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ABSTRACT

We consider the effect of mobility on a wideband direct sequence spread spectrum

(DSSS) communication system, and study a scale-lag Rake receiver capable of leverag-

ing the diversity that results from mobility. A wideband signal has a large bandwidth-

to-center frequency ratio, such that the typical narrowband Doppler spread assump-

tions do not apply to mobile channels. Instead, we assume a more general temporal

scaling phenomenon, i.e., a dilation of the transmitted signal’s time support. Based

on a uniform ring of scatterers model, we determine that the wideband scattering

function, which quantifies the average scale spreading, has a “bathtub-shaped” scale

profile. We investigate, through frame-theoretic tools, the translation- and dilation-

spacing parameters of a scale-lag Rake basis, and compare the performances of a

scale-lag Rake and a Doppler-lag Rake, each capable of leveraging the diversity that

results from mobility. When the translation spacing of the Rake functions is equal to

the minimum resolvable lag, there is no significant performance difference between the

receivers. For wider spacings, the receiver is more reliant on dilation diversity; hence,

the scale-lag Rake receiver performs relatively better. Such analysis applies, for ex-

ample, to ultra-wideband (UWB) radio frequency channels and underwater wideband

acoustic channels.

We study the correlation structure of the scale-lag Rake fingers and show that

the normalized scale spread parameter relates directly to the time-variability of the
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channel. We discover that much of the channel energy is concentrated in few eigen-

modes and hence propose principal components combining for a reduced-complexity

solution. Finally, we perform physical experiments in the air-acoustic channel to

demonstrate the applicability of the wideband channel model.
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CHAPTER 1

INTRODUCTION

Wideband communication systems are defined by a ratio of single-sided band-

width to center frequency in excess of 0.20 [92] [20]. We are interested in studying

the effect of mobility (i.e., temporal variation in the physical geometries between

transmitter, receiver, and scatterers) on wideband communications systems and in

designing transceivers capable of leveraging the potential diversity gains that result

from multipath propagation in mobile environments.

First, it is important to note that the combined effects of multipath and mobility

on wideband systems are quite different than those on their narrowband counterparts.

For example, in narrowband systems with a dense ring of scatterers surrounding the

receiver, mobility imparts a spreading of the signal in the frequency-domain that is

commonly referred to as Doppler spreading [75, p. 809]. Considering a wideband

system employing orthogonal frequency division multiplexing (OFDM)1 with narrow

subcarrier bandwidths in the same physical environment, mobility implies that each

subcarrier signal will experience Doppler spreading, but the amount of spreading

will vary from one subcarrier to the next [83]. In wideband communication systems

1For a listing of all acronyms used in the text, see Table 1.1.
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employing direct sequence spread spectrum (DSSS)—the focus of this manuscript—

the effects of mobility in the multipath mobile environment are not well described by

frequency-domain spreading, but rather by scale spreading. Note that scale-spreading

is actually a general concept that applies to both narrowband and wideband systems.

For example, changing the time scale of a single sinusoid is equivalent to shifting the

signal in frequency. By scale spreading, we mean that several copies of the transmitted

signal combine at the receiver, each with a different dilation of the time support of

the original signal. In addition, each copy may be temporally delayed by a different

amount.

When the different propagation paths are characterized by independent dilations

and delays, the fading inherent to multipath propagation can be mitigated by using

diversity reception. For wideband DSSS signaling, we propose a scale-lag Rake re-

ceiver that extracts this diversity.2 The scale-lag Rake employs a basis composed of

shift-dilates of the transmitted waveform in order to match the scale-lag spreading in-

duced by the wideband channel. In general, the transmit waveform could be designed

to optimally extract the scale-lag diversity; however, for practical considerations, we

constrain the transmit waveform to be a DSSS signal.

We investigate, through frame-theoretic tools, the translation- and dilation-spacing

parameters of a scale-lag Rake basis, and compare the performances of a scale-lag

Rake and a Doppler-lag Rake [85], each capable of leveraging the diversity that re-

sults from mobility. When the translation spacing of the Rake functions is equal to

the minimum resolvable lag, there is no significant performance difference between

2The possibility of a scale-lag receiver was mentioned in [5], but no details were developed.

2



the receivers. For wider spacings, the receiver is more reliant on dilation diversity;

hence, the scale-lag Rake receiver performs relatively better.

The analysis can be applied to radio frequency ultra-wideband (UWB) systems

[101] as well as to underwater acoustic systems [26].

1.1 Outline and Contributions

The background chapter and main contributions are outlined as follows. (The

main results of this dissertation are documented in [63], [64], [65], and [66].)

Background (Chapter 2)

After introducing the direct-sequence spread-spectrum (DSSS) waveforms used

in this dissertation, we review the time-varying channel and discuss the narrowband

baseband model and the wideband model. We analyze the Rake receiver and define

fading and diversity reception. Previous work in electromagnetic and underwater

acoustic is reviewed with a specific discussion of the narrowband canonical model [85]

and wideband canonical model [5].

Scale-Lag Rake Receiver (Chapter 3)

We define the scale resolution for a DSSS signal and specify scale-lag basis func-

tions to be used in the scale-lag Rake receiver. We derive close approximations for the

wideband ambiguity function, and we propose a reduced-complexity scale-lag Rake

receiver. Finally, we show connections to Radar, Sonar, and wavelets.
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Frame Theory and the Scale-Lag Rake Receiver (Chapter 4)

After a brief introduction to frame theory, we define and analyze average frame-

bounds for a DSSS waveform. We use the average frame bounds as a guideline for

determining the translation and scale spacing of the scale-lag basis used in Chapter 5.

We provide numerical average frame bound results for a DSSS waveform using a

second-derivative Gaussian chip pulse.

Scale-Lag Diversity (Chapter 5)

We derive the wideband scattering function, which quantifies the statistics of the

energy spread across dilation and delay, and make a numerical performance compari-

son of the scale-lag Rake receiver with the Doppler-lag Rake and conventional lag-only

Rake receiver. The numerical results use a second-derivative Gaussian chip-pulse.

Rake Receiver Finger Correlation Structure (Chapter 6)

We study the time-variation of the scale-lag Rake receiver channel coefficients.

This is done by computing the autocorrelation between time-samples of scale-lag

Rake fingers. We find that the Rake fingers are approximately stationary for short

periods of time and that the amount of variation is inversely proportional to the

wideband channel scale spread. Chapter 6 also investigates the principal components

combiner, which learns and tracks the low dimensional signal eigenspace. Finally, we

provide acoustic experiments to study the wideband channel.

Conclusions (Chapter 7)

In Chapter 7 we provide a short conclusion and suggest future research directions.
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ADC Analog to Digital Converter
AR Auto Regressive
AWGN Additive White Gaussian Noise
BEM Basis Expansion Model
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CSI Channel State Information
CWT Continuous Wavelet Transform
DAC Digital to Analog Converter
DC Direct Current
DSSS Direct-Sequence Spread-Spectrum
FCC Federal Communications Commission
FDTD Finite Difference Time Domain
GHz Gigahertz
IEEE Institute of Electrical and Electronics Engineers
ISI Inter-Symbol Interference
LPF Low-Pass Filter
LMS Least Mean Squares Algorithm
MAP Maximum A Posteriori
MHz Megahertz
MMSE Minimum Mean Squared Error
MRC Maximal Ratio Combining
MSE Mean Squared Error
OFDM Orthogonal Frequency Division Multiplexing
PCC Principal Components Combining
PN Pseudo Noise
RF Radio Frequency
RLS Recursive Least Squares Algorithm
RX Receiver
SNR Signal to Noise Ratio
TX Transmitter
UWAC Underwater Wideband Acoustic Communications
UWB Ultra-Wideband

Table 1.1: Acronyms used in the Dissertation.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce the direct-sequence spread-spectrum (DSSS) wave-

forms used in this dissertation and review the time-varying channel. We discuss the

narrowband baseband-equivalent model and the wideband model. We analyze the

conventional Rake receiver and define fading and diversity reception. Previous work

in electromagnetic and underwater acoustic is reviewed with a specific discussion of

the narrowband canonical model [85] and wideband canonical model [5].

2.1 Direct Sequence Spread Spectrum (DSSS) Signal

The text has referred several times to Direct Sequence Spread Spectrum (DSSS)

signaling without a proper definition. In this section, we define the narrowband and

wideband DSSS waveforms and the information bearing transmit waveforms.

There are two main differences between narrowband and wideband signals. First,

the obvious difference is that the narrowband signal occupies much less bandwidth

than the wideband signal. We say that the narrowband signal operates in bandwidth-

limited regime, while the wideband signal operates in a power-limited regime (see [95]

for a discussion on the information-theoretic impacts of operating in either regime).
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Second, the wideband signal is directly transmitted at baseband, i.e., it is not mod-

ulated to a carrier frequency, while the narrowband signal has a complex-valued

baseband-equivalent representation that is modulated to a passband by a carrier si-

nusoid before transmission. Both of these differences are illustrated by Fig. 2.1, which

shows the spectra of typical narrowband and wideband transmit signals. Our con-

tributions concern mainly wideband signals, but we introduce narrowband signals to

provide background for the discussion of previous work and to motivate our research.

In the following, the narrowband baseband-equivalent quantities are denoted with

a tilde in order to reduce confusion with wideband quantities. For ease of reference,

the variables used throughout this chapter are outlined in Table 2.1.

• Narrowband baseband-equivalent DSSS waveform:

x̃(t) :=
1

√

Ñp

Ñp−1∑

i=0

c̃ip̃(t− iT̃o) (2.1)

• Wideband DSSS waveform:

x(t) :=
1

√
Np

Np−1∑

i=0

cip(t− iTo) (2.2)

In the narrowband case, p̃(t) is the narrowband baseband-equivalent chip waveform;

{c̃i}Ñp−1
i=0 is the narrowband pseudorandom (PN) chip sequence with ci ∈ {−1, 1};

Ñp is the number of narrowband chips; T̃o is the narrowband chip spacing. In the

wideband case, p(t) is the wideband chip pulse; {ci}Np−1
i=0 is the wideband PN chip-

pulse sequence, where ci ∈ {− 1√
q
, 0, 1√

q
}, and q is the probability of a non-zero chip

so that E[c2i ] = 1; Np is the number of wideband chip pulses; and To is the wideband

chip-pulse spacing. We refer to p̃(t) as a chip and to p(t) as a chip pulse.
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We assume the chip p̃(t) is approximately band-limited to W̃ Hertz (double-sided)

and is approximately time-limited to T̃p seconds. Likewise, we assume the chip pulse

p(t) is approximately band-limited to W Hertz (single-sided) and is approximately

time-limited to Tp seconds. We define fo to be the frequency of the spectral peak of

the wideband chip pulse.

For the wideband case, a discussion on the construction of ternary sequences see

[4, 17, 16, 102]. In [68], the authors study spreading sequences specifically for UWB

systems; the spreading sequences in this thesis are randomly chosen to facilitate the

analysis.

The DSSS waveforms are linearly modulated by information bits to create the

following transmit signals:

• Narrowband baseband-equivalent transmit signal:

s̃(t) :=

Nb−1∑

k=0

bkx̃(t− iTs) (2.3)

• Wideband transmit signal:

s(t) :=

Nb−1∑

k=0

bkx(t− iTs) (2.4)

where Ts is the DSSS waveform duration; {bk} are the bits with bk ∈ {−
√
Eb,
√
Eb},

Eb is the energy per bit; and Nb is the number of transmitted bits.

In general, we define s(t) as the signal output of the transmit antenna; hence, for

the narrowband case s(t) = Re{s̃(t)ej2πfct} where fc is the carrier frequency. The

transmit spectrum of example narrowband and wideband waveforms are shown in

Fig. 2.1.
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Quantity Description

x̃(t) Narrowband baseband-equivalent DSSS waveform.

p̃(t) Narrowband baseband-equivalent chip waveform.

{c̃i} Narrowband PN chip sequence, c̃i ∈ {−1, 1}.
Ñp Number of chips in narrowband PN sequence. Ñp :=

T̃s
T̃o

T̃o Chip spacing for narrowband baseband-equivalent DSSS waveform.

T̃p Approximate duration of narrowband baseband-equivalent chip.

W̃ Approximate double-sided chip bandwidth.

Nb Number of transmitted bits.

{bk} Transmitted bits, bk ∈ {
√
Eb,−

√
Eb}, where Eb is the energy per bit.

Ts DSSS waveform duration, same for wideband and narrowband signals.

x(t) Wideband DSSS waveform.

p(t) Wideband chip pulse.

{ci} Wideband PN chip-pulse sequence, ci ∈ {− 1√
p , 0,

1√
p}, E[c2i ] = 1.

Np Number of chip pulses in wideband PN sequence. Np :=
Ts
To

To Wideband chip-pulse spacing.

Tp Approximate wideband chip-pulse duration.

W Approximate single-sided bandwidth for wideband chip pulse.

fc Carrier frequency of narrowband passband transmit signal.

fo Frequency of spectral peak for wideband chip pulse.

vmax Velocity of mobile receiver.

c Wave propagation speed.

fmax Doppler spread (single-sided) of narrowband baseband-equivalent channel.

τmax Delay spread.

amin Minimum dilation of the wideband channel.

amax Maximum dilation of the wideband channel.

γmax Scale spread (single-sided) of wideband channel. γmax := amax−amin
2

h(t, τ) Time-varying channel.

H(θ, τ) Passband spreading function.

H̃(θ, τ) Baseband spreading function.

L (a, τ) Wideband channel kernel.

Table 2.1: Outline of various quantities.
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W

Figure 2.1: Spectrum of (a) narrowband baseband-equivalent signal modulated to a carrier
frequency of fc, and (b) wideband signal.

2.2 Wireless Time-Varying Channel Model

The input-output relationship of the time-varying wireless channel can be modeled

as

r(t) =

∫

h(t, τ)s(t− τ)dτ (2.5)

where the kernel h(t, τ) is the response of the system to a impulse at time t− τ and

s(t) is the input signal. For now, we assume the additive noise is negligible. The time-

varying impulse response h(t, τ) is the passband response; thus, all quantities in (2.5)

are real valued. By passband, we mean that all frequencies are passed except direct

current (DC), which cannot be coupled through free-space. The model (2.5) is general

in that h(t, τ) depends only on the time-varying physical channel geometry and not

on the input signal s(t); hence, it can be used to model the input-output relationship
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Figure 2.2: (a) Narrowband system with complex baseband-equivalent signal s̃(t), carrier
frequency fc, and low-pass filter G(f). (b) Wideband system. The passband time-varying
system kernel is h(t, τ).

of modulated narrowband baseband-equivalent signals (see Fig. 2.2(a)) or carrier-

less wideband signals (see Fig. 2.2(b)). We proceed now to derive the narrowband

baseband-equivalent model. Later, we review the wideband channel model.

2.2.1 Narrowband Baseband Channel Model

We now derive the time-varying narrowband baseband-equivalent model and point

out the implicit assumptions that are often made when deriving this model from

the general passband model (2.5). The channel is narrowband in the sense that the

bandwidth-to-center-frequency ratio is very small. A narrowband channel in this

sense can be frequency selective. Our goal is to obtain a simple expression for the
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complex-valued baseband signal, r̃(t) in terms of the complex-valued baseband input

s̃(t), which has double-sided bandwidth of W̃ ¿ fc. Along the way, we point out

assumptions that are often implicit in the literature.

From Fig. 2.2(a), the spectrum of the demodulated-filtered received signal r̃(t) is

easily seen to be

R̃(f) = G(f)R(f + fc), (2.6)

where R(f) is the spectrum of the received passband signal, whose time function r(t)

is written

r(t) =

∫

h(t, τ)s(t− τ)dτ, (2.7)

=

∫

h(t, τ) Re{s̃(t− τ)ej2πfc(t−τ)}dτ, (2.8)

=

∫ ∫

H(θ, τ)ej2πθtRe{s̃(t− τ)ej2πfc(t−τ)}dθdτ, (2.9)

=

∫ ∫
1

2
H(θ, τ)e−j2πfcτ s̃(t− τ)ej2π(fc+θ)tdθdτ

+

∫ ∫
1

2
H(θ, τ)ej2πfcτ s̃∗(t− τ)e−j2π(fc−θ)tdθdτ, (2.10)

whereH(θ, τ) is the passband spreading function obtained by taking the Fourier trans-

form of h(t, τ) with respect to the time variable t. We proceed by taking the Fourier

transform of the received signal (2.10)

R(f) =

∫ ∫
1

2
H(θ, τ)S̃(f − fc − θ)e−j2π(f−θ)τdθdτ

+

∫ ∫
1

2
H(θ, τ)S̃∗(−f − fc + θ)e−j2π(f−θ)τdθdτ, (2.11)
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and substitute (2.11) into (2.6) to obtain the spectrum of the demodulated-filtered

received signal

R̃(f) =

∫ ∫
1

2
H(θ, τ)e−j2πfcτG(f)S̃(f − θ)e−j2π(f−θ)τdθdτ

+

∫ ∫
1

2
H(θ, τ)e−j2πfcτG(f)S̃∗(−f − 2fc + θ)e−j2π(f−θ)τdθdτ (2.12)

=

∫ ∫

H̃(θ, τ)G(f)S̃(f − θ)e−j2π(f−θ)τdθdτ

+

∫ ∫

H̃(θ, τ)G(f)S̃∗(f − 2fc + θ)e−j2π(f−θ)τdθdτ, (2.13)

where H̃(θ, τ) = 1
2
H(θ, τ)e−j2πfcτ is the baseband spreading function. In order to

simplify (2.13), we make the following narrowband baseband-equivalent channel as-

sumption.

(A0) Assume that H̃(θ, τ) has compact support in the θ variable, that is,H(θ, τ) = 0,

∀τ , |θ| > fmax for some fmax ¿ W̃
2
, which we call the single-sided maximum

Doppler spread. Note that H̃(θ, τ) has the same θ-support as H(θ, τ).

Assumption (A0) allows us to eliminate the double frequency term in (2.13) since the

lowpass filter G(f) and S̃(f − 2fc + θ) have non-overlapping frequency support. We

now have

R̃(f) ≈
∫ ∫

H̃(θ, τ)G(f)S̃(f − θ)e−j2π(f−θ)τdθdτ. (2.14)

Our next assumption is that the lowpass filter G(f) is unity across the band

[−W̃/2− fmax, W̃ /2 + fmax], and zero elsewhere; hence, (2.14) can be written

R̃(f) ≈
∫ ∫

H̃(θ, τ)S̃(f − θ)e−j2π(f−θ)τdθdτ, (2.15)
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and

r̃(t) ≈
∫ ∫

H̃(θ, τ)s̃(t− τ)ej2πθtdθdτ, (2.16)

≈
∫

h̃(t, τ)s̃(t− τ)dτ. (2.17)

where h̃(t, τ) = 1
2
h(t, τ)e−j2πfcτ . We have achieved our goal: (2.17) is the narrowband

baseband-equivalent model.

To gain insight into the compact-support narrowband assumption, we give the

following example.

Single-Path Example

Assume there is only one signal path between a fixed transmitter and a mobile

receiver, e.g., see Fig. 2.3. Hence, the received passband signal can be written

r(t) =

∫

h(t, τ)s(t− τ)dτ + w(t), (2.18)

= h′(t)s(t− τ ′(t)) + w(t). (2.19)

where h′(t) is the real-valued time-varying attenuation, τ ′(t) is the time-varying delay,

and w(t) is additive white Gaussian noise with double-sided power density of σ2
w, i.e.,

E[w(t)w(t− τ)] = σ2
wδ(t− τ). We now make the following assumptions:

(A1) Over the time epochs considered in wireless communications, the real-valued

attenuation h′(t) is assumed to be constant: h′(t) ≈ h′, for some h′.

(A2) At time zero, define the component of mobile velocity in the direction of the

incoming signal path to be vmax cos(ξ
′), where vmax is the mobile velocity and

ξ′ is the angle between the direction of mobile velocity and the incoming signal
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Figure 2.3: Single-path time-varying channel.

path (see Fig. 2.3). We make the simplifying assumption that the time-varying

delay τ ′(t) can be modeled as τ ′(t) ≈ τ ′(0) − vmax cos(ξ′)
c

t, where c is the speed

of wave propagation in the medium. This assumption is as if the mobile is

traveling with velocity vmax cos(ξ
′) in the direction of the incoming path.

Together, assumptions (A1) and (A2)3 allow us to write the single-path time-varying

channel output as

r(t) ≈ h′ s

((

1 +
vmax cos(ξ

′)

c

)

t− τ ′(0)
)

+ w(t). (2.20)

Note that assumptions (A1) and (A2) are general, in that they can be made regardless

of the nature of the input signal s(t). We implicitly make a strong assumption that

the transfer function of the antenna is constant across all frequencies; future work

would explicitly include antenna effects in the analysis.

3These are textbook assumptions often made for the wireless mobile channel, e.g., [90].
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Focusing on the narrowband case, s(t) = Re{s̃(t)ej2πfct}, we have

r(t) ≈ h′Re

{

s̃

((

1 +
vmax cos(ξ

′)

c

)

t− τ ′(0)
)

ej2π(fc+θ
′)tej2πφ

′

}

+ w(t), (2.21)

where θ′ := vmax cos(ξ′)
c

fc is the Doppler frequency shift, and φ
′ := −fcτ ′(0) is the phase.

If we assume the dilation effect on s̃(t) is minimal, i.e., s̃((1 + vmax cos(ξ′)
c

)t) ≈ s̃(t),

then the received signal is approximated as

r(t) ≈ Re
{

2H ′s̃ (t− τ ′(0)) ej2π(fc+θ′)t
}

+ w(t) (2.22)

where H ′ := 1
2
h′ej2πφ

′

. Finally, the baseband channel output is

r̃(t) ≈ H ′s̃ (t− τ ′(0)) ej2πθ′t + w̃(t). (2.23)

where w̃(t) is the demodulated low-pass filtered noise:

w̃(t) =

∫

w(τ)e−j2πτg(t− τ)dτ. (2.24)

To show the connection with the time-varying baseband model (2.17), we write the

baseband-equivalent spreading function for (2.23) as H̃(θ, τ) := H ′δ(θ−θ′)δ(τ−τ ′(0));

thus, (2.23) can be re-written

r̃(t) =

∫ ∫

H̃(θ, τ)s̃(t− τ)ej2πθtdθdτ + w̃(t), (2.25)

=

∫ ∫

H ′δ(θ − θ′)δ(τ − τ ′(0))s̃(t− τ)ej2πθtdθdτ + w̃(t), (2.26)

= H ′s̃ (t− τ ′(0)) ej2πθ′t + w̃(t). (2.27)

The key point here is that the baseband-equivalent spreading function H̃(θ, τ) for the

single-path case has finite support in the θ-variable, that is, |θ′| < vmax

c
fc := fmax.

Indeed, under the above assumptions, a superposition of paths H̃(θ, τ) will have finite
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θ-support. We also make the common assumption that the delay difference between

the first and last arriving paths does not exceed τmax seconds, i.e., 0 < τ < τmax, for

some τmax called the delay spread. Furthermore, we assume that the symbol duration

Ts is much greater than the delay spread τmax.

2.2.2 Wideband Channel Model

To motivate the wideband channel model, we extend the above single-path exam-

ple to the wideband case where s(t) is a carrier-less transmitted signal as in Fig. 2.2(b).

In the narrowband case, the effect of dilation on the baseband message signal s̃(t)

was deemed insignificant; however, in the wideband case, the effect of dilation on the

message signal may no longer be neglected.

We proceed by repeating (2.20) with the following notation

r(t) ≈ l′
1√
a′
s

(
t− τ ′
a′

)

, (2.28)

where the dilation is a′ := 1

1+
vmax cos(ξ′)

c

≈ 1 − vmax cos(ξ′)
c

, the path delay is τ ′, and

the path attenuation is l′. We pre-multiply by 1√
a′

to explicitly account for energy

conservation.

If several paths are received, then the output of the wideband channel is a super-

position modeled as:

r(t) =

∫ ∫

L (a, τ) 1√
a
s

(
t− τ
a

)

da dτ

︸ ︷︷ ︸

L{s(t)}

+w(t), (2.29)

where s(t) is the channel input, L (a, τ) is the wideband channel kernel [5], and w(t)

is additive white Gaussian noise with two-sided power spectral density of σ2
w. Note
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that the wideband channel transformation L{·} is not shift-invariant; hence, sinu-

soids are not eigenfunctions. This is also the case for the time-varying narrow-

band baseband-equivalent model. The wideband channel kernel L (a, τ) quantifies

the scale-lag spreading produced by the channel—the variable a corresponds to the

dilation introduced by the channel, and the variable τ corresponds to the propaga-

tion delay. The wideband kernel for the single-path channel (2.28) would be written

L (a, τ) = l′δ(a − a′)δ(τ − τ ′), where δ(·) is the Dirac delta function. Note that,

under the above assumptions, the wideband channel kernel has finite support in the

dilation-variable a, i.e., |a− 1| < vmax

c
.

Definitions

To simplify the following exposition, we assume a mobile receiver, fixed reflectors,

and a fixed transmitter. Note, however, that the wideband kernel can be used to

model any dynamic geometry between the transmitter, scatters, and receiver, e.g., a

turbulent underwater environment with rings of scatters in motion.

In a rich scattering environment, the wideband channel kernel L (a, τ) is non-zero

on a continuum of points (a, τ). However, finite mobile velocity implies that the

temporal dilation is bounded: {(a, τ) : amin < a < amax, 0 < τ < τmax}, where amin

and amax are the minimum dilation and maximum dilation, respectively, and τmax is

the delay spread. By convention, the time delay of the shortest path is zero lag. We

reiterate the assumption that the symbol duration Ts is much larger than the delay

spread, i.e., Ts À τmax.
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Relativistic effects for electromagnetic wave propagation are negligible due to low

mobile velocities; hence, the minimum dilation and maximum dilation can be simpli-

fied to amin = 1− vmax

c
and amax = 1+ vmax

c
, respectively, where vmax is the maximum

mobile velocity [81]. An important system parameter is the wideband scale spread :

γmax :=
amax − amin

2
=
vmax
c

= amax − 1. (2.30)

This defines the maximum deviation from unit temporal dilation. Though typical

values of γmax may be extremely small for mobile RF channels, we establish, in the

sequel, that wideband DSSS signals can be very sensitive to this parameter.

Connection between Narrowband and Wideband Models

In [81], Rickard showed that in general the following models are equivalent

r(t) =

∫

h(t, τ)s(t− τ)dτ, (2.31)

=

∫ ∫

L (a, τ) 1√
a
s

(
t− τ
a

)

dadτ, (2.32)

=

∫ ∫

H(θ, τ)s(t− τ)ej2πθtdθdτ. (2.33)

However, Rickard also showed that if H(θ, τ) has finite support then L (a, τ) has

infinite support, and vice versa, if L (a, τ) has finite support then H(θ, τ) has infinite

support. This can be seen from the equivalent single-path channels shown in Table 2.2,

which is taken directly from [81, p. 51]. Hence, results for the narrowband baseband-

equivalent case cannot be directly applied to the wideband case.

2.3 Rake Receiver

In this section, we define the conventional Rake receiver [75, p. 842] and exam-

ine its error performance. We concentrate on the wideband case; thus, all quantities

19



one path Doppler lag, θ′ 6= 0 one path scale lag a′ 6= 1

H(θ, τ) δ(θ − θ′)δ(τ − τ ′)
√
a′

|1−a′|e
−j2πθ τ ′−a′τ

1−a′

L (a, τ)
{

|θ′|√
a(1−a)2 e

j2πθ′ τ−aτ
′

1−a , a 6= 1

0, a = 1
δ(a− a′)δ(τ − τ ′)

h(t, τ) δ(τ − τ ′)ej2πtθ′
√
a′δ((1− a′)t+ a′τ − τ ′)

Table 2.2: Time-frequency and time-scale characterization functions for the one path
Doppler-lag and one path scale-lag channels. [81, p. 51]

are real valued. To recover the kth bit, the Rake receiver generates a set of suffi-

cient statistics {r(k)n } by projecting the received signal r(t) onto a set of functions

{x(k)n (t)}Nn=0, which are time-shifted versions of the DSSS waveform:

x(k)n (t) := x(t− nto − kTs). (2.34)

The translation-spacing parameter to is specified to be to := kt
fo
, where the relation

parameter kt is a design choice based on the rule-of-thumb [75] that a DSSS waveform

can resolve multipath at delays spaced on the order of 1
2W

seconds apart. Recall that

fo is the peak frequency of the chip-pulse waveform. We provide more detail on the

choice of kt in Section 3.1. The number of waveforms N + 1 ≥ dτmaxW e is chosen

so the Rake receiver extracts a significant portion of the received signal energy. The
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Rake projection coefficients are

r(k)n = 〈x(k)n (t), r(t)〉, (2.35)

=

Nb−1∑

l=0

bl

〈

x(k)n (t),

∫ τmax

0

h(t, τ)x(t− lTs − τ)dτ
〉

︸ ︷︷ ︸

≈0, for l 6=k since τmax¿Ts

+ 〈x(k)n (t), w(t)〉
︸ ︷︷ ︸

w
(k)
n

, (2.36)

≈ bk

〈

x(k)n (t),

∫ τmax

0

h(t, τ)x(t− kTs − τ)dτ
〉

︸ ︷︷ ︸

h
(k)
n

+w(k)
n , (2.37)

= bkh
(k)
n + w(k)

n . (2.38)

We call {h(k)n } the channel coefficients and {w(k)
n } the noise coefficients. To simplify

the notation, we vectorize the N + 1 Rake projection coefficients to obtain

rk = bkhk +wk (2.39)

where rk := [r
(k)
0 , r

(k)
1 , . . . , r

(k)
N ]T ; hk and wk are defined likewise.

The noise vector is Gaussian distributed with zero mean; hence, the optimal bit

error rate (BER) minimizing coherent receiver is the whitened matched filter [75,

p. 603], which assumes knowledge of the channel coefficients hk and noise correlation

matrix Rw := E[wkw
H
k ] = σ2wRx, where

Rx =







E[〈x(k)0 (t), x
(k)
0 (t)〉] · · · E[〈x(k)0 (t), x

(k)
N (t)〉]

...
. . .

...

E[〈x(k)N (t), x
(k)
0 (t)〉] · · · E[〈x(k)N (t), x

(k)
N (t)〉]







(2.40)

is the autocorrelation between the Rake basis functions. The expectation is taken

over the random spreading code. For practical systems, the receiver must estimate

the channel coefficients hk.
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The decision statistic b̂k is

b̂k = fH
k (R

−1/2
x )Hrk, (2.41)

= bk‖f k‖2 + fT
k (R

−1/2
x )Hwk. (2.42)

where (R−1/2x )H is the whitening matrix and f k = (R−1/2x )Hhk is the combining

coefficient vector. The matrix R1/2
x is, e.g., the Cholesky decomposition of the matrix

Rx.

Conditional Bit Error Rate

The final bit decision is made by observing the sign of the sufficient statistic

sign{b̂k}. The BER, given the combining coefficients f k, is easily shown to be

Pe|fk
= Q

(√

‖f k‖2Eb

σ2w

)

. (2.43)

where

Q (x) =

∫ ∞

x

1√
2π
e−

z2

2 dz (2.44)

is the tail probability of the unit normal random variable. Note that the error prob-

ability is conditioned on the norm of the combining vector f k, which depends on the

time-varying channel.

2.3.1 Fading and Diversity

In general, diversity reception techniques refer to the receiver “observing” the

information symbol through more than one fading “channel” [74] [95] in order to

enhance the link reliability. Depending on transmitter-receiver configuration, copies of

the information symbol may arrive at the receiver through a combination of different
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delays, frequencies, times, dilations, polarizations, and antennas. Relative motion

between the transmitter and receiver causes the amplitudes of the various channels

to fluctuate. The basic idea is that when one “channel” is faded, another may provide

enough information for correct bit decision.

Fading is often regarded as a “bad” phenomenon; however, under certain contexts,

fading can actually enhance performance, e.g., when multiuser systems can schedule

transmission times to opportunistically leverage good channel states [95]. In order to

isolate the effect of exploiting scale-lag diversity, we assume a simple point-to-point

single-user system with a single transmit and a single receive antenna, future work

would employ multiple transmit antennas [1] [97].

The conventional Rake receiver (2.42) exploits lag diversity, where fingers of the

Rake provide different observations of the transmitted bit. The nth “bit observation”

(corresponding to the nth Rake finger) is multiplied by the nth channel coefficient h
(k)
n .

The time-varying channel causes the channel coefficients {h(k)n } to change from bit to

bit. As described above, it is hoped that if some of the channel coefficients are faded,

then others will provide enough energy for a correct decision. In the following, we

compute the expectation of the BER and quantitatively define the “effective diversity”

exploited by the Rake receiver.

In the following, we assume that the receiver is demodulating the 0th bit and

hence drop the bit index k; the following results would hold for any other bit in

a bit-by-bit detector. To begin, we define the correlation matrix of the whitened

matched-filter combining coefficients f to be Σ := E[ff T ] = R−H/2x RhR
−1/2
x where

Rh := E[hhH ]. Suppose that the channel coefficients h are distributed as a zero-mean
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real-valued jointly-Gaussian random vector. This model is a obtained from a central

limit theorem argument where multiple non line-of-sight reflections are superimposed

at the receive antenna. It follows that f ∼ N (0,Σ). Note that diversity results for

any other distribution on f could likewise be obtained by plugging the distribution

into the following analysis.

To find the unconditional probability of error, we take the expectation of (2.43)

with respect to the coefficients f . To this end, we use the preferred form of the

Q-function Q(x) = 1
π

∫ π/2

0
exp

(

− x2

2 sin2 θ

)

dθ [89] and write

Pe = Ef

[

Q

(√

‖f‖2Eb

σ2w

)]

(2.45)

=
1

π
Ef

∫ π/2

0

exp

(

− ‖f‖
2Eb

2σ2w sin2 θ

)

dθ (2.46)

=
1

π

∫ π/2

0

∫

RN

exp

(

− ‖f‖
2Eb

2σ2w sin2 θ

)
1

(2π)N/2(detΣ)1/2

exp

(

−1

2
fTΣ−1f

)

dfdθ (2.47)

=
1

π

∫ π/2

0

∫

RN

1

(2π)N/2(detΣ)1/2
exp

(

−1

2
fTΩ−1f

)

df kdθ (2.48)

where Ω−1 := Σ−1 + Eb

σ2
w sin2 θ

I. If we multiply the numerator and denominator of

the integrand in (2.48) by (2π)N/2(detΩ)1/2, then the integration over the combining

coefficients reduces to

Pe =
1

π

∫ π/2

0

1

(det(Ω−1Σ))1/2
dθ (2.49)

=
1

π

∫ π/2

0

N−1∏

l=0

(

1 +
Ebλl

σ2w sin2 θ

)−1/2
dθ (2.50)

where {λl}N−1l=0 are the eigenvalues of the combining coefficient autocorrelation matrix

Σ. Finally, we note that the integrand attains a maximum when θ = π/2; hence,
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(2.50) can be upper-bounded by

Pe ≤
1

2

N−1∏

l=0

(

1 +
Ebλl
σ2w

)−1/2
, (2.51)

which is the Chernoff bound on the average error probability.

Throughout this dissertation, the signal to noise ratio (SNR) is defined as SNR =

Eb

σ2
w
, which is the transmitted SNR. We use the transmitted SNR in order to appropri-

ately compare the performances of different Rake receiver structures.

Effective Diversity

The upper bound (2.51) can be mildly loosened to provide insight into the shape

of the BER curve. For a nominal value of SNR Eb

σ2
w
, we order and partition the

eigenvalues:

{λi}N−1i=0 = {λbig
j }B−1j=0

⋃

{λsmall
j }N−B−1j=0 (2.52)

where λbig
j > σ2

w

Eb
and λsmall

j ≤ σ2
w

Eb
. The small eigenvalues {λsmall

j } can be ignored such

that the upper bound becomes

log(Pe) ≤ −
B

2
log

(
Eb

σ2w

)

− C (2.53)

where C := − log 1
2
+ 1

2
log
(
∏B−1

j=0 2λbig
j

)

.

We denote the negative BER-slope B
2

as the effective diversity level extracted

by the receiver at the nominal value of SNR Eb

σ2
w
. Note that, as the nominal SNR

increases, the effective diversity level approaches the traditionally defined asymptotic
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diversity level, which for our Gaussian-distributed system equals the number of non-

zero eigenvalues divided by two. The division by two is an artifact of assuming the

channel coefficients are real-Gaussian distributed.4

Numerical Example

To gain insight into how the bit error rate (BER) depends on eigenvalue profile, we

plot BER performance versus SNR Eb

σ2
w
for systems with uniformly-valued eigenvalues

and with exponentially decaying eigenvalues, e.g., {0,−3,−6, . . . ,−3(N − 1)} dB.

For both systems, the eigenvalues are such that they sum to unity. The derivation of

BER for Gaussian-distributed channel coefficients is described in the previous section.

Figure 2.4 shows the sets of eigenvalues, which are normalized to sum to unity

for each set. The corresponding average bit error rate (BER) versus signal to noise

ratio (SNR) is shown in Fig. 2.5. Also shown in Fig. 2.5 is the BER performance

(Fixed) of a 1-channel system where the gain is fixed (i.e. not randomly fading). In

both plots, the solid lines indicate systems with uniformly-valued eigenvalues and the

dashed lines indicate performance of systems with exponentially decaying eigenvalues.

Note that increasing the number of observations of the transmitted bit reduces the

bit error rate, even though extra observations come with additive noise terms. The

two eigenvalue distributions eventually have the same asymptotic BER slope, but

the uniformly-valued eigenvalue system achieves better performance for the same

number of observations. We implicitly assume that the channel gains are known by

the receiver; in practical systems, however, the channel gains must be estimated.

4Complex circular-Gaussian distributed channel coefficients do not lead to a division by two.
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2.4 Previous Work

In this section, we first discuss two types of wideband communication systems for

which our work is apropos: electromagnetic ultra-wideband (UWB) communications

and underwater wideband acoustic communications (UWAC). Each system has unique

challenges and opportunities as outlined below. We then review two papers: [85] and

[5], which provided the main impetus for the current work.

2.4.1 Wideband Systems

Electromagnetic Ultra-Wideband

Beginning with preliminary work by Scholtz [87] and Win and Scholtz [101], elec-

tromagnetic radio frequency UWB radio has become a major research area today.

UWB radio communications spans applications from military covert communications

to commercial indoor wireless links. A large push for commercial applications came

after the Federal Communications Commission (FCC) amended its Part 15 rules in

February 2002 to allow unlicensed UWB spectral emissions for wireless digital com-

munications [34] [19] [20]. The FCC mandated that spectral energy radiated by hand-

held UWB devices must be lower than the specified spectral mask shown in Fig. 2.6.

The large notch below five Gigahertz prevents UWB devices from interfering with

vital services such as the global positioning system (GPS).

There are currently two design philosophies proposed for UWB standardization

(see [96] [105] for a discussion). The first proposal is impulse radio, which is a form of

extreme spread spectrum where chip pulses are nanosecond in duration and are trans-

mitted directly at baseband, i.e., are not modulated to a carrier frequency. Impulse
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Figure 2.6: FCC spectral mask for handheld UWB devices.

radio is intended for longer-range lower-rate communication systems. For reference,

a typical impulse-radio UWB system we consider has mobile velocity of 10 km/hr,

data rate of 1 Mbps, and bandwidth of 10 GHz. The second proposal is to trans-

mit via an OFDM-like multiband waveform where each carrier occupies greater than

500 MHz. The OFDM proposal is intended for shorter-range higher-rate communi-

cation systems. As mentioned above, mobility implies that each carrier of a UWB

system employing OFDM will experience a carrier-frequency-dependent amount of

Doppler spreading [83] [12]. Carriers at lower frequencies will experience less spread-

ing than carriers at higher frequencies. A good overview of the state of the art in

UWB communications can be found in [105]. The focus of this dissertation is on the

impulse-radio method, since we consider higher-mobility systems; future work would

apply the wideband channel model to modulated UWB systems.

An interesting dynamic UWB channel model is found in [47, 48] where the authors

propose a spatially-varying baseband impulse response. The mobile unit is placed in a
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grid of virtual sources and the time delay from each source to the mobile is calculated

as the mobile moves in space. The source locations are chosen to match an intended

environment. For each virtual source, a cluster of reflections is randomly generated to

model a typical channel response. While this model yields time-varying delay spreads

that visually match measurements, it is a cumbersome model for analytical purposes.

In addition, there is no discussion of time dilations caused by motion in the channel,

though dilations are implicitly modeled. The model is extended in [97] to investigate

the performance of a multiple antenna system.

In the radio frequency (RF) ultra-wideband (UWB) literature, many papers char-

acterize the statistics of the delay spread of UWB systems [3, 14, 31, 50, 88, 93,

100, 108], but do not consider time-varying channel geometries. The IEEE 802.15.3a

standardization group has developed a channel model [31] based on the Valenzuela-

Saleh model [84]. Basically, reflections are modelled as arriving in clusters. The

clusters arrive according to a Poisson process, and the paths within each cluster ar-

rive with a Poisson process. Each cluster has exponential power profile and the fading

is log-normal (rather than Rayleigh). An outdoor forest finite-difference time-domain

(FDTD) ray tracing simulation study and field measurement trial is undertaken in

[86].

Using the static channel model, dozens of papers study the performance of UWB

impulse radio receivers, e.g., [8, 15, 18, 22, 29, 30, 32, 38, 39, 49, 51, 54, 56, 69,

70, 71, 73, 76, 79, 77, 78, 82, 99, 100, 101, 107, 110]. One reason for the adoption

of the static channel model is that the focus of current UWB research is on indoor

environments [100] where mobility is less of an issue. However, advances in signal

31



processing hardware and algorithms are allowing the design of radio frequency (RF)

communications systems with ever increasing bandwidths and mobility [36] [109]. If

UWB devices follow the trend of other wireless systems, we can expect mobility to

become more of an issue in the future.

Timing jitter and acquisition are also a major research thrust in the UWB commu-

nity, e.g., [10, 13, 33, 37, 57, 61, 67, 94, 104, 109]. We recognize the unique challenges

of timing acquisition in UWB systems; however, to simplify the current exposition

we assume the receiver has perfect knowledge of chip and symbol time.

Throughout this thesis, we will consider inter-symbol interference (ISI) to be neg-

ligible, since we assume the symbol duration to be much greater than the delay

spread. An important question for future research is the design of optimal diversity-

exploiting receivers capable of mitigating ISI for high-rate systems such that ISI is

non-negligible. The paper by Klein et al. [46] assumes non-negligible ISI and the Rake

receiver is modified to one that considers both ISI and narrowband interference via

a minimum mean squared error (MMSE) criterion. The finite set of Rake fingers are

allowed to float, reminiscent of selection combining, and finger weights are calculated

according to a mean squared error (MSE) criterion. Thus, the optimization problem

becomes one of minimizing the MSE by jointly placing the rake fingers at optimal

delays and calculating optimal finger weights. Given a finger placement, the cost is

quadratic in the finger weights; however, the cost has many local minima and maxima

over finger placement. The analysis assumes complete knowledge of channel state in-

formation (CSI) and only applies to short-coded pulse-repetition systems, since the

MSE is calculated at the symbol level.
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While an enormous amount of research is being performed on radio frequency

UWB radio, an equally challenging communications environment is the underwater

acoustic wideband communications channel.

Underwater Wideband Acoustic

Underwater wideband acoustic communication (UWAC) systems benefit from

scale-lag diversity research since signal dilations in the acoustic domain are much

greater due to the low speed of wave propagation. A good overview of the underwa-

ter acoustic communications channel is found in [45]. In [25, 26, 28], the authors take

into account signal dilation due to platform motion and design receivers capable of

mitigating this effect, but do not consider the implication of leveraging scale diver-

sity to enhance receiver performance. Our research will aid in the design of robust

acoustic systems for difficult time-varying multipath environments. For reference, a

typical UWAC system considered in this dissertation has mobile velocity of 5 km/hr,

data rate of 1 kbps, and bandwidth of 36 kHz.

2.4.2 Narrowband and Wideband Canonical Models

In this section, we discuss two papers: [85] and [5], which are the main impetus

for the present work. Sayeed and Aazhang [85] make two fundamental contributions:

1. The derivation of a narrowband baseband-equivalent canonical model for par-

simonious representation of the received signal.

2. The development and performance analysis of a Doppler-lag Rake receiver,

which exploits Doppler-lag channel diversity.
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The first contribution is extended to the wideband case by Balan et al. [5]. Although

Balan et al. suggest using a scale-lag Rake receiver for the wideband case, it is not

developed.

The main thrust of Sayeed and Aazhang [85] is to improve the BER performance

of a Rake receiver for a direct sequence spread spectrum (DSSS) signal in a single-

bit, single-antenna, single-user, doubly-selective fading channel. Simply put, they

propose an enhanced receiver, called the Doppler-lag Rake, to collect energy from

Doppler-frequency-shifted signals as well as from non-shifted signals. Before [85], it

was generally assumed that Doppler effects were insignificant over the duration of a

symbol. However, [85] shows that considering even small Doppler effects can lead

to big performance gains. In fact, [85] suggests lengthening the symbol duration

to collect ever more Doppler energy thereby improving performance. However, it

is clear that there is a trade-off between performance and transmission rate. This is

addressed in [9] by allowing successive symbols to overlap in time. Works that consider

transmission schemes to exploit Doppler diversity are [11, 53, 58, 59, 60, 80, 106]. In

this dissertation, we focus on receive diversity as a first step in exploiting the dynamics

of the wideband channel.

Part of the research in this dissertation involves taking some ideas developed by

Sayeed and Aazhang for the narrowband channel and, motivated by the wideband

canonical model of Balan et al., applying them to the wideband channel to show that

exploiting the small temporal dilations induced by mobility leads to large performance

gains.
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Narrowband Canonical Model

The analysis in [85] centers on the discovery of a parsimonious time-frequency

representation of the narrowband baseband-equivalent time-varying channel, called

the narrowband canonical model.5 Basically, for a channel input with double-sided

bandwidth approximately limited to W̃ Hertz, and symbol duration approximately

limited to Ts seconds, a Fourier-series analysis can be used to show that the output

can be represented by a weighted sum over uniform frequency- and lag-shifted copies

of the input. The inter-frequency spacing is 1/Ts and the inter-lag spacing is 1/W̃ .

In particular, consider a single-bit transmission with the narrowband baseband-

equivalent DSSS signal (2.1) through a time-varying channel. The canonical model is

derived by looking at only the [0, Ts] portion of the narrowband baseband-equivalent

channel output, i.e., r̃(t)1[0,Ts]. For t ∈ [0, Ts], the narrowband canonical model for

r̃(t) (neglecting additive noise) is

r̃(t) =
∑

m

∑

n

l̃m,nx̃
(

t− n

W

)

ej2πmt/Ts , (2.54)

where the narrowband canonical model coefficients {l̃m,n} are

l̃m,n =

∫ τmax

0

∫ fmax

−fmax

H̃(θ, τ) sinc(n−Wτ) sinc(m− Tsθ)e−jπ(m−Tsθ)dθdτ. (2.55)

A simple change of variables θ′ = Tsθ, τ
′ = W̃ τ in (2.55) gives the following:

l̃m,n =
1

W̃Ts

∫ τmaxW̃

0

∫ fmaxTs

−fmaxTs

H̃

(
θ′

Ts
,
τ ′

W̃

)

sinc(n− τ ′) sinc(m− θ′)e−jπ(m−θ′)dθ′dτ ′.

(2.56)

5Others have independently suggested and used similar so-called basis expansion models (BEMs)
[35].
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Sayeed and Aazhang [85] simplify the sum (2.54) by considering only the model

coefficients where the main-lobes of the sinc functions in (2.56) overlap with the

kernel H̃(θ, τ); thus, [85] includes only the following terms: m = −M, . . . ,M where

M = dfmaxTse; and n = 0, 1, . . . , N where N = dW̃ τmaxe,

r̃(t) ≈
M∑

m=−M

N∑

n=0

l̃m,nx

(

t− n

W̃

)

ej2πmt/Ts . (2.57)

We make a few observations about the canonical model:

• It is a parsimonious representation of the channel output, i.e., the number of

model coefficients is reduced from a sampling of approximately W̃Ts coefficients

to approximately (2M + 1)(N + 1) coefficients. The values of M and N are

chosen as the largest values of m and n, respectively, such that the main lobe

of the sinc function overlaps with the support of the narrowband baseband-

equivalent spreading function H̃
(
θ′

Ts
, τ

′

W̃

)

in (2.56).

• If the DSSS waveforms {x̃
(

t− n
W̃

)

ej2πt/Ts} are orthogonal, then the represen-

tation suggests using a Rake receiver matched to these waveforms to recover

the energy in the model coefficients. In this case, the model coefficients {l̃m,n}

can be used independently from the specifics of the waveform x̃(t) to predict

performance. If the transmit waveforms are not orthogonal, then effects of the

waveform cross-correlations must be included in the analysis. The extension to

the wideband case, including the effects of non-orthogonal transmit waveforms,

is discussed in Section 3.2.

• The number (2M + 1)(N + 1) can be thought of as the degrees of freedom

characterizing the channel.
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Sayeed and Aazhang [85] showed that the frequency- and lag-shifted copies of the

DSSS signal {x̃
(

t− n
W̃

)

ej2πt/Ts} are approximately orthogonal. The receiver then

projects the received signal onto this basis to generate a set of statistics; however,

the statistics are not necessarily sufficient. The sufficiency of the statistics was not

fully investigated by [85]. Figure 7 in [85] shows performance curves for the co-

herent Doppler-lag Rake compared to the conventional lag-only Rake (discussed in

Section 2.3). One notes the large performance gain for small values of Doppler spread,

i.e., for small values of fmaxTs.

In [85] it is assumed, from central-limit theorem arguments, that the underly-

ing channel kernel H̃(θ, τ) is a zero-mean two-dimensional uncorrelated Gaussian

process, which implies that the model coefficients {l̃m,n} are zero-mean Gaussian ran-

dom variables. This leads to the second key contribution of [85]: the assumption that

the model coefficients {l̃m,n} are uncorrelated and thus the canonical model (2.57)

is a Karhunen-Loeve-like expansion of the narrowband baseband-equivalent channel.

However, for practical values of Doppler spread fmax and symbol duration Ts, the

channel coefficients will be correlated. Sayeed, in a recent email correspondence,

agreed that it would be interesting to investigate system performance with correlated

channel coefficients.

Wideband Canonical Model

Balan et al. [5], inspired by the narrowband frequency-lag canonical model of

[85], derived a powerful time-scale canonical model for the wideband transformation

in (2.29). A very similar canonical model for the wideband channel was developed
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independently in [41, 42]. The wideband channel output is written as a weighted sum

of delayed and dilated versions of the input:

r(t) =
∑

m

∑

n

lm,n
1

a
m/2
o

s

(
t− ntoamo

amo

)

, (2.58)

where the wideband canonical coefficients lm,n are given by,

lm,n =

∫ τmax

0

∫ amax

amin

L (a, τ)sinc
(

n− τ

ato

)

sinc

(
ln(a)

ln(ao)
−m

)

da dτ. (2.59)

The canonical representation (2.58) shows that the output of the wideband trans-

formation can be expanded by shift-dilates of the transmitted waveform; hence, in

the presence of additive white Gaussian noise (AWGN) at the receiver, a bank of

correlators matched to shift-dilates of the transmitted waveform produces a set of

(possibly correlated) sufficient statistics for the optimal receiver [75, Ch 5].

The impetus for Balan et al. [5] is Rickard’s dissertation [81], which extensively

studied the connections between the narrowband and wideband kernels and proposed

the wideband canonical model. The wideband canonical model (2.58) looks very

similar to the narrowband canonical model (2.54), in that a double-integral trans-

formation is decomposed into a weighted double-sum. The following observations

concerning the treatment of the wideband canonical model in [5] can be made:

• The dilation spacing parameter ao and translation spacing parameter to were

not specified.

• A set of orthonormal dilated and shifted waveforms inspires the use of a scale-

lag Rake receiver, similar to the principle of a Doppler Rake in the narrowband

case. The scale-lag Rake projects the received signal onto the dilated-delayed

basis waveforms.
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• The possibility of a scale-lag Rake receiver was mentioned by [5], but no details

were developed.

• For an orthonormal basis, the coefficients {lm,n} are effectively a sampling of

the scale-lag plane, as shown in Fig. 2.7. Define the scale spacing parameter

to be γo := ao − 1. A Taylors series approximation around ao = 1 gives am0 ≈

1 +m(a0 − 1) = 1 +mγo; hence, a uniform spacing in the scale domain suffices

for typical values of dilation (i.e., a ≈ 1).

• Assuming a statistical model for L (a, τ), one could characterize the performance

of the scale-lag Rake receiver, and compare it to the Doppler-lag Rake receiver

and to the conventional lag-only Rake receiver. This analysis was not performed

by [5].

These observations lead to questions regarding the design and performance of a

so called scale-lag Rake receiver, which we study in the following chapters.

Approximation

In this section, we make a few reasonable approximations to show the similarity

between the narrowband and wideband canonical models.

Note that in practical systems, the scale spread γmax and the scale spacing pa-

rameter γo are very small; hence, the variable a and the dilation spacing parameter

ao are very near unity. A Taylor series approximation can be used to write

ln(a) ≈ a− 1

a
≈ a− 1, (2.60)
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likewise,

ln(ao) ≈
ao − 1

ao
≈ ao − 1. (2.61)

In (2.59), we make the change of variables: γ = a−1
γo

, and τ ′ = Wτ , to write the

wideband channel coefficients

lm,n ≈
γo
W

∫ τmaxW

0

∫ γmax
γo

− γmax
γo

L
(

1 + γγo,
τ ′

W

)

sinc (n− τ ′) sinc (m− γ) dγdτ ′. (2.62)

For ease of reference, we repeat the expression of the narrowband canonical model

coefficients:

l̃m,n =
1

W̃Ts

∫ τmaxW

0

∫ fmaxTs

−fmaxTs

H̃

(
θ′

Ts
,
τ ′

W̃

)

e−jπ(m−Tsθ)sinc(n− τ ′) sinc(m− θ′)dθ′dτ ′.

(2.63)

Using the same arguments as in the narrowband case, we reduce the number of

wideband channel coefficients by considering only the channel coefficients where the
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main-lobes of the sinc functions in (2.62) overlap with the kernel L
(
1 + γγo,

τ ′

W

)
; thus,

only the following terms are included: m = −M, . . . ,M where M = d γmax

γo
e + 1 and

n = 0, 1, . . . , N where N = dτmaxW e+ 1

r(t) ≈
M∑

m=−M

N∑

n=0

lm,n

a
m/2
o

x

(
t− nToamo

amo

)

. (2.64)

Hence, as in the narrowband case, the following observations about the wideband

canonical model hold:

• It is a parsimonious representation of the channel output, i.e., the number of

channel coefficients is reduced from a sampling of approximately WTs coeffi-

cients to approximately (2M + 1)(N + 1) coefficients.

• The number (2M + 1)(N + 1) can be thought of as the degrees of freedom

characterizing the wideband channel.

Discussion

Sayeed and Aazhang [85] derived a narrowband canonical model for parsimonious

representation of the received signal and, after making statistical assumptions on the

narrowband baseband-equivalent kernel, analyzed the performance of a Doppler-lag

Rake receiver, which exploits Doppler-lag channel diversity. Motivated by the nar-

rowband canonical model, Balan et al. [5] derive a canonical model for the wideband

transformation. Although Balan suggested using a scale-lag Rake receiver for the

wideband case, it was not developed. Our main contribution is to develop and study

the scale-lag Rake receiver for the wideband channel.
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CHAPTER 3

SCALE-LAG RAKE RECEIVER

To begin this chapter, we examine the scale- and lag-resolution properties of the

wideband direct-sequence spread-spectrum (DSSS) waveform (c.f. (2.2)). These prop-

erties lead to good choices of dilation spacing and translation spacing parameters for

a set of dilated-delayed functions used in the scale-lag Rake receiver. We propose a

low-complexity scale-lag Rake implementation and conclude with a discussion of the

connection of the scale-lag analysis to areas outside the scope of wireless communi-

cations.

3.1 Scale-Lag Resolution

The scale-lag resolution properties of a wideband DSSS signal x(t) can be deter-

mined by studying the wideband ambiguity function χ(a, τ) [43], defined as

χ(a, τ) :=

〈

x(t),
1√
a
x

(
t− τ
a

)〉

(3.1)

where 〈f(t), g(t)〉 :=
∫∞
−∞ f(t)g(t)dt is the inner product.

We define the minimum resolvable lag τo to be the smallest τ > 0 such that

χ(1, τ) = 0, and the minimum resolvable dilation αo to be the smallest a > 1 such
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that χ(a, 0) = 0; the minimum scale resolution is defined as βo := αo − 1. (A table

of variables used in this chapter is shown in Table 3.1.) Below, we show that these

resolution quantities are related to the chip-pulse duration Tp—or equivalently the

peak frequency fo—and to the symbol duration Ts. The minimum resolvable lag and

the minimum scale resolution will be used as guidelines in the sequel to construct the

basis functions for the scale-lag Rake receiver.

An often used rule-of-thumb is that a linear Rake receiver can resolve multipath

with inter-arrival lag differences on the order of Tp seconds [75, p. 841]. This is verified

by the following proposition.

Proposition 1 The mean and variance of the inner product 〈x(t), x(t−τ)〉 = χ(1, τ)

vanishes if τ ≥ Tp.

Proof : The proof is found in Appendix 3.4. ¤

It immediately follows from Proposition 1 that the minimum resolvable lag τo has

an upper bound given by τo ≤ Tp.

The scale resolution property of a DSSS signal is linked to the time-bandwidth

product, as we see next. Let a result in a dilation greater than or equal to one chip-

pulse duration Tp, (a dilation by one chip-pulse duration is illustrated by Fig. 3.1) or

in other words, let a satisfy the relation

aTs − Ts ≥ Tp ⇔ a ≥ 1 +
Tp
Ts
. (3.2)

Now consider the following proposition, which gives a rule-of-thumb for the minimum

resolvable dilation αo.
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Proposition 2 The mean and variance of the inner product
〈

x(t), 1√
a
x
(
t
a

)〉

= χ(a, 0)

evaluated at a ≥ 1 + Tp
Ts
vanishes if and only if the chip pulse p(t) has zero DC com-

ponent.

Proof : The proof is found in Appendix 3.4. ¤

From Proposition 2, it follows that the minimum resolvable dilation αo has an

upper bound given by αo ≤ 1 + Tp
Ts
. Equivalently, the minimum scale resolution

βo := αo − 1 is upper bounded by βo ≤ Tp
Ts
. Since the chip-pulse duration Tp and the

peak frequency fo are inversely proportional, we can say that the scale resolution βo

is on the order of (Tsfo)
−1—the inverse of the time-bandwidth product.

The following example with the chip pulse p(t) assigned to be a second-derivative

Gaussian waveform illustrates the scale and lag resolution properties of a DSSS signal.

The second-derivative Gaussian chip pulse is often used in the UWB literature [21,
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91, 101, 111] as a test pulse and is defined as

p(t) =

√
fo

4
√
32π√
3

[
1− 2(πfot)

2
]
e−(πfot)

2

, (3.3)

with Fourier transform

P (f) =

√
fo

4
√
32π√
3

2
√

πf 2o

(
f

fo

)2

e
− f2

f2
o . (3.4)

Time and frequency plots of the second-derivative Gaussian are shown in Fig. 3.2.

From Fig. 3.2(a), we argue that the duration of the chip pulse is roughly Tp = 2
fo

seconds.6 From Fig. 3.2(b), we see that the chip pulse (3.3) has zero DC component7

and that the peak frequency is indeed at fo Hertz.

It is shown in Appendix 3.4 that the wideband ambiguity function can be approx-

imated in the mean-square sense as

χ(a, τ) ≈ χ̄(a, τ),

:=

∫ 1

0

χp(1, τ + (a− 1)zTs)dz (3.5)

where

χp(a, τ) :=

〈

p(t),
1√
a
p

(
t− τ
a

)〉

(3.6)

is the wideband ambiguity function of the chip pulse p(t). The approximation is tight

when the number of chip pulses Np is large and the dilation a is near unity, which is

the regime we are interested in studying. The chip-pulse ambiguity function for (3.3)

6Some authors [21, 111] set the chip-pulse duration to be Tp :=
7

πfo

√

2
= 1.58

fo

. We round up to

Tp =
2

fo

.

7We wish to point out that other zero-DC component signals may be used, such as the modified
duobinary pulse [75, p. 563].
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is shown in Appendix 3.5 to be

χp(a, τ) = f(a)

(

4π4f 4o τ
4 − 12π2f 2o τ

2(1 + a2) + 3(1 + a2)2
)

exp

(

−π
2f 2o τ

2

1 + a2

)

, (3.7)

where f(a) = 4
3

√
2a5

(1+a2)9
. Plugging (3.34) into (3.5), we have an approximation for

the wideband ambiguity function (3.1), which we plot in Fig. 3.3. (Note that the

approximation χ̄(a, τ) is not directly a function of the chip-pulse spacing To.) To see

the tightness of the approximation, Fig. 3.4 shows for comparison the deterministic

wideband ambiguity function χ(a, τ) of a typical length-128 i.i.d. random binary

chip sequence x(t) composed of second-derivative Gaussian chip pulses. The chip-

pulse spacing parameter To is chosen to be To = Tp such that the chip-pulses are

essentially non-overlapping.

Let us now find the minimum resolvable dilation αo and minimum resolvable lag

τo by specifically examining the a = 1 and τ = 0 cross-sections of χ̄(a, τ). These are

plotted in Fig. 3.5(a) and (b), respectively.

From Fig. 3.5(a), it is clear that the minimum resolvable dilation is αo = 1+ 0.55
Tsfo

.

Equivalently, the minimum scale resolution is βo = 0.55
Tsfo

. Note also that χ̄(a, 0)

approaches zero at a = 1 + 1
Tsfo

and vanishes at a = 1 + 2
Tsfo

= 1 + Tp
Ts

as predicted

by Proposition 2.

From Fig. 3.5(b), we see that the minimum resolvable lag is τo =
0.236
fo

. Also note

that another zero crossing occurs at τ = 0.744
fo

, and that χ̄(1, τ) approaches zero at

τ = 1
fo
. Proposition 1 is verified since χ(1, τ) vanishes at τ = Tp =

2
fo
.
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Quantity Description

τo Minimum resolvable lag.

αo Minimum resolvable dilation.

βo Minimum scale resolution, βo := αo − 1.

to Translation-spacing parameter of scale-lag Rake.

ao Dilation-spacing parameter of scale-lag Rake.

γo Scale-spacing parameter of scale-lag Rake, γo := ao − 1

kt Relation parameter between to and fo, kt := tofo

kγ Relation parameter between γo and Tsfo, kγ := γoTsfo

Table 3.1: Outline of scale-lag resolution quantities.

3.1.1 Discussion

We define the normalized scale spread to be the ratio γmax

1/Tsfo
= γmaxTsfo. The

normalized scale spread can be written in terms of the mobile velocity, speed of

signal propagation, and the time-bandwidth product (cf. (2.30)):

γmaxTsfo =
vmax
c

Tsfo. (3.8)

Note the similarity to the normalized Doppler-frequency spread [75, p. 809]:

fmaxTs =
vmax
c

Tsfc, (3.9)

where fc is the carrier frequency and fmax = vmax

c
fc is the single-sided Doppler fre-

quency spread. In Chapter 6 we show that the normalized scale spread captures,

in a single parameter, the wideband channel’s effective rate of variation, just as the

normalized Doppler spread captures that for the narrowband baseband-equivalent

channel.
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3.2 Choice of Basis Functions

From the scale-lag resolution properties of Section 3.1, and to match the scale-lag

spreading of the wideband channel as outlined in Section 2.4.2, it is natural to choose

as basis functions for demodulating the kth bit the set of dilated-delayed versions of

the DSSS waveform x(t) [c.f., (2.2)]:

x(k)m,n(t) =
1√
amo

x

(
t− ntoamo − kTs

amo

)

, (3.10)

where ao is the dilation-spacing parameter. Define γo := ao − 1 as the scale-spacing

parameter. Recall from Section 2.3 that to is the translation-spacing parameter.

With an eye toward the minimum resolution quantities αo and τo, the scale- and

translation-spacing parameters are chosen relative to the spectral peak fo and symbol

duration Ts, i.e., γo =
kγ
Tsfo

and to =
kt
fo
, where kγ and kt are relation parameters chosen

by the designer. For the case of second-derivative Gaussian chip pulses, the choices

kγ = 0.55 and kt = 0.236 imply that the dilation-spacing and translation-spacing are

equal to the minimum resolvable dilation and lag, respectively.

In Chapter 4, we examine the choice of relation parameters kγ and kt through a

frame-theoretic analysis. For second-derivative Gaussian chip pulses, kt = 0.236 is a

good choice, in the sense that for a wide range of kγ the set of scale-lag Rake functions

(3.10) is, on average, a tight frame; hence, the scale-lag Rake projection coefficients

are a set of sufficient statistics for the detector. This is verified in Chapter 5, where

we examine numerically the effects of different choices of kt and kγ on the scale-lag

Rake performance.
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The projection of the received signal onto the scale-lag basis functions (3.10) and

subsequent whitened matched-filter combining of the projection coefficients8 consti-

tutes the scale-lag Rake receiver. The scale-lag Rake can be thought of as a union

of the conventional lag-only Rake with the set of functions {x(k)m,n, m 6= 0}. These

“extra” functions resolve time-dilated multipath, which arise when there is a dynamic

physical channel geometry between the transmitter and receiver.

Let us now calculate the scale-lag Rake projection coefficients {r(k)m,n}. Here we

use the wideband channel model in the analysis.

r(k)m,n = 〈x(k)m,n(t), r(t)〉,

=

Nb−1∑

l=0

bl

〈

x(k)m,n(t),

∫ τmax

0

∫ amax

amin

L (a, τ) 1√
a
x

(
t− τ − lTs

a

)

da dτ

〉

︸ ︷︷ ︸

≈0, for l 6=k since τmax¿Ts

+ 〈x(k)m,n(t), w(t)〉
︸ ︷︷ ︸

w
(k)
m,n

,

≈ bk

〈

x(k)m,n(t),

∫ τmax

0

∫ amax

amin

L (a, τ) 1√
a
x

(
t− τ − kTs

a

)

da dτ

〉

︸ ︷︷ ︸

h
(k)
m,n

+w(k)
m,n,

= bkh
(k)
m,n + w(k)

m,n. (3.11)

where {h(k)m,n} are the channel coefficients and {w(k)
m,n} are the noise coefficients. As in

(2.38), we vectorize the coefficients for ease of notation:

rk = bkhk +wk (3.12)

where rk := [r
(k)
−M,0, . . . , r

(k)
0,0 , . . . , r

(k)
M,N ]

T ; hk and wk are defined likewise. The number

of coefficients is (2M+1)(N+1) where we chooseM = d γmax

γo
e+1 and N = d τmax

to
e+1

8See Section 2.3 for a discussion of whitened matched filtering.
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Figure 3.6: Sampling the scale-lag plane.

to capture a significant portion of the received energy in the channel coefficients.

These choices are based on the wideband canonical model approximation analysis in

Section 2.4.2.

The scale-lag Rake projection coefficients {r(k)m,n} are effectively a sampling of the

scale-lag plane, as shown in Fig. 3.6. A Taylor series approximation around ao = 1

gives amo ≈ 1 +m(ao − 1) = 1 +mγo; hence, a uniform spacing in the scale domain

suffices for typical values of dilation (i.e., a ≈ 1).

3.2.1 Low-Complexity Scale-Lag Rake Implementation

Anticipating the high expense of accurate wideband analog filtering, we propose a

low-complexity means of scale-lag projection. Specifically, we feed the output of a sin-

gle chip-matched filter into a bank of samplers with rates (amo to)
−1,m ∈ {−M, . . . ,M}

according to the translation- and dilation-spacing parameters. Each sampler output

is connected to a traditional (i.e., lag-only) Rake combiner where each finger is down-

sampled to the chip-pulse rate; we assume for simplicity that the translation spacing

54



parameter to divides evenly into the chip-pulse spacing parameter To, i.e., define

Nt :=
To
to
, Nt ∈ N. We also drop the superscript (k) for notational convenience. This

structure can be justified as follows:

rm,n =

∫

xm,n(t)r(t)dt,

=
1

a
m/2
o

Np−1∑

i=0

ci
√
Np

∫

p

(
t− ntoamo − iToamo

amo

)

r(t)dt,

=
1

a
m/2
o

Np−1∑

i=0

ci
√
Np

p

(

− t

amo

)

∗r(t)
∣
∣
∣
∣
t=(n+iNt)amo to

,

≈ 1

a
m/2
o

Np−1∑

i=0

ci
√
Np

p (−t) ∗r(t)
∣
∣
∣
∣
t=(n+iNt)amo to

,

=
1

a
m/2
o

Np−1∑

i=0

ci
√
Np

zm,n[i], (3.13)

where ∗ denotes linear convolution and where

zm,n[i] = p (−t) ∗r(t)
∣
∣
∣
∣
t=(n+iNt)amo to

. (3.14)

The approximation in the penultimate step of (3.13) is valid because dilating the

chip pulse p(t) by amo is insignificant compared to dilating the entire DSSS waveform

x(t). A block diagram of the basis projection is shown in Fig. 3.7. Notice that

the translation-spacing to is essentially the sampling period of the lag-only Rake

receiver (e.g., m = 0 components); scale components (m 6= 0) are obtained by slightly

lengthening or shortening the sampling period.

An interesting question to investigate in future work would be how sampling

frequency offsets affect the performance of the scale-lag Rake. We conjecture that

as long as the sampling of the scale-lag plane is “dense” enough to collect all the
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received energy, then frequency offsets shouldn’t significantly adversely impact the

performance.
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3.3 Connection to Radar, Sonar, and Wavelets

The reader will notice that if x(t) satisfies the wavelet admissibility condition [62,

p. 125], then χ(a, τ) is the continuous wavelet transform (CWT) with respect to x(t).

It is easily verified in Appendix 3.6 that if the chip pulse p(t) is admissible, then

the waveform x(t) is also admissible. A necessary condition of admissibility is for

the waveform to have a zero at DC; hence, an arbitrarily chosen wavelet will satisfy

Proposition 2. The connection between wavelet analysis and wideband processing for

Radar and Sonar is studied in [98], and experimental results are reported in [55].

The affect of time dilation on spread-spectrum signals is sometimes called code

Doppler. A study of the effect of code Doppler on timing acquisition was performed

in [33]. There were no papers attempting to exploit the presence of code Doppler for

diversity gain. Code Doppler will also occur if there is a sampling frequency mismatch

between the transmitter digital to analog converter (DAC) and the receiver analog to

digital converter (ADC), in which case every path is dilated by the same amount.

The scale and lag resolution analysis we have performed for DSSS signals could

be applied to Radar/Sonar estimation of target velocity and range. Consider the

following recent papers on the topic. An exploration on the connection of the wide-

band ambiguity function (3.1) for arbitrary motion (not just constant velocity) and

its constant-velocity narrowband approximation is found in [44]. In [27], the authors

investigate the dilation resolution properties of random wideband signals, which are

generated via a Gaussian noise source. In [88], a ternary-modulated sequence with

chips chosen from {+1,−1, 0} was used to estimate range and velocity. In [52], the
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authors estimate range by determining when the pulse first arrives. In [72], a Cramer-

Rao lower bound (CRLB) on the estimation error of velocity and range via wideband

signals is calculated based on the Mellin transform [6]. One avenue of future work

is to design optimal CRLB-minimizing chip-pulses by applying the Mellin transform

analysis in [72] to our ambiguity-function approximations.

3.4 Appendix: Proof of Propositions 1 and 2

In this appendix, we state and prove a series of three lemmas and use them to

prove Propositions 1 and 2.

Lemma 3 The expectation of the wideband ambiguity function (3.1) can be approxi-

mated as E[χ(a, τ)] ≈ χ̄(a, τ), where χ̄(a, τ) is defined as (3.5) and the expectation is

taken over the random chip sequence.

Proof: Assuming that the ternary pseudonoise (PN) sequence is i.i.d., we can

write

E [χ(a, τ)] = E

[∫ ∞

−∞
x(t)

1√
a
x

(
t− τ
a

)

dt

]

,

=

Np−1∑

i=0

E[c2i ]

Np

√
a

∫ ∞

−∞
p(t)p

(
t− τ − (a− 1)iTo

a

)

dt.

=

Np−1∑

i=0

E[c2i ]

Np

χp (a, τ + (a− 1)iTo) (3.15)

where χp(a, τ), the ambiguity function of the chip pulse, is defined in (3.6).

The chip-pulse spacing parameter is To =
Ts
Np

; hence, we make the following inte-

gral approximation of (3.15):

Np−1∑

i=0

1

Np

χp

(

a, τ + (a− 1)
i

Np

Ts

)

≈
∫ 1

0

χp(a, τ + (a− 1)zTs)dz, (3.16)
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which is very tight for large Np. We have also used the fact that E[c2i ] = 1.

Since we are considering dilations a very close to unity, (3.16) can be further

approximated by

∫ 1

0

χp(a, (a− 1)zTs)dz ≈
∫ 1

0

χp(1, (a− 1)zTs)dz,

= χ̄(a, τ). ¤

Lemma 4 The expectation of the product of wideband ambiguity functions can be

approximated as E[χ(a, τ)χ(a′, τ ′)] ≈ χ̄(a, τ)χ̄(a′, τ ′), where the expectation is taken

over the random chip sequence.

Proof: The use of a random spreading code simplifies the computation

E[χ(a, τ)χ(a′, τ ′)] =
1

N2
p

∑

i,j,k,l

E[cicjckcl]

χp(a, τ + (ai− j)To)χp(a′, τ ′ + (a′k − l)To), (3.17)

where χp(a, τ) is defined in (??). The number of terms in (3.17) can be reduced by

noting that

E[cicjckcl] =







E[c4i ] i = j = k = l,

E[c2i ]
2 i = j, k = l, i 6= k,

E[c2i ]
2 i = k, j = l, i 6= j,

E[c2i ]
2 i = l, j = k, i 6= j,

0 else.

(3.18)

Hence, we need only compute the non-zero terms outlined in (3.18). We will find

that only the second case will produce a non-negligible contribution. Note that the

chip-pulse spacing parameter is To =
Ts
Np

.

The absolute value of (3.17) for the case i = j = k = l is upper bounded by

Np−1∑

i=0

E[c4i ]

N2
p

∣
∣
∣χp

(

a, τ+(a− 1) i
Np
Ts

)

χp

(

a′, τ ′+(a′ − 1) i
Np
Ts

)∣
∣
∣ ≤ E[c4i ]

Np

, (3.19)

60



where the inequality in (3.19) follows from the chip pulse having bounded energy, i.e.,

χp(a, τ) ≤ 1, ∀ a, τ . Hence, for a large number Np of chips, the sum of the terms in

the first case of (3.18) is negligible.

For the second case, i = j, k = l, i 6= k, we have

∑

i,k 6=i

E[c2i ]
2

N2
p

χp

(

a, τ+(a− 1) i
Np
Ts

)

χp

(

a, τ ′+(a′ − 1) k
Np
Ts

)

≈ E[c2i ]

∫ 1

0

χp(1, τ + (a− 1)zTs)dz E[c
2
i ]

∫ 1

0

χp(1, τ
′ + (a′ − 1)z′Ts)dz

′

= χ̄(a, τ)χ̄(a′, τ ′) (3.20)

For the third case, i = k, j = l, i 6= j, we have

∑

i,j 6=i

E[c2i ]
2

N2
p

∣
∣
∣
∣
χp (a, τ+(ai− j)To)χp (a′, τ ′+(a′i− j)To)

∣
∣
∣
∣

≈
∑

i,j

E[c2i ]
2

N2
p

∣
∣
∣
∣
χp (1, τ+(ai− j)To)χp (1, τ ′+(a′i− j)To)

∣
∣
∣
∣

(3.21)

≤
Np−1∑

i=0

2E[c2i ]
2

N2
p

=
2E[c2i ]

2

Np

(3.22)

The approximation in (3.21) is tight when a and a′ are close to unity. Since the

chip pulse is time-limited to Tp seconds, the function χp(1, z) is non-zero only when

|z| < Tp. Therefore, given a and τ , for each i ∈ 1, 2, . . . , Np − 1, there are at most

two values of j such that | τ
To
+ai− j| < Tp

To
. This observation, combined with the fact

that |χp(a, τ)| < 1, ∀ a, τ , leads to the inequality in (3.22). Thus, for a large number

Np of chips, the sum of the terms in the third case is negligible. Similarly, the sum

of the terms in the fourth case i = l, j = k, i 6= j can be shown to be negligible.

In summary, we have that only the second case gives non-negligible results, hence

E[χ(a, τ)χ(a′, τ ′)] ≈ χ̄(a, τ)χ̄(a′, τ ′).
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where χ̄ (·, ·) is defined in (3.5). ¤

Lemma 5 For Np large and a near unity, the wideband ambiguity function χ(a, τ)

is approximately equal to χ̄(a, τ) in the mean-squared sense, where the expectation is

taken over the random chip sequence.

Proof: We use Lemmas 3 and 4 to write the following

E[|χ(a, τ)− χ̄(a, τ)|2] = E[(χ(a, τ))2]− 2E[χ(a, τ)]χ̄(a, τ) + (χ̄(a, τ))2 (3.23)

≈ 0. ¤ (3.24)

Proof of Proposition 1

From Lemma 5, we see that χ̄(1, τ) is a mean-square approximation of χ(1, τ);

hence, from (3.5)

χ(1, τ) ≈
∫ 1

0

χp(1, τ)dz (3.25)

= χp(1, τ). (3.26)

The function χp(1, τ) = 0 when τ > Tp. ¤

Proof of Proposition 2

From Lemma 5, we see that χ̄(a, 0) is a mean-square approximation of χ(a, 0);

hence, from (3.5)

χ(a, 0) ≈
∫ 1

0

χp(1, (a− 1)zTs)dz (3.27)

=

∫ 1

0

Rp((a− 1)zTs)dz (3.28)

=
1

2(a− 1)Ts

∫ (a−1)Ts

−(a−1)Ts
Rp(z)dz. (3.29)
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where Rp(τ) := χp(1, τ) is the deterministic autocorrelation function of the chip pulse

p(t). Suppose Sp(0) = 0 where Sp(f) is the energy spectral density of the chip pulse.

Since the chip pulse has time support of Tp seconds, then for (a− 1)Ts ≥ Tp ⇔ a ≥

1 + Tp
Ts

we have

χ(a, τ) ≈ Sp(0),

= 0, (3.30)

for Np large and a near unity. ¤

3.5 Appendix: Wideband Ambiguity Function for Second-
Derivative Chip Pulse

The closed-form ambiguity function expression for the unit energy second-derivative

Gaussian chip pulse is quickly derived by using Parseval’s theorem to perform the in-

ner product calculation in the frequency domain:

χp(a, τ) =

∫ ∞

−∞

1√
a
p

(
t− τ
a

)

p(t)dt, (3.31)

=

∫ ∞

−∞

√
a exp(−j2πτ)P (af)P ∗(f)df, (3.32)

where the Fourier transform P (f) of the chip pulse p(t) is

P (f) =

√
fo

4
√
32π√
3

2
√

πf 2o

(
f

fo

)2

e
− f2

f2
o . (3.33)

We complete the square of the argument of the exponential in (3.32) and make use

of the expression of the fourth Gaussian moment to write the solution as

χp(a, τ) = f(a)

(

4π4f 4o τ
4 − 12π2f 2o τ

2(1 + a2) + 3(1 + a2)2
)

exp

(

−π
2f 2o τ

2

1 + a2

)

, (3.34)
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where f(a) = 4
3

√
2a5

(1+a2)9
.

3.6 Appendix: Admissibility of DSSS Waveform

In this appendix, we show that a direct-sequence spread spectrum (DSSS) signal

is admissible if the chip-pulse is admissible. A signal g(t) is admissible if the following

condition holds

∫ ∞

−∞

|G(f)|2
|f | df < +∞, (3.35)

where G(f) is the Fourier transform of g(t). Recall that the DSSS signal x(t) is

x(t) =
1

√
Np

Np−1∑

i=0

cip(t− iTo), (3.36)

and has Fourier transform

X(f) =
P (f)
√
Np

Np−1∑

i=0

cie
j2πiTo), (3.37)

where P (f) is the Fourier transform of the chip pulse. Now plug (3.37) into the

admissibility condition (3.35) to get

∫ ∞

−∞

|X(f)|2
|f | df =

∫ ∞

−∞

|P (f)|2
|f |

∣
∣
∣
∑Np−1

i=0 cie
−j2πfiTo

∣
∣
∣

2

Np

df (3.38)

≤
∫ ∞

−∞

|P (f)|2
|f |

∑Np−1
i=0 |cie−j2πfiTo |2

Np

df (3.39)

=
1

Np

Np−1∑

i=0

|ci|2

︸ ︷︷ ︸

=1

∫ ∞

−∞

|P (f)|2
|f | df (3.40)

< +∞ (3.41)

Hence, an admissible chip pulse p(t) implies that the DSSS signal x(t) is also admis-

sible.
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CHAPTER 4

FRAME THEORY AND THE SCALE-LAG RAKE
RECEIVER

In this chapter, we take a frame-theoretic view of the scale-lag Rake functions9

{xm,n(t)} in the design of translation and dilation spacing parameters to and ao. Our

goal is to find the range of to and ao values such that the scale-lag Rake functions

constitute a frame. The designation of frame status means that the scale-lag Rake

functions can represent any signal and hence can provide a set of sufficient statistics

for bit detection. We compile and study numerical frame bounds for a DSSS waveform

derived from second-derivative Gaussian chip pulses.

4.1 Introduction to Frame Theory

A “frame” is a set of not-necessarily independent vectors that can act as an ex-

pansion for any vector in the space. In other words, if we project any vector onto

the frame, we should somehow be able to reconstruct the original vector from the

projection coefficients. We would like the projection to be linear; thus, if our original

vector has bounded energy, then the norm of the frame expansion should also be

bounded.

9We drop the superscript (k) on the scale-lag Rake functions for notational convenience.
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To state the first condition, reconstruction, more mathematically, let H be a

Hilbert space and choose a set {ϕj}j∈J ⊂ H. Define T : H → C
|J | to be the linear

transformation which projects vectors in H onto the set {ϕj}j∈J , i.e.,

(Tf)j := 〈ϕj, f〉 = cj, (4.1)

for f ∈ H. The transformation T maps H into the space of sequences with indices

J . Recall that a linear transformation is invertible on its range if and only if its

null space contains only the zero vector {0}; in other words, any vector with positive

energy must be mapped away from zero. Thus, to be able to reconstruct f ∈ H from

the projection coefficients {cj}j∈J , the transformation T must satisfy

0 < A‖f‖2 ≤ ‖Tf‖2 =
∑

j∈J
|〈ϕj, f〉|2 (4.2)

for some A > 0 and for every f ∈ H, f 6= 0. An implication of (4.2) is that the span

of the set {ϕj}j∈J must be at least dense in H; otherwise, we could find a nonzero

vector f⊥ ∈ H that is orthogonal to every ϕj.

The second condition, bounded energy, can be stated as follows. The transforma-

tion T has bounded energy if there is a B <∞ such that for every f ∈ H,

‖Tf‖2 =
∑

j∈J
|〈ϕj, f〉|2 ≤ B‖f‖2. (4.3)

In other words, T maps vectors in H into `2(J), the space of square-summable se-

quences with indices J . Recalling that bounded linear transformations are continuous,

we see that if T satisfies (4.3), then it is a continuous mapping from H into `2(J).

From (4.2) and (4.3), we are ready to state the definition of a frame. A set of

vectors {ϕj}j∈J in a Hilbert space H is called a frame if there exist constants A > 0,
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B <∞ such that

A‖f‖2 ≤
∑

j∈J
|〈ϕj, f〉|2 ≤ B‖f‖2 (4.4)

for all f ∈ H.

4.1.1 Tight Frames

A tight frame has equal frame bounds, A = B. For a tight frame, reconstruction

is straightforward [24, p. 56]

f = A−1
∑

j

〈f, ϕj〉ϕj. (4.5)

Furthermore, when the frame elements have unit energy, the tight frame bound A can

be interpreted as a measure of the frame “redundancy,” i.e., the ratio of the number

of frame elements to the dimension of the space. If {ϕj}j∈J is a tight frame with

frame bound A = 1, and each ϕj has unit norm ‖ϕj‖ = 1, then the frame {ϕj} is an

orthonormal basis for H [24, p.57].

4.1.2 Snug Frames

Given ε > 0, we say a frame is snug if the frame bounds satisfy B/A− 1 < ε [23].

Given small epsilon (ε ≈ .01), (4.5) can be used as an approximate reconstruction

formula for snug frames.

4.2 Average Frame Bounds for DSSS Signal

Now let us return to the original question: does our scale-lag basis {xm,n(t)}m,n∈Z

constitute a frame, and what are the implications? Recall that

xm,n(t) =
1√
amo
x
(
t−ntoamo

amo

)

, where x(t) = 1√
Np

∑Np−1
i=0 cip(t− iTo). Since the “mother”
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basis function x0,0(t) is constructed from a pseudo-random sequence of wavelet chip

pulses, we take a statistical approach, that is, we seek bounds on the expectation of

the norm of the frame projection. We call these average frame bounds and proceed

by taking the expectation of (4.4) when the frame is {xm,n(t)}m,n∈Z. We follow closely

the analysis in [24, p.67].

E

[
∑

m,n∈Z

|〈f, xm,n〉|2
]

=
∑

m,n

E

∣
∣
∣
∣

∫ ∞

−∞
F (ω)am/2o X∗(amo ω)e

jtoamo nωdω

∣
∣
∣
∣

2

=
∑

m,n

amo E

∣
∣
∣
∣
∣

∫ 2πt−1
o a−mo

0

ejtoa
m
o nω

∑

`∈Z

F (ω + 2π`a−mo t−1o )X∗(amo ω + 2π`t−1o )dω

∣
∣
∣
∣
∣

2

=
2π

to

∑

m

∫ 2πt−1
o a−1

o

0

E

∣
∣
∣
∣
∣

∑

`∈Z

F (ω + 2π`a−mo t−1o )X∗(amo ω + 2π`t−1o )

∣
∣
∣
∣
∣

2

dω

=
2π

to

∑

m,k∈Z

∫ ∞

−∞
F (ω)F ∗(ω + 2πka−mo t−1o ) E

[
X∗(amo ω)X(amo ω + 2πkt−1o )

]
dω.

(4.6)

We now calculate the expectation in (4.6):

E
[
X∗(amo ω)X(amo ω + 2πkt−1o )

]
=

1

Np

Np−1∑

l,l′=0

E[clcl′ ]

P ∗(amo ω)P (amo ω + 2πkt−1o )ej[(l−l
′)Toamo ω−2πkl′ Toto ]

= P ∗(amo ω)P (amo ω + 2πkt−1o )

Np−1∑

l=0

1

Np

e−j2πkl
To
to

(4.7)

where we have used the fact that

X(ω) =
1√
2π

∫ ∞

−∞
x(t)ejωtdt

=
1

√
Np

P (ω)

Np−1∑

l=0

e−jlToω
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and

E[clcl′ ] =

{

E[c2l ] = 1, l = l′

0, otherwise.

Substituting (4.7) into (4.6), we have

E

[
∑

m,n∈Z

|〈f, xm,n〉|2
]

=
2π

to

∫ ∞

−∞
|F (ω)|2

∑

m∈Z

|P (amo ω)|2dω +Rest(f). (4.8)

Rest(f) is bounded by (see [24, p.67])

|Rest(f)| ≤ 2π

to
‖f‖2

∑

k 6=0

[

β

(
2π

to
k

)

β

(

−2π

to
k

)]1/2

, (4.9)

where

β(s) := sup
ω

∑

m∈Z

|P (amo ω)||P (amo ω + s)|. (4.10)

We are now ready to restate Proposition 3.3.2 from [24, p.69] for the case of spread-

spectrum waveforms.

Proposition 6 Suppose x(t) = 1√
Np

∑Np−1
l=0 clp(t − lTo) is a spread-spectrum wave-

form composed of unit-norm wavelet chip-pulses p(t). Suppose also that the spreading

sequence {cl}Np−1
l=0 is modeled as i.i.d. If p(t), ao are such that

inf
1≤|ω|≤ao

∞∑

m=−∞
|P (amo ω)|2 > 0, (4.11)

sup
1≤|ω|≤ao

∞∑

m=−∞
|P (amo ω)|2 <∞, (4.12)

and if β(s) = supω
∑

m |P (amo ω)||P (amo ω+s)| decays at least as fast as (1+ |s|)−(1+ε),

with ε > 0, then there exists (to)thr > 0 such that, on average, the xm,n(t) =
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1

a
m/2
o

x
(
t−toamo
amo

)

constitute a frame for all choices to < (to)thr. For to < (to)thr, the

following expressions are frame bounds, on average, for the xm,n(t):

A =
2π

to

{

inf
1≤|ω|≤ao

∞∑

m=−∞
|P (amo ω)|2 −

∑

k 6=0

[

β

(
2π

to
k

)

β

(

−2π

to
k

)]1/2
}

, (4.13)

B =
2π

to

{

sup
1≤|ω|≤ao

∞∑

m=−∞
|P (amo ω)|2 +

∑

k 6=0

[

β

(
2π

to
k

)

β

(

−2π

to
k

)]1/2
}

, (4.14)

The conditions on β and (4.12) are satisfied if, e.g., |P (ω)| ≤ C|ω|α(1 + |ω|)−γ with

α > 0, γ > α + 1.

Let us, for a moment, examine the frame bound expressions (4.13) and (4.14)

when the chip pulse has (single-sided) bandwidth W Hertz. If the frame translation

parameter to is set to to = 1
2W

seconds, then β
(

±2πk
to

)

= 0 for k 6= 0. Suppose

also that the dilation parameter ao is set very close to unity. Then we will have

inf1≤|ω|≤ao
∑∞

m=−∞ |P (amo ω)|2 ≈ sup1≤|ω|≤ao
∑∞

m=−∞ |P (amo ω)|2 and hence A ≈ B,

i.e., we have a snug frame. In this case, we can calculate the frame bound from the

following necessary condition [24, p.63]

A ≈ 2π

to ln ao

∫ ∞

−∞

|P (ω)|2
|ω| dω. (4.15)

4.3 Average Frame Bounds for DSSS Signals Using Second-
Derivative Gaussian Wavelets as Chip Pulses

Let us calculate the frame bounds for a signal x(t) with second-derivative Gaussian

wavelet chip pulses, which are used in our scale-lag Rake receiver analysis. The (unit

energy) second-derivative Gaussian wavelet (a.k.a. Mexican-hat wavelet [24, p. 75])
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is written

u(t) =
2√
3
π−1/4(1− t2)e− t2

2 , (4.16)

and has Fourier transform

U(ω) =
2√
3
π−1/4ω2e−

ω2

2 . (4.17)

The second-derivative Gaussian wavelet can be dilated to any desired level to

obtain the chip pulse: p(t) =
√
αu(αt). In our case, we set the scaling constant α to

be α := πfo
√
2 so that the peak of the frequency response supω |P (ω)| occurs at 2πfo

radians (fo Hertz). Thus, (4.16) is equivalent, up to a temporal scaling factor to the

chip pulse (3.3). For the second-derivative Gaussian chip pulse, the frame bounds

from Proposition 6 are dependent on the product tofo as seen below:

A =

√
2

tofo






inf

1≤|ω|≤ao

∞∑

m=−∞
|U(amo ω)|2 −

∑

k 6=0

[

βU

(√
2

tofo
k

)

βU

(

−
√
2

tofo
k

)]1/2





,

B =

√
2

tofo






sup

1≤|ω|≤ao

∞∑

m=−∞
|U(amo ω)|2 +

∑

k 6=0

[

βU

(√
2

tofo
k

)

βmex

(

−
√
2

tofo
k

)]1/2





,

where

βU(s) = sup
ω

∑

m

|U(amo ω)||U(amo ω + s)| (4.18)

Tables 4.1, 4.2, and 4.3 compile the frame bounds for dilation-spacing parameter

settings of ao = 2, ao = 1 + 1/64, and ao = 1 + 1/128, respectively. In each table,

the last value of the normalized frame translation parameter tofo is the largest value

(in increments of 0.05) such that A > 0. Recall that kt = tofo. Values of kt greater
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than 0.35 will “probably” result in shift-dilates of x(t) not being a frame anymore,

as stated by Daubechies in [24, p.76]. The choice kt = 0.236, or equivalently to = τo,

implies that the scale-lag basis is a frame and can act as an expansion for any received

signal; hence, the scale-lag basis can provide sufficient statistics for the bit detector.

In some instances the translation-spacing parameter may need to be on the order

of the chip-pulse duration, i.e., tofo = 2. Note that this setting is much greater than

the maximum allowable for the shift-dilates of x(t) to be a frame on average! Hence,

the scale-lag expansion will not collect all the energy offered by wideband channel

output.

Figure 4.1 plots the ratio B/A versus tofo. Note the abrupt loosening of the frame

as the normalized translation spacing parameter tofo approaches 0.35 regardless of the

value of the dilation spacing parameter ao. Hence, the frame status is not sensitive

to the choice of ao (or equivalently of kγ). However, tables 4.1, 4.2, and 4.3 indicate

that the frame redundancy—the magnitude of A—is greatly impacted by the choice

of ao. We examine this connection next.

Plugging P (f) = 1√
α
U(ω

α
), α = πfo

√
2, into (4.15), we have

A ≈
√
2

tofo ln ao

∫ ∞

−∞

|U(ω)|2
|ω| dω. (4.19)

Recall that to :=
kt
fo

and ao := 1 + kγ
Tsfo

; hence, plugging these with the Taylor series

approximation ln ao ≈ ao − 1 into (4.19) gives

A ≈
√
2Tsfo
ktkγ

∫ ∞

−∞

|U(ω)|2
|ω| dω. (4.20)

The expression (4.20) shows that the redundancy is directly proportional to the time-

bandwidth product. Frame redundancy indicates the granularity of the expansion; if
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a frame is highly redundant, then it can finely resolve signal features while using few

basis functions. In our case, we want a highly redundant frame in order to resolve,

with few basis functions, between slight dilation differences in the received multipath.

A closer look at the connection between frame redundancy and scale resolution is an

interesting line of future research.

kτ := tofo A B B/A

.1 7.3662 7.9814 1.0835

.2 3.6768 3.9970 1.0871

.3 1.4726 3.6432 2.4739

.34 0.0250 4.2600 16.7684

Table 4.1: Frame bounds for ao = 2.

kτ := tofo A B B/A

.1 343.0828 343.0828 1.0000

.2 171.3491 171.7337 1.0022

.3 77.0038 151.7181 1.9703

.35 13.0300 183.0153 14.0435

Table 4.2: Frame bounds for ao = 1 + 1/64.
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kτ := tofo A B B/A

.1 682.8513 682.8714 1.0000

.2 341.0425 341.8188 1.0023

.3 153.1917 302.0492 1.9717

.35 25.7773 364.4292 14.1376

Table 4.3: Frame bounds for ao = 1 + 1/128.
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Figure 4.1: Ratio of average frame bounds B/A for a DSSS signal employing second-
derivative Gaussian wavelet chip pulses.
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CHAPTER 5

SCALE-LAG DIVERSITY

To determine the diversity10 extracted by the coherent scale-lag Rake receiver,

we derive the second-order statistics of the wideband channel kernel L (a, τ) and

use this information to compute correlation between the channel coefficients. The

count of large eigenvalues of the combining coefficient autocorrelation matrix will

be used to define the effective diversity level extracted by the receiver, as outlined

in Section 2.3.1. The effective diversity level is the slope of the BER curve at a

nominal value of SNR. We plot and compare the performances of the scale-lag Rake,

Doppler-lag Rake, and conventional lag-only Rake receivers.

5.1 Wideband Scattering Function

In this section, we compute the second-order wideband channel statistics

E[L (a, τ)L(a′, τ ′)] assuming that the wideband channel kernel can be modeled as

a sum of discrete paths. If we assume uncorrelated scattering, then we find that

the second-order statistics are E[L (a, τ)L(a′, τ ′)] = Ψ(a, τ)δ(a − a′)δ(τ − τ ′), where

10See Section 2.3.1 for a discussion on channel diversity.

75



Ψ(a, τ) is the wideband scattering function. The wideband scattering function quan-

tifies the scale-lag energy spread of the wideband channel and is used in the sequel

to examine the performance of the scale-lag Rake receiver.

Assume the wideband channel kernel can be modeled as a sum of N discrete paths:

L (a, τ) =
N−1∑

n=0

lnδ(a− an)δ(τ − τn), (5.1)

where δ(·) is the Dirac delta function and where the nth path has real-valued gain ln,

dilation an, and lag τn. A similar assumption is used to derive the channel autocor-

relation function in the narrowband setting [90].

In order to proceed with the derivation, we make the following assumptions on

the statistics of the wideband kernel:

(A1) The path parameters {ln}, {an}, and {τn} are i.i.d. across paths with joint

density pA,L,T (·, ·, ·).

(A2) The path amplitudes are zero mean, i.e., E[ln] = 0.

(A3) The dilation an is independent of the amplitude ln and lag τn, i.e., pA,L,T (·, ·, ·) =

pA(·)pL,T (·, ·).

The amplitude and lag are often correlated in wireless communications channels where

propagation losses manifest as an exponentially decaying function of increasing lag

[93], [75].

From assumptions (A1) and (A2) we write

E[L(a′, τ ′)L(a′′, τ ′′)] = E[δ(a′ − a0)δ(a′′ − a0)N |l0|2δ(τ ′ − τ0)δ(τ ′′ − τ0)]. (5.2)
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Assumption (A1) allows us to consider the first path without loss of generality. From

assumption (A3),

E[δ(a′ − a0)δ(a′′ − a0)]

=

∫

δ(a′ − a)δ(a′′ − a)pA(a)da,

= pA(a
′)δ(a′ − a′′), (5.3)

and

E[N |l0|2δ(τ ′ − τ0)δ(τ ′′ − τ0)]

= N

∫ ∫

|l|2δ(τ ′ − τ)δ(τ ′′ − τ)pL,T (l, τ)dτdl,

= fT (τ
′)δ(τ ′ − τ ′′), (5.4)

where we define

fT (τ) := NpT (τ)

∫

|l|2pL|T (l|τ)dl. (5.5)

The function fT (τ) is the delay profile as a function of lag τ . Thus, a decaying energy

profile can be modeled.

We substitute (5.3) and (5.4) into (5.2) to obtain

E[L(a, τ)L(a′, τ ′)] = pA(a)fT (τ)
︸ ︷︷ ︸

:=Ψ(a,τ)

δ(a− a′)δ(τ − τ ′), (5.6)

where Ψ(a, τ) is the wideband scattering function, which quantifies the distribution

of received power as a function of dilation and delay.

Ring of Scatterers

Now that the form of the wideband scattering function has been determined, we

investigate the dilation density pA(·). An often studied channel geometry is a fixed
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transmitter and dense ring of scatterers surrounding the mobile receiver. In this

case, the relation between the angle-of-arrival relative to the direction of travel ξ and

dilation a is

a = 1− γmax cos(ξ). (5.7)

where γmax = vmax

c
is the scale-spread. Given the angle of arrival distribution pΞ(·),

it is a simple matter to compute the dilation distribution pA(·),

pA(a) =
1

γmax
pY

(

−a− 1

γmax

)

, (5.8)

where Y = cos(Ξ) and

pY (y) =
pΞ(cos

−1(y)) + pΞ(− cos−1(y))
√

1− y2
. (5.9)

If the angle of arrival ξ is distributed uniformly on (−π, π], then we have

pY (y) =
1

π
√

1− y2
, |y| < 1, (5.10)

which is a familiar “bathtub shape” [40] (see Fig. B.1). We call the function pA(a) the

scale profile, analogous to the Doppler spectrum in narrowband baseband-equivalent

systems.
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PSfrag replacements

11− γmax 1 + γmax

a

Figure 5.1: Plot of “bathtub-shaped” scale profile pA(a). The angle of arrival ξ is uniformly
distributed.
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5.2 Wideband Channel Coefficient Correlation

Recall from Section 2.3.1 that the BER performance of the scale-lag Rake receiver

is dependent on the statistics of the channel coefficients {h(k)m,n} (c.f. (3.11)). In

the following, we compute E[h
(k)
m,nh

(k′)
m′,n′ ], which is the general correlation between the

channel coefficients, and use this result to determine the diversity exploited by the

scale-lag Rake.

E[h(k)m,nh
(k′)
m′,n′ ] =

∫ τmax

0

∫ 1+γmax

1−γmax

Ψ(a, τ)

E

[

χ

(
amo
a
,
nToa

m
o −τ−k(a−1)Ts

a

)

χ

(
am

′

o

a
,
n′Toa

m′

o −τ−k′(a−1)Ts
a

)]

dadτ,

≈
∫ τmax

0

∫ 1+γmax

1−γmax

Ψ(a, τ)

χ̄

(
amo
a
,
nToa

m
o −τ−k(a−1)Ts

a

)

χ̄

(
am

′

o

a
,
n′Toa

m′

o −τ−k′(a−1)Ts
a

)

dadτ,

(5.11)

where Ψ(a, τ) is the wideband scattering function defined in the previous section,

χ(a, τ) is the wideband ambiguity function defined in (3.1), and χ̄(a, τ) is defined in

(3.5) as the mean-square approximation of χ(a, τ). We have also used Lemma 4 of

Appendix 3.4, which states E[χ(a, τ)χ(a′, τ ′)] ≈ χ̄(a, τ)χ̄(a′, τ ′). The approximation

(5.11) is tight since we assume that a and a′ are near unity and the number of

chips Np is large. After making the approximations11 amo
a
≈ 1 + mγo − (a − 1) and

nToamo −τ−i(a−1)Ts
a

≈ nTo − τ − i(a − 1)Ts, we have that the correlation (5.11) can be

11Note that amo ≈ 1 +mγo, and 1/a ≈ 1− (a− 1).
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approximated12 by

E[h(k)m,nh
(k′)
m′,n′ ] ≈

∫ τmax

0

∫ 1+γmax

1−γmax

Ψ(a, τ)χ̄ (1 +mγo − (a− 1), nto − τ − k(a− 1)Ts)

χ̄ (1 +m′γo − (a− 1), n′to − τ − k′(a− 1)Ts) dadτ. (5.12)

Finally, we insert the relations to =
kτ
fo

and γo =
kγ
Tsfo

from Section 3.1 and make the

variable substitutions γ̄ := (a− 1)Tsfo and τ̄ := τfo to obtain

E[h(k)m,nh
(k′)
m′,n′ ] ≈

1

Tsf 2o

∫ τmaxfo

0

∫ γmaxTsfo

−γmaxTsfo

Ψ(1 + γ̄
Tsfo

, τ̄
fo
)

χ̄

(

1 +
mkγ − γ̄
Tsfo

,
nkt − τ̄ − kγ̄

fo

)

χ̄

(

1 +
m′kγ − γ̄
Tsfo

,
n′kt − τ̄ − k′γ̄

fo

)

dγ̄dτ̄ .

=
1

Tsf 2o

∫ τmaxfo

0

∫ γmaxTsfo

−γmaxTsfo

Ψ(1 + γ̄
Tsfo

, τ̄
fo
)

∫ 1

0

χp

(

1,
nkt − τ̄ + (mkγ − γ̄)z − kγ̄

fo

)

dz

∫ 1

0

χp

(

1,
n′kt − τ̄ + (m′kγ − γ̄)z′ − k′γ̄

fo

)

dz′dγ̄dτ̄ . (5.13)

where we have used the definition χ̄(a, τ) :=
∫ 1

0
χp(1, τ + (a − 1)zTs)dz (c.f. (3.5)).

The variable γ̄ is the scale deviation normalized by the time-bandwidth product, and

τ̄ is lag normalized to bandwidth.

5.3 Numerical Results

In this section, we examine the performance a DSSS system employing a unit-

energy second-derivative Gaussian chip pulse (c.f. (3.3)). As in Section 2.3.1, we

12This approximation is not valid for systems where mobility is large relative to the speed of wave
propagation, e.g., high-speed underwater applications.
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assume that the receiver is demodulating the 0th bit and hence drop the bit index

k, i.e., set k = k′ = 0; the results pertain to any other bit in a bit-by-bit detector.

We plug the expression for the ambiguity function of the second-derivative Gaussian

chip pulse (3.34) into the correlation (5.13) to compute the channel correlation ma-

trix E[hhT ] = Rh, where h is defined in Section 3.2. It is then straightforward to

compute Σ = R−T/2x RhR
−1/2
x , the autocorrelation matrix of the whitened matched-

filter combining coefficients f , where f and Rx are defined in Section 2.3 (using the

scale-lag basis). The numerical analysis is performed by evaluating (5.13) on a grid

of size 41 × 41 over the variables (γ̄, τ̄) and using the MATLAB command trapz for

numerical integration.

From (5.13), we see how the results are dependent on the relation parameters kτ

and kγ. Recall from Section 3.1 that kτ and kγ relate the translation-spacing to and

scale-spacing γo to the time and bandwidth in the following manner: to = kτ
fo

and

γo =
kγ
Tsfo

. If kτ = 0.236 then the translation spacing is set to the minimum resolvable

lag and if kγ = 0.55 then the scale spacing is set to the minimum scale resolution.

See Section 3.1 for a discussion of scale and lag resolution.

The final assumption is that the wideband channel kernel L (a, τ) is a real-valued,

zero-mean, uncorrelated, Gaussian process with unit energy, i.e.,

∫ ∫

Ψ(a, τ)dadτ = 1. (5.14)

Hence, the BER analysis and effective diversity level definition of Section 2.3.1 apply.

Figures 5.2 - 5.5 study the scale-lag Rake for various choices of kγ and kτ , and

figures 5.6 - 5.9 compare performances of the scale-lag Rake, Doppler-lag Rake and
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conventional lag-only rake. See Appendix A for details regarding the setup of the

Doppler-lag Rake, which is a real-valued extension of the Doppler-lag Rake in [85].

The conventional lag-only Rake (2.38) collects energy from only them = 0 fingers, i.e.,

it collects only lag diversity. The bit error rate (BER) is computed with (2.50), where

the SNR is Eb

σ2
w
, i.e., the transmitted SNR. For all the plots, the system assumes a delay

spread of τmax = 0.5/fo seconds and a uniform delay profile fT (τ). Furthermore, the

scale profile pA(a) is assumed to have a “bathtub” shape as specified in Section 5.1.

We choose M = dγmaxTsfoe+1 and N = dτmaxfoe+1 to capture a significant portion

of the received energy in the channel coefficients.

As discussed in Section 4.3, the frame status of the scale-lag Rake is not sensitive

to the choice of scale-spacing parameter γo, or equivalently of the relation kγ = γoTsfo;

however, it was seen that γo affects significantly the frame redundancy, that is, the

granularity of the frame. In Fig. 5.2(a), the translation spacing relation is set to the

minimum resolvable lag (kτ = 0.236), such that the scale-lag Rake is a snug frame. In

this case, the projection coefficients are sufficient statistics since they capture all the

information in the signal space. Notice that the performance is affected very little by

the choice of kγ (scale-spacing). In Fig. 5.2(b)-(c), the translation spacing relation

kτ is set to 0.744 and 2, respectively, such that the scale-lag Rake is not a frame.

The overall performance is worse than (a) because the statistics are insufficient, but a

tighter scale spacing (e.g., kγ = 0.55, set to the minimum scale resolution) mitigates

the loss of performance by capturing energy in the dilated multipath components.

In Fig. 5.2, the normalized scale spread is γmaxTsfo = 0.05; Figure 5.3 repeats the

preceding observations for the scale spread of γmaxTsfo = 0.0005.
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Figure 5.4 and Figure 5.5 illustrate the performance loss when the translation-

spacing relation kτ is chosen too large. The subplots are indexed by scale-spacing

relation kγ and the curves are indexed by translation-spacing relation kτ . Once

again, we see that the performance loss due to choosing a wider translation-spacing

is minimized when the scale-spacing relation is set to the minimum scale resolution

(kγ = 0.55). In Fig. 5.4 and Fig. 5.5, the normalized scale spread is γmaxTsfo = 0.05

and 0.0005, respectively.

In Figures 5.6 - 5.7 we compare the performances of the scale-lag Rake, Doppler-

lag Rake and conventional lag-only Rake. For a fair comparison, the scale-lag Rake

and Doppler-lag Rake have the same number of Rake fingers: (2M + 1)(N + 1). See

Section 2.4.2 for a discussion on the choice of M and N . The lag-only rake has

N + 1 fingers. When the the translation-spacing parameter of the Rakes is set to

the minimum resolvable lag, then the Rakes have nearly the same performance, as

shown in Fig. 5.6. We offer the following explanation for this similarity. The re-

duced complexity Rake analysis of Section 3.2.1 shows that the translation-spacing

parameter can be thought of as the sampling period of the Rake receiver. The sam-

pling period is slightly lengthened or shortened to obtain the scale components of the

scale-lag Rake receiver. If the sampling period is short enough such that the sam-

pling frequency satisfies the Nyquist sampling criterion, then the lag components are

sufficient statistics and additional components do not provide additional information.

The single-sided bandwidth of the second-derivative Gaussian chip pulse is roughly

W = 2fo (see Fig. 3.2); hence, the Nyquist sampling criterion is approximately sat-

isfied for a translation-spacing parameter to of 12W = 0.25fo. If the translation
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spacing parameter to is set to the minimum resolvable lag τo = 0.236
fo

, then Nyquist

is approximately satisfied and additional scale or Doppler components provide little

additional information at the operational SNR’s.

On the other hand, if the translation-spacing is such that Nyquist sampling is not

satisfied, as in Fig. 5.7 where kτ = 2, i.e., to =
2
fo
, then the scale-lag Rake outperforms

both the Doppler-lag Rake and lag-only Rake. We reason that scale-lag Rake is more

closely matched to the scale-lag spreading of the wideband channel.

Figures 5.8 - 5.9 are similar to the previous two figures, however, the performances

of the Rake receivers are now separated into subplots for self comparison: (a) scale-

lag Rake, (b) Doppler-lag Rake, and (c) lag-only Rake. The Eigenvalue curves are

indexed from right to left over normalized scale spreads of γmaxTsfo = 0.05, 0.005,

and 0.0005. Figure 5.8 has translation spacing relation set to kτ = 0.236 (minimum

resolvable lag) and Fig. 5.9 has translation spacing relation set to kτ = 2.

For reference, a normalized scale spread of 0.005 would be found in an RF system

with mobile velocity of 10 km/hr, data rate of 1 Mbps, and bandwidth of 10 GHz, or

in an RF system with velocity of 100 km/hr, data rate of 1 Mbps, and bandwidth of

1 GHz. A normalized scale spread of 0.05 would be found in an underwater acoustic

telemetry system with mobile velocity of 1 km/hr, data rate of 1 kbps, and bandwidth

of 50 kHz.
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Figure 5.2: For the scale-spread of γmaxTsfo = 0.05, we compare the eigenvalues and BER
of the scale-lag Rake receiver for translation-spacing relation kτ settings of (a) kτ = 0.236
(minimum resolvable lag), (b) kτ = 0.744, (c) kτ = 2. The Eigenvalue curves are indexed
from right to left over scale-spacings of kγ = 0.55 (minimum scale resolution), kγ = 1, and
kγ = 2. The BER curves are indexed in the opposite ordering. The normalized delay spread
is τmaxfo = 0.5. A “bathtub-shaped” scale profile (5.10) is used.
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Figure 5.3: For the scale-spread of γmaxTsfo = 0.0005, we compare the eigenvalues and BER
of the scale-lag Rake receiver for translation-spacing relation kτ settings of (a) kτ = 0.236
(minimum resolvable lag), (b) kτ = 0.744, (c) kτ = 2. The Eigenvalue curves are indexed
from right to left over scale-spacings of kγ = 0.55 (minimum scale resolution), kγ = 1, and
kγ = 2. The BER curves are indexed in the opposite ordering. The normalized delay spread
is τmaxfo = 0.5. A “bathtub-shaped” scale profile (5.10) is used.
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Figure 5.4: For the scale-spread of γmaxTsfo = 0.05, we compare the eigenvalues and
BER of the scale-lag Rake receiver for scale-spacing relation kγ settings of (a) kγ = 0.55
(minimum scale resolution), (b) kγ = 1, (c) kγ = 2. The Eigenvalue curves are indexed from
right to left over translation-spacings of kτ = 0.236 (minimum resolvable lag), kτ = 0.744,
kτ = 1 and kτ = 2. The BER curves are indexed in the opposite ordering. The normalized
delay spread is τmaxfo = 0.5. A “bathtub-shaped” scale profile (5.10) is used.
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Figure 5.5: For the scale-spread of γmaxTsfo = 0.0005, we compare the eigenvalues and
BER of the scale-lag Rake receiver for scale-spacing relation kγ settings of (a) kγ = 0.55
(minimum scale resolution), (b) kγ = 1, (c) kγ = 2. The Eigenvalue curves are indexed from
right to left over translation-spacings of kτ = 0.236 (minimum resolvable lag), kτ = 0.744,
kτ = 1 and kτ = 2. The BER curves are indexed in the opposite ordering. The normalized
delay spread is τmaxfo = 0.5. A “bathtub-shaped” scale profile (5.10) is used.
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Figure 5.6: For the scale-spacing relation kγ = 0.55 (set to minimum scale resolution) and
translation-spacing relation kτ = 0.236 (set to minimum resolvable lag), we compare the
eigenvalues and BER performances of the three receivers for scale-spreads of (a) γmaxTsfo =
0.05, (b) γmaxTsfo = 0.005, (c) γmaxTsfo = 0.0005. The Eigenvalue curves are indexed from
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“bathtub-shaped” scale profile (5.10) is used.
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Figure 5.7: For the scale-spacing relation kγ = 0.55 (set to minimum scale resolution) and
translation-spacing relation kτ = 2, we compare the eigenvalues and BER performances
of the three receivers for scale-spreads of (a) γmaxTsfo = 0.05, (b) γmaxTsfo = 0.005, (c)
γmaxTsfo = 0.0005. The Eigenvalue curves are indexed from right to left as the scale-lag
Rake, Doppler-lag Rake, and lag-only Rake. The BER curves are indexed in the opposite
ordering. The normalized delay spread is τmaxfo = 0.5. A “bathtub-shaped” scale profile
(5.10) is used.
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Figure 5.8: For the scale-spacing relation kγ = 0.55 (set to minimum scale resolution) and
translation-spacing relation kτ = 0.236 (set to minimum resolvable lag), we show the eigen-
values and BER for (a) scale-lag Rake, (b) Doppler-lag Rake, and (c) lag-only Rake. The
Eigenvalue curves are indexed from right to left via the normalized scale spread γmaxTsfo =
0.05, 0.005, 0.0005, respectively. The BER curves are indexed in the opposite ordering. The
normalized delay spread is τmaxfo = 0.5. A “bathtub-shaped” scale profile (5.10) is used.
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Figure 5.9: For the scale-spacing relation kγ = 0.55 (set to minimum scale resolution) and
translation-spacing relation kτ = 2.0, we show the eigenvalues and BER for (a) scale-lag
Rake, (b) Doppler-lag Rake, and (c) lag-only Rake. The Eigenvalue curves are indexed from
right to left via the normalized scale spread γmaxTsfo = 0.05, 0.005, 0.0005, respectively.
The BER curves are indexed in the opposite ordering. The normalized delay spread is
τmaxfo = 0.5. A “bathtub-shaped” scale profile (5.10) is used.
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CHAPTER 6

RAKE RECEIVER FINGER CORRELATION
STRUCTURE

Up to this point, we have considered each bit in isolation and assumed that the

receiver has perfect knowledge of the wideband channel coefficients {h(k)m,n}. In a real

system, these receiver parameters must be estimated and tracked for coherent recep-

tion. In this chapter, we make a preliminary study the time variations of the channel

coefficients and find that the time-variability is proportional to the scale spread in

wideband channels, just as the time-variability is proportional to the Doppler spread

for narrowband baseband-equivalent channels.

We begin by studying the autocorrelation between channel coefficients of a Doppler-

lag receiver [85] operating in a narrowband baseband-equivalent system. The channel

coefficients are found to evolve according to Jakes model [40] for a ring of scatterers

model. We then investigate the wideband system and determine that the channel co-

efficients are approximately stationary over short periods of time. Since the number

of significant eigenmodes is small compared to the full system dimension, we study

the effect of using principal components combining (PCC) [2] to generate bit deci-

sions. Finally, we perform physical experiments in the acoustic domain to validate
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the theoretical wideband correlation sequence and show the validity of the wideband

channel model for modelling real-world channels.

6.1 Narrowband Baseband-Equivalent Model

Let us for a moment return to the narrowband baseband-equivalent model and

examine the time-series autocorrelation of the Doppler-lag Rake finger channel co-

efficients. We take an approach similar to the approach we will take for the wide-

band case, in that we project the baseband received signal onto the (complex-valued)

Doppler-lag basis [85] and compute the correlation of the channel coefficients across

time.

Recall that the narrowband baseband-equivalent received signal (2.25) is

r̃(t) =

∫ ∫

H̃(θ, τ)ej2πθts̃(t− τ)dθdτ + w̃(t).

If we assume uncorrelated scattering, the narrowband baseband-equivalent spreading

function H̃(θ, τ) is uncorrelated across time and frequency, i.e., the second order

statistics can be written (see Appendix B)

E[H̃(θ, τ)H̃(θ′, τ ′)] = S̃(θ, τ)δ(θ − θ′)δ(τ − τ ′), (6.1)

where S̃(θ, τ) is the narrowband scattering function, which characterizes the chan-

nel power distribution across Doppler-frequency θ and lag τ . From the narrow-

band assumption,13 the scattering function has finite θ-support: H̃(θ, τ) = 0 for

|θ| > fmax, where fmax is the (single-sided) maximum Doppler-frequency spread (see

13see assumption (A0) in Section 2.2.1.

95



Section 2.2.1). We also have that H̃(θ, τ) = 0 for τ < 0 or τ > τmax, where τmax is

the delay spread.

6.1.1 Doppler-Lag Rake Receiver

The Doppler-lag Rake receiver generates sufficient statistics for the kth bit by

projecting the received signal r̃(t) onto the Doppler-lag basis functions

x̃(k)m,n(t) := x̃(t− nt̃o − kTs)ej
2πmt
Ts , k, n,m ∈ Z, (6.2)

where x̃(t) is the narrowband baseband-equivalent DSSS signal given by (2.1) and

t̃o is the lag spacing of the Doppler-lag Rake. It is shown in [85] that this basis is

approximately orthonormal for t̃o = T̃o, where T̃o is the chip spacing (see (2.1)).

6.1.2 Narrowband Channel Coefficients

The resulting narrowband baseband-equivalent projection coefficients are

r̃(k)m,n = 〈x̃(k)m,n(t), r̃(t)〉 (6.3)

=

∫

x̃(k)∗m,n(t)r̃(t)dt (6.4)

=

Ñp−1∑

p=0

bp

∫ ∫

H̃(θ, τ)

∫

x̃(k)∗m,n(t)x̃(t− τ − pTs)ej2πθtdt
︸ ︷︷ ︸

≈0, for p6=k since TsÀτmax

dθdτ + w̃(k)
m,n (6.5)

≈ bk

∫ ∫

H̃(θ, τ)

∫

x̃(k)∗m,n(t)x̃(t− τ − kTs)ej2πθtdtdθdτ + w̃(k)
m,n (6.6)

= bk

∫ ∫

H̃(θ, τ)χ̃

(

θ − m

Ts
, nt̃o − τ

)

ej2π(θτ+fkTs−
m
Ts
τ)dθdτ

︸ ︷︷ ︸

h̃
(k)
m,n

+w̃(k)
m,n (6.7)

= bkh̃
(k)
m,n + w̃(k)

m,n, (6.8)

where χ̃(θ, τ) :=
∫
x(t)x(t− τ)ej2πθtdt is the narrowband ambiguity function and h̃

(k)
m,n

is the channel coefficient for Doppler-lag Rake finger (m,n) at bit k.
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6.1.3 Narrowband Channel Correlation

We are interested in how the narrowband baseband-equivalent channel taps {h̃(k)m,n}

change with time, which is statistically quantified by the channel correlation E[h̃
(k)
m,nh̃

(k+k′)∗
m′,n′ ].

Using the uncorrelated scattering assumption (6.1), we write the channel correlation

as

E[h̃(k)m,nh̃
(k+k′)∗
m′,n′ ] =

∫ τmax

0

∫ fmax

−fmax

S̃(θ, τ) E

[

χ̃
(

θ− m
Ts
, nt̃o−τ

)

χ̃
(

θ−m′

Ts
, n′t̃o−τ

)]

ej2π(θk
′Ts+

m−m′

Ts
τ)dθdτ. (6.9)

Note that channel coefficients form a wide-sense stationary process, that is, with

fixed m, n, m′, n′; the correlation (6.9) depends only on the bit-interval difference

k′ between channel coefficients. From the assumptions and analysis of Appendix B

(specifically equation (B.6)), we observe that the narrowband scattering function can

be separated into Doppler and lag profiles S(θ, τ) = pΘ(θ)fT (τ). Furthermore, for

a sufficiently smooth ambiguity function χ̃(θ, τ), we can assume χ̃
(

θ− m
Ts
, nt̃o−τ

)

≈

χ
(

−m
Ts
, nt̃o−τ

)

, when θ ∈ [−fmax, fmax]. It follows that (6.9) can be written

E[h̃(k)m,nh̃
(k+k′)∗
m′,n′ ] ≈

∫ fmax

−fmax

pΘ(θ)e
j2πθk′Tsdf

∫ τmax

0

fT (τ) E
[

χ̃
(

−m
Ts
, nt̃o−τ

)

χ̃
(

−m′
Ts
, n′t̃o−τ

)]

ej2π(
m−m′

Ts
τ)dτ

︸ ︷︷ ︸

not a function of Doppler variable θ

.

(6.10)
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We have, finally, that the narrowband baseband-equivalent channel coefficients are

stationary and the autocorrelation between different time samples of channel coeffi-

cients depends only on the Doppler-frequency profile pΘ(θ). Specifically, the auto-

correlation is the (inverse) Fourier transform of the Doppler profile sampled at times

k′Ts.

In Appendix B, it is shown that if the multipath angle-of-arrival is uniformly dis-

tributed, then the Doppler-frequency profile is bathtub-shaped, i.e., the Doppler-lag

channel coefficients evolve according to Jake’s model [40], i.e., (6.10) is proportional

to J0(2πfmaxTsk
′), where J0(·) is the zeroth-order Bessel function of the first kind.

The first zero crossing of J0(x) occurs at approximately x = 3π/4; it follows that the

coherence interval of the narrowband baseband-equivalent channel is approximately

3
8

1
fmaxTs

bit intervals. Note that the coherence interval is inversely proportional to the

normalized Doppler frequency spread fmaxTs.

Consider the time interval a mobile receiver takes to travel one wavelength: Tλc :=

λc
vmax

, where λc :=
c
fc

is wavelength of the carrier frequency. The channel coefficients

could vary significantly over this interval since the phase of the multipath components

could change by up to 2π radians. We can connect the time interval Tλc to the

coherence interval through the following ratio:
Tλc
Ts

—the number of bit intervals that

occur in the time it takes the mobile to travel one wavelength. Recall that the

(single-sided) Doppler-frequency spread is defined as fmax = vmaxfc
c

; thus, through

substitution, we have

Tλc
Ts

=
1

fmaxTs
. (6.11)
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The connection is now clear: the coherence interval is proportional to the number of

bits transmitted while the mobile travels the distance of one wavelength.

6.2 Wideband Model

In this section, we examine the correlation of the wideband channel coefficients

{h(k)m,n} across scalem, lag n, and symbol index k and show that the time-variability of

the channel is directly proportional to the normalized scale spread γmaxTsfo (discussed

in Section 3.1.1). We propose an AR-model to approximate the time-variations and

discuss the applicability of principal components combining (PCC) [2] to reduce the

complexity of the scale-lag Rake combiner.

6.2.1 Wideband Channel Autocorrelation

To begin, we make the following observation. Assume there is a line-of-sight

path between the transmitter and the receiver. We assign time zero to be when the

output of the chip-pulse matched-filter peaks as a result of receiving the first chip

of the first transmitted bit. If the channel geometry is fixed (no motion), then the

first chip pulse of the second transmitted bit causes the chip-pulse matched-filter

to peak at Ts seconds. However, if the receiver is travelling directly away from the

transmitter with velocity vmax, then the first chip pulse of the second transmitted bit

causes the output of the chip-pulse matched-filter to peak at Ts +
vmax

c
Ts seconds—a

time-offset of vmax

c
Ts seconds relative to the fixed case. The excess time is caused

by the transmitted signal travelling an excess distance of vmaxTs meters. In the case

of open-loop timing synchronization, the mobile receiver expects the second bit to
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arrive Ts seconds after the first, and a sampling phase mismatch of vmax

c
Ts seconds

occurs. As more bits are received, the sampling-phase mismatch accumulates to to

seconds14 and the bulk delay causes the channel energy to shift from the zeroth Rake

finger to the first Rake finger. Eventually, the energy will shift beyond the last Rake

finger and no information will be received. In the case of closed-loop (pilot-aided

or decision-directed) timing synchronization, this bulk delay does not accumulate

because it is absorbed by the synchronized sampling clock. In the presence of a

“good” synchronization algorithm, the scale-spreading is defined relative to the mean

scale shift. Under these assumptions, we assume that the channel coefficients are

stationary.

To gain insight into the time-variation of the wideband channel coefficients, we

numerically evaluate the autocorrelation sequence15 E[h
(0)
m,nh

(k′)
m′,n′ ] with fixed scale-lag

Rake finger indices. For example, fixm = m′ = 0, and n = n′ = 0; the autocorrelation

over bit-index lag k′ with different values of normalized scale spread γmaxfoTs are

indicated as solid lines in Fig. 6.1. We assume a ring-of-scatterers model such that

the scattering function Ψ(a, τ) is flat across lag τ and has a “bathtub” shape in scale

a (see Section 5.1). The dashed lines in Fig. 6.1 correspond to a damped zeroth-

order Bessel function of the first kind J0(2πγmaxfoTsk
′)e−γmaxfoTs|k′|, which closely

approximates the autocorrelation sequence of a wideband channel with normalized

scale spread of γmaxfoTs. Recall that the first zero crossing of a zeroth-order Bessel

function of the first kind J0(x) occurs at approximately x = 3π/4; it follows that the

14Recall that to is the lag spacing between the fingers of the Rake receiver.

15See Section 5.2 for the derivation.
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Figure 6.1: (Solid lines) Channel coefficient autocorrelation sequence E[h
(0)
m,nh

(k′)
m′,n′ ] for

m = m′ = 0, and n = n′ = 0. (Dashed lines) Damped Bessel function approximation:
J0 (2πγmaxfoTsk

′) e−γmaxfoTs|k′|. The normalized delay spread is τmaxfo = 0.5.

wideband coherence interval of the wideband channel is approximately 3
8

1
γmaxfoTs

bit

intervals. Recalling the definition γmax :=
vmax

c
, we see that the wideband coherence

interval is inversely proportional to the velocity of the mobile receiver. As velocity

increases, scale spreading causes greater channel variation. This is reminiscent of

the role the normalized Doppler spread plays for narrowband baseband-equivalent

systems.
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For reference, a normalized scale spread of 0.005 would be found in an RF system

with mobile velocity of 10 km/hr, data rate of 1 Mbps, and bandwidth of 10 GHz, or

in an RF system with velocity of 100 km/hr, data rate of 1 Mbps, and bandwidth of

1 GHz. A normalized scale spread of 0.05 would be found in an underwater acoustic

telemetry system with mobile velocity of 1 km/hr, data rate of 1 kbps, and bandwidth

of 50 kHz.

6.2.2 Autoregressive Model for Scale-Lag Channel Coeffi-
cients

After applying the whitening matrix R−T/2x to the received signal vector rk, the

system becomes

yk := R−T/2x rk (6.12)

= bkf k + nk (6.13)

where nk := R
−T/2
x wk is a AWGN vector with autocorrelation σ2

wI and f k is the

whitened matched-filter combining coeffienent vector. Note that the time variations

of f k are a direct result of the underlying variations in hk, since f k = R
−T/2
x hk.

We define the correlation Rf (k
′) := E[f of

T
k′ ] for generating time series realiza-

tions. We have observed that {Rf (k
′)} can be approximately jointly diagonalized by a

common set of eigenvectors: Rf (k
′) ≈ UΛ(k′)UT . Suppose that none of the correla-

tion matrices in {Rf (k
′)}∞k′=0 has more than Kmax non-zero eigenvalues: {λl(k′)}Kmax

l=1 .

If we assume that the channel coefficients are zero-mean jointly-Gaussian processes,

then combining-coefficient realizations can be generated by filtering a set of Kmax
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uncorrelated white noise processes. The lth noise process is filtered by an autoregres-

sive (AR) model that is fit to the lth eigenvalue sequence {λl(k′)}∞k′=0. For example,

let {al(i)}Nk
i=1 be the Nk model parameters computed from the Yule-Walker equation.

Define zl(k) = ql(k) −
∑Nk

i=1 al(k)zl(k − i), where ql(k) is white-Gaussian noise of

suitable variance. Now define the vector zk := [z1(k), z2(k), . . . , zKmax(k)]
T such that

the coefficient vector realization is

fk = UKmaxzk, (6.14)

where UKmax collects the Kmax principal eigenvectors from U .

6.2.3 Principal Components Combining

In Chapter 5, it is seen that the correlation matrix Rf (0) produces a relatively

small number of non-negligible eigenvalues compared to the number of scale-lag chan-

nel coefficients. For example, Fig. 5.6(b) shows that out of 15 eigenvalues, only four

are greater than -25 dB. From (6.14), the channel dynamics are focused in a low-

dimensional subspace spanned by the principal eigenvectors, which motivates the use

of principal components combining (PCC) [2] to reduce receiver complexity. The

PCC vector f k is the SNR maximizing (BER minimizing) vector constrained to lie

in the subspace spanned by the Kpcc principal eigenvectors of Rf (0): [2]

f k = UKpcc
Θ

︸ ︷︷ ︸

ŨKpcc

ΘTUT
Kpcc

f k
︸ ︷︷ ︸

z̄k

, (6.15)

whereUKpcc
collects theKpcc principal eigenvectors ofRf (0), andΘ is anyKpcc×Kpcc

orthogonal matrix. The value Kpcc is a design choice that trades-off complexity and

performance.
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For operational convenience, the PCC vector can be applied in two stages: first,

the whitened scale-lag Rake received vector yk is projected onto the principal eigen-

vector subspace: ỹk = Ũ
T

Kpcc
yk; second, the projection is maximal ratio combined:

b̂k = z̃Tk ỹk. The projection matrix ŨKpcc
describes the channel statistics (scale spread,

delay spread), which change slowly and thus can be easily learned by the receiver (e.g.,

[103]). The parameters z̃k represent the channel realization, which changes quickly,

and hence must be tracked using, e.g., decision-directed LMS or RLS. We will perform

a study of adaptive solutions in future work.

In Fig. 6.2, we show the bit error rate (BER) performance of the scale-lag PCC

with perfect channel knowledge for increasing values of Kpcc—the number of principal

components used in the receiver. The system has the same setup as in Fig. 5.6(b).

Recall from Fig. 5.6(b) that Rf (0) gives four non-negligible eigenvalues; hence, the

scale-lag Rake exploits full scale-lag diversity for K̄ ≥ 4, as evidenced in Fig. 6.2.
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Kpcc. Same setup as in Fig. 5.6(b).
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6.2.4 Acoustic Experiments

In order to investigate a “real-world” wideband channel, we present the results of

experiments performed with an acoustic channel. We chose the acoustic channel for

the reason that the equipment for transmitting and sampling the received signal was

readily available. The wideband acoustic channel parallels the wideband electromag-

netic channel since none of our analysis relies on electromagnetic polarization. The

speed of wave propagation in air is approximately 340 m/s, or 1 foot per millisecond;

light travels approximately one million times faster, i.e., 1 foot per nanosecond.

The parameters of the experiment were as follows:

• Omni-directional microphone was pointed straight up during the experiments.

• Sampling rate: 44100 samples/second.

• Peak frequency was fo = 4900 Hz (single-sided bandwidth: W ≈ 2fo = 9800

Hz).

• Chip-pulse spacing was To = 18/44100 = 4.0816× 10−4 seconds.

• Spreading gain: Np = 255 chips/symbol.

• Bit duration Ts = NpTo = 0.1041 seconds.

• Velocity: about 1 inch/second.

• Normalized scale spread: γmaxfoTs = 0.0381.

• Number of randomly chosen bits sent: 200.
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Figure 6.3: Zoomed view of a typical wideband DSSS transmit waveform.

• Chip-pulse shape: second-derivative Gaussian.

• Spreading sequence type: m-sequence [75]. See Fig. 6.3 for a plot of the

DSSS waveform, Fig. 6.4 for a plot of the deterministic lag autocorrelation,

and Fig. 6.5 for a plot of the deterministic dilation autocorrelation.

The experiments were performed in room 608 of Dreese Laboratory, which is a

graduate student office. A cubicle-style divider separates one half of the room from
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Figure 6.4: (a) Deterministic lag autocorrelation of a typical wideband DSSS transmit
waveform realization: χ(1, τ) = 〈x(t), x(t− τ)〉. (b) Zoomed view.
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Figure 6.5: (a) Deterministic dilation autocorrelation of a typical wideband DSSS transmit
waveform realization: χ(a, 0) = 〈x(t), 1√
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x( ta)〉. (b) Zoomed view.
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the other and creates a non-line-of-sight channel between the transmitter and the

receiver. The audio speaker and microphone are placed at opposite sides of the room;

the speaker is set on a desk and the microphone placed on a book shelf approximately

5 inches from the wall. The doors and windows are closed during the experiments.

The acoustic experiment was performed under two conditions: first, a fixed mi-

crophone placement; and second, sliding the microphone at a constant velocity across

the bookshelf toward the speaker, which is hidden behind the partition. Figure 6.6

and Fig. 6.7 show the results for a fixed microphone. Figure 6.6 shows the output of

the PN-waveform matched filter across time and lag. We see that the channel is static

over time. This is verified in Fig. 6.7(b), which shows a plot of the lag-zero channel

coefficient r
(k)
0,0 as a function of bit index. Also shown in Fig. 6.7(b) is a plot of the

first scale-finger r
(k)
1,0 of the scale-lag Rake receiver. Notice that there is no energy in

this component. Figure 6.7(a) displays the output of the PN-waveform matched filter

at time zero.

Figure 6.8 and Fig. 6.9 show the results for a sliding microphone. Figure 6.8 shows

the output of the PN-sequence matched filter across time and lag. A V-shape can be

seen, which indicates a time-varying channel. The left-hand side of the V results from

the shortest reflective path from the acoustic speaker to the microphone, which grows

shorter as the microphone travels ever closer to the speaker. The right-hand side of

the V results from the strong echo from the wall directly behind the microphone; since

the microphone is traveling away from the wall, the path lengthens. Figure 6.9(a)

displays the output of the PN-waveform matched filter at time zero. In Fig. 6.9(b),

we see that the first scale-finger r
(k)
1,0 is now extracting energy due to the dilation
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effects of the wideband channel. Also shown as a dashed line is the wideband channel

correlation sequence E[h
(0)
0,0h

(k)
0,0] for a normalized scale spread of γmaxfoTs = 0.0381,

corresponding to a mobile speed of 1 in./second. Note how closely the theoretical

correlation sequence matches the dynamics of the experimental channel.

111



PSfrag replacements

time (seconds)

la
g

(s
ec

on
d
s)

Figure 6.6: Time-invariant transfer function of an acoustic channel. The x-axis is lag (in
seconds) and the y-axis is time (in seconds).
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1,0 for a fixed

receiver.
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Figure 6.8: Time-varying transfer function of acoustic channel. The x-axis is lag (in
seconds) and the y-axis is time (in seconds).
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Figure 6.9: (a) Delay spread at time zero. (b) Channel coefficients r
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0,0 ] for a normalized scale spread of γmaxfoTs = 0.0381,

corresponding to a mobile speed of 1 in./second.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, we studied a scale-lag Rake receiver capable of leveraging the

diversity that results from scale-lag spreading in mobile wideband direct-sequence

spread-spectrum (DSSS) systems. The analysis applies to channels where narrowband

assumptions are invalid, such as radio-frequency ultra-wideband (UWB) systems and

underwater wideband acoustic systems. After defining the minimum scale resolution

of a DSSS signal, we put the scale-lag Rake in the context of frame theory and

produced guidelines for choosing the scale-spacing and lag-spacing parameters. We

examined numerically the diversity-level exploited by the scale-lag Rake and made

comparisons with the Doppler-lag Rake and conventional lag-only Rake. When the

sampling rate of the chip-pulse matched filter was below the approximate Nyquist

frequency, the proposed scale-lag Rake receiver outperformed the conventional lag-

only Rake and the Doppler-lag Rake, since the scale-lag Rake was better matched to

the scale-lag spreading of the wideband channel. When the sampling rate was above

the approximate Nyquist frequency, the statistics produced by the conventional Rake

receiver were approximately sufficient; thus, additional scale or Doppler components
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provided little additional information or performance gain. We then made a time-

series correlation analysis of the scale-lag Rake channel coefficients and examined

using principal components combining (PCC) to reduce the complexity of the scale-

lag Rake. Finally, we validated the wideband correlation-sequence analysis through

an acoustic experiment.

Throughout this dissertation, suggestions have been given for future research. We

conclude by collecting these and other suggestions into the following list.

• The wideband signals considered in this dissertation were transmitted directly

at baseband. It would be interesting consider the case of modulated wideband

signals, where Doppler-frequency offsets and time dilations both come into play.

• An interesting question is how sampling-frequency offsets affect the performance

of the scale-lag Rake receiver. We conjecture that as long as the sampling of

the scale-lag plane is “dense” enough, then frequency offsets shouldn’t adversely

impact the performance.

• Our proposed scale-lag Rake receiver performs a “rectangular” sampling of the

scale-lag plane. It would be interesting to consider other non-rectangular scale-

lag sampling schemes to reduce receiver complexity while preserving the ability

to exploit channel diversity.

• We could provide a lower bound on receiver performance by deriving the matched-

filter bound via a Karhuenan-Loeve expansion of the received signal. See [7] for

details regarding the narrowband baseband-equivalent case.
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• More realistic channel effects could be incorporated into the wideband model

such as antenna effects and frequency-dependent attenuation.

• For higher data-rate systems such that inter-symbol interference (ISI) is no

longer negligible, the design of ISI-mitigating receivers is critical.

• Considering the detection of target velocity in Radar systems, we could design

optimal CRLB-minimizing chip-pulses by applying our ambiguity-function ap-

proximations in Appendix 3.4 to the Mellin transform analysis in [72]. The

CRLB is minimized by maximizing the “Mellin spread” of the signal.

• We suggest examining adaptive subspace tracking algorithms in conjunction

with the principal components combining (PCC) receiver. In addition, the op-

timal design and placement of pilots to aid in the learning of receiver parameters

could be performed.

• As was pointed out in the previous chapter, the dilation effects of the wide-

band channel cause the received energy to shift across Rake fingers over time.

It would be interesting to investigate the correlations between different Rake

fingers over time for different channel geometries. This would aid in the design

and implementation of channel tracking algorithms.

• We have assumed that the chip-pulse shape was a second-derivative Gaussian.

It would be interesting to examine other pulse-shapes and consider designing

chip-pulses to optimally extract scale-lag diversity from the mobile wideband

channel.
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• Throughout this thesis, we have considered the spreading sequences to be ran-

domly chosen in order to make the analysis tractable. However, a careful design

of the spreading sequence would enhance receiver performance.
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APPENDIX A

REAL-VALUED DOPPLER-LAG BASIS

The real-valued Doppler-lag basis is a simple modification of the work in [85],

which is included here to facilitate comparison to our baseband scale-lag Rake. The

Doppler-lag basis functions are uniform frequency- and time-shifted versions of the

DSSS waveform:

x̃m,n(t) := ỹm(t/Ts)x(t− nto) (A.1)

where

ỹm(t) :=







√
2 cos (2πmt) m > 0,

−
√
2 sin (2πmt) m < 0,

1 m = 0.

(A.2)

In [85], it is shown that the complex-valued extension of the Doppler-lag basis (A.1)

is approximately orthonormal, which motivated using the Doppler-lag Rake receiver

to extract diversity in doubly-spread narrowband baseband-equivalent channels. The

inner-product between Doppler-lag basis functions is derived in Section A.1.

A.1 Doppler-Lag Basis Function Inner Product

In the following we calculate the expectation of the inner product between basis

functions of the Doppler-lag basis. This will be used to determine the noise statistics,
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since the basis functions may not be orthogonal.

〈x̃m,n(t), x̃m′,n′(t)〉 = E

∫

x̃m,n(t)x̃m′,n′(t)dt, (A.3)

=
1

Np

E

∫

ỹm

(
t

Ts

)

ỹm′

(
t

Ts

)

Np−1∑

i=0

Np−1∑

l=0

ciclp(t− nto − iTo)p(t− n′to − lTo)dt, (A.4)

=
E |ci|2
Np

∫

ỹm

(
t

Ts

)

ỹm′

(
t

Ts

)

Np−1∑

i=0

p(t− nto − iTo)p(t− n′to − iTo)dt. (A.5)

Now make the variable substitution s := t− nto + iTo to obtain

〈x̃m,n(t), x̃m′,n′(t)〉 =
E |ci|2
Np

∫ Np−1∑

i=0

ỹm

(
s+ nto + iTo

Ts

)

ỹm′

(
s+ nto + iTo

Ts

)

p(s)p(s− (n′ − n)to)ds (A.6)

= E |ci|2
∫ Np−1∑

i=0

1

Np

ỹm

(
s+ nto
Ts

+
i

Np

)

ỹm′

(
s+ nto
Ts

+
i

Np

)

p(s)p(s− (n′ − n)to)ds. (A.7)

Similar to the approximations in Appendix 3.4, we approximate the summation in

(A.7) by an integral. The approximation is very tight when the number of chips Np

is large.

〈x̃m,n(t), x̃m′,n′(t)〉 ≈ E |ci|2
∫ [∫ 1

0

ỹm

(
s+ nto
Ts

+ z

)

ỹm′

(
s+ nto
Ts

+ z

)

dz

]

p(s)p(s− (n′ − n)to)ds (A.8)
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For a moment, let us examine the integral over z in (A.8). For the case m > 0 and

m′ > 0, we have

∫ 1

0

ỹm

(
s+ nto
Ts

+ z

)

ỹm′

(
s+ nto
Ts

+ z

)

dz

=

∫ 1

0

2 cos

(
2πm(s+ nto)

Ts
+ 2πmz

)

cos

(
2πm′(s+ nto)

Ts
+ 2πm′z

)

dz,

=

∫ 1

0

cos

(

2πm
s+ nto
Ts

+ 2πm′
s+ nto
Ts

+ 2π(m+m′)z

)

+cos

(

2πm
s+ nto
Ts

− 2πm′
s+ nto
Ts

+ 2π(m−m′)z
)

dz,

=

∫ 1

0

cos (2π(m+m′)z) + cos (2π(m−m′)z) dz, (A.9)

= δm−m′ , (A.10)

where δm is the Kroneker delta function. The step from (A.9) to (A.10) is true because

m,m′ > 0. For the case m > 0 and m′ < 0 we have

∫ 1

0

ỹm

(
s+ nto
Ts

+ z

)

ỹm′

(
s+ nto
Ts

+ z

)

dz

= −
∫ 1

0

2 cos

(
2πm(s+ nto)

Ts
+ 2πmz

)

sin

(
2πm′(s+ nto)

Ts
+ 2πm′z

)

dz,

=

∫ 1

0

− sin

(

2πm
s+ nto
Ts

+ 2πm′
s+ nto
Ts

+ 2π(m+m′)z

)

− sin

(

2πm
s+ nto
Ts

− 2πm′
s+ nto
Ts

+ 2π(m−m′)z
)

dz,

=

∫ 1

0

− sin (2π(m+m′)z)− sin (2π(m−m′)z) dz, (A.11)

= 0. (A.12)
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By symmetry, the result in (A.12) is true for the case m < 0 and m′ > 0. Finally, we

examine the case m < 0 and m′ < 0

∫ 1

0

ỹm

(
s+ nto
Ts

+ z

)

ỹm′

(
s+ nto
Ts

+ z

)

dz

=

∫ 1

0

2 sin

(
2πm(s+ nto)

Ts
+ 2πmz

)

sin

(
2πm′(s+ nto)

Ts
+ 2πm′z

)

dz,

=

∫ 1

0

cos

(

2πm
s+ nto
Ts

− 2πm′
s+ nto
Ts

+ 2π(m−m′)z
)

− cos

(

2πm
s+ nto
Ts

+ 2πm′
s+ nto
Ts

+ 2π(m+m′)z

)

dz,

=

∫ 1

0

cos (2π(m−m′)z)− cos (2π(m+m′)z) dz, (A.13)

= δm−m′ . (A.14)

After checking all other cases of m,m′ in a similar manner, we have the following

result:

∫ 1

0

ỹm

(
s+ nto
Ts

+ z

)

ỹm′

(
s+ nto
Ts

+ z

)

dz = δm−m′ . (A.15)

We plug (A.15) into (A.8) to obtain the tight approximation of the inner-product

between two Doppler-lag basis functions

〈x̃m,n(t), x̃m′,n′(t)〉 ≈ E |ci|2δm−m′χp(1, (n′ − n)to) (A.16)

where

χp(a, τ) :=

∫

p(t)
1√
a
p

(
t− τ
a

)

dt (A.17)

A.2 Second-Derivative Gaussian Chip Pulse

For the Doppler-lag basis (A.1) employing unit energy second-derivative Gaussian

chip pulses (3.3), it can be shown using the same approach as Appendix ?? that for
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large Np, the autocorrelation between channel coefficients can be approximated by

E[h̃m,nh̃m′,n′ ] ≈
∫ τmaxfo

0

∫ γmaxTsfo

−γmaxTsfo

Ψ(1 +
γ̄

Tsfo
,
τ̄

fo
)R̄m,n(γ̄, τ̄)R̄m′,n′(γ̄, τ̄)dγ̄dτ̄ ,

where

R̄m,n(γ̄, τ̄) =

∫ 1

0

ỹm(x)χp(1, (γ̄x− n+ τ̄)to)dx. (A.18)

The expression χp(1, τ) follows from (3.34).
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APPENDIX B

NARROWBAND SCATTERING FUNCTION

In the following, we derive the narrowband baseband-equivalent scattering func-

tion Ψ̃(θ, τ), which quantifies the statistics of the narrowband baseband-equivalent

fading channel. We will proceed differently than the familiar Jakes derivation [40].

Instead of considering the transmission of a narrowband baseband-equivalent signal

through a multipath channel and deriving the autocorrelation of the output, we di-

rectly compute the narrowband baseband-equivalent scattering function.

B.1 Derivation

Similar to the wideband case in Section 5.1, we assume that the narrowband

baseband-equivalent spreading function H̃(f, τ) can be modeled as a sum ofN discrete

paths:

H̃(θ, τ) :=
N−1∑

n=0

l̃nδ(θ − θn)δ(τ − τn), (B.1)

where δ(·) is the Dirac delta function and where the nth path has complex-valued

gain l̃n, Doppler-frequency shift θn, and lag τn [90].

125



B.1.1 Assumptions

In order to proceed with the derivation, we make the following typical assumptions

on the statistics of the narrowband baseband-equivalent spreading function:

(A1) The path parameters {θn}, {l̃n}, and {τn} are i.i.d. across paths with joint

density pΘ,L̃,T (·, ·, ·).

(A2) The path amplitudes are zero mean, i.e., E[l̃n] = 0.

(A3) The Doppler-frequency shift θn is independent of the amplitude l̃n and lag τn,

i.e., pΘ,L̃,T (·, ·, ·) = pΘ(·)pL̃,T (·, ·).

These assumptions arise when there is no line-of-sight between the transmitter and

receiver. Note that the amplitude and lag are often correlated in wireless commu-

nications channels where propagation losses manifest as an exponentially decaying

function of increasing lag [93].

From assumptions (A1) and (A2) we write

E[H̃(θ′, τ ′)H̃(θ′′, τ ′′)]

= E[δ(θ′ − θ0)δ(θ′′ − θ0)N |h0|2δ(τ ′ − τ0)δ(τ ′′ − τ0)]. (B.2)

Assumption (A1) allows us to consider the first path without loss of generality. From

assumption (A3),

E[δ(θ′ − θ0)δ(θ′′ − θ0)]

=

∫

δ(θ′ − θ)δ(θ′′ − θ)pΘ(θ)dθ,

= pΘ(θ
′)δ(θ′ − θ′′), (B.3)
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and

E[N |l̃0|2δ(τ ′ − τ0)δ(τ ′′ − τ0)]

= N

∫ ∫

|l̃|2δ(τ ′ − τ)δ(τ ′′ − τ)pL̃,T (l̃, τ)dτdl̃,

= fT (τ
′)δ(τ ′ − τ ′′), (B.4)

where we define

fT (τ) := NpT (τ)

∫

|l̃|2pL̃|T (l̃|τ)dl̃. (B.5)

The function fT (τ) is the delay profile as a function of lag τ . Thus, a decaying energy

profile can be modeled.

We substitute (B.3) and (B.4) into (B.2) to obtain

E[H̃(θ, τ)H̃(θ′, τ ′)] = pΘ(θ)fT (τ)
︸ ︷︷ ︸

:=S̃(θ,τ)

δ(θ − θ′)δ(τ − τ ′), (B.6)

where S̃(θ, τ) is the narrowband baseband-equivalent scattering function, which quan-

tifies the distribution of received power as a function of Doppler and delay.

B.1.2 Ring of Scatterers

Now that the form of the narrowband baseband-equivalent scattering function has

been determined, we investigate the Doppler-frequency profile pΘ(·). An often studied

channel geometry is a fixed transmitter and dense ring of scatterers surrounding the

mobile receiver. In this case, the relation between the angle-of-arrival relative to the

direction of travel ξ and Doppler frequency θ is

θ = fmax cos(ξ). (B.7)
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where fmax = vmax

c
fc is the (one-sided) maximum Doppler-frequency spread. Given

the angle of arrival distribution pΞ(·), it is a simple matter to compute the Doppler-

frequency distribution pΘ(·),

pΘ(θ) =
1

γmax
pY

(
θ

γmax

)

, (B.8)

where Y = cos(Ξ) and

pY (y) =
pΞ(cos

−1(y)) + pΞ(− cos−1(y))
√

1− y2
. (B.9)

If the angle of arrival ξ is distributed uniformly on (−π, π], then we have

pY (y) =
1

π
√

1− y2
, |y| < 1, (B.10)

which is a familiar “bathtub shape” [40] (see Fig. B.1). We call the function pΘ(θ)

the Doppler profile.16

16The Doppler profile is also known as the Doppler spectrum [90].
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