aided system with N users is given by

Cgomo ( )

sum

= E/RE“Y(I,N)

genie
00

-3 [(1 — (1= p)MTHp) + (1 — p)NT(r)
-1

PO <)[[PD > ad). (3.31)

d=0

When N = 2, with minor algebraic manipulations, we have

Cim‘(2)
00 -1
= >, [psTl ps)ps]P(D <) [[PD>d).
=0 d=0

(3.32)

We now proceed to prove that the sum throughput of the greedy policy in the orig-
inal system equals that of the greedy policy in the genie-aided system when N = 2.
We established in the course of the proof of Proposition 5 that, in the original sys-
tem with N = 2, conditioned on L = [, the greedy decision in the current slot t is
solely determined by the ARQ feedback from slot t 41+ 1 with the following decision
rule: When the user scheduled in slot ¢t + 1+ 1, i.e., a;1;41, sends back an ACK, that
user is scheduled in the current slot t, i.e., a; = ay1;41. Otherwise, the other user

is scheduled in slot . We can interpret this decision logic of the greedy policy as below:
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When at least one of the users had an ON channel in slot t + 1 + 1, that user® is
identified for scheduling in the current slot t, leading to an expected current reward
of T'(p). Reward T'(r) is accrued only when both the channels were in the OFF state

m slott +1+1.

Note that the decision rule and the accrued immediate rewards corresponding to the
greedy policy in the original system are the same as that of the greedy policy in
the genie-aided system. Thus, in the original system, under the greedy policy, no
improvement in the immediate reward can be achieved even if the channel states
of both the users in slot ¢ + [ + 1 are available at the scheduler in slot ¢. This,
along with the fact that both the systems have the same delay profile, establishes the
equivalence between the original and the genie-aided systems, when N = 2, in terms
of the sum throughput achieved by the greedy policy. We have already proved the
sum throughput optimality of the greedy policy in the original system when N = 2
(Proposition 5) and in the genie-aided system for a general value of N. Thus the
sum capacity of the original system for N = 2 is given by C&"¢(2) in (3.32). The

proposition thus follows. O

Remarks: Insights on the result in Proposition 7 can be obtained by examining
the fundamental trade-off when scheduling in the Markov-modeled downlink. In

particular, scheduling must take into account

1) data transmission in the current slot, which influences the immediate reward,

and

9User asy 41 is given higher priority if both channels were ON.
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2) probing of the channel for future scheduling decisions, which influences the

reward expected in future slots.

The optimal schedule strikes a balance between these two objectives (that need not
contradict each other). From the discussion in the proof of Proposition 7, we see that,
in the original system, when N = 2, the choice of the user whose channel is probed
becomes irrelevant as far as the optimal future reward is concerned. Similarly, in the
genie-aided system, since the channel state information of all the users (general N
system) is sent to the scheduler (with equal delay that is i.i.d across the schedul-
ing choice) irrespective of which user was scheduled, the optimal future reward is
independent of the current scheduling decision. This results in the optimality of the
greedy policy in the original and the genie-aided systems and creates a sum capacity
equivalence between these two systems, when N = 2.

The equivalence with the genie-aided system vanishes when N > 2, since observing
only one user is not enough to capture an ‘ON-user’, if one exists. This was possible
when N = 2. Thus, when N > 2, there is room for throughput improvement when
the channel state information of all the users is available at the scheduler even if there
is a delay (the genie-aided system). The genie-aided system sum capacity is thus an

upper bound to the sum capacity of the original system. We record this next.

Corollary 4. When N > 2, the sum capacity, Coum(N), of the downlink can be

bounded as

Coum(2) < Coum(N) < CELF(N) (3.33)

sum

Proof. The lower bound Cg,,(2), given in (3.28), is achieved by the scheduler when,
in each slot, it considers only two users (fixed set) for scheduling and ignores the rest,
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effectively emulating a two-user downlink. The upper bound is the sum capacity of

the genie-aided system with N users, as given in (3.31). O]
3.4.2 Bounds on the Capacity Region of the Downlink

Define the capacity region of the downlink as the ezhaustive set of achievable
throughput vectors. Formally, let ,uig denote the throughput of user 7 under policy 4.

Let I(7) be the indicator function on whether user i was scheduled in slot k, i.e.,

0 otherwise.

1 ifi=
L) = { hr (3.34)
Thus

m—oo m

where Rg(ﬁk, ar) is the immediate reward accrued by the scheduler in slot & under
policy @. The expectation is over the belief vector 7, with steady state initial con-
ditions. Now, the capacity region of the downlink, C, is defined as the union of the

throughput vectors, (4%, ... ,,u;gv), over all scheduling policies, i.e.,
C = Ug{(dd,....ud)} (3.36)
Let Heonvex(X) be the convex hull of the set of points X, defined as

Hconvex (X)
n(X) n(X)

- {Zﬁm IiGXﬁieRvﬁizO’Zﬁ’:l}'
i=1 =1

where n(X) is the cardinality of set X. With these definitions we now state our

results on the downlink capacity region.
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Proposition 8. An outer bound on the capacity region of the Markov-modeled down-

link with randomly delayed ARQ is given by the complement of the N-dimensional
polyhedron P represented by

P — {(xlzo,@zo...sz):

S < CENe(n(S)),VS C {1, N}}, (3.37)
icS
where
00 -1
Came(N) =3 [(1 = (L= p))T'(p) + (1= p )" T'(r) | P(D <D [T P(D > a).
=0 d=0
An inner bound on the capacity region is given by the set of points (x1,...,xN) such

that
(Ila cee >$N) S Hconvex(Oa {Xi}ViE{l ..... N} { k}Vj ke{l,...,N}, ];ék:) (338)

where O, X;,Y;, € RN. O s the origin (0,...,0). X; = (0,...,0,ps,0,...,0) with ps

at the i location. Yz, = (0,...,0, %@ o 0, Gm® o 0) with Cum@) gt
locations 7 and k, where
0o -1
Com® = Y [pT'0) + (L= p)p.| PO <D ] P(D > a).
=0 d=0

Proof. Considering the genie-aided system, for any policy 4, let the throughput vector

be denoted by (u ggomo’. g,gonm)'

T For a subset of users S C {1...N}, by the

definition of sum capacity, we have
@ genie enie
D oprEre < cEme(n(S)). (3.39)
ies
This establishes the complement of the polyhedron P as an outer bound on the
capacity region of the genie-aided system, and by extension, an outer bound on the

capacity region of the original system.
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Now, consider the inner bound Heonyex (O, { X bvieqr,.. . Ny 1Yk bviket,.. . N} j#k) - I
the original system, throughput vector X; = (0,...,0,ps,0,...,0) can be achieved
by scheduling to user 7 at all times. Recall that the greedy policy achieves the sum
capacity when N = 2. Also the sum throughput Cg,,(2) is split equally between
the two users thanks to the inherent symmetry between users. Thus throughput
vector Yy iz, = (0,...,0, CS“T'“(Q), 0,...,0, CS“T'“(Z), 0,...,0) can be achieved by greedy
scheduling over the users j and k alone at all slots. Throughput vector O corre-
sponds to idling in every slot. Therefore, any throughput vector in the convex hull
Heonvex (O, { Xi tvicqr,.. N> 1Yk fvjkef1,...N},jk) can be achieved by time sharing be-
tween the policies that achieve throughput vectors € {O,X;, Y] jx,}. This estab-

lishes the result on the inner bound. O

Fig. 3.7 illustrates the capacity region bounds from Proposition 8 when N = 2
and when N = 3.

For the special case of N = 2 users and deterministic ARQ feedback delay, D = d,
we obtain the exact capacity region of the genie-aided system and hence tighter

bounds to the capacity region of the original system.

Proposition 9. For N = 2 users, with a deterministic ARQ) delay of D =d, d >0

slots, the capacity region of the genie-aided system is given by the set of points (z1,x2)
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@1 +xy = CEL(2)
(Ovpd)
x1
(0,0)
ED)
(0, ps,0)
7 X .
~ oy = CEBI(1) = ps
.
.
.
P .
/ zy + 22 = CEIL°(2)
.
(o, Csu;n(2) , Csu;n(2) ) \/ 777777777777777 (Csugl@) , Csu12n(2) ,0)

1

\
II N

\
) \
1 \
1 \ \
! > ! genie
' \ z1 + 3y + 3 = CE;HI°(3)
I . ) \
i \
(0,0, ps) - \\ // _ (ps,0,0)
e . , =
S~ N , -
< N 7
x3 S~y -7 x1
( C’su2m(2) |0, Csug}@) )

Inner bound

Outer bound

Figure 3.7: Illustration of bounds on the capacity region of the downlink with ran-
domly delayed ARQ when N = 2 and when N = 3.
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such that

(€1,22) € Heomvex (0, X1, Z1, Za, Xo)
where O = (0,0)
X1 = (ps,0)
Xy = (0,ps)
Zy = (psT(p) + (1 = p)*T(r), (1 — p)psT(p))

Zy = (1= pa)psT(p), psT"(p) + (1 — ps)*T(r)). (3.40)

Proof. The relative positions of the points X, X5, Z;, Z5 and O are illustrated in
Fig. 3.8.

We first show that the region complementary to H onyex(O, X1, Z1, Zo, X2) is an
outer bound on the capacity region of the genie-aided downlink. Consider a broad
class of schedulers in the genie-aided system, with each member identified by the
parameters a; € [0,1], i € {1,...,4}. A member of this class obeys the following

decision logic at slot t:

If [SHdJrl(l)] = 0 , then schedule user 1 with probability «; and user 2 w.p.
Sera+1(2)] [0

1—0[1.

-St—‘rd—i-l(l)- _ 0] _ Lw.p. ap
it _St+d+1(2) 1]’ then a, = 2wp. 1—a

-St—‘rd—i-l(l)- _ 1] _ Twp. as
o lf | Sirav1(2)] (0] then a; = 2wp. 1—az

-St-l-d—i-l(l)- _ 1] _J lTwp oy
o If | Sirar1(2)] 1] then a; = 2w.p. 1—oy
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Outer bound from Proposition 8

X2 = (0,ps) Y12 = (cs%n@), Csu1211(2)>
/Zl
1
=(0,0) X1 = (ps, 0)

== Inner bound

Capacity region of the genie-aided system
and a tighter outer bound on the capacity
region of the original system

Figure 3.8: Illustration of the capacity region of the genie-aided system and tighter
bounds on the capacity region of the original system when N = 2, with deterministic
ARQ delay.

Note that, thanks to the first order Markovian nature of the underlying channels, any
scheduling policy in the genie-aided system falls under the above class of schedulers
or will have a member of this class achieving the same throughput vector as itself.
We now proceed to show that the throughput vector achieved by any member of this
class belongs to Heonvex (O, X1, Z1, Z2, X3).

With a = {aq,..., a4} € [0,1]* fixed, the throughput for user 1 is given by

e =5 p([em] =[] -

i,j€{0,1}

Strdr1 _ —
P(at - 1‘ [SHZL } [ } Sy(1) = 1[Spsasr (1) = i)
= (1 - p5)2Oéle( (1 - ps)psa2T ( )

+ ps(1 = p)asT(p) + plesT(p), (3.41)
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with p, = ﬁ. Similarly,

1—

M?genic = (1 _ps>2(1 - a1>Td(T> + (1 - ps>ps(1 - a2)Td(p)

+ ps(1 = po)(1 = ag)T(r) + p2(1 — aa) T (p). (3.42)

For notational simplicity, we will henceforth denote the throughputs simply by

and po. The sum throughput is now given by

H1 + M2 = Pg + (1 - ps)ps(Td(p) - Td(’/’))(a3 - Oég). (343)

Note that the values of a; and ay are irrelevant from the sum throughput point of
view. Consider the following two cases.

Case 1, when az < ao:
0 < p1+ p2 < ps.
Since X (1) + X1(2) = Xo(1) + X2(2) = ps, we have
(p1, 112) € Heonvex (O, X1, X3). (3.44)
Case 2, when az > ao:

Ps < p1+p2 < ps+ (1= po)ps(Tp) — Tr))

= pT%p) + (1 — ps)ps.

Since Zy(1) + Z1(2) = Z(1) + Z2(2) = pT4(p) + (1 — po)*T(r) + (1 — ps)psT(p) =
psTp) + (1 — p,)ps, we can find points Ey,z, and Ex,z, on edges X;7; and X, 2o,
respectively, such that Ex,z (1) + Ex,z,(2) = Ex,z,(1) + Ex,2,(2) = p1 + po. Any

point Py, z on the edge X;Z; can be written as a convex combination of points X;
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and 7, i.e., 3 f € [0, 1] such that

Px,z, = XaB+ Z:(1—-p5)
= (pB+ GTUp) + (1= p T (1= )
(1= p)p, T (p)(1 - 3)).

With 3 =1 — (a3 — ag), we have Px, 7 (1) + Px,z (2) = p1 + p1o. Thus

Bxy = (po(1 = (s = a2)) + (0. T(p) + (1 = p)*T"(1) X
(a5 = a2), (1= p )T (p) 5 — 1))

Due to the symmetry between X, Z; and Xy, Z5, we have Fx, 7, = (Ex, 7 (2), Ex, 7 (1)).

Using gy from (3.41), it can be shown that, for any a;ecqi..4y € [0, 1] with ag > o,
EX2Z2(1> <m < EX1Z1(1)‘ (345)
Since Ex, 7z (1) + Ex,2z,(2) = Ex,2,(1) + Ex,2,(2) = p1 + p2, (3.45) translates to

(,Ula ,U2) S Hconvex(EXlZla EXQZQ)‘

The above relation, along with the fact that Ex,z, € Heonvex(X1,Z1) and Ex,z, €

Hconvex(X2a Z2), y1€1dS
(/‘1“17“2) S HCOHVGX(XthaZZaXQ)' (346)

Combining the results in (3.44) and (3.46), we establish that the region complemen-
tary to Heonvex(O, X1, Z1, Z2, Xo) is an outer bound on the capacity region of the
genie-aided system.

Revisiting the class of schedulers identified by e, it can be shown from (3.41) and
(3.42) that a scheduler with e = {1,0, 1,1} achieves a throughput vector (u1, pia) =
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Zy = (psTp) + (1 — ps)*T(r), (1 — ps)psT%(p)). Similarly, a scheduler with a =
{0,0,1,0} achieves a throughput vector (pu1, o) = Zo = ((1 — ps)psT(p), psT4(p) +
(1 — ps)®T%(r)). Throughput vectors X; or X, can be achieved by scheduling to
only user 1 or 2, respectively, at all times. Thus any throughput vector within
the region Heonvex (O, X1, Z1, Z2, X3) can be supported by time sharing between the
schedulers that achieve throughput vector € {O, X1, Z;, Zs, Xo}. This establishes
Heonvex (O, X1, Z1, Z5, X5) as an inner bound on the capacity region of the genie-aided
system.

Combining the outer and inner bound results establishes the proposition. O

We now report tighter bounds on the capacity region of the original system, when

N = 2 and the ARQ delay is deterministic.

Corollary 5. For N = 2 users, with a deterministic ARQ delay of D = d, d > 0
slots, an outer bound on the capacity region of the original system is given by the set

of points (1, xs) such that

(#1,22) ¢ Heomvex(O, X1, Z1, Z2, Xo)
where O = (0,0)
X1 = (ps,0)
Xy = (0,ps)
Zi = (psTp) + (1= po)®Tr), (1 — ps)psT(p))
Zy = ((1=pa)psTp), psT(p) + (1 — po)*T"(r))

(3.47)
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and an inner bound is given by the set of points (x1,xs) such that

(33‘1,5172) € Hconvcx(Oalem,27X2)

C1sum(2) C1Sum(2)
2 2 )

where Y1 = (
with Cyum(2) = psT4p) + (1 — ps)ps, the sum capacity of the system.

Proof. The outer bound is the region complementary to the capacity region of the
genie-aided system reported in Proposition 9. The inner bound was obtained in

Proposition 8 with Cgym(2) from (3.28) re-derived using P(D = d) = 1. O

Fig. 3.8 illustrates the improved outer bound from Corollary 5 along with the

bounds derived in Proposition 8.

3.5 Summary

We studied opportunistic multiuser scheduling in Markov-modeled downlink us-
ing delayed ARQ feedback from the users. For the case of two users in the system,
we showed that the greedy policy is sum throughput optimal for any distribution of
the ARQ feedback delay. However, for more than two users, there exists scenarios
for which the greedy policy is not optimal. Nevertheless, extensive numerical experi-
ments suggest that the greedy policy has near-optimal performance. Encouraged by
this, we studied the structure of the greedy policy and showed that it can be imple-
mented by a simple algorithm that does not require the statistics of the underlying
Markov channel nor the ARQ feedback delay, thus making it robust against errors
in estimation of these statistics. Focusing on the fundamental limits of the downlink

system, we obtained an elegant closed form expression for the sum capacity of the
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two-user downlink and derived inner and outer bounds on the capacity region of the

Markov-modeled downlink with randomly delayed ARQ feedback.
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CHAPTER 4

OPPORTUNISTIC SCHEDULING IN CELLULAR
DOWNLINK MODELED BY THREE STATE MARKOV
CHAINS

4.1 Background

In the preceding chapter, we studied joint channel estimation - opportunistic
scheduling using randomly delayed ARQ feedback in cellular downlink. With the
channels modeled by two-state Markov chains, we showed the optimality of the greedy
policy when the number of downlink users is two. Although modeling the channels
by two state Markov chains is a welcome change from the traditional memoryless
models, the scheduler can do better by discriminating the channel conditions on a
finer level, i.e., if the channel is modeled by higher state Markov chains. Under such a
model, it would be interesting to see if the optimality properties of the greedy policy
are preserved from the two-state Markov model. This is the focus of this chapter. We

begin with a description of the problem setup.
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4.2 Problem Setup

4.2.1 Channel Model - Probability Transition Matrix

We consider a cellular downlink with two users. The channel between the scheduler
and each user is modeled by an i.7.d, first order, three-state Markov chain. As before,
time is slotted and the channel of each user remains fixed for a slot and evolves
into another state in the next slot according to the Markov chain statistics. The

three-state Markov channel is characterized by a 3 x 3 probability transition matrix

P11 P12 D13
P = |pa p2 pasl, (4.1)
P31 P32 P33

where p;; is the probability of evolving from state 7 to state j in the next slot.

State 1 is assumed to represent the lower end of the channel strength spectrum
and state 3 represents the higher end. We assume that the Markov chain is positively
correlated in time. Thus p; > p;; if j # 7. Also, motivated by observation of
realistic channels, we assume that the channel evolves in a smooth fashion across
time. Thus po; > p31 and peg > p13. Also, observing that state 3 represents a region
of the channel strength spectrum that is not bounded from above, it is reasonable to

assume p3s < pio. To summarize, the transition matrix elements are related as below:

P11 = P21 = Pai
D22 2 P12 = P32

P33 = P23 = P13 (4.2)

4.2.2 Scheduling Problem

The scheduling setup is unchanged from Chapter 3 except for the following mod-

ification to the feedback mechanism: the scheduled user, based on measurements of
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the signal strength of the received data packet, obtains information on the state of
the channel and sends this back to the scheduler. We call this feedback as F; with
i € {1,2,3}. Thus the feedback is not 1-bit or ARQ any more. Also, this feedback is
received at the scheduler instantaneously. As before, the feedback information, along
with the label of the slot in which it is acquired, will be used in future scheduling
decisions. The performance metric that the base station aims to maximize is the sum

reward of the system. Details are discussed next.
4.2.3 Formal Problem Definition

Similar to previous chapters, the scheduling problem is modeled as a POMDP. The
entities we use in the analysis are explained next. Although, many of these entities
are retained from previous chapters, to avoid any ambiguity, we describe them here.

Horizon: Similar to Chapter 3, we consider the finite horizon scenario. The
horizon is denoted by m.

Action ay: Indicates the index of the user (1 or 2) scheduled in slot k.

Belief vector of user i at the k™ slot ;. ;: Element m,;(j) denotes the probability
that the channel of user i € {1,2} in the k' control interval is in state j € {1,2,3},
given all the past information about that channel. If F; was received from user ¢,
[ + 1 slots earlier with [ € 0,1,2, ..., then the belief vector in the current interval k
is given by 7y = [pj1 pj2 pj3]P'. We will henceforth represent the vector [pj1 pj2 pjs)
by p;. If user 7 is not scheduled in slot k, then the belief vector of this user evolves

to the next interval as follows: m_1,;, = 7, P.
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Stationary Scheduling Policy @;: A stationary scheduling policy @ in slot & is a

stationary mapping from the belief vectors and the slot index to an action as follows:
gk . (7Tk,1777k,2) — QA Vk Z 1.

Reward Structure: In any slot k, a reward of «; is accrued when the scheduled
user sends back F;. Let state 1 be defined such that no reward is accrued when an
user in state 1 is scheduled, i.e., a; = 0. This assumption can be satisfied by letting
state 1 represent the channel strengths that do not allow any useful data transfer.
Since state 3 represents channel strengths that are better than those represented by
state 2, we have a3 > ay. Throughout this chapter, we will assume a3 = 1 without
loss of generality:.

Net Ezpected Reward in the slot m, V,,: With the belief vectors, m, 1, T2 and
the scheduling policy, {@x }r<m, fixed, the net expected reward, V,, is the sum of the
reward, R,,(Tpm a,,,0m), expected in the current slot m and E[V},_1], the net reward
expected in the future slots conditioned on the belief vectors and the scheduling

decision in the current slot. Formally,

Vm(ﬂ-m,la TTm,2, {gk}kgm) = Rm (ﬂ-m,ama am)
+ E[Vm—l(ﬂ-m—l,17 Tm—1,2, {gk}kgm—l) |7Tm,17 Tm,1, am]v

where the expectation is over the belief vectors 7, 1 1, Tm_1.2. With % a = [a; oy a3]?,

the expected current reward can be written as

Rm(ﬂ-m,am>am) = 7Tm7am0é.

Note that if a,, was observed to be in state 7 in the previous interval then m,, ,,, = p;

and Ry, (Tm,a,, s Gm) = Pit.

10xT indicates the transpose of vector x.
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Performance Metric - the Sum Capacity, ns.,: For a given scheduling policy,

{@)}k>1, the sum capacity is given by

. Vm ssy '1ssy g
nsum({gk}k21) = hm (7T T { k}k21), (43)

m— o0 m

where 7, is the steady state probability vector of the underlying Markov channels.

Optimal Scheduling Policy, {@} }r>1:

{A o> = arg max Num({Fefrs1)- (4.4)

kY h>1

4.3 Structure of the Greedy Policy

Recall from previous chapter, the definition of the greedy policy:

o~

Ay (T, Tho) = a = arg max Ri(Thay» ar)
k

= argmax ;o0 Vk > 1.
1

We proceed to derive the implementation structure of the greedy policy. First, we
record a few preparatory results in Lemma 6 to Lemma 8. Proofs can be found in

the appendix.

Lemma 6. For any k > 0, the immediate reward expected by scheduling an user that
was observed k+1 slots earlier, to be in state 2, lies between the rewards corresponding

to states 3 and 1, i.e,
piP*a < poPfa < psPFa,Vk €0,1,2, ... (4.5)

Lemma 7. The immediate reward expected by scheduling an user that was observed,

k + 1 control intervals earlier, to be in state 3, monotonically decreases to mgsav as k
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increases from 0 — oo, i.e.,

psPla < psPfa, VE€0,1,2,. ..

p3klim Prfa = m,a (4.6)

Note that o is the immediate reward expected when no past information about the
user 1s available or when the belief vector of the user equals the steady state vector,

Tss-

Lemma 8. The immediate reward expected by scheduling an user that was observed,
k + 1 control intervals earlier, to be in state 1, monotonically increases to mgsav as k

increases from 0 — 0o, i.e.,

pi Pl > pPra, VE€0,1,2,...

p: lim Pfa = w0 (4.7)

k—o00

Note that, from the above lemmas, we have

p lim Pfa = 7,0 (4.8)

k—oo

In all the above results, the immediate reward approaches 7 ,a as the time since
the last observation of the user increases. This is because, in the underlying first order
Markov chain, the dependency between the states in two slots (memory) diminishes as
the time gap between the slots increases. These lemmas are instrumental in obtaining
the algorithm for implementing the greedy policy, that will be summarized soon. We
first identify two types of system based on the property of the P matrix and the

reward values.

e Type A system: when psax > 7 sax
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e Type B system: when poa < mg5cx

The implementation algorithm for the greedy policy significantly changes depending

on the type of the system.

Proposition 10. When the system is type A, the greedy policy is implemented as

follows

o [f feedback F3 or Fy was received from the user scheduled in the previous control

interval (identified as user s), reschedule the user in the current slot.
e Schedule the other user (identified as user u) if feedback Fy was received.

Proof. Referring to Fig. 4.1, when Fj was received from user s, the expected reward

P3

pacy T

Pia

Figure 4.1: Type A system.

if s is scheduled again is given by psa. The expected reward if u is scheduled is a
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point on one of the three curves (for £ > 0) in the figure. Note that pz« is greater
than any point (the y-dimension) on any of the curves, thus establishing ‘retain the
schedule if Fj is received’ policy. This result essentially stems from the following
facts: 1) Higher reward (a3 = 1) is accrued when the scheduled user happens to be in
state 3 than in other states. 2) The Markov channel is positively correlated in time
(pie > pji if i # j).

Similarly when F; was received from user s, the expected reward if s is scheduled
again is given by p;a which is less than any other point on the three curves, thus
establishing ‘switch if Fj is received’ policy.

When F5 is received, assuming the greedy policy was implemented so far since
the beginning of the scheduling process, the reward expected if u is scheduled lies on
the lower curve p; P*a for k > 0. This is because the first time (since the beginning
of the scheduling process) a Fy is received (call this interval my), if greedy policy
was implemented so far, user u (the waiting user) would not have given F3 when it
was dropped and since this is the first time F; is observed by the scheduler, u would
not have sent F, either, when it was dropped. Therefore v must have sent F} the
last time it was scheduled (and hence dropped). Thus the reward expected if u is
scheduled now (at myg) falls on the bottom curve leading to retaining of user s (since
poa > p1PFa for any & > 0). In the next instance of I, reception, the same logic
holds (as long as greedy policy is implemented all along until this instance) and so on
for subsequent instances of Fy. Note that the condition greedy must be implemented
since the beginning until ‘now’ is quite natural given our interest in implementing the
policy in the current interval. Thus there is no loss of generality here.

These arguments establish the proposition. O
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An illustration of the implementation of the greedy policy in the type A system

is provided in Fig. 4.2.

F,orF,

F, F,or Fy
F, or F(\ F/V
Fp/ Fy

F,or Fy @ F,orF,
F\

Figure 4.2: Round-robin implementation of the greedy policy in the type A system.

Proposition 11. When the system is type B, the greedy policy is implemented as

follows
o [f feedback F3 was received from the user scheduled in the previous control in-
terval (call it user s), reschedule the user in the current slot.

o [f feedback Fy was received, schedule the other user.

o [f feedback Iy was received, calculate the expected immediate reward if the other
user (identified as user u) is scheduled in the current interval (identified as m)
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as follows: m,, o where m,, ,, s the belief vector of user u in the current control

interval m. Now, schedule user s is pacv > Ty, 0. Otherwise, schedule user .

Proof. Refer to Fig. 4.3. The argument for F3 and F are the same as in the previous

P3
pacx N
\\ ng"’a
R — 3
-
ke ///
- pQ P (}/ - piPra
d //

7

Pia

Figure 4.3: Type B system.

case. When Fj is received, as seen from the Fig. 4.3, the waiting user v could have an
expected reward greater than that of s if 4 had been dropped due to F; at least kg
intervals earlier or if poP*a does not monotonically increase to my,a (Fig. 4.3 shows
such a situation). Thus it is necessary to explicitly calculate the expected reward of

user u before making a greedy decision. O

An illustration of the implementation of the greedy policy in the type B system

is provided in Fig. 4.4.
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Figure 4.4: Implementation of the greedy policy in the type B system.

Note that the results in Lemma 6-8 and hence the implementation structure of the

greedy policy in Propositions 10-11 hold even when a; > 0 as long as a; < as < ags.

4.4 Comparison with the Genie-aided System

From the discussion in the previous chapter, when the downlink has two users and
the channels are modeled by two states, we have the following interpretation: when
the feedback is instantaneous, if the user scheduled (user s) in the previous slot was
observed to be in the best state, the scheduler retains the schedule (and hence accrues
the best possible reward) since there is nothing more to gain by scheduling to the
other user, while a loss is possible if the other user was in the worst state. Similarly,

if user s was observed to be in the worst state, the scheduler switches to the other,
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since there is nothing more to lose by scheduling to the other user (as compared to
scheduling s again), while a gain is possible if the other user was in the best state.
Thus the two user, two state system is equivalent, in performance, to a genie-aided
system where the scheduler learns about the states of both the users at the end of
every interval.

This equivalence does not hold in the three state system considered in this chapter.
The nothing more to gain argument works when s was observed to be in state 3 and the
nothing more to lose argument works when s was observed to be in state 1. However,
when s was observed to be in state 2, i.e., when F; was received, by scheduling to the
other user (user u), the scheduler may either gain (if u was in state 3) or lose (if u was
in state 3) as compared to when it schedules s again. Thus with information about
the state of the other user, there is definitely a room for improvement. Thus the three
state (in general, more than two states) system is not equivalent to the genie-aided
system. Note that, the genie aided system can be redefined as follows: the scheduler
learns about the state of both the users if and only if s was observed to be in state 2.
We see from the discussion so far that this modified definition does not impart any
performance loss in the genie-aided system.

From the preceding discussion, it can be seen that the original three user system

approaches the genie-aided system under any of the following conditions:

e poa = pza. Thus on receiving F, from user s, nothing more can be gained by
scheduling the other user u (while a loss is possible on switching). Hence, s is

rescheduled. Thus there is no need to learn the previous slot state of u.
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e poa = pia. Thus on receiving F, from user s, nothing more can be lost by
scheduling the other user u (while a gain is possible on switching). Hence, u is

scheduled. Again, there is no need to learn the previous slot state of w.

With mathematical analysis, it can be seen that condition 1 is achieved if and only if
s = ag and pg; = p3;. While condition 2 can be achieved if and only if as = a3 and
p11 = po1. When the first set of conditions is satisfied, it can be seen that the states
2 and 3 can be merged at a very generic level (not specific to the type of information

used for scheduling) with the reduced transition matrix given as below:

P11 P12+ P13 (4.9)
P21 P22 + P23

where row 1 and column 1 corresponds to state 1 and row 2 and column 2 corresponds
to the merged state. Thus the channel is effectively modeled by a two-state Markov
chain thus explaining the equivalence with the genie-aided system.

However, it is interesting to note that, when the second set of conditions is satis-
fied, such a merger is not possible between states 1 and 2 since we still have p3 < pog
making them different in their relationship with state 3. However, in the context of
the channel feedback based scheduling problem, they are synonymous and render the

original system equivalent to the genie-aided system.

4.5 Bounds on the System Sum Capacity

Proposition 12. For the type A system, a lower bound to the sum capacity, Sip a,

18 qlven as
Sipa > paa — 7 (1) (P2 — pra) (4.10)

where Tss(1) is the steady state probability that the state of the user is 1.
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This bound is obtained by replacing expected reward given F3, i.e., psa with poa
in the sum reward evaluation of the greedy policy. Thus this is in fact a lower bound
to the greedy policy. Note that Spp 4 decreases as the steady state probability of the
less rewarding state 1 (ms4(1)) increases. Also notice that as pja — poa, Spp — paa.
This is expected in light of the approach we used in obtaining Sy, since the only
reward that we accrue in any slot is now pea. Also, the bound approaches the system
sum reward capacity when states 2 and 3 become increasingly synonymous. This
happens as as — a3 and p3; — po1. The last statement comes from our discussion in

the previous section, on the equivalence with the genie-aided system.

Proposition 13. For the type B system, a lower bound to the sum reward capacity

18 qIUen as
St = (2mes(3) — 72.(3))psa + (1 — 744(3))’psa (4.11)

The proof proceeds as follows: In any slot the expected immediate reward after a
feedback F; is received in the previous interval is replaced by the reward that would
be expected if the other (not scheduled in the previous interval) user were scheduled.
Note that, by the implementation structure of the greedy policy, this latter reward
is < the reward corresponding to the greedy choice!!. Next we replace poar with piov
giving the sum reward capacity lower bound.

Note that Spp p is the same as a two user system that accrues reward pso if at
least one of the users are in state 3 and reward pja if none of them are in state 3.
This interpretation is strikingly similar to the interpretation we made in the two-

state tow user problem in our preliminary research. However, note that the present

1 The replacement is only with respect to the accrued reward in the sum reward expression, while
the actual schedule decision is always maintained as greedy, so as not to disturb the initial conditions
of the problem for the future intervals.

104



interpretation does not yield to the case when the state of both users are available.
For instance, if none of the users is in state 3 and at least one of them is in state
2, then, ideally, if the states of both the users are known, a reward of poa must
be accrued instead of pya. This demonstrates the loss in performance due to lack of
knowledge of both user states, thus differentiating the 3-state system from the 2-state

system.

Proposition 14. An upper bound to the system sum reward capacity is given as
Sup = (2ms(3) — WES(3)>ngé + (2mgs(1)7s(2) + 7"33(2))13205 + 7Tgs(l)plO‘

The bound is actually the sum reward capacity of the genie-aided system. Here
if at least one of the users was in state 3 in the previous interval, the greedy policy
schedules that user and accrues a reward pza. If none of the users were in state 3 but
at least one of them in state 2, that user is scheduled and a reward of ps« is accrued.

If both the users were in state 1, a reward of pi« is accrued.

4.6 On the Optimality of the Greedy Policy

We proceed by introducing the following properties of the P matrix. The proofs

are tedious and hence moved to the appendix.

Lemma 9. When poP[001]T < pos (condition (A)), then po P*T1[001]7 < po P¥[001]7
Vk > 0. Also the steady state element T4s(3) < pag and psP*[001]7 monotonically
decreases to mss(3) as k — 0o. (A) is also a necessary condition for the preceding

statement to hold.
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Lemma 10. Under (A) from previous lemma, p1 P*[001]T monotonically increases to
T5s(3) as k — oo, i.e, p1PFT1[001]T > py P¥[001]TVk € 0,1,2, ... and p; limg_.o, P*

[001]7 = 74s(3) < pa3

Using the preceding properties of the transition matrix, we show that, under
certain conditions, the greedy policy is optimal among a special class of policies. We

record this below. The proof is provided in the appendix.

Proposition 15. When pio = pas = p3o and pasps1 > paipis, greedy policy is optimal

among the policies that retain the schedule when feedback F3 is received.

Note that, in light of the positive correlation property of the Markov chain, it
seems counterintuitive that the globally optimal policy would reject an user that was
in the best state possible in the previous slot, thereby (from Proposition 15) strongly

suggesting the global optimality of the greedy policy.

4.7 Summary

We considered joint channel estimation - opportunistic scheduling in a Markov-
modeled two-user downlink system when the Markov state space is three and studied
the optimality properties of the greedy policy. We showed that the greedy policy
that is optimal when the channel state space is two (Chapter 3) is not necessarily
optimal in an increased state space. Specifically, we show that the equivalence with
the genie-aided system that was observed in the two-state case is upset with the
introduction of the third Markov channel state. Apart from this analysis, we obtained
implementation structure of the greedy policy and obtained bounds on the system
sum capacity. For specific conditions on the transition matrix, we showed that the

greedy policy is optimal among a specific class of policies.
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CHAPTER 5

OPPORTUNISTIC SCHEDULING USING ARQ
FEEDBACK IN MULTI-CELLULAR DOWNLINK

5.1 Introduction

In Chapters 3 and 4, we studied joint channel estimation - opportunistic scheduling
in a single-cellular downlink. As a natural extension of this analysis, in this chapter,
we study the joint scheduling problem in multi-cellular downlinks. In a multi-cellular
downlink, transmission in a cell interferes with transmissions in the adjacent cells. It
follows that the channel state of any user in a cell is a function of the transmissions
and schedule decisions in the adjacent cells, effectively imparting a convolved depen-
dence between the scheduling choices in neighboring cells. We now face the following
question:

How do we exploit the channel memory and the ARQ feedback mechanism for oppor-
tunistic scheduling in a multi-cellular environment ?

We address this problem by following a two layered approach: A well established
inter-cell interference (ICI) control mechanism is adopted and assumed to be in place.

On top of this layer we optimize ARQ based opportunistic scheduling across the cells.
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We now proceed to introduce our choice of the ICI mechanism after a short literature
survey on the topic.

Traditionally, ICI is controlled by staggering the transmissions in adjacent cells
across orthogonal frequency bands and reusing these bands in geographically far-apart
cells. This is the well known frequency reuse based ICI control mechanism [46] that
is prevalent in narrowband systems, such as the GSM. Other ICI control mechanisms
have also been studied. In [47], a capture division packet access (CDPA) mechanism
is proposed. Here, users are allowed to transmit on the same carrier in adjacent cells,
i.e., no frequency reuse based ICI control is deployed. The effect of interference is
quantified by a capture probability defined as the likelihood of successful transmission
under ICI. Upon collision, a retransmission is performed. The authors demonstrate
that CDPA outperforms traditional TDMA based strategies under certain operating
conditions. Notice that, in the preceding scenario, users at the periphery of the
cell suffer from low signal to interference ratio and hence low capture probability
compared to the users near the base station. This is the classic near-far effect. If this
is not addressed properly, under QoS requirements on fairness across users, the far
users will act as a bottleneck thus bringing down the overall system utility. Taking
note of this crucial phenomenon, the authors in [48] proposed a novel reduced power
channel reuse (RPCR) scheme that aims to equalize the capture probabilities of the
near and far users. By formally classifying the users into two groups: near and far
(based on a generic “distance” metric that need not be a function of the geometric
distance), RPCR works as follows: If, in a carrier, a far user is scheduled in a cell, the
power of transmission in the same carrier in the adjacent cell is deliberately reduced.

This power reduction naturally limits transmission to near users in the adjacent cell.
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Thus, at any time, in any carrier, cell 1 and cell 2 transmits to users belonging
to complementary groups with different power levels (full power for the far user).
The authors of [48] formulated and studied the optimal channel selection policy that
assigns users to the near/far groups. They showed that the RPCR scheme is superior
in performance to other ICI control mechanisms in terms of sum throughput under
uniform fairness constraints. A similar protocol called ‘cell breathing’ was shown to
provide system level gains in [49, 50].

Encouraged by the positive results associated with the RPCR and cell breathing,
we adopt cell breathing as our ICI control mechanism. If the channel of the users
are time-variant, it is readily seen that, without violating the cell breathing protocol,
the performance of the system can be improved by opportunistic multiuser scheduling
with coordination across cells. We address this joint opportunistic scheduling problem
in a two-cell system in this work. It is worth noting that the scheduling analysis for
the two-cell system readily extends to a multi-cell configuration with the use of six-
directional antennae [46] at the base stations. Each cell can now be divided into six
regions and the joint scheduling analysis in this work can be applied in each region
independently. This is illustrated in Fig. 5.1.

By demonstrating that the channel can still be modeled by ¢.7.d two-state Markov
chains, like in the single cell case, we study the ARQ based joint opportunistic schedul-
ing scheme in the two-cell system, under two scenarios: (a) when the cooperation
between the cells is asymmetric (b) when there is symmetric cooperation. In the
asymmetric case, we show that the optimal scheduling policy is a variant of the
greedy policy. In the symmetric scenario, however, a direct optimality analysis of

the scheduling problem appears intractable. We therefore establish a link between
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Figure 5.1: Multi-cell extension: with six directional antennae at the base stations,
each cell can be split into six regions and the two-cell joint scheduling can be per-
formed on these regions independently. One such region is highlighted.

the scheduling problem and Restless Multiarmed Bandit (RMAB) processes. We in-
troduce the notion of Whittle’s indexability from the RMAB theory and perform an
indexability analysis for the system at hand. Based on this analysis, we propose
an index policy and demonstrate, via numerical results, the near-optimality of the

proposed policy. We describe the problem setup next.

5.2 Problem Setup
5.2.1 Channel Model
Consider a two-cell system. Consistent with [48,49], within each cell, we cluster

users into near and far users. We use geometric distance between the users and their

respective base stations as the metric for this classification. Denote by n;, f;, the set
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of near and far users, respectively, in cell i € {1,2}. A user in a group is denoted by
the label of the group for notational simplicity. Let the distance between base station
i and user j (in any cell) be d;;. By way of the two level clustering we assume, d;,
characterizes all far users in cell . Likewise d;,, characterizes all near users in cell
1. Let N;, F;, be the number of near and far users in cell 7, respectively. Denote the
normalized (with respect to attenuation loss) fading coefficient of the link between
base station ¢ and user j (in any cell) as h;;. We assume h;; are i.i.d. Consider cell
1 as the primary cell and cell 2 the interfering cell. If a far user f is'? served in the
primary cell with power Py and if the interfering base station is transmitting at power
Py, (Iy indicates interference to the far user in the primary cell) then the SINR at

this user is given as below.

s

qo, |"1f

SINR, = ZaN , (5.1)
N0+é|h2f|2

where N, indicates the variance of the additive noise. Here, we have used the atten-
uation model from [51] with @ > 2 being the attenuation coefficient. Likewise, if a
near user is served in the primary cell with the interfering base station power being
Py, the SINR is given by

Lnp |2
| fin

No + gz |han]?

SINR,,

An illustration of these two scenarios is provided in Fig. 5.2.

Consistent with the assumed two level clustering, the two base stations are each
allowed to choose one of two power levels, i.e., Pr, P, P, P, € {P1, P} with P, <
P,. By observation, since dis > di,, the average SINR of the far and near users
can be equalized if P, < P, and Py > P,. This, along with the constraint on the

12\We have dropped the suffix 1 as the context is clear.
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Cdl 1 (Interfering) Cell 2

Figure 5.2: Illustration showing transmissions and interference caused when a far user
and a near user are served (at different times).
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alphabet size of the power levels, leads to the cell breathing rule [48-50]: A far user
1s served with power Py and a near user with power Py, < P;. Whenever a far user is
scheduled in a cell, a near user is scheduled in the adjacent cell and vice versa.

Since the links between the base stations and users h;; are 4.¢.d, with the SINR val-
ues equalized under cell breathing, we have the following: SINRy,, SINR,, , SINRy,,
SINR,,, are i.i.d. Similar to our previous system models, we model the fading coef-
ficients with memory, i.e., with two-state Markov chains. Under this model, we see
that, under cell breathing, the SINR channel (henceforth, simply the ‘channel’) of
each user can also be modeled using an i.i.d two-state Markov chain. As before, the
channel of each user remains fixed over a time slot and evolves into another state in
the next slot according to the Markov chain statistics. The time slots of all users are
synchronized. The two-state Markov channel is characterized by a 2 x 2 probability

transition matrix

P = {p q}, (5.3)

r S

with p and r as defined in previous chapters. Also, consistent with previous chapters,

we assume positively correlated Markov channels, i.e., p > r.
5.2.2 Scheduling Problem

The base stations are the central controllers that control each transmission to the
users within their respective cells in each slot. In particular, in each slot, each base
station schedules the transmission of the head of line packet of exactly one user (a
data queue is maintained for each user to collect the data meant for that user), while
maintaining the cell breathing protocol: That is, in any cell, if a far user is scheduled,
transmission takes place at full power P;, while, for a near user, the lower power
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P, < P; is used. Furthermore, a traditional ARQ based transmission is deployed
in each cell. That is, at the beginning of a time slot, the head of line packet of
the scheduled user is transmitted. If the packet does not go through, i.e., it is not
successfully decoded by the user (as occurs when the channel is in the OFF state),
a NACK is reported by the user at the end of the slot, and the packet is retained
at the head of the queue for retransmission at a later time. If the packet does go
through (i.e., the ON state), an ACK is reported and the packet is removed from the
queue. The ARQ feedback is assumed to be transmitted over a dedicated error-free
channel. At the end of the slot, the base stations of neighboring cells share their
ARQ information. Thus each base station has all channel information available to its
neighbors, hence facilitating joint scheduling among the base stations. An illustration
of the two-cell cooperative scheduling setup is provided in Fig. 5.3. The performance
metric that the base stations aim to maximize is a discounted reward over an infinite
horizon.

Note that, by considering every legitimate near-far and far-near pair as a single
cumulative user, the two-cell scheduling model fits into the general scheduling model
discussed in Chapter 1. This is illustrated in Fig. 5.4. We now formally define the

problem.
5.2.3 Formal Problem Definition

We now introduce the terms/entities that we use in this study.
Horizon: We consider the infinite horizon scenario. For the sake of the proofs,
finite horizons are also considered with slot £ indicating that there are £ — 1 more

slots until the horizon.
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Figure 5.3: Illustration of the two-cell cooperative scheduling setup. By sharing the
ARQ feedback in each slot, the base stations maintain the same information on the
belief values corresponding to all the users. Thus, without further interaction, the
base stations schedule a legitimate pair of users.
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Figure 5.4: The two-cell scheduling model as a special case of the general one-to-many
scheduling model.

Action (ag,ax): Indicates the indices of the user pair scheduled in cells 1 and
2 in time slot k. With cell breathing in place, we have the following constraint:
(ak, ar) € {(n1, fa), (f1,n2)}. We denote this admissible set by B.

Belief values at the k'™ time slot: Denote by m}, 7T]];c, with ¢ € {1, 2}, the vectors
of the belief values (the probability of having an ON state) of the users in group n.
and f., respectively, in slot k. Let Ff indicate the ARQ feedback received at the end
of slot k from cell ¢. We denote an ACK by 1 and a NACK by 0. The belief values

of users in group n; evolve as below:

P, ifi=ay Fl =1
el (1) = q T, if i = ay, F}} = (5.4)
prpt (i) +r(1 —mt(4), if i # ag.

where the first case indicates that, in cell 1, user ¢ from the near group is scheduled
in slot £ and an ACK feedback was received. Thus, according to the Markov chain

statistics, ;' {(7) = p. The second case is explained similarly when a NACK feedback
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is received. The last case indicates that user ¢ was not scheduled for transmission in
slot k£ and hence the cell 1 base station must estimate the belief value at the current
slot from that at the previous slot and the Markov chain statistics. A similar evolution
holds for the users in other groups.

Stationary Scheduling Policy @: A stationary scheduling policy @ is a mapping,

in any time slot, from the belief values to an action as follows:
A: ({7, 7l 7 1)) - (a,a) € B.

Reward Structure: In any time slot k, in cell ¢, a reward of 1 is accrued when
the transmission in cell ¢ is successful, i.e, when F{ = 1, and no reward is accrued
otherwise. The total immediate reward in any slot is simply the sum of the immediate
rewards accrued by cells 1 and 2.

Expected Discounted Reward under Policy @: We consider the discounted reward
over an infinite horizon. Under policy @ and belief values 7™, /1, 72 772 the ex-

pected discounted reward over an infinite horizon is given by

V(r™, g2 gpf2, q)
= R(x™, alt g2 gfz, (a,a)) + BE[V(T(m™), T(?Tfl), T(m"?), T(?Tf2), q)],

(5.5)

where the expectation is over the belief values T'(7™), T'(7/1), T(7"2), T(7/?) and T'(.)
is the belief evolution operator conditioned on the belief values and the ARQ feedbacks
from the previous slot. The discount factor 5 € (0,1) gives greater weight to the

immediate reward than the future reward, a typical arrangement in infinite horizon
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dynamic programming problems. The expected current reward is given by

ni 1 n2 2 a.a — ﬂ-nl(a) + 7Tf2(a/>7 if (a7a) E <n17f2)
R, ol 7,7k (a,0)) = {Wfl(a)—i-wm(a), if (a,a) € (f1,na). (5.6)

Optimal Stationary Policy: A stationary policy that maximizes the total expected

discounted reward is optimal. Thus, for any {7 7/t 7" 7/2},
a = arg max V(r™, gt g2 nf2 @) (5.7)

5.3 Optimal Scheduling under Asymmetric Cooperation be-
tween Cells

Consider a system where cell breathing is deployed by the following asymmetric
cooperation between the cells: Base station 1 schedules transmission to its users
without any regard to the decisions in cell 2, while base station 2 schedules based on
the user group choice of base station 1, to conform with the cell breathing protocol.
Base station 1 is aware of this compromise made by base station 2 and therefore adopts
the two state Markov model for the channels of cell 1 users. Such an asymmetric
cooperation can result from scenarios such as (1) Cell 1 covers the heart of a city
with higher data rate requirements compared to cell 2, which covers the suburbs,
(2) Sharing of ARQ feedback information between the adjacent base stations is not
mutual due to, e.g., a partial link failure between the base stations, (3) In the context
of game theory, base station 1 being a selfish player and base station 2 being a rule-
abiding player.

We first study the optimal scheduling policy in a finite horizon, discounted reward
setup. Consider cell 1 under the asymmetric cooperation scenario. Since base station

1 makes scheduling decisions unilaterally, the opportunistic scheduling problem in
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cell 1 is the same as that of a single cell system. For a single cell Markov modeled
downlink with N users and instantaneous ARQ, it has been established [45] that
the greedy policy that maximizes the immediate reward is optimal, with or without
reward discounting, for both finite and infinite horizons. Thus base station 1, under
asymmetric cooperation, implements the greedy policy within its cell. We denote this
policy by a.

We now proceed to study, under asymmetric cooperation, the optimal scheduling
policy of cell 2. Let h > 0 be the length of the horizon. Fix a realization of the
channel states of the users in cell 1 from time A until the horizon. With a fixed
scheduling policy in cell 1 (in this case, the greedy policy), we can define a sporadic,
i.e., non-consecutive (in general), sequence of time instants {t,,tn_1,...t1} with h >
tah > tn_1,...t1 > 1, where a near user is scheduled in cell 1. Note that, for any &
such that 2 < k < n, t; # tx_1 + 1, in general — hence the name sporadic. Now,
by definition, at slots {h,h —1,...1} \ {tn,tn_1,-..t1}, a far user is scheduled in cell
1. Define ty := {ty, tx_1,...t1} with £ < n. Note that, in the sporadic time axis t,,
base station 2, in order to maintain cell breathing, schedules far users. Likewise, in
{h,h —1,...1} \ ty, base station 2 schedules near users.

Let @ and @" denote the scheduling policies adopted by base station 2 in the
sporadic time axes corresponding, respectively, to near and far scheduling decisions
in cell 1. Let {Q, @’ @™} denote the two-cell scheduling policy with @ indicating the
use of greedy policy in cell 1. Defining the per-cell discounted reward in cell ¢ as the

net discounted reward earned in cell ¢ alone, we introduce the following lemma.
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Lemma 11. Under the asymmetric cooperation assumption, if, for any fixed h, for
every realization of {n,t,}, the scheduling policy {gf, A"} maximizes the per-cell dis-

counted reward in cell 2, then {@,gf,g"} is optimal.

Proof. The lemma is not obvious due to a possible influence of the policies a’ and @"
on the sporadic time axis t,, potentially invalidating the realization based argument.
Under the asymmetric cooperation assumption, since base station 1 makes near/far
scheduling decisions without consulting base station 2 and since the channel states
evolve independently at the underlying physical layer'®) {n,t,} is independent of the
scheduling decisions and observations made in cell 2 within the sporadic time axes
and hence is independent of @ and @". This decoupling along with the fact that the

greedy policy is optimal in cell 1 establishes the lemma. O

We now proceed to show that the greedy policy is optimal within a realization
of the sporadic time axes. Note that the greedy policy was shown to be optimal on
a non-sporadic time axis in [45] under instantaneous ARQ. However, in the current
case, since the belief values evolve across non-uniform time steps, we need a rigorous
optimality proof in the changed setting.

Fix a realization of {n,t,} throughout the following analysis. Note that base
station 2 schedules to far users in t,,. The net expected reward accrued by base
station 2 from tx<, on the time axis t, is given as follows. With g£ indicating the

scheduling policy in effect from slot k& until the horizon on t,,

‘/;k (77{57 {atk7 {g{l }k)>l>0}) - 7th: (atk) + ﬁk‘—l E |:‘/;k71 (Trtk,17 {gtfl }k—1>l>0|7rtka a’tk)] )
(5.8)

I3Note that the inter-cell, intra-cell base station to user links are assumed to be statistically
independent.
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where 3, £ "% and ay, is the far user from cell 2 scheduled in time slot ;. We now
establish the structure of the greedy policy on the sporadic time axis. In any slot ¢,

k < n, the belief values of the users are given as follows.

», ifi=a,,, F2_ =1
i) =L, if i = ay,.,, F2, =0 (5.9)

T(t’fﬂ_t’f)(ﬁfjﬂ(i)), if @ # ag,,,.
Note that for 0 < x < 1, T(z) = x(p — r) + r. Thus T'(x) € [r,p]. Since T'(z) =
T(T'1(z)), by induction, T'(x) € [r,p], when [ > 0. Also T'(x;) > T(x9) if 71 > x5.
Thus, by induction, T!(x1) > T' () if 21 > z3. We now introduce the schedule order
vector Oy, as the ordered arrangement of the index of the users in decreasing order

of m, (7)), i.e.,

O, (1) = argmaxm(i)

Oy, (Fy) = argminmg(i).

From the preceding discussion on the structure of T'(x) and the evolution of the belief

values, the schedule order vector evolves as below:

_ oy {0y —a}), if i, =1
Oy, = {[{Otk —ay, } ay ), if fi, =0, (5.10)

The greedy policy, which aims to maximize the immediate reward (i.e., belief value),
picks the user at the top of the schedule order vector and thus has a round-robin
structure, with a user switch triggered by a NACK, on the sporadic time axis. A
similar behavior was seen in the non-sporadic axis when the ARQ is delayed by a
deterministic quantity in Chapter 3. We now proceed to show the optimality of the
greedy policy on t, by first deriving a sufficient condition for optimality.
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Consider a slot t¢,,,, m < n with belief values 7;> (we will drop the superscript f> in
the rest of this analysis for notational convenience) and action a,,,. Let the users be
indexed in the order of their belief values in slot t,,, i.e, Oy, = [1... Ny]. Assuming
{4, e<m—1 = {@tk}kgm_l. Let Sy, , the state vector, denote the 1/0 channel states of

the users at t,. We write the net expected reward as follows

Vi (s {0, (@ Yem—1})

= T, (a1,) + Bma Z Ps,, \mim (Stm\mm)f/tm,l (Strs Oty ),

Stm

where \A/tw1 is the expected future reward conditioned on the state vector in the
previous slot on the sporadic time axis, i.e., t,,. The hat on this quantity emphasizes

the use of the greedy policy in all t,k <m —1. Pg, |r, (S,

7, ) is the conditional
probability of the current state vector S, given the belief vector m;, . Note that
the schedule order vector O, _, is only a function of O, and the state S, (ay, ),
thus maintaining consistency with the amount of information available for scheduling
decision in the actual problem setup. We now proceed to compare the net expected
reward when a;, = n and a;,, = n+ 1 where n € {1...F, —1}. Let Y and X be
random binary vectors of lengths n — 1 and F» — n — 1 (empty when the length is

non-positive) respectively. Then,

Vi (s Lt = 1, { @1, Yicm1})

= T () + Bt (D P (V0.0 X]Imy,) x Vi, (1Y 0.0 X, [{Oy,, =} n])

+3 Py (Y 01 X]|m, ) x Vi, ([Y 01 X],[{Oy,, — n} n])
+3 P, (Y 10 X]|m,) x Vi, ([Y 10 X], [0 {O,, —n}])
+3 Py (IV 11 X)) x Vi ([V 11 X, [0 {O,,, — n}])). (5.11)
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Since the Markov channel statistics are identical across the users, we have the follow-

ing symmetry property: for any k >1,
‘A/tk(Stk+l’ Otk) = ‘A/;k(gtmw Otk)
if iy, (04 (1) = Sy, (O (i) Vi€ {1... Fy}. (5.12)
Expanding V;,, (m,,, {as,, = n + 1, {@tk}kgm_l}) along the lines of (C.8), and using

the symmetry property, with further mathematical simplification, we can evaluate

the difference in the net expected reward as follows,

Vi (Tt {1, = 1 AR drzm 1 }) = Vi (0, L, = 1+ 1, {8 bz 1))
- (mm(n) o (n+ 1)) (1 — B YZ); [[Vt (Y 1X0,[1...F)
Vi (LY 0 X],[1... B))] x Ps;mmm (ISt (1) .. S (n — 1)] = Ym,,) %
Ps, o (1S, (n +2) ... Sy, (Fy)] = X\mm)} ) (5.13)

Lemma 12. The greedy policy maximizes the per-cell discounted reward in cell 2, on

the sporadic time axis ty, if the following (sufficient) condition holds.
Vi (Y 1TXO0L,1...R) -V, (AYO0X],[1...0]) < 1, (514)

Vn>m>1,ne{l...Fy—1}, whereY and X are random binary vectors of length
n—1 and Fy —n — 1, respectively, and \A/tw1 1s the reward accrued under the greedy

policy, i.e., when A, = a for all k < m — 1.

Proof. The proof is established using backward induction. Details are available in

the appendix. O

We now formally introduce the optimal multiuser scheduling policy in the two-cell
system with asymmetric cooperation.
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Proposition 16. The policy {@, @f,éln} is optimal in the finite horizon, discounted

reward setup.

Proof. Using sample path arguments, we show that the sufficient condition in Lemma 12
holds. We then use Lemma 11 and Lemma 12 to establish the proposition. Details

of the proof are available in the appendix. O

. . 5 40 A" . . .
We now show that the optimality of {4, 4 ;4 } extends to the infinite horizon,
discounted reward setup as well. The argument is similar to that used in [45] in the

single cell system.

Proposition 17. The policy {@, @f, @n} is optimal in the infinite horizon, discounted

reward setup.

Proof. Let V(m,@) be the total reward corresponding to the infinite horizon, dis-
counted reward, two cell scheduling problem (asymmetric case) when policy @ is in

effect in every slot. The belief values are represented by 7. By definition,
h
V(r,@) = Egj lim ; Ri(R,9), (5.15)

where Ry (R,4) is the immediate reward earned in slot k& under policy @ and when the
channel realization is R. The expectation is performed over the channel realization R
conditioned on the initial belief values 7. Since S, Ry(R, @) is upper bounded by
ﬁ and lower bounded by 0 uniformly for all A > 0, using the Bounded Convergence

Theorem [52], we can interchange the expectation and limit to give

h
V(r,@) = lim Erjx »  Ri(R,9)
k=1

= lim Vi(m, @), (5.16)

h—o00
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where Vj,(m,4) is the finite horizon, discounted total reward under policy 4. Now,
with the optimality of {@, @f, Qn} established for the finite horizon, discounted reward

setup, the optimal finite horizon, discounted reward is given by

Vi(r, {2.27.@")
A Af anm
= Dax (Rh(ﬂ'> (an, an)) + B(m(an)m(an) Va1 (T(7)] apan) i =1,52-1, {F, A, 2 })

A Af am
+(1 = m(@n))m(an) Vao1(T'(7)| @y a0), Fp=0, 7221, {4, @, 4 })

A Af anm
+7(an) (1 = m(an)) Va1 (T'(7)| @y ap). 71 =1.72=0, {3, 4,2 })

+(1 = (@)1= 7(@)WVa s (T im0 B A AD)). (5.17)

Taking limy,_., on both sides and interchanging the limit and max on the right hand

side (possible due to the finiteness of the scheduling action space), we have

vir, {a,d@,a")
= max (R (a.0)) + B (@)m(@V (L) . rr o0, {88
+(1 = 7@ (@ V(T ()] 0y r1 02, {2,872
+7(a) (1 = 7(@)V (T (7)) 121 20, {8, 27, ")
+(1 = (@) (1 = 7 (@)V (T(m) aypr-o.r2-0 (4,8, 8"}) )

A Af am
= I(I;EZ})( (R(ﬂ', (a,a)) +6EV(T<7T)’(37Q)7F17F2,{g,g ,g })), (518)

where we have used limj,_o, Vj,(7,4) = V (7, 4) from (5.16) in the first equality. The
expectation in the last equality is over the ARQ feedback. Note that the preceding
equation is the Bellman equation [36]. Since a policy that satisfies the Bellman
equation is optimal, we have {@, @f, @n} is optimal in the infinite horizon, discounted

reward, two cell, asymmetric scheduling problem. O
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Recall from Chapter 3 that the greedy policy can be easily implemented by a
simple round-robin algorithm in a single cell system, when the ARQ feedback is de-
terministically delayed, or, in the present context, instantaneous. Thus the preceding
result on the optimality of a policy with cell-wise greedy components is very encour-
aging from an implementation point of view. Fig. 5.5 provides an illustration of the
simple round-robin implementation of the optimal policy in the two cell system under

asymmetric cooperation.

5.4 Scheduling under Symmetric Cooperation between Cells
- Index Policy

A direct optimality analysis of the ARQ based scheduling problem with symmetric
cooperation appears very difficult due to the complex relationship between the sched-
ule decisions across space and time. We therefore establish a connection between the
scheduling problem and the restless multiarmed bandit processes (RMAB) [23] and
make use of the established theory behind RMAB in our analysis. We proceed with

a survey on the RMAB theory.
5.4.1 Restless Multiarmed Bandit Processes

Multi-armed bandit processes (MAB) [53] are defined as a family of sequential
dynamic resource allocation problems in the presence of several competing, indepen-
dently evolving projects. They are characterized by a fundamental trade-off between
decisions guaranteeing high immediate rewards versus those that sacrifice immediate
rewards for better future rewards. Several technological and scientific disciplines such
as sensor management, manufacturing systems, economics, queueing and communi-

cation networks [53] encounter resource allocation problems that can be modeled as
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Figure 5.5: Illustration of the optimal scheduling policy implementation under asym-
metric cooperation. During initialization, the users are ordered based on their belief
values across groups in cell 1 and within groups in cell 2. Based on these ordered user
lists, the optimal scheduling policy follows the illustrated round robin algorithm.
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MAB processes. In the classic MAB process, in each slot, a single project must be
allocated the available system resources. The state of the scheduled project evolves
from the current time slot to the next time slot, whereas, the states of those not
scheduled remain frozen. Gittins and Jones [54] studied these processes and showed
that the optimal solution is of the index type: for each bandit process (i.e., project or
arm of the MAB), an index that is a function of the state of the project is computed
and the project with the highest index is scheduled. This index was referred to by
the authors as the Dynamic Allocation Index, but is now simply known as Gittin’s
index. Note that the optimal scheduling policy, which originally required the solution
of an N-armed bandit process (N being the number of projects), is now reduced to
the determination of the Gittin’s index for N single-armed bandit processes, thus
significantly reducing the solution complexity. This complexity reduction is one of
the main reasons behind the immense interest in index policies for the MAB process
and its variant, the RMAB process, discussed next.

Whittle [23] generalized the MAB process as follows: In each slot, exactly M > 1
projects are scheduled. Furthermore, the states of the remaining N — M projects
are not frozen like in MAB, but evolve in time, and contribute rewards (W) known
as passivity rewards. These processes are called Restless multiarmed bandit pro-
cesses (RMAB), the term “restless” reflecting the state evolution of the unscheduled
projects. For the RMAB, Whittle defined indexability property and the associated
indexability framework as follows:

Indexability Framework: Consider only one project of the RMAB. The scheduler
in each slot must either activate the project or let it stay idle. In the former case a

reward dependent on the state of the project is accrued. This reward structure is the
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same as the one used in the original RMAB. In the case of the inactivate decision,
a reward W for passivity is accrued. The goal of the scheduler is to maximize the
total discounted reward over an infinite horizon. For a project state w, the value of
W corresponding to equal net rewards for active and passive decisions is defined as
the index I(m). Denote the optimal activate/idle scheduling policy as the W-subsidy
policy. The notion of Indexability was defined by Whittle as follows.

Whittle’s Indexability: Let D(W) be the set of states under which a project would
be made passive under the W-subsidy policy. The project is indexable if D(W) in-
creases monotonically from ¢ to S as W increases from —oo to oo.

Above, ¢ denotes the empty set and S is the set of all possible project states. The
indexability property yields a consistent ordering of states with respect to indices,
i.e., if I(m) > I(my) and if it is optimal to activate a given project when in state
o, then it is optimal to activate the same project when in state my. A graphical
interpretation of indexability is given in Fig. 5.6.

Returning to the RMAB scheduling problem, Whittle proposed the following index
scheduling policy: In each slot, activate the M projects that have the greatest indices.
Note that the natural ordering of states based on indices (under indexability) gives
credibility to the index policy. Whittle showed that, under indexability, when the
strict constraint on the number of projects per slot (M) is relaxed to an average
constraint, the index scheduling policy becomes optimal. He also showed that when
the restless aspect is removed from the RMAB and W = 0, the index reduces to the
Gittins index and hence the index policy becomes optimal. He conjectured that, in
the restless case, with % fixed, as M, N — oo, the index policy is optimal. This was

later proved to be true in [55] except for very special cases of RMAB processes.
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Figure 5.6: Optimal W-subsidy policy versus W is plotted for a given project over
various states in (a) an indexable system and (b) a non-indexable system. Let A
indicate when an active decision is optimal and P indicate when passivity is optimal.
In the indexable system (a), states are ordered based on the index values I(S;). It is
clear that if it is optimal to activate at state S;, it is also optimal to activate at states
S;,j > 1. This is highlighted at W = w with S; = S5. This ordering is absent in the
non-indexable system (b), for instance, when W = w. From (a) and (b) it is evident
that the ON-OFF structure of the optimal schedule plot is necessary and sufficient
for indexability to hold.

130



Indexability is a very strict requirement [23] that is hard to check. There have
been several works [55-61] on indexability and index policies for various RMAB pro-
cesses. In [55], for a special class of RMAB, the authors showed that, if the RMAB
is indexable, then, under certain technical conditions, the index policy is optimal.
In [56], the authors provided a sufficient condition for the indexability of a single
restless bandit. The authors in [58] investigated indexability under a set of con-
ditions called Partial Conservation Laws (PCL). They identified a class of RMAB
processes that satisfy the PCL and are indexable in the sense of Whittle. They also
showed that, under PCL, if the rewards belong to a certain “admissible region” then
a priority index-based allocation policy is optimal. In [60], the authors re-examined
the channel-probing based cognitive radio scheduling (equivalently, the ARQ based,
single cell scheduling) problem of [45] from an RMAB perspective and studied the
performance of the Whittle’s index policy for non-identical arms. In [61], the authors
considered a RMAB process with improving/deteriorating jobs in a queueing network
scenario. They established the indexability of the processes and demonstrated, via
numerical analysis, the strong performance of the index policy. Performance guar-
antees for the index policy were also obtained. Thus we conclude that the notion
of indexability and the corresponding index policy offer a promising starting point
towards the analysis of RMAB scheduling.

Returning to the ARQ-based two-cell scheduling problem, we first consider the
special case that the near users in cell 1 are permanently paired (one to one) with
far users in cell 2 and vice versa (which requires N = F'). Thus, when a given user is
scheduled in a cell, its partner would be scheduled in the adjacent cell. In this case,

we can visualize each pair as a restless bandit with one and only one pair scheduled
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in any slot. Thus the ARQ-based scheduling problem in the two-cell system becomes
a RMAB process.

In our ARQ-based two-cell scheduling problem, we have no permanent pairing
condition in general, and thus we have a set of 2N F' projects, counting all possible
legitimate pairings across cells. These projects do not evolve independently and hence
do not constitute a RMAB process'*. Thus we have a more complex variant of the
RMAB process. To the best of our knowledge, there exists no analysis of scheduling
for this variant of the RMAB process.

From our earlier discussion, we recall that the index policies are very attractive
from an implementation point of view. From an optimality point of view, the at-
tractiveness of the index policies can be attributed to the natural ordering of states
(and hence projects) based on indices, as guaranteed by indexability. Encouraged
by these properties, we study the two-cell scheduling problem in the framework of
Whittle’s indexability. Using the structural results of this study, for the case p > r
and p+r > 1, we propose an index policy for the ARQ based, two-cell scheduling

problem at hand.
5.4.2 Indexability Analysis

Returning to the two-cell ARQ based scheduling problem, we perform a Whit-
tle indexability analysis on a single legitimate project made up of a near-far or a
far-near user pair. In each slot, the state of the project, given by (7, m2), is made
up of the belief values of the channels of the users. If the project is scheduled in a
slot, i.e., if the users are scheduled, the belief value evolves into one of the follow-

ing states: {(r,r), (r,p), (p,7), (p,p)} corresponding, respectively, to ARQ feedbacks

14The projects must evolve independently in RMAB process, by definition.
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(NACK,NACK), (NACK,ACK), (ACK,NACK) and (ACK,ACK) respectively. Re-
call that p and r are the elements of the probability transition matrix of the Markov
modeled user channels with p > r.

In the reminder of this subsection, we report results on the partial characteriza-
tion, along with the thresholdability properties, of the optimal W-subsidy scheduling
policy. We also provide partial indexability results when p > r and p+r > 1. Con-
sistent with the two cell scheduling setup, the W-subsidy scheduling is performed
over an infinite horizon with discounted rewards. Define V* and V? as the total dis-
counted reward functions corresponding to activate and inactivate decisions in the
current slot and optimal decisions in future slots. Let V' denote the optimal total

discounted reward. Thus, with V,, := V(x,y),

Va(ﬂ'l,ﬂ'g) = T + 7o
+5<7T17T2Vpp + (1 = 7)) Vpr + (1 — )V + (1 —m1)(1 — 7T2)Vrr>
Vp(ﬂ'l, 7T2) = W + 6V(T(7T1), T(’TFQ))

V(my,m) = max(V(my,m), VP(m, 7)) (5.19)

where recall T'(7) is the one-step evolution operator on the belief value 7 when an
inactivate decision is made. From the property of the Markov channel, T'(7w) =
7+ (1 — 7)r. Note that the immediate reward on activate decision is given by the
sum of the belief values, consistent with the reward structure in the original two-cell
scheduling problem.

With the reward structure thus defined, the Whittle indexability setup can be
linked to the broadcast scheduling problem we studied in Chapter 2, when the number

of broadcast users = 2. Recall that we had established thresholdability properties of
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the two-user broadcast towards designing a threshold scheduling policy. Using this
analysis, we now report the following results for the Whittle indexability analysis of
the current scheduling problem. Proposition 18 to Corollary 7 are reproduced from

Chapter 2 and hence the proofs are omitted.

Proposition 18. When the reward for passivity, W & (2r,2p), the optimal W -subsidy

scheduling policy is given by

A, if7T1—|—7T2>W
(my,m2) € )
P, ifm+m < W

Recall the proof proceeds by establishing that the future reward after activate and
inactivate decisions are equal when W ¢ (2r,2p), thus allowing a direct comparison
of the immediate rewards.

Let R; denote the region {(m,ms); 71 € [mss, 1], 2 € [mss, 1]}. Let Ry denote the
union of the regions R}, = {(m,m);m € [0,7y), T € [Tss, 27ss — m1]} and RZ, =
{(m1,m3);me € [0, Tss), 1 € [7ss, 2mss— 2] }. Let A be the set of states (1, m2) in which
it is optimal to activate. Let P be the set corresponding to optimal inactivate decision.
From the analysis in Chapter 2, we have the following thresholdability property on

the W-subsidy scheduling policy when W is such that V(ms,, mss) > VP(Trgs, Tss)-
Proposition 19. If W is such that V* (g, Tss) > VP(Tss, Tss), then

(1) Rre A

(2) V(Tss, Tss) = VP(Tss, Tss) = Rir € P

(3) VT, Tss) > VP(Tys, Tss) = (thresholdability property) In the region RL,, if for

ke [—1,0], 3 an} and 75 = mik+mes(1 —k) such that VO(nf,m5) = VP(n}, 75),
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then

A, if m € (7], Tss)

, =mk+ (1 —k)) €
T P

If B such a (75,73), then

(m1,my =mk +7mss(1 — k) € AV 1y € [0, 7).
Similarly, in the region R%;, if for k € [-1,0], 3 a m € [0,7s) and 7 =

mak 4+ mes(1 — k) such that Ve(rs, nh) = VP(nf, m5), then
2 ( 172 1242/

A, if m € (7], Tss)

= mok + mes(1 — k), €
(= Mok a1 = ), o) {7», if m € [0,77]

If } such a (7}, 73), then

(m1 = mok + mes(1 — k), me) € AV my € [0, 7).

The threshold boundary identified in the preceding proposition is characterized below.

Corollary 6. Within region Ry, the threshold boundary is given by the upper segment

of the hyperbola

Ve(m,m) = W+ VYT (m),T(m))

where

Vi (w1,22) = 1+ 22+ 5[(1 —x1)(1 —22)V(r,r) + (1 — 21)(22)V (1, p)

+a1(1 — 22)V(p, ) + 2122V (p, D),

=x(p —r) +r, and upper segment indicates the segment of the hyperbola that

lies in the first quadrant around the asymptotes.
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If W is such that V%(mg, mss) < VP(mss, Tss), the W-subsidy scheduling policy has

the following property.
Proposition 20. If W is such that V(s mss) < VP(Tss, Tss), then
(1) (77-1’ 71'2) € P} Vﬂ-l + o S 27Tss

(2) (Thresholdability property) In the region Ry, if for k > 0, 3 a n] and 75 =

ik 4+ mes(1 — k) such that V(ri, nh) = VP(nf, m5), then
1 ( 172 1242/

A, ifm € [n, 1]

, *k'“‘ ssl_k €
(1, 7Tk + s ( ) {73, if T € [mss, )

If B such a (7}, 73), then

(m1,m = mk+7mss(1 — k) € PV 7 € [7ss, 1].

The threshold boundary is now characterized as follows.

Corollary 7. Within region R;, the threshold boundary is given by the upper segment

of the hyperbola
w
Va(ﬂ'l, 7T2) = m
where

Vi (w1,22) = o1+ 22+ 5[(1 —x1)(1 = 22)V(r,7) + (1 — 21)(22)V (1, p)

+x1(1 — 29)V(p, 1) + 2122V (D, D).

The statement that the threshold boundaries identified in Corollary 6 and Corollary 7
are hyperbolas is easily verified using the definition of V* in (5.19). The threshold
boundaries are illustrated in Fig. 5.7, reproduced from Chapter 2.
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L] Inactivate "’ = =

Figure 5.7: Illustration of the threshold boundaries when (a) (7, mss) € A, (b)
(Tss, Tss) € P.

For the case, p+r > 1 (in addition to the positive correlation condition p > r
that we have assumed throughout), the threshold boundary simplifies to the following

form.

Corollary 8. If p+1r > 1 and if W is such that V(mss, mss) < VP(Tgs, Tss), the

threshold boundary is given by the upper segment of the hyperbola

2p+B(1-p)1% W
1 — Bp? S 1-p

In addition, o written as a function of w is convex and decreasing in .

T + T + W3 ] =W.

Proof. With p+1r > 1,

S(1l-(p-r)p+r) < 2r
Sp+r < ——— =27, (5.20)
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From Proposition 20, with (7, mss) € P, since p +r < 27w, (p,7) € P. Also
(T'(p), T'(r)) € P for I > 0 since (T'(p), T'(r)) € L((p,7), (7ss, Tss)) from Lemma 4
in Chapter 2 and L((p,7), (7ss, Tss)) € P from Proposition 20. Thus V,, = %
Substituting V), in the threshold equation of Corollary 7, the threshold equation in

the region (my,ma) € [7ss, 1]? is given by

W
7T1+7T2+7T17T26(‘/pp_m) = W (5.21)
Note that V,, = 2p + B(p*V,p + (1 — pz)% where we have used V,, =V, = %
Thus
W 2
Voo 2p + 158(1 = p?) (5.22)
pp 1— ﬁpQ .

Substituting the expression for V,, in threshold equation (5.21) establishes the first
part of the corollary. That the threshold boundary thus identified lies on the upper
segment of the hyperbola follows a proof technique similar to that of Corollaries 7

and 8. n

Recall that the notion of Indexability is defined by Whittle as below:

Adding the dependence on W explicitly to P, we have, P(W) is the set of states for
which it is optimal to inactive under passivity subsidy W. The project (the user pair
chosen from the larger two-cell scheduling problem) is indexable if P(W) increases
monotonically from () to S, as W increases from —oo to oo
where () is the empty set and S is the universal set of the states of the project.
The monotonic increase of P(W) means that if a state 7 = (71, ) € P(W), then
m € P(Ws) for Wy > Wy. This is possible if and only if, for a state m, the optimal

decision versus W plot is of the ON-OFF (activate-inactivate) type, i.e., 3 a W* such
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that V(m) = VP(7)|w=w~ and VIW < W* it is optimal to activate at state 7 and
VYW > W*, it is optimal to inactivate. If a state m has the above mentioned ON-OFF
property we call it indexable with the index of state 7 given by I(7) = W*. From the
preceding discussion, Whittle indexability of the system is equivalent to indexability
of all the states of the system.

We proceed to show that, for p+r > 1, the two user project we consider is partially

indexable, i.e., indexability holds for specific subsets of the state space.

Proposition 21. Forp+r > 1, a state vector (my, T2) is indexzable if (71, m) € [mss, 1]2

or ™ + my > 2p.

Proof. State (71, ) is indexable if 3 a W* such that V*(my, me) = VP(7y, m0)|w=w=
and VIV < WW* it is optimal to activate at state (71, 1) and YW > W* it is optimal
to inactivate. Let (mj,m) € [mss, 1]2. Let Wy be such that V%(ry,) = VP(m,,) at

W = W,. Thus using Corollary 8, W, is obtained by solving the equation

2p+801-p)1% Wy
1—pp? 1-p

Tss + Tss + Wssﬂssﬂ[

Hence

2 (1 + £25)

2 (1—p2
L= Bl =) - PEE

Wo = (1-0) (5.23)

We now proceed to show that the threshold boundary given in Corollary 8 progres-

sively moves outward as W increases from Wy. From Corollary 8, with f = ﬁ(l/;,p —

)= 20w the threshold equation in the region (71, m2) € [ms, 1]2
1-8 1—fp2 1-8 ) q g 1,712 EED)

1s rewritten as
7T1+7T2—|—7T17T2f = W (524)
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The preceding equation is valid if W is such that (7s,, 7ss) € P. This is true for
W = W,. With m; fixed, the first derivative of 7wy with respect to W at W = W is

given from (5.24) by

d7T2 1 —Wlﬂg%
— = — 5.25
dW|WO 1+7T1f ‘WO ( )

where f = ﬁ(Vpp—%) > 0 since V (7, ) > % Y (7, m2) and % = —%ﬂ <
0. Thus Z%h/vo > 0. Thus the threshold boundary monotonically moves out as W
increases from Wy to Wy + 9, for 6 — 0. Also note that, the monotonic increase in
threshold boundary = (7, 7ss) € P and hence the threshold equation in (5.24) is
valid at W = Wy+9. Repeating the first derivative based arguments for W = Wy +94,
recursively, we have for W > W, in the region (m,m) € [m.,1]?, the threshold
boundary monotonically moves out, i.e., if for a Wy > Wy, (m,m) € P, then for
Wy > Wi, (my,m) € P. Note that, for a (my,m) € [, 1]%, the value of W for
which (my,mg) lies on the threshold curve is also such that V(m,m) = VP(m,m)
at that W. With the threshold curve known to move out with W, we see that for
(71, m2) € [mss, 1], 3 @ W* such that VIV < W*, it is optimal to activate at state
(71, m) and YW > W* it is optimal to inactivate. Thus (7, m2) € [y, 1]? is index-
able. This establishes the first part of the proposition.

Consider 7 + m > 2p. When W < m; + m, it was shown in Chapter 2 that
(m,m) € A When W > m + w9, since my + my > 2p, W > 2p. Thus using
Proposition 18, (m,m) € P. Thus (7, m) is indexable if m + my > 2p. The

proposition thus follows. O
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5.4.3 Index Policy

The threshold boundaries reported in Corollary 6 and Corollary 7 are illustrated in
Fig. 5.7. The thresholdability results of the WW-subsidy policy and hence the threshold
boundaries were obtained using sufficient conditions that hold only in the shown
regions. A tighter analysis needed to characterize the optimal policy in the whole
state space appears intractable. We therefore make a set of assumptions (A) on the
properties of the optimal WW-subsidy policy and derive an index scheduling policy for

the two-cell system. Our assumptions are stated next.

(AO) The threshold boundaries reported in Corollaries 6 and 7 in the restricted re-
gions hold true in the entire state space. The extrapolations corresponding to
these boundaries are illustrated in Fig. 5.8. Contrast this with the threshold

boundaries illustrated in Fig. 5.7.

(A1) The threshold boundaries progressively move to the right, i.e., the region P
progressively expands, as W increases. This is essentially Whittle’s indexability.
Recall that we have shown indexability to hold partially in Proposition 21 when
p+r=>1

We now classify the state space into four non-overlapping regions. Recall the

definition of Wy: the value of W at which V®(mgs, mss)|w = VP(7ss, Tss)|w. The state

space is now classified as below:

e Ry: (m,ms) such that m + my < 2r

e Ry: Region between the boundaries {(my,m) : m + ma > 2r} and {(m,m) :
Ve (my, m)|lw=w, = VP(m1, m2)w=w, }. By definition of Wy, the second boundary
passes through the steady state.
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Figure 5.8: Illustration of the extrapolation of the threshold boundaries to the entire
two-dimensional state space, when (a) (7, 7ss) € A, (b) (7gs, Tss) € P.

e Ry (m,ms) such that (m,m) ¢ Ry U Ry and m + my < 2p
e Ry: (m,ms) such that m + mo > 2p

Under assumptions (AO) and (A1), as W increases from 0 to 2r, the threshold
boundary moves progressively outwards within region R;, with the boundary given
by (71, ms) such that m + m = W. As W increases from 2r to Wy, the threshold
boundary progressively moves outward within region Ry, with the boundary given
by the extrapolation of the boundary derived in Corollary 6, i.e., (71, m) such that
Ve (my,me) = WHBVE(T(m), T(m)). When W increases from W to 2p, the threshold
boundary progressively moves outward within R3 and the boundary is given from

Corollary 7 by the convex curve: (m,ms) such that V(m,mp) = When W

w
-3
increases from 2p to 2, the threshold boundary progressively moves outward within

region R4 with boundary given by (7, m2) such that m +m5 = W. This is summarized

in Table 5.1.
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Range of Threshold boundary State space
w region
W§2’l“ {(771,7T2)27T1—|—7T2:W} Rl
W e 2r,Wo] | {(m1,m) : Vm,m) =W + VYT (m), T (m2))} R
W € (Wo, 2p) {(m,m) : Vo(m,m) = 125} Ry
W > 2p {(m1,m3) : 1 + M =W} Ry

Table 5.1: Threshold boundaries and their region affiliation for various ranges of W.

The index we employ in our policy is defined as follows: For any state (mq, m), the

value of W for which the threshold boundary passes through (7, ms) is the index of

that state. Note that if assumptions (A), were true, the index we propose is exactly

the Whittle’s index. Thus the index policy we propose is in fact the Whittle’s index

policy when (A) is true.

Note that the region of passivity, P lies to the left of the threshold boundary.

Thus under (A), we see that, a belief vector (71, m) has an index higher than the

belief vectors (my,m — 0) and and (m; — J, m2) for 6 > 0. Call this statement (B). We

now propose the index policy.
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Step 0: Initialization

e For W = 0 : dy : 2, evaluate the quantities V(p,p), V(p,r) = V(r,p)
(thanks to the symmetry across user channels) and V(r,r) using the fol-
lowing limit on the finite horizon Bellman equation [36]: V(my,m) =
lim; ., Vi(1, m2) where, using an appropriate measure of convergence,

Vi(my,me) = max(Ve(my,ma), V¥ (11, m2))

Vta(ﬁl,ﬂz) = m +m+ ﬁ(ﬂlﬂﬂ/}—l(}?,p) + 7T1(1 - 7T2)%—1(197 7“)

+(1 —m)mViei(r,p) + (1 — mp) (1 — ma) Viq (1, T))
VP (m,m) = W+ Vi (T(m), T(m))
(5.26)

with Vj(my, mo) = max(m; + mo, W).

e Evaluate Wy as argy, V(me, ss) = W + V(T (7ss), T'(ms5)) using the
system parameters V(p,p), V(p,7), V(r,p) and V(r,r) evaluated in the
previous step.

e Identify regions R, to R, using the discussion preceding before Table 1,
reproduced below:
— Ry: (m1,m) such that m + m < 2r

— Ry: region between the boundaries {(m,ms) : m + m > 2r} and
{(my,m) : V1, m2) |l w=wy, = VP(m1, T2)|lw=ws }-

— Rg: (m,m) such that (7w, m) € Ry U Ry and mp + mp < 2p

— Ry: (m1,m) such that m + m > 2p
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Index policy on belief vector m = (mq,...,7x)

e Within each user group (ni, f1, ne, f2), identify the users that have the high-
est belief values. Call them nj, f;,n5 and f;, respectively. From statement
(B), user pair (nf, f5) has an index higher than any other user pair from
the composite group n; x fy. Likewise, the user pair (f],n3) has higher
index than any other pair from f; X ny. Thus it is sufficient to compare the
indices of user pairs (n}, f3) and (f,n3).

e Calculate the index of the states corresponding to user pairs (nj, f3) and
(ff,n3). Index calculation is explained as a separate step in the end.

e Schedule the user pair with the higher index.
e Receive ARQ feedback from the scheduled user pair.
e Update the belief values of all the users based on the ARQ feedback. The

belief value of user i, i.e., 7, evolves as follows: If user ¢ was scheduled,
then, if ACK feedback was received from user ¢, then 7¢ « p, else m¢ « 7.
If user 7 was not scheduled, then 7" « T'(7*).

e Repeat the scheduling policy in the next time slot.

Index calculation for state (mq,m2)
e Determine the region (Ry, Ry, R3, R4) in which (7, m) belongs.

e Based on the identified region, identify the threshold boundary from Ta-
ble 1.

e Determine the value of W for which the identified threshold boundary
passes through (71, m5). This can be accomplished as follows: For dis-
cretized values of W = 0 : dy : 2, find the value of W (call it W*) for which
the threshold boundary is closest to (7, ms).

e W* is the index of the user pair. Return W* to the Index policy.

An illustration of the proposed index policy is given in Fig. 5.9.
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Figure 5.9: Ilustration of the index policy implementation
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5.5 Numerical Results and Discussion

We now proceed to report the numerical performance of the proposed index policy.
Table 5.2 compares the rewards accrued by the optimal policy, Vope, with that of the
proposed index policy, Vingex, when the system parameters are fixed and the initial
belief values are generated randomly for each row of data. Table 5.3 compares V,,; and
Vindex for various randomly generated system parameters. In both tables, p +r > 1.
The optimal policy is implemented by an exhaustive search over all possible Ny x
F5 + F; x Ny decisions in each time slot. The policy is repeated for increasing horizon

lengths until convergence is reached. Similarly, the index policy is implemented for

Vopt _‘/indcx

Vopt X

increasing horizon lengths until convergence. The quantity %subopt=
100% quantifies the sub-optimality resulting from index policy based scheduling. The
very low values of %subopt suggests that the index policy is near optimal.

To illustrate the advantage of using the ARQ feedback for scheduling, we compare
Vindex With the total reward accrued in a genie-aided system, Vienie in Table 5.4. The
genie-aided system is defined as follows: At the end of every time slot, the scheduler
learns about the channel state of every user in the system in that time slot. The
optimal scheduling policy in the genie aided system is greedy, i.e., in each slot schedule
the legitimate user pair that has the highest sum of belief values. The quantity
%ARQgain= m quantifies the gain in reward when the ARQ feedback is used
in scheduling, where V;,,q is the reward accrued by a policy that ignores any channel
feedback from the users and schedules randomly. The high values of %ARQgain in
Table 5.4 underlines the significance of exploiting ARQ feedback in our scheduling

setup. Consider the following two cell system with cell breathing in effect: at the

beginning of each slot both the base stations learn about the instantaneous channel
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p=0.8947, r =0.3289, [/ = 0.2060 p=0.7452, r = 0.6356, § = 0.8739
Vgt | Vindex Jesubopt Vgt | Vindex Jesubopt
1.6509 | 1.6507 0.0097 % 5.8458 | 5.8457 0.0015 %
1.7759 | 1.7759 0.0000 % 6.1100 | 6.1098 0.0031 %
2.2293 | 2.2293 0.0000 % 5.8890 | 5.8890 0.0002 %
2.0303 | 2.0303 0.0000 % 5.8592 | 5.8592 0.0002 %
1.4728 | 1.4728 0.0000 % 5.9301 | 5.9300 0.0013 %
1.9026 | 1.9026 0.0000 % 5.8352 | 5.8351 0.0003 %
2.3118 | 2.3118 0.0000 % 5.6649 | 5.6648 0.0011 %
1.9977 | 1.9977 0.0003 % 5.6029 | 5.6028 0.0014 %
1.9965 | 1.9965 0.0000 % 5.7806 | 5.7805 0.0015 %
1.9515 | 1.9514 0.0013 % 5.9786 | 5.9784 0.0030 %

Table 5.2: Illustration of the near optimal performance of the proposed index policy.
Each table corresponds to a fixed set of system parameters. Each row within the
tables correspond to randomly generated initial belief values. N; = Ny = 2 and
Fy = F, = 3 is used throughout.

state of all the users in the system. Denote by Vgenier, the optimal total discounted
reward corresponding to this system. The relative values of Vienie*, Veenies Vindex and
Viana are plotted in Fig. 5.10 against the discount factor § for various values of system
parameters p,r. Note from the figure that the loss in performance when the channel
state feedback is delayed by one time slot is almost the same as the loss when the
channel states of only the scheduled users are fed back, with a slot delay, i.e., the
ARQ feedback system.

The preceding discussion on the numerical results underlines the advantage and

sufficiency of exploiting ARQ feedback for opportunistic scheduling.
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Nl=2 Fl=3, N2=2, F2=3

p r 5 Vopt Vindex Y%subopt
0.7638 0.3663 0.8013 4.8839 4.8839 0.0008 %
0.9504 0.5462 0.8452 5.8011 5.8011 0.0002 %
0.8476 0.4230 0.5358 3.2915 3.2915 0.0001 %
0.7452 0.6356 0.8739 6.1100 6.1098 0.0031 %
0.7825 0.5010 0.4170 2.3547 2.3547 0.0000 %
0.5546 0.4580 0.3381 2.4535 2.4535 0.0001 %
0.8536 0.6670 0.2880 2.2923 2.2923 0.0001 %
0.6688 0.4065 0.7413 3.6949 3.6949 0.0002 %
0.8947 0.3289 0.2060 1.7759 1.7759 0.0000 %
0.5387 0.4922 0.7067 3.6443 3.6443 0.0007 %
0.7309 0.3826 0.7315 4.5159 4.5159 0.0000 %
0.9994 0.7362 0.2210 1.7294 1.7294 0.0000 %
0.8914 0.8532 0.7962 5.4776 5.4776 0.0001 %
0.8022 0.6029 0.9480 6.9358 6.9357 0.0006 %
0.9238 0.6184 0.6090 4.2933 4.2933 0.0000 %

Table 5.3: Illustration of the near optimal performance of the proposed index policy.
Each row corresponds to randomly generated system parameters (p, r, and ) and
initial belief values. Ny = Ny = 2 and F} = F, = 3 is used.
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N1=2 F1=3, N2=2, F2=3

p r B Vigenie Vindex Viand %ARQgain
0.7397 | 0.5790 | 0.8436 | 5.5785 | 5.5179 | 4.6383 | 93.5592 %
0.7600 | 0.4697 | 0.1551 | 1.6406 | 1.6313 | 1.1480 | 98.1181 %
0.7058 | 0.5223 | 0.7954 | 4.4204 | 4.3315 | 3.6053 | 89.0940 %
0.7801 | 0.6404 | 0.9649 | 7.2043 | 7.1424 | 6.2261 | 93.6788 %
0.7994 | 0.3420 | 0.2678 | 2.2562 | 2.2407 | 1.5141 | 97.9097 %
0.9919 | 0.2318 | 0.4784 | 3.1231 | 3.0587 | 2.0004 | 94.2659 %
0.6064 | 0.5657 | 0.2762 | 2.0390 | 2.0370 | 1.7046 | 99.3912 %
0.8446 | 0.5150 | 0.3688 | 2.8201 | 2.8091 | 2.0207 | 98.6200 %
0.7051 | 0.5944 | 0.5793 | 3.2111 | 3.1886 | 2.3930 | 97.2564 %
0.9631 | 0.7544 | 0.3493 | 2.6820 | 2.6756 | 2.1638 | 98.7781 %
0.8519 | 0.2541 | 0.4629 | 3.2259 | 3.1812 | 21514 | 95.8427 %
0.9644 | 0.6004 | 0.9965 | 8.7821 | 85872 | 7.6258 | 83.1464 %
0.8237 | 0.7089 | 0.4615 | 3.1647 | 3.1577 | 2.2633 | 99.2261 %
0.7413 | 0.5105 | 0.4637 | 2.8621 | 2.8307 | 2.0559 | 96.1071 %
0.6582 | 0.4114 | 0.2363 | 2.2611 | 2.2558 | 1.4567 | 99.3502 %

Table 5.4: Illustration of the significance of using AR(Q feedback in opportunistic
scheduling.
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[p r]=[0.7248 0.5360] [p r]=[0.6365 0.5562]
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Figure 5.10: Vgenie*s Vienie, Vindex and Viana versus the discount factor 3 for various
system parameters. Same set of initial belief values is used within each subplot.
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5.6 Summary

In Chapter 3, we studied the ARQ based scheduling problem in a single cellular
systems. In this chapter, we extended this analysis to the multi-cellular environment
by adopting the cell breathing based ICI control mechanism. When the cooperation
between the cells is asymmetric, the optimal scheduling policy has a greedy flavor and
is simple to implement. Under symmetric cooperation, however, a direct optimality
analysis appears difficult. We formulated the scheduling problem as a more general
variant of the restless multiarmed bandit processes and studied it from the perspective
of Whittle’s indexability. Whittle’s indexability is an important condition that is
known to predispose the Whittle’s index policy towards optimality in various RMAB
processes. Founded on the indexability analysis of the two-cell scheduling problem,
we proposed an easy-to-implement index policy that is near optimal. Upon Whittle’s
indexability of the two-cell scheduling problem, the policy we propose is essentially

the Whittle index policy.
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CHAPTER 6

CONCLUSIONS

With the ever increasing demand for limited network resources, there is a pressing
need to design spectrally efficient communication techniques. Opportunistic multiuser
scheduling is one among them. It is important that the channel state information
required for the success of this technique be acquired in a cost-efficient manner, so
that the loss involved here does not offset the gains associated with opportunistic

scheduling.

6.1 Summary of Original Research

This dissertation identified mechanisms to exploit the memory inherent in fad-
ing channels to simultaneously acquire the channel state information while perform-
ing opportunistic scheduling. Thus data transmission in any time slot must take
into account two potentially contradicting objectives: (1) Opportunistically sched-
ule transmission - corresponds to immediate gain (2) Explore the channels for future
scheduling purposes - corresponds to future gains. The joint scheduling is thus a
dynamic program, specifically a partially observable Markov decision process that
is traditionally known to be hard to solve in closed form and also computation-

ally very expensive. Our contribution in this dissertation is to perform optimality
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analysis of the joint scheduling problem in various networks, and whenever possi-
ble obtain the optimal scheduling policy in closed form. When such a closed form
solution appeared intractable, founded on the optimality framework, we derived easy-
to-implement scheduling policies that display near-optimal numerical performance.

Specifically, we first studied the joint scheduling problem in broadcast networks,
with two-state Markov channels, when 1-bit feedback, delayed by one time slot, is
available at the scheduler. The optimal policy turned out to be greedy for certain
ranges of the system parameters. For the general values of the system parameters
we followed an indirect approach. We first studied optimal scheduling in a two-user
broadcast and established thresholdability properties of the optimal policy. Extrapo-
lating these thresholdability properties to the general N user broadcast, we proposed
a threshold policy. This policy has a polynomial complexity in the number of users
and has near-optimal performance.

We then focused on using the already existing ARQ feedback mechanism for op-
portunistic scheduling in a single-cell downlink, with two-state Markov channels. We
considered a general setup where the ARQ feedback is randomly delayed - a sce-
nario possible in channels with severe propagation delays. The greedy policy that
maximizes the immediate reward alone is optimal when the downlink has only two
users. Surprisingly, this optimality result is independent of the distribution of the
ARQ delay. However, when there are more than two downlink users, greedy policy is
suboptimal, in general. We established this using an analytic counterexample. Nu-
merical experiments suggest that the greedy policy has near-optimal performance.
By studying the structural properties of the greedy policy, we obtained simple algo-

rithms to implement the greedy policy. Turning our focus to the system level limits,

154



we obtained bounds on the capacity region of the cellular downlink with ARQ based
scheduling, which we tightened for the two user case. We then proceeded to study
the impact of increasing the state space of the Markov channels on the optimality
properties of the greedy policy. When the Markov channel state space is increased
to three, in the two-user downlink, greedy policy is not optimal. A crucial genie-
equivalence that was seen in the two-state Markov modeled downlink is upset in the
changed setup.

It can be expected that the dynamics of the joint channel estimation - opportunis-
tic scheduling thus far seen in single cellular systems changes vastly in multi-cellular
systems, where inter-cell interference imparts a convolved interdependence between
scheduling choices in adjacent cells. We proceeded to study this changed dynamics
in a two-cell system. We believe, this study could be readily extended to multi-cell
systems with appropriate use of directional antennae. For the two-cell system, we
studied the scheduling problem by following a two layered approach: the well es-
tablished ‘cell breathing’ based inter-cell interference (ICI) control mechanism was
adopted and assumed to be in place. On top of this layer we optimized the joint
channel estimation - opportunistic scheduling based on ARQ feedback, across the
cells. When the cooperation between the cells is asymmetric, the optimal policy has
a greedy flavor and is simple to implement. Under symmetric cooperation, however,
since a direct optimality analysis appears difficult, we formulated the scheduling prob-
lem as a more general variant of the restless multiarmed bandit processes and studied
it from the perspective of Whittles indexability. By linking the indexability analysis
to the broadcast scheduling problem studied in Chapter 2, we proposed an index

policy that is easy to implement and has near-optimal performance.
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In summary, the essential message of this dissertation is that by exploiting the
memory inherent in the fading channels, significant system level performance gains
can be achieved by opportunistic scheduling with minimal (delayed, 1 bit/ARQ)
feedback. In addition, despite the POMDP nature of the scheduling problem, it is not
necessary to perform computationally expensive optimal scheduling to realize these
system level gains. Simple, practically convenient, suboptimal policies can achieve

near-optimal performance.

6.2 Possible Future Research

The channel feedback is assumed to be error-free throughout this dissertation.
This assumption may have limited application in realistic situations. It would be
interesting to explore how the dynamics of the scheduling problem changes when the
channel feedback is known to have stochastically defined imperfections.

For most part of this work, the fading channels are modeled with two-state Markov
chains. With higher number of channel states, the scheduler can discriminate the
channels at a finer level resulting in better scheduling gains. However, in order to
limit the overhead in the feedback channel, the scheduler must be able discriminate
the channels using feedback limited by the number of bits, that are probabilistically
related to the actual channel states. A study of opportunistic scheduling under this
setup is of practical value since this setup accommodates the use of ARQ feedback
for scheduling purposes for a general size of the channel state space. We have already
discussed the prevalence of ARQ in recent and upcoming wireless standards. Also
note that this scenario bears similarities to the case of error-prone feedback discussed

above.
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It would also be an interesting exercise to study how the optimality /near-optimality
properties of the greedy policy, reported in this dissertation, is affected when the fad-
ing channels are not positively correlated, or when the channels are not i.i.d across
users. Non-i.i.d channels, in particular, is a realistic assumption that may impose
Quality of Service (QoS) considerations on the scheduler, thus significantly changing
the dynamics of the scheduling problem.

Random data arrivals at the network users is another important practical consid-
eration that cannot be overlooked. With random arrivals, the scheduler has an added
mandate of maintaining the stability of the user queues, likely without the knowledge
of the arrival rates. It would be an interesting exercise to study how the buffer occu-
pancy influences the scheduling decisions that have so far been purely based on the
channel belief values.

Another potential direction for this research topic is when the assumption on
TDMA-styled scheduling is removed. The TDMA model, i.e., one and only one user
is scheduled in each slot, may have limited relevance in practical scenarios, compared
to a constraint on the average number of users scheduled per slot. In the RMAB
literature, it is common wisdom [23] that, Whittles index policy is optimal under an
average constraint on the number of projects activated in a slot. Thus, under the
‘average number of users’ constraint, one may be able to earn a better understanding
of the scheduling problem, by properly linking it to the existing results on RMAB

processes.
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Lemma 3

Along the lines of proof of lemma 2, we proceed by reinterpreting the infinite

horizon total discounted reward as a limit [36] on the finite horizon reward as below.
V(my,me) = tlim Vi(my, 7o) (A.1)
with

Vi(mi,mo) = max{Vy(m,m2), VP (m1,7m2)}

2N 1
Vit(m,m) = m+m+ Z Py(m) V- (1)
=0
VP (m,m) = W+ BV (T(m)). (A.2)

We have used the convention of decreasing time index up to the horizon at ¢t = 1.

The terminal reward, i.e., the reward at the horizon, is given by
Vi(m,m) = max{m + m, W}. (A.3)
The finite horizon equivalent of the quantities v and « are defined as

v = Vilp,p)+ Vi(r,r) —2Vi(p,7)
o = Vilp,r)—Vi(r,r). (A4)
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In the rest of this proof, we will study the reward functions over the two dimensional
state space by sweeping over m; € [0, 1] with my along specific directions/azes given
by me = mk + ¢ for k,c € R. For ease of notation, we denote the axis m, = mk + ¢
by (k,c) and use my and (k, ¢) interchangeably as arguments in reward functions. We
now proceed to establish the proposition using induction.

Assume the following holds (induction hypothesis (Hy)): Fort > 2, V,_1(m, m)
is convex and increasing in m along (k,c) for k > 0. Along (k,c) for k <0, V;_1 is
piecewise concave. When k= —1, Vi1 altains a unique marimum at T = mp = 5.
Along the axis (k = 1,¢ = 0), i.e., m = mo, Vi1 is convex. Thus V,_1(p,p) +

Vici(r,r) > 2V (55, 5F). Since V;—; has a maximum at m; = 7 = § along

Ty = —m + ¢, we have, with ¢ = p + r, Vt_l(%,%) > Vi_i(p,7). Thus v,_; =
Vici(p,p) + Vica(r,r) — 2Vi_1(p,r) > 0. Also, ay—1 = Vi—1(p,r) — Viza(r,7) > 0 since
Vi—1 is increasing in m; along (k, c) for k£ > 0. From (A.2), V,* along the axis (k, c)) is

given by,

Vi (o, (K, 0))
= w1+ k) + e+ B(mmk+ Vi (p,p) + m(1 = mk = Vi (p,7)
(1 — ) (mik + Vi (r,p) + (1 — m)(1 = mk — ) Vs (7, r>)
— m(l+k) et 5(7rfk%_1 + (v + (B + Doay_y) + capy + Vi (r, 7“)).

(A.5)

The second derivative of V,* is given by 28kvy,—;. With § > 0 and v, > 0, V*
is convex in m along (k,c) for k& > 0 and concave in m; for k& < 0. Also the first

derivative of V,* with respect to m; along k =0, c € [0, 1], i.e., along mo = constant is
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given by

AV (m, (k, )
dﬂ'l

lk=o,cefo] = (14+k)+ 5(27T1k‘%—1 + (-1 + (K + 1)%—1)) | k=0,c€[0,1]

= 1+ B(cy—1 + ar—1)leefo,1)- (A.6)

Since ay_1,7-1 > 0 and ¢ € [0,1], the first derivative of V,*, when my is fixed,
is positive and hence V,* is increasing in m; when my is constant. Likewise, V,* is
increasing in me when 7 is constant. Together, we have, V,* is increasing in m; along
the axis (k, c) for k > 0.

From (A.2), V¥ along (k, ¢) is given by,

VE(mi, (k,c)) = W+ Vi (T(m), T(mk + ¢))
= W+ BV (T(m), T(m)k + ¢)

= W+ Vi (T(m), (k,c")) (A7)

where ¢* = ¢(p—r)+7r(1—k). From the relationship between 7; and T'(7), V¥ along
(k, c) is one-on-one and sequentially mapped!® to V;_; along the parallel axis (k, c*).
The second derivative of V/* is given by

d2‘/;p(71'1’ (k7 C))

2
dmy

o PV (m, (K, "))

d7T12

|7r1 = ﬁ(p—?“)

|7r1(p—r)+r' (A-8)

d?Vi—1 (1, (k,c*)
2

When k£ > 0, since V;_; is convex, = ) > 0. Thus V/¥ is convex in 7; along

(k,c) for k > 0. The first derivative is given by

dv;tp(ﬂ-lv (k7 C))

d7Tl ‘Wl

AV, (m, (k, c*
= Bp-r) 1(7;;1( c>)|m(p—r>+r- (A.9)

Thus, V;_; is increasing in m along (k, ¢) for k > 0, V/ is also increasing in m; along
(k,c) for k > 0.
15Tn addition to the passivity reward, W and the discount factor, 3.
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When k < 0, V;_; is piecewise concave in m; along (k,c*). Consider any interval
m € [z,y] in which V,_y(7y, (k,¢*)) is concave in 7. From the second derivative
relationship in (A.8), V¥ (71, (k,c)) is concave in the interval m; € [T~ (z), T~ (y)],
where T71(z) = 2= is the inverse of the (one-step) evolution operator under idle
decision, with T-*+1(z) = T=Y(T~*(2)). Thus, since V/? along (k, c) is one-on-one
and sequentially mapped to V;_; along the parallel axis (k,c*), V,_; is piecewise
concave in m; along (k,c¢*) =V} is also piecewise concave in m; along (k,c) for
k <0.

When k = —1, the mapping between V and V;_; can be shown to be symmetric

about the axis m; = m9, i.e.,

*

VP =5 +06.(-Le) = WHBVia(m =5 +6,(~1,c))
VP (m = g —6,(=1,¢)) = W+ BVi(m = % 5 (=1,¢) (A10)

where 0,0 > 0 and § = 0 < 0* = 0. Thus, since V;_1(m, (—1,c¢")) attains the
unique maximum at m = my, V{¥(m, (—1,¢)) also attains the maximum (also unique)
at m = m = 3.
Having obtained the structural properties of V, and V/’ under hypothesis (H;),

we now proceed to show that V; satisfies the properties assumed for V;_; in (H;).

Recall the finite horizon total discounted reward function expression from (A.2);
Vi(my, me) = max{V,*(my, m), V¥ (71, m2)}. (A.11)

Along the axis (k,c), for k > 0, V,® and V¥ are both convex and increasing in 7.
Thus V; is also convex and increasing in m for £ > 0. For £ < 0, V,* is concave and
VP is piecewise concave. Thus V; is piecewise concave for k < 0 since the maximum
of a concave and a piecewise concave function is piecewise concave. For k = —1,
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V%, being a concave and symmetric function in 7y, attains the unique maximum

at m = M = 3. Since V¥ also attains the unique maximum at m = m = 5 Vi

attains the unique maximum at m; = m = £. Now consider the terminal reward
Vi(my, me) = max{m + me, W}. It can be readily seen that V] satisfies the induction
hypothesis (H;p). It follows that, using induction, V;(m,ms), for any ¢, satisfies the
properties in (H;). Using (A.1), the infinite horizon total discounted reward satisfies
the properties identified in the lemma. Using the properties of V' thus established and

using arguments along the lines of the preceding induction based proof, the properties

of V¢ VP ~ and « identified in the lemma statement can also be established.

A.2 Proof of Proposition 3

Recall (proof of Lemma 3) the notion of studying reward functions by sweeping
over m; with my along specific ares mo = mk+c for k,c € R. We repeat this approach
in this proof.

Consider the region R;. This region can be covered by sweeping over m > 7,
along the axes my = mk+ (1 —k), for £ > 0. Note that these axes pass through the
steady state (mgs, mss). Note from lemma 6 that the evolution (7°(.)) of a state along
an axis passing through the steady state maps to a state on the same axis. Thus, since
the axis my = w1k +7ss(1— k) passes through the steady state, (T'(71), T (mi1k+7mss(1—
k))) = (T'(m), T(m)k + mss(1 — k)), i.e., the axis (k,c) = (k,mss(1 — k)) is preserved
upon T'(.) operation. This property is crucial in establishing the proposition. Call
this property (E). Fix the axis my = mk + 75(1 — k), for £ > 0, until noted
otherwise. Now, by definition, (7ss, 7s) € A iff VO (7rgs, mss) > VP(mgs, Tss). Denote

(7ss, Tss) simply by ms. Consider the case V(mgs) = V(mys) = VP(mgs). With
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VP(1ss) = WPV (mss) = W+ VP (7ss), we have VP(7y,) = % Therefore V (7s5) =
Ve(mss) = % We now proceed to show that 3ad > 0 such that, for m; € [mg,, mss+0],
Ve (my, mk+mss(1—k)) > VP(m, mk+mss(1—k)). Assume the preceding statement is
not true. Then 3 a §* > 0 such that, for m; € [y, Tes+0%], V(m, mk+7ss(1—k)) <
VP(my, mk + (1 — k)). Therefore, for my € [mg, mss + 0%, VP(my, mk + m5s(1 — k)) =
W+ BV(T(m1), T(mik + mes(1 — k))) = W + BVP(T(my), T(mik + mes (1 — k))) since,
from Lemma 4, 7wy < T'(m1) < m < mss + 0*. Applying property (E) here, we have
VP(my, mk + mes(1 — k) = W + BVP(T' (7)), T(m1)k 4+ mss(1 — k)). In the rest of this
proof, since the axis (k,mss(1 — k)) is preserved upon 7'(.) operation, we skip the
second argument in the reward functions. Now, recall that V%(m;) is increasing in
71 along the axis considered, i.e., when & > 0. Thus V*(m) > %, YV € [mss, 1.
Thus VP(m) > % for m € [mas, Mes + 0%]. This implies VP(T(m;)) > 2> since
VP(m) = W + BVP(T(m;)). Using this argument recursively, V?(T%(m;)) > 2, for
k > 0 when m € [mg, mss + 6°]. Thus VP(mg) > % This is a contradiction to
the fact VP(my,) = % Thus, when V%(my) = VP(7mss), 3 a § > 0 such that, for
T € [Tss, Tss + 0], V(my) > VP(m). Now, consider the case V() = V(mgs) >
VP(mss). It can be trivially shown that V*, V? and V are continuous functions in the
state space (my,m) € [0,1]2. Thus, with V() > VP(rmg), 3 a d > 0 such that, for
T € [Mss, Tss + 0], V(m) > VP(mry). Together, when (7s) € A, 3 ad > 0 such that,
for m € [mss, mss + 0], V(my) > VP(my). Note that VP(m) = W + V(T (m)). For
Ty € [Tes, T (s +0)], we have VP(ry) = W+ BV (T(m1)) = W+ V(T (7)). Thus,

for m € [ms, T (7ss + 0)], VP(m1) = W + BV(T(m1)). The first derivative of V7
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with respect to my, for m; € 755, T (55 + 9)], is now given by

dVP(m a(Ve(m
Vd;l )|7r1 ﬁ(p_ﬂ%l))‘m@—r)—w
S ﬁ(p_r)d(‘/daiﬂ(_zrl))bn
< Wrm), (A12)

d7T1
Note that, by convexity of V* in the axis considered (lemma 5), slope of V%(m)
increases with 7;. This, along with the relation 7,3 < T'(m) < m; (lemma 6), is used

in the second inequality.

Thus for m; € [mes, T (mss + 9)], dVP(m) o dVi(m) g along with V%(my) >

dmy — dmy

VP(ms) leads to VA(m) > VP(m) for my € [Tog T~ (Tos + 0)] = [mas, TET] =

p—r

[Tas, Tss + I%]. By repeating the preceding arguments, for m; € [, T (75 + I%)] =

[Tss, Tss + ﬁ], recursively, for [ = 2,3..., we have V(m) > VP(m), Vm > 7
along the axis mp = mk+me(1—k), k > 0, i.e., V() > VP(my), V(m1, T2) € [mss, 1]°.
This proves the first part of the proposition.

Consider the region R};. We proceed to show thresholdability in this region when
ms € A. Note that R}, is covered by sweeping over m; € [0,7,,] along the axis
o = mk + mss(1 — k), for k € [—1,0]. Consider one such axis, i.e., fix a k € [—1,0]
and my = mk + m(1 — k) until noted otherwise. As before, since the axis mo =
w1k 4 mss(1 — k) passes through the steady state, the evolution of any state along this

axis maps to a state on the same axis. We therefore do not explicitly refer to mo or

the axis in the subsequent analysis. The reward function V' is now given as
V“(m) = 7T1(1 + k) + 7Tss(1 - k?)
48 (me b (mas(1 = k) + a1+ k) + mos(1 — k)a + vM)

(A.13)
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where the quantities v and « are defined in section B. The first derivative of V* with

respect to m; is given as

dV“(m)
d7T1

= (L+k)[1+ Ba] + By[mes(1 — k) + 27, K] (A.14)

Note that since « > 0, v > 0 (lemma 5) and k € [—1,0], Z% > 0 when 7 < 7.
With 7y, € A, we have either V(my) = VP(mgs) or V¥ (mss) > VP(mss). In the former

case, V(mgs) = V¥ mgs) = VP(mss) = % Since dV;T(Z”) >0, Vi(m) < %, for

™ € [0, 5], Note that V(m) > {5 for any m.'® Thus V?(m) = W + 6V(T(m)) >
%. Therefore, when V%(7s,) = VP(m.), 7 a mf € [0,7s) such that V(7)) >
VP(r;). Thus V%(m) < VP(m) V m € [0,7s). Thus R}; € P when V(m,,) =
VP(mss). Arguing along similar lines, we have R?; € P when V(7,s) = V?(r,,). This
establishes the second part of the proposition.

Now, consider the case V*(mys) > VP(7,s). Consider the case when Jam € [0, m4)
such that V¢(m) = VP(m). Let 7 = argmax,, cjo,r,,)(V*(m1) = VP(m1)). Then, since
Ve and VP are continuous functions, V%(m) > VP(m), for m € [n],mss). Consider

7 € [T7Y(n}), Tss). The first derivative of V? in this region is given by

dv;;izﬁ) = ﬁ(p_r)d(vdaiﬂ@“l(l’—r)—#r
< oy )
aVe(m)

< (A.15)

dﬂ'l

Note that the first equality uses V(T'(my)) = V(T(r1)) when m € [T7Yr}), 7ss)-

The second inequality uses the fact that 1 (p —r) +r > m when m < 7y, in addition

to the concavity property of V' along the axis considered (note k € [—1,0]). The
w

16Since the reward corresponding to the decision: inactivate at all times = -5

165



third inequality follows from the discussion alongside (A.14) that w > 0 along
T

the considered axis. Thus dngl) < d(v;ffl)) for my € [T!(n}), mss). This, along
with V(n}) = VP(r}) = V(m) < VP(m) when m € [T~(7}), 7i]. Now, consider
m € [T72(r}), T~ (x})]. Thus V(T (7)) < VP(T(my)) since T(my) € [TY(w}), n7].

Thus, the first derivative of V? for m € [T=%(w}), T~ (7})] is given by

W) _ VTl _ V(L)
= -0
< ﬁ(p—r)wwp—mw
< Ao
< d(Vdaigl)) (A.16)

where we have used the results V%(z) < VP(x) when z € [T!(x}),n}] in the first

equality, dngl) < d(v;r(fl)) for m; € [T~(x}),mss) in the third inequality and the
: o - . : dVP(m) dve(m)
concavity property of V® in the last inequality. Thus dml < dml for m €

[T=%(x}), T~ (7})]. Since V(m) < VP(m) when m € [T~ Y(n}), 7], we now have
Va(m) < VP(m) when m; € [T2(n}), T~ (77)]. Repeating the preceding arguments
for m € [T~ (7%), T (7})] for | = 2,3. .., recursively, we have V(m;) < VP(m;)
when 7, € [0,7%] and V%(m) > VP(m) when 7, € [r},7s). If #am € [0, m.)
such that V%(m) = VP(m), then since V() > VP(mss) and since V* and VP
are continuous functions, V() > VP(m) for all m; € [0, 7). Region R?; can be
characterized along similar lines when V%(my) > VP(7y) .

The proposition thus follows.
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A.3 Proof of Proposition 4

Along the lines of the proof of Proposition 3, we will traverse the two-dimensional
state space by sweeping over m; with 7 along specific axes my = mk + 7s5(1 — k) that
pass through the steady state (7, mss). Since the T'(.) operator preserves the axis,
we skip the second argument in the reward functions throughout this proof. Also,
denote the steady state simply by 7. Now, since the two-user broadcast is Type-II,
we have V() < VP(mgs). This implies V(7gs) = VP(7gs) = % Consider the axis
o = mk+ mes(1 — k), for £ > 0. Along this axis, from Lemma 3, V%(7;) is increasing
in ;. Thus, with V*(7s) < VP(ms) = %, we have, for m < my, V*(m) < %
Since VP(m) > % for any m, we have VP(m) > V%m), ¥V m € [0,7ms]. Thus
(71, m3) € P, for m; < s, o < mes. Consider the axis m = mk + 75(1 — k), for
k € [—1,0]. We now show that V* is increasing in m for m; € [0, ms,]. From the proof

of lemma 5, the first derivative of VV* along an axis (k, ¢) is given by

dva(ﬂ-lv (k;? C))
dﬂ'l

= (1+k) +ﬁ(27r1k:7+ (v + (k+ 1)a)) (A.17)

Thus along 7w = mk + mss(1 — k), the slope, obtained by substituting ¢ = 7s(1 — k),
is (1 + k) + B(v(2km + mes(1 — k) + (1 + k)a). The slope is positive if 2km; +
Tss(1 — k) > 0. This is true since k € [—1,0] and m € [0, 7). Thus, along the axis
e = mk + mss(1 — k), for k € [—1,0], V%m) is increasing in m; for m € [0, 7).
Therefore, arguing along the lines of the k£ > 0 case, since V*(ms) < VP(7ss), we have
Ve(m) < VP(m) for m € [0, 7] along the axis mo = mk + mgs(1 — k), for k € [—1,0],
i.e., when m; € [0, 7ss] and 7wy < M < —mp + 2755, By symmetry, V() < VP(m) for

7o € [0, 7] and 7y < m < —mg + 27ss. This proves the first part of the proposition.
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Consider the region R;. Fix an axis k& > 0 with mo = mk + 7s(1 — k). With
V(mss) < VP(mss), consider the case when 3 a m; > 7, such that V(m) = VP(my).
Let 77 = argming, >, (V*(m) = VP(m)). Therefore, with V(rs) < VP(7s),
Ve(m) < VP(m) for m € [mas,mi]. Since V(mss) = VP(mss), VP(7gs) = %, Thus
VP(m) = %5 for m € [ms, mj]. Consider m; € [}, T~ (n})]. Since T(m) € [mgs, 77],
VP(my) = W 4 pVP(T(m)) = % Since V* is increasing in m; along the axis con-
sidered, with V(r}) = VP(x}) and VP(m) = VP(x}) for m € 77, T~ (7})], we have
Ve(my) > VP(m) for m € [n5, T~ (7})]. Consider the first derivative of V?(m;) for

m € [T7H(x]), T2 (7))

%4 1 “ 1
V;lﬂ(‘l >|7r1 = ﬁ(p r)d(v;dﬂi ))|7r1(17—7“)+
< pp-ndml
S d(‘gﬂ(_ﬂ-l))‘m (A18>

where the first equality comes from T'(m) € [r5, T~ (7})] for m € [x}, T~'(n})] and
Ve(my) > VP(m) for my € [x}, T !(n})]. The second inequality uses the convexity
property of V% in the axis considered. Inequality (A.18) along with V*(T~(n})) >
VP(T=(7})) gives Ve(m) > VP(m) for my € [T~'(x}), T-%(r})]. Repeating the
preceding arguments for m; € [T7(x}), T~ (7*)] for [ = 2,3,... recursively, we
have V() > VP(m,) for m; € [xF,1] and V(m;) < VP(m,) for m; € |7y, 7t). If P such
am} € [mss, 1], then, since V* and V? are continuous functions with V%(mss) < VP(7mgs),

we have V(m) < VP(my) V 71 € [7ss, 1]. The proposition thus follows.
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proof of Lemma 5

Recall the definition of the u—step belief evolution operator: T%(z) = T(T™“~Y(x)) =
Tw=(T(x)) with T(z) = a2p+ (1 —z)r = 2z(p —r) +r and T°(z) = x for v € [0, 1]

and u € {0,1,2,...}. Forue {1,2,...}, z € [0,1],

T(p) = T V(pp+ (1 =T (p)r
T (z) = T%x)p+ (1—T"(x))r

Tp) =T (z) = (p—r)(T"D(p) = T"(x)). (B.1)

Thus if, for u € {1,2,...}, T V(p) — T%(x) > 0, then, since p > r, we have
T%(p) — T®*V(z) > 0. By induction, using p > T(z) = ap + (1 — z)r for any
z € [0,1], we have T%(p) > T""!(x) for any v € {0,1,2,...} and = € [0,1]. The
second inequality in the lemma can be proved along the same lines using r < T'(z) =
xp+ (1 —a)r.

Consider the third inequality. By definition, for any =,y € [0, 1], T"(x) — T"%(y) =
(p—r)(T@ Y (2) = T® 1V (y)). Thus, if 7Y (z) =T Y(y), then T%(x) —T"(y) > 0.
When z > y, by induction, T%(z) — T"(y) > 0 for any v € {0,1,2,...}. This
establishes the third inequality.
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Considering the last inequality, the belief evolution operator can be expressed as

() = T(T" V() = T(T(T"(2)))

u 1—(p—r)*
= =) (A
ST e Ty B2
foru € {0,1,2,.. .} and z € [0,1]. Thus T"(p) = == + (P — r)“[%]. Note
that, since p > r, T%(p) > o s 8 Also, T"(r) = o) —(p—r)“[l(f(_pr_):)} < T

This establishes the last inequality in the lemma.

B.2 Proof of Proposition 6

Let N = 3 users. Assume a deterministic ARQ delay of one time slot, i.e.,
Pp(d=1)=1and Pp(d# 1) =0. Let m = 4 and the users be indexed in decreasing
order of their initial beliefs, i.e., m,,(1) > m,(2) > m,(3). The net expected reward
corresponding to the greedy policy is given by

Vil A&bioy) = ma(1) + T(ma(1)

~ ~

+ Ef4\7f47a4=1 [R2] + Ef3,f4\7f47a4=1,a3=1 [Rl] (B.3)

Note that since the delay is one slot, the first ARQ feedback comes at the end of
slot 3. Thus, the greedy decision in both slots 4 and 3 is user 1. Also, the greedy
scheduler has access to feedback f, only, at the beginning of slot 2 and both feedback
f1 and f3, at the beginning of slot 1. Therefore, Ry is averaged over f; and Ry is
averaged over f; and f3. The average total reward under greedy policy can thus be
evaluated by averaging over all realizations of f; and f3. Table B.1 lists the belief
values of the three users in slots 2 and 1 for various values of {f,, f3} along with the
greedy decisions and immediate rewards in slots 2 and 1. Note from the table that
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the belief value 7y at slot 2 is a function of f; only, while m; at slot 1 is a function of
both f4 and f3, consistent with the preceding discussion.
The probabilities of occurrence of the various realizations of { f4, f3} are summa-

rized below

(U it {f £y} = {11}
. 774(1)(1_29)7 if {f4>f3}:{170}
PUSBI=Y 0 myr it (o) = {0,1) (B4)

(1 =m(1)(X—r), if {fs, fs} ={0,0}.
Thus the net expected reward under the greedy policy is given by

Vi(ma, {Qk o) = ma(1) + T(ma(1)) + ma(1)p(2T(p))
+m(1)(1 = p)(T(p) + T%(74(2)))
+(1 — g (1)) (T*(m4(2)) + T(p))

+(1 = ma (1)) (1 = r) (T*(ma(2)) + T%(74(2))) (B.5)

Now, with aj indicating the optimal decision in slot £, consider the following policy
@k such that a, = 1,a3 = 2, a2 = a3,a; = aj. Since the ARQ delay is deterministic
and equals one slot, the decision in slot 2 does not affect the reward in slot 1. Thus
the greedy policy is optimal in slot 2. Trivially, greedy policy is optimal in slot 1, as

well. Thus a3 = a9, a] = a;. The average total reward under @, is given by

Vi(ra, A@k o) = (1) + T(74(2) + Epyryamt [Re]

+ Efs,f4|7f47a4=1,a3=2 [Rl]

~

= 7'[‘4(1) + T(7T4(2)) + Ef4\7r4,a4=1[R2]

~

+ Efs,f4|7r47a4=1,a3=2 [Rl] (B'6)

We evaluate Vj(my, {8, }2_,) along the lines of the greedy net expected reward evalua-
tion. Table B.2 summarizes the beliefs, scheduling decision a; and immediate rewards
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{f47 fS} 9 at slot 2 &2 Rg T at slot 1 &1 él

T(p) T(p)
{11} T?(ma(2)) 1 T(p) T3(m4(2)) 1 T(p)
[T%(m4(3))] [T5(ma(3))]
T(p) T(r)
{1,0} T?(m4(2)) 1 T(p) T?(m4(2)) 2 | T%(m(2))
[T*(ma(3)) ] [T5(ma(3)) ]
T(r) T(p)
{0,1} T?(m4(2)) 2 | T*(ma(2) | |T3(ma(2)) 1 T(p)
[T2(ma(3)) ] [T (ma(3)) ]
T(r) T(r)
{0,0} T?(m(2)) 2 | T*(ma(2)) | |[T3(ma(2)) 2 | T%(m(2))
T2 (m4(3)) | T°%(74(3))

Table B.1: Belief values, scheduling decisions, immediate rewards in slots 2 and 1 for
various realizations of ARQ feedback under the greedy policy.
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{fa, f3} | meatslot2 | a Ry m atslot 1 | ag R
[ T(p) ] [ T2(p)
{1,1} T?(ms(2)) 1 T(p) T(p) 2 T'(p)
| T2 (m4(3)) ] | T°(m4(3)) ]
[ T(p) ] [ T(p) ]
{1,0} T?(ma(2)) 1 T(p) T(r) 1 T*(p)
|72 (m(3)) T (ry(3))
T(r) T%(r)
{0,1} T*(ma(2))| | 2 | T%(ma(2)) T(p) 2 T(p)
|72 (ma(3))) |73 (r4(3)
T(r) T%(r)
{0,0} T?(m4(2)) 2 | T?(m4(2)) T(r) 3 | T%(m(3))
| T%(ma(3)). | T%(ma(3))

Table B.2: Belief values, scheduling decisions, immediate rewards in slots 2 and 1 for
various realizations of ARQ feedback under policy @y.

in slots 2 and 1 for all the realizations of {fy, fs} when {a4,as} = {1,2}. Users are

once again ordered according to their initial belief values, i.e., m4(1) > m4(2) > m4(3).

Note from the table that the belief value 7y at slot 2 is a function of f; only, while

m at slot 1 is a function of both f; and f3, consistent with the ARQ delay profile.

The probabilities of occurrence of the various realizations of {fy, f3} when a4 =

1, a3 = 2, are summarized below.

P(f47 f3) =

ma(1)T(74(2)),
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if {fa, fs} = {1,0}

(B.7)

if {fa, fs} = 40,1}

if {fs, fs} ={0,0}.



p r G Vil A@}2)) | Valma {QYZ) | Valma, {@2)
—Vi(ma, {A}1_))
[0.5216]
0.9308 | 0.1797 | [0.5130 2.6368 2.6141 0.0227
0.3305
[0.3416 ]
0.8875 | 0.0186 | {0.3310 1.6155 1.5454 0.0701
0.2648 |

Table B.3: Sample system parameters when the greedy policy is suboptimal. Number
of users N = 3, deterministic delay D = 1, horizon m = 4 is used.

Thus, the net expected reward under policy a, is given by

Vi(ma QY1) = ma(l) + T(ma(2)) + ma(1)T(m4(2)) (27 (p)
+m(1)(1 = T(ma(2) (T (p) + T*(p))
+(1 = (1)) T (74(2) (T%(ma(2)) + T(p))
(1 = ma(1))(1 = T(ma(2))) (T (m4(2)) + T(ma(3)))

(B.8)

We now proceed to show that, for N = 3, deterministic ARQ delay D = 1 and
horizon m = 4, 3 p,r, 74 such that the net expected reward corresponding to policy

a, is strictly higher than that of the greedy policy. The difference in reward, after
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algebraic manipulations is given by

Va(ma, {@Hy) = Vilm, {31
= () (7a(2) — m(1)

+(p—1r)*(1 — 7r4(1))7r4(3)(1 —r—(p— r)7r4(2))). (B.9)

For the special case m4(1) = m4(2) = =, we have

N[

Vi(ma, {@YLy) — Valma, {@}20)

_ ;”3 (1 _F "5 T>7r4(3) (B.10)

For any p < 1, since p > r, Vi(ms, {A}_,) > Vi(my, {@Y2_,) V m4(3) > 0. With the
net expected reward of the optimal policy being no less than Vj(my, {@}izl), we see
that the greedy policy is not in general optimal. Table B.3 lists a few other values of

p, r, 4 for which the greedy policy is suboptimal. This establishes the proposition.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Proof of Lemma 6

Let 3 =31 B2 (3)F, with 8; < 3, < 33. Consider the inequality ps3 > pa3. This

can be rewritten as,

B1ps1 + Bapsa + Bspss > Pibar + Bapaz + Bapas
& Bi(pst —pa1) = Pa(pee — ps2) + Bs(p2s — ps3)

& fi(par —p31) < —Pa(paz — p32) + B3(pss — pas) (C.1)

Since 3, > (31, it is now sufficient to prove Ba(pa1 —p31 +paz —p32) < B3(pss —pas3), ie.,

B2(p33 — pa3) < B3(ps3 —peg) which is indeed true. Consider the inequality po3 > p1/,

Bip2a1 + Bopas + Bapas > ipin + Bapiz + Bapis

& B +p23(53 - 52) - p21(52 - 51) > 3 +P13(ﬁs - ﬁz) - pll(ﬁz - ﬁl) (C-Q)

The last inequality is indeed true, since po3 > p13, po1 < p11 and B3 > B > (1. Thus

if 1 < [ < B3 and 8=[6 B2 B5]7,

P33 > p2ff > p18 (C.3)
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We can write, for i € 1,2,3, p;P*"'a = p;[p1P*a poP*a psPfa]’. Thus if
p1Pfa < pyPFa < psPka, we have, using (C.3), py P*a < poPFla < p3PFla.

Since a; = 0 < g < a3 = 1, the lemma is established using induction.

C.2 Proof of Lemma 7 and Lemma 8

Consider ngk+1Oé = pglplpkOZ —|—p32p2PkOé —|—p33p3PkOA. Since plpkOZ < pQPkOZ <

p3P*a from Lemma 6, we have ps P**la < p3P*a. Lemma 8 can be proved similarly.

C.3 Proof of Lemma 9

Let poP*[001]7 < poPE1[001]7. Multiplying both sides by py; and adding to

both sides po;p1 PF71001]7 + pasp3 PF~1[001]7,
P21P1Pk_1[001]T +p22p2Pk[001]T +p23p3Pk_1[001]T < pzpk[om]T (C‘4>

If we show that pa1p1 P¥[001]" 4 pasps P¥[001]" < parp1 PF71001]" 4 pasps PF~1[001]7,
then using (C.4), pa1p1 P*[001]" + paapa PF[001]7 + posps PF[001]" < po PF[001]7, e,

po P*H1001]7 < po P¥[001]7. Consider the inequality

leplpk[()Ol]T +P23P3Pk[001]T < p21P1Pk_l[001]T +P23P3Pk_1[001]T
& paPP001])T — pogepa PF001]Y < paPF[001]7 — pagopa P [001]7
& po(PFH001]T — PF001]T) < paa(paPF[001]T — poPP1001]7)

= po PF001)T < pyP*[001]" (C.5)

where the last inequality is from the initial assumption that po P*[001]7 —p, P1[001]7 <
0.

With po PH001]T < paPO[001]7, i.e, p2P[001]7 < po3, using induction, we have
the pa PEH1[001]T < poP*[001]T Wk > 0. Since steady state exists, by the definition
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7TSS

of steady state, limy,_ .o, P* = |7y |. Thus palimg_.. P*[001]7 = m.(3) and 7,,(3) <
7TSS

P23 by the monotonic decrease property of poP¥[001]7. Also note that the direction

of the inequalities throughout this proof can be changed and we can prove that
p2P*[001]7 monotonically increases to mss(3) as k — oo if poP[001]7 > pys. This
establishes that paP[001]T < po3 is a necessary condition for the first part of the

Lemma to hold.

C.4 Proof of Proposition 15

Let the probability transition matrix satisfy the following conditions:

P12 = D22 = P32 (C.6)

P23P31 = P21P13 (C.7)

The preceding inequality along with condition (C.6) is equivalent to condition (A)
in Lemma 9. Thus under (C.6) and (C.7), both Lemma 9 and Lemma 10 hold
true. From Lemma 9, pa3 > mss(3). From (C.6), 7ss(2) = pog. Thus poa — mgsav =
PaaQa + Poz — Tss(2) g — Tys(3) = pag — ss(3) > 0. The system is thus type 1.
Consider a control interval m > 1 with belief vectors 7,1, T, 2 and action a,,. If
we can show for any m that, assuming the greedy policy will be implemented in all
the future control intervals, the greedy policy is optimal in control interval m, then
using induction from interval 1, where greedy is indeed optimal, we could establish
the long term optimality of the greedy policy. Let {Qy}r<m—1 = {@k}kgm_land let Sy,

be the state vector such that Sk (i) is the state of the channel of user 7 in interval k.
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We rewrite the net expected reward as follows

vm(ﬂ-m,lv Tm,2, {CLm, {gk}kgm—l}) = Tma,%

+ Z PSm\ﬂm’1,7rm’2(Sm|7Tm,1> 7Tm,Z)‘A/m—l(Sma dm—l)a
Sm

where Vm_l is the expected future reward conditioned on the state vector in control
interval m. The hat on this quantity emphasizes the use of the greedy policy in all
E<m—1. Ps,|rnimma(Sm|Tm1,Tmz2) is the conditional probability of the current
state vector S, given the belief vectors 7,1, mp2. The scheduling decision in the
next control interval, a,,_1, is based on the greedy policy and is a function of the ARQ
feedback received in the current control interval k, i.e., Sy, (a.,). The decision logic
was summarized in Proposition 10. We now proceed to compare the net expected
reward when a,, = 1 and a,, = 2. The net expected reward when a,, = 1 is written

as follows,
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vm(ﬂ-m,h Tm,2, {am = 17 {ﬁk}kgm—l})

+PSm|7rm,177rm,2 (Sm = [1 2] ‘ﬂ-m 1 ﬂ-m 2)‘71%—1 Sm

+PSm|7rm71,7rm72 (Sm = [1 3”7Tm,17 7Tm,2)‘7m—1 Sm

+PSm|7rm71,7rm72(Sm = [2 3]|7Tm,1a 71-m,Q)‘Afm—l Sm

+PSm|7rm,177rm,2(Sm - [3 1]|7Tm71’7rm72)‘7m_1 Sm

A

+PSm|7rm71,7rm72 (Sm = [3 2”7Tm,17 7Tm,2) m—1 Sm

A

(

(

(
+Ps, iz (S = (2 2] T, Ton2) Vine1 (S

(

(

(
+Ps, i1 mms (Sm = [3 3] Tm1, Tn2) Vine1(Sm

(C.8)

Note that the scheduler uses the information of the state of the scheduled user (user 1)

alone in the scheduling decisions, consistent with the problem setup. Also note that

when S,,(1) = 2, the schedule is retained. This is consistent with the implementation

structure of the greedy policy seen in Proposition 10, where the scheduler retains the

scheduling choice even Fy is received. As was discussed in the same proposition, this is

a greedy decision only if an user was never dropped in the past for giving feedback F.

Since we are restricting to the class of schedulers that retains the schedule when Fj3

is satisfied!?, this is indeed a greedy decision. Since the Markov channel statistics are

identical across the users, we have Vk(SkH = [z y],ar = 1]) =V (Sk+1 =y x],ar =

2]). Expanding the net expected reward when a,, = 2 along the lines of (C.8) and

1"This is the only instance in the proof where we constrain the search space.
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using the preceding symmetry property, we have,

Vin (T 1, T 20 {0 = 1 Bk Y rem-1}) = Vi (Tt T 2, {0m = 2, (B bozm1})
= Tm1Q — T 2@
+[Vm_1(5m = (32 dmt = 1) — Vit (S = 2 3], iy = 1)} X
[ﬁm,l(g)wmg(z) . wm,l(z)ﬂm,g(g)] (C.9)

Let a,, indicate the greedy choice among the users in the current control interval, i.e.,
Q= argmax;e1 2 Ry (7). Let @, indicate the other user. The net expected reward

can now be rewritten as,

vm(ﬂ-m,lv Tm,2, {am = &mu {gk}kgm—l}) - vm(ﬂ-m,lv Tm,2, {a'm = dmu {gk}kgm—l})
= Wm’dma — Wm,@ma

[Vt (S = 8.2ty = 1) = Vi1 (S = 28], a1 = 1)

[ﬁm,&m(g)ﬂm@m(z) — T ()T (3)} (C.10)

where, by definition, 7, 4,0 > T, 4,,. We now proceed to show that the quantity
Vi1 (Sm = 3 2s@m1 = 1) = Vip1 (Sey = [2 3], @1 = 1) is non-negative. With
Vi (Sk+1 =[x y]) = Vk(5k+1 = [z y],ar = 1), and expanding Vi (Sm =z y]) along

the lines of (C.8) with m,_11 = p, and 7,12 = p, and a,,—; = 1, we have the

following.

A

Vin1 (S = 3 2]) = Vi1 (S = [2 3])
= p3a—p2v+ [Vm—z(sm—l =[32]) = Vin—2(Sm-1 = [2 3])} (P33p22 — Pa3p32)
(C.11)
By the property of the P matrix, p33 > po3 and pos > p3o. Also, we have seen in
Lemma3 that 73 > ro > ry. Thus if V,,_ (Sm_1 =13 2]) — Voo (Sm_1 =12 3]) >

181



0, then V,,_ (Sm ) — Vm_l(Sm = [2 3]) > 0. Expanding Vm_g(Sm_l =
V

32]) -

Vi(Sm = [32]) - 1( = [23]) = r3 —ry > 0, by induction, we can show that

(Sm 1 2 3]) > 0 along the lines of (C.11) repeatedly and using

Vi 2(5m 1 =[32]) = Vieo(Smo1 = [23]) > 0. Thus Vyoy (S = [32]) = Vit (S =
2 3]) > 0. Applying this inequality in (C.10), we see that the optimality of the
greedy policy (in the specified class of policies) can be established if we show that the

following condition (condition (S)) holds:
ﬂ-m,dm (3)7Tm7d7rl(2) Z ﬂ-my&m(2)ﬂ-mydm (3) (012)

It appears that the preceding condition is too generic to hold true. However, by
constraining the belief vectors to the set of values that will be encountered in the
ARQ based scheduling problem, we will now show that, (C.12) indeed holds true.

We first introduce the following result: From Lemma 9, po P*[001]7 monotonically
decreases to m,[001]T = 7,,(3) as k increases. Since paP¥[010] = poy = 7s(2), the
expected reward from an user given the channel of the user was in state 2 k + 1
intervals earlier, given by, poP*a = a(2)7s(2) + p2P*[001]” monotonically decreases
to w0,

We proceed with studying the sufficient condition under various belief vectors
encountered in the ARQ based scheduling problem. Assume the scheduling process
has begun in a control interval earlier than m and is performed uninterrupted till
the horizon, i.e, control interval 1 - assumption (A)*®. The belief vector of the greedy

18Note that there is no loss of generality in this assumption for the following reason: The problem
setup and the optimality analysis of any policy implicitly assumes uninterrupted scheduling until
the horizon. This is to be in tune with the interval to interval evolution of the underlying Markov
chains. Thus when the uninterrupted scheduling process begins at a control interval M, for all
m < M condition (A) is satisfied automatically. In the control interval M, however, part of the
condition, i.e, scheduling process began earlier, does not hold. But at the origin, i.e., the control
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choice a,, and the other user a,,, for the type I system under consideration, falls

under one of the following cases.

e 1. User a,, was scheduled in the previous control interval, m+1, and had given a
feedback F3. The belief vector m,, 4, = ps. The other user was either scheduled
in k+1 control intervals earlier (with & € 1,2, ...) with any of the three possible
feedback or was never scheduled in the past. Thus the belief vector of a,, is
of the form p;P* with i € 1,2,3 and k € 1,2,.... Note that if @,, was never

scheduled in the past, then 7, 5,, = 7, which still falls in the preceding form.

e 2. User a, was scheduled in the previous control interval and had given a
feedback Fy. User a,, was either scheduled k 4 1 control intervals earlier (with
k €1,2,...) with any of the three possible feedbacks or was never scheduled in
the past. The belief vectors are given by 7,4, = p1 and 7,4, = p:P* with

1€1,2,3and k€ 1,2,....

e 3. User a, was scheduled in the previous control interval and had given a
feedback F,. User a,, was scheduled k + 1 control intervals earlier (with k €
1,2,...) with feedback F; or was never scheduled in the past. The belief vectors

are given by T4, = P2 Tma, = p1P* with k € 1,2,.. ..

e 4. User a, was scheduled in the previous control interval and had given a
feedback F,. User a,, was scheduled k + 1 control intervals earlier (with k €
1,2,...) with feedback F,. The belief vectors are given by 7,4, = P2 Tm.a,, =
poP* with k€ 1,2,....

interval M, the belief vectors of all the users take the steady state value, mss. Thus, by all symmetry,
the question of what scheduling decision to make and hence the question of the optimality of the
greedy policy at M becomes irrelevant.
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e 5. User a, was scheduled in the previous control interval and had given a
feedback Fy. User a,, was scheduled L+ 1 or more control intervals earlier with
feedback F3. L is the number of coherence intervals such that, reward expected
from an user that was observed to be in state 2 in the previous control interval
is higher than the reward expected from an user that was observed in state 3

k + 1 control intervals earlier iff £k > L. Mathematically, L is such that,

paa > psPraif k> Lpsa < psPfaif k< L (C.13)

Note that such an L exists since poa < psa and both psP*a and psPFa
monotonically decreases (with k) to mssa < poa. The belief vectors are hence

given as My, 4, = P2, Tm.am = psPF with k > L.

e 6. User a, was scheduled in the previous control interval and had given a
feedback F5. User a,, was scheduled k41 control intervals earlier with feedback

Fy with k < L. The belief vectors are as follows: 7,5, = p3sP* with k < L and

Tm,am — P2-

The above list is exhaustive. In fact, cases 5 and 6 will never appear since we
are considering the class of schedulers that never drop an user when it sends an Fj.
However, we will show that even for these cases the sufficient condition is satisfied.
In all the above 6 cases, R,,(d,) > Ry(am) as required by the definition of a,,. We

now focus on the sufficient condition (S) for each of the above cases.

e 1. Sufficient condition (S) is given as follows:

ﬂ-m,dm (3)7Tm7dm (2)

v

ﬂ-m,dm (2)7Tm7dm (3)
i.e., psspiPF[010]7 > paopi PF[001]7,Vi € 1,2,3, k€ 1,2,... (C.14)
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Since pia = pog = P32, we have

p; P*[010]" = p1a = pog = psaVi € 1,2,3, k€ 1,2,... (C.15)

Also, Pz’Pk[OOl]T = Pz’Pk_lP[OUl]T = pipk_l[pl?, D23 p33]T < ps3, since pzz >

pa3 > p13 by the property of the P matrix. Thus (S) holds for case 1.

2. (9) is as follows: p; P*[001]7p1o > ps P*[010]Tp13, Vi € 1,2,3, k€ 1,2,.. ..

From the symmetry property (C.15), p1o = p; P*[010]7. Also since pi3 < po3 <

p33 we can show p; P¥[001]7 > p13. Thus (S) is satisfied for case 2.

3. (S): pasp1 PY[010]7 > poop; PF[001]T. From Lemma 10, p; P¥[001]7 mono-
tonically increases to mgs(3) as k increases as 0,1,2,.... Since pag > 7ss(3)
(using Lemma 9), we have poz > p;1 P*[001]7. Also, p; P*[010]7 = poy from the

symmetry property in (C.15). Thus (S) holds for case 3.

4. (S): pasp2PF[010]T > paopoP*[001]7. From Lemma 9, poP¥[001]7 mono-
tonically decreases from po3 to ms(3) as k increases as 0,1,2,.... Thus py3 >
poP¥[001]7. This inequality along with the symmetry property (C.15) estab-

lishes (S) for case 4.

5. (S): paspsP*[010]7 > paop3 P*[001]7 with k > L. Note that for all k > L,

p2a > ngka
= Qopg + P23 = angpk[Ol()]T + ngk[001]T

= poy > p3Pt001)" (C.16)
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where we have used the symmetry property ps; = p3P*[010]7 in obtaining the
last inequality. (S) is established by using the symmetry property along with

the preceding inequality.

e 6. (S): p3P*[001])Tpey > p3P*[010] o3 with k < L. For k < L, poa < p3PFa.
Expanding both the sides along the lines of case 5 and using the symmetry

property of (C.15), (S) can be established for case 6.

Thus the sufficient condition for the constrained search space optimality of the

greedy policy is satisfied.
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APPENDIX D

PROOFS FOR CHAPTER 5

D.1 Proof of Lemma 12

Let condition (D.2) be true. Let m > 1 be fixed. Since, by assumption, m;, (n) >

T, (n+1) Vn e {1...Fy — 1}, we have from (5.13),

Vi (i, {ar, = n, 48 eema1)) > Vi (m {ae, =n+1,{@, em1}).

Therefore,

‘/tm (ﬂ-tnm {atm = a‘rg mla’X 7Ttm (Z) = 17 {gtk}kﬁm—l})

> Vi (m, {an, € 2. Fob {@, Jucmo}):
We now have the following statement:

If v, €[0,1]7,

m—1

{gtk}kﬁm—l = arg max ‘/tmfl (Trtm717 {gtk}kﬁm—1)7
t Sk<m-—1

then vV, € [0, 1]F2,

(@, hem = arg_max Vi (m,, (@ rcm): (D.1)

t Sk<m

187



Since ﬁtl —arg maxg, Vi, (e, Ay, ), Vg, € 10,172, using (D.1), by induction, we have

{@tk}kgm = arg max Vi (m,,,{Q k<m) YR 2>m>1m, €0, 1]F2.

tL }kgm

The lemma thus follows.

D.2 Proof of Proposition 16

We begin by establishing that the sufficient condition for the optimality of the
greedy policy on the sporadic time axis t, in fact holds. Consider a realization of the
channel states of the F; users on the time axis t,,_1, m < n. Denote it by {R,4,j},
where 7, 7 indicate the channel state of users n + 1 and F3, respectively, at time t,,_1
with R indicating the rest of the channel state realization. We can rewrite the second

quantity of the sufficient condition as follows.
Vi (LY OX)[1...B]) = V. (YO0X1],[F1...F,—1])

Define V,({R,1,j}) as the reward accrued from time t,,—; on the sporadic axis when
the channel states have a realization {R,%,j} and the greedy policy is implemented
in the order [1... Fy] from slot ¢,,—1. Let V,({R,4,j}) be similarly defined with the

order given by [Fy,1...Fy—1|. Let P({3,j}[{k,l}) = P(S;,, ,(n+1) =14, S, ,(F) =
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JlS:,, (n+1) =k, Sy, (Fy) = 1). The sufficient condition can now be rewritten as below.

Vi (Y 1X0,[1...R) -V, (1Y 0X],[1...5])

= Z P(R|Stm(1> tt Stm (n) = Y? Stm (n _I_ 2) tt Stm(F2) = X) X
R

(P({l, 0}{1,0)Va({R,1,0}) = P({0,1}[{0,1})V,({R, 0, 1})
+ P({0, 1}{1, 0H)Va({R, 1,0}) — P({1,0}[{0, 1})Vs({R, 0, 1})
+ P({0,0}{1,0)Va({R, 1,0}) = P({0, 0}[{0, 1})V5({R, 0,1})
+ P({1, 1H{1, 0H)Va({R, 1,0}) — P({1, 1}[{0, 1})V,({R, 0, 1})>
= p(1=7)(Va({R, 1,0}) = Vo({R,0,1}))
+ (1 =p)(r)(Va({R,0,1}) = V,({R,1,0}))
+ (1 =p)(1=r)(Va({R,0,0}) = Va({R,0,0}))

—l—pT(‘/;({R,l,l}) - %({Rle}))' (DQ)

It has been shown in [45] that when greedy policy is implemented in orders [1... Fy]
and [Fy,1...F; — 1], the difference in reward accrued, for any fixed realization, is
upper bounded by 1. The sample path argument used in the proof works for the
non-sporadic axis as well, as long as §, > ; for k > [, which is indeed true. Thus
Vo{R,1,5}) — Vi({R,1,75}) < 1 for any {R,i,j}. Notice that since the realization
is fixed and since V,({R,%,j}) schedules user 1 first, the value of j does not affect
Vo Thus V,({R,i,1}) = V,({R,4,0}). Similarly V,({R,1,;}) = V;,({R,0,}). Using
these observations in (D.2), we show the sufficient condition holds. Similarly, a" is

optimal on the sporadic axis {h,h—1,...1} —t,. The proposition is thus established

from Lemmas 11 and 12.
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