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Linear Regression and AMP

The Linear Regression Problem

Consider the following linear regression problem:

Recover x,, from N .
T, €R unknown signal
y=Ax,+w with A € RM*N Kknown linear operator
w € RM  white Gaussian noise.

Typical methodologies:

Optimization (or MAP estimation):

~ . [@
T = argmin {22||Aa: —yl3+ R(m;al)}

Approximate MMSE:

z ~ E{z|y} for x ~p(x;01), ylz~N(Az,1/0,)

Plug-and-play: iteratively apply a denoising algorithm like BM3D

Train a deep network to recover x, from y.

Phil Schniter (Ohio State Univ.)
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The AMP Methodology

m All of the aforementioned methodologies can be addressed using the
Approximate Message Passing (AMP) framework.

m AMP tackles these problems via iterative denoising.

m Each method defines the denoiser g(+;,0;) : RY — RY differently:
m Optimization: g(r;7,01) = argmin, {R(x;61) + L[|z — r|35} = “proxp,., ()"
= MMSE: g(r;7,601) =E{x|r =2 +N(0,I/7)}
m Plug-and-play:' g(r;v,8:) = BM3D(r,1/v)

m Deep network: g(r;+,01) is learned from training data.

1Venkatakrishnan,Bouman,Wotherg'13
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The Original AMP Algorithm

initialize 2° =0, v 1=0
fort=0,1,2,...
vl =y — Az + Dot g/ @+ ATH" ) corrected residual
T =g@ + ATv'; ) denoising
where
(g'(r)) 2 Ltr [20)] = L N:1 8%7T(r) “divergence.”
Note:
m Proposed by Donoho, Maleki, and Montanari
in 20009.
m Can be recognized as iterative thresholding "™ [t
plus "Onsager correction.” Nlgiafe,m) Faz)

m Can be derived using Gaussian &
Taylor-series approximations of Nlgarsafya, 7o)
belief-propagation.

flan)
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Linear Regression and AMP

AMP’s Denoising Property

Assumption 1

B AcRM*N jsiid. sub-Gaussian

m M,N —ocost 2 —§€(0,00) ... "large-system limit”
m [g(7)]; = g(r;) with Lipschitz g(-) ... “separable denoising”

Under Assumption 1, the elements of the denoiser’s input 7t £ ' + ATov? obey?3

rh =z, +N(0,7))

m That is, 7t is a Gaussian-noise corrupted version of the true signal x,,.
m |t is now clear why g(+) is called a “denoiser.”

Furthermore, the noise variance can be consistently estimated:

A Lot

— 7/ under Assumption 1.

2Bayati,Monta nari'll, 3Bayati,LeIarge, Montanari'15
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AMP's State Evolution

m Assume that the measurements y were generated via
y= Az, +N(0,7,1I)

where x, empirically converges to some random variable X, as N — co.

m Define the iteration-t mean-squared error (MSE)
& LE{|z" - |}

m Then, under Assumption 1, AMP obeys the following scalar state evolution:

fort=0,1,2,...
ﬂgt

t
T, = Tw +

EFT = E{[g(Xo + N(0,71);7") — X,]°}
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Bayes Optimality of AMP

m Now suppose that Assumption 1 holds, and that
Yy = Ax, +N(O7TwI)7

where the elements of x, are i.i.d. draws of some random variable X,.
m Suppose also that g(-) is the MMSE denoiser, i.e.,

g(R;vY) =E{X,|R= X, +N(0,1/4%)} with o' =1/7.

m Then, if the state evolution has a unique fixed point, &' converges to the
MMSE estimate* of x, as t — oo.

4Bayati,Montanari'11
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Linear Regression and AMP

AMP: The good, the bad, and the ugly

The good:

m With large® i.i.d. sub-Gaussian A, AMP is rigorously characterized by a scalar
state-evolution whose fixed points, when unique, are Bayes optimal.

m Empirically, AMP behaves well with many other “sufficiently random” A (e.g.,
randomly sub-sampled Fourier A & i.i.d. sparse x).

The bad:
m With general A, AMP gives no guarantees.

The ugly:

m With some A, AMP may fail to converge!
(e.g., ill-conditioned or non-zero-mean A)

5Rush,Venkataramanan'16
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Vector AMP (VAMP)

m VAMP is similar to AMP, but it supports a larger class of random matrices.
m As before, the goal is to recover x, from y = Az, + N(0,7,1I).

m VAMP yields a precise analysis for right-orthogonally invariant A:

U: deterministic orthogonal
svd(A) =USV" for { 8: deterministic diagonal

V. "Haar;" uniform on set of orthogonal matrices
of which i.i.d. Gaussian is a special case.

N(y; Aza, 7, I) d(x1 — @) p(z1)

. . (
m Can be derived as a form of expectation
propagation (EP). u z u z u
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VAMP: The Algorithm

Take SVD A = U Diag(s)V", choose ¢ € (0,1] and Lipschitz g, (;71,01) : RY — RY.

Initialize 71, y1.

For k=1,2,3,...
Z1 < g,(r1;7,61) denoising of 71 = z, + N(0,1/v1)
;71,0
m 1N/ tr {391(7‘17’71» 1)]
67‘1
r2 < (mT1 —n1r1)/(m — 1) Onsager correction
Y24 MM
Tz < go(7r2;72,02) LMMSE estimate  ~ N (r2,I/72)
o 0 from y = Az + N(0,1/6>)
m 12N/ tr {892(7’2772» 2)]
37”2
r1 < (a2 — y2r2)/(n2 — v2) + (1=C)7r1 Onsager correction
Y14 Gl —72) + (L= O damping
where g, (r2;72,02) = V (62 Diag(s)® + 721)71 (62 Diag(s)U Ty + 72V 'r2)
n =~ SN (B2 4 2) two mat-vec mults per iteration!
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VAMP's Denoising Property

Assumption 2

m A € RM*N s right-orthogonally invariant
m M,N —ocost & —§€(0,00)

m [g,(r)]; = g1(r;) with Lipschitz g;(-)

... "large-system limit"

... "separable denoising”

Under Assumption 2, the elements of the denoiser’s input 7 obey®

t
1,5

= Zo,j +N(O,TD

m That is, ) is a Gaussian-noise corrupted version of the true signal ,.

m Here too, we can interpret g,(-) as a “denoiser.’

6Rangan,Schniter,Fletcher'16
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Ve AVP(VAVP)
VAMP's State Evolution

Assume empirical convergence of {s;}—S and {(r{ ;,70;)}— (R}, X,), and define

612 A B{E! — o} fori=1,2.

Then under Assumption 2, the VAMP obeys the following state-evolution:

fort=0,1,2,...
&t = E{[g(Xo + N(0,7);7%) — X,]*} MSE
of =E{¢(Xo +N(0,77);71)} divergence

=, =L lel - (o))

& =E{[5*/rw+1 '} MSE
o = E{[S?/7w + 4] 71} divergence
=S, A= e (04) 7]

Note: Above assumes g, () uses matched noise variance 62 = 1/7,.
If not, there are more complicated expressions for £ and ab.
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Bayes Optimality of VAMP

m Now suppose that Assumption 2 holds, and that
Yy = A:L'o +N(O7TwI)7

where the elements of x, are i.i.d. draws of some random variable X,.

m Suppose also that g1 (-) is the MMSE denoiser, i.e.,
91(R1;71) =E{Xo | R1 = X, + N(0,1/7])} with 7f =1/7].

m Then, if the state evolution has a unique fixed point, the MSE of ﬁ’i converges
to the replica prediction of the MMSE as t — cc.

m For right-orthogonally invariant A, the replica prediction was derived by
Tulino/Caire/Verdu/Shamai in 2013. It is conjectured to be correct.

m For the special case of i.i.d. Gaussian A, it was proven to be correct by
Reeves/Pfister, and by Barbier/Dia/Macris/Krzakala, both in 2016.
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Experiment with MMSE Denoising

Comparison of several algorithms’ with MMSE denoising.

0 r N = 1024
AMP
5| |——sAmP M/N =0.5
o —4— damped GAMP
,-10 - |——VAMP
= = replica MMSE
@ -1 i 1 A = U Diag(s)V"
E 20 ] U,V ~ Haar
i 25 | Sn/Sn—1 = ¢ Vn
g ¢ determines x(A)
5 -30 1
=
5% 1 X, ~Bernoulli-Gaussian
o
g -0 1 Pr{Xo #0} =0.1
-45 4
-50 : : : : : SNR = 40dB
10° 10" 102 10° 10* 10° 10°

condition number k(A)

VAMP achieves MMSE over a wide range of condition numbers.

7S_AMP: Cakmak,Fleury,Winther'14, damped GAMP: Vila,Schniter,Rangan,Krzakala,Zdeborovd'15
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Experiment with MMSE Denoising

Comparison of several algorithms with priors matched to data.

=)
>
P
b

condition number=1

5.10 L AMP N = 1024
—%—S-AMP
g -20 - —A— damped GAMP M/N =0.5
2 —+— VAMP
c-30 ¢ - = VAMP SE
3 .
§ .40 A= UDlag(s)VT
E 50 = . y U,V ~ Haar
10° 10! 102 103 sn/8n71 _ ¢ vn

condition number=1000

¢ determines k(A)

g AMP
w10 T —»—S-AMP . .
o —4— damped GAMP X, ~Bernoulli-Gaussian

20 - —+— VAMP
z 0 — — VAMPSE Pr{Xo #0} =0.1
©
5 -30 -
£

.40 SNR = 40dB

10° 10' 102 10°
iterations
VAMP is fast even when A is ill-conditioned.
NG — ity
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VAMP for Optimization

m Consider the optimization problem
T = arg min {%HAm —yl|* + R(x;61)}
x
where R(:) is strictly convex.

m If we choose the denoiser
. v
g,(r;v,01) = arg min {R(a:; 01) + 5||.’1: - r||2} = proxp . (T)
and the damping parameter

< 2min{y1, 2}
oMt

then a double-loop version of VAMP converges® to the solution for any A.

m Furthermore, if the v and 5 variables are fixed over the iterations, then
VAMP reduces to the Peaceman-Rachford variant of ADMM.

8Fletcher,Sahraee,Rangan,Schniter'16
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VAMP for Optimization

Example of VAMP applied to the LASSO Problem

iid Gaussian A matrix

[
—— VAMP
5 F —— AMP
Chambolle-Pock
10 ——FISTA
—-15
m
=
&
25]
=
Z a0t
35 -
L A
-40 S
45 | | |
10° 10’ 102 10°

iterations

column-correlated (0.99) A matrix

NMSE [dB]

N
3

—— VAMP
—— AMP
Chambolle-Pock
——FISTA

-30
10°

10’ 102
iterations

Solving LASSO to reconstruct 40-sparse & € R'%%0 from noisy y € R4,

& = argmin |y — Az|3 + M|z

Phil Schniter (Ohio State Univ.)
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Interpretation as Variational Inference

m ldeally, we would like to compute the exact posterior density
;01)¢(x; 0
plaly) = “EEOER) for 2(0) 2 [ pla:01)ttas02) da
Z(0)
but the high-dimensional integral in Z(8) is difficult to compute.
m We might try to circumvent Z(8@) through variational optimization:

p(x|y) = arg min D (b(x)||p(x|y)) where D(:|-) is KL divergence
b

= argbminD(b(w)Hp(:c; 61)) + D(b(z)|t(x;62)) + H (b(x))

Gibbs free energy
= argmin D (by()||p(e; 01)) + D (ba(x)||t(2;62)) + H (q(x))

b1,b2,q
s.t. by = by =g, £ Jgibbs (b1, b2, ¢; 0)

but the density constraint keeps the problem difficult.

Phil Schniter (Ohio State Univ.) LSIT — May'19 23 /42



Variational Interpretation and EM-VAMP

Expectation Consistent Approximation

m In expectation-consistent approximation (EC)?, the density constraint is relaxed
to moment-matching constraints:

p(zly) ~ arg min Jgipps(b1, b2, ¢; 0)

o {’E%wwl} — B{albs) = B{zlq)
7\ tr(Cov{x|by }) = tr(Cov{x|ba}) = tr(Cov{z|g}).

m The stationary points of EC are the densities

bl("’)ocP(w§01)N(w§"°1,I/'71) E{:c|b }:E{w“) }:ﬁ
bo(x) o L(x; O2)N (2572, I/72) s.t. ! 72 B
o(@) = N(2: 3. 1/7) { tr(Cov{x|b; }) = tr(Cov{x|b2}) = N/n,

m VAMP iteratively solves for the quantities 71,71, 72,72, , 7 above.
m In this setting, VAMP is simply an instance of expectation propagation (EP).

90pper,Winther'04,
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Variational Interpretation and EM-VAMP

Expectation Maximization

m What if the hyperparameters @ of the prior & likelihood are unknown?.

m The EM algorithm!® is majorization-minimization approach to ML estimation
that iteratively minimizes a tight upper bound on —Inp(y|0):

AkH—ar minq — In k(x T|Y;
67 = argmin{ ~Inp(yl6) + D (@) p(aly: 0)) |

with t*(2) = p(aly:6") 20

m EM can also be written in terms of the Gibbs free energy:!!

0" = argmlnD (b (z )||p(;601)) + D(b*( x)||(z; 62)) + H (b (z))

Jaibbs (b7, 0%, b¥; 9)
m Thus, we can interleave EM and VAMP to solve

. . E{x|b1} = E{x|bs} = E{=x
min min Jaibbs(b1, b2, ¢; 0) s:t. {tr%clv{}mwl}]{:‘tgr}{cov{i\zLZ%»] — tr[Cov{z|q}]-

0Dempster,Laird,Rubin'77,  'Neal,Hinton’98
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The EM-VAMP Algorithm

For k=1,2,3,...

Input conditional-mean g, (-) and g,(-), and initialize r1,71,01, 0.

T 91(71;71751) MMSE estimation
m < N/ tr [891(7'1;71,51)/87'1]

T2+ (MmZ1 —mr1)/(m —m)

Y2 MM
05 « arg maxy, E{lnl(x;02) [ r2; 72, 6} EM update
Bz < go(r2;72,02) LMMSE estimation

M 92N/ tr [0, (7272, 02) /O]

1 (T2 — y2r2) /(2 — 72) + (1=Q)m1
T2 —72) + (1= Om
0, « arg maxg, E{lnp(zx;01) | 1'1;71,51} EM update

Phil Schniter (Ohio State Univ.)
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Variational Interpretation and EM-VAMP

State Evolution and Consistency

m EM-VAMP has a rigorous state-evolution'? when the prior is i.i.d. and A is
large and right-orthogonally invariant.

m Furthermore, a variant known as “adaptive VAMP" can be shown to yield
consistent parameter estimates with an i.i.d. prior in the exponential-family or
with finite-cardinality 6;.12

m Essentially, adaptive VAMP replaces the EM update

51 < argmaxg, E{lnp(z;61) | 7’1,71751}

with
(01,71) + argmaxg, ) E{lnp(x;601) [ 71,791,601},

which re-estimates the precision ;. (And similar for 62, 72.)

12F|etcher,Rangan,Schniter'17
Phil Schniter (Ohio State Univ.) LSIT — May'19 27 /42



Experiment with Unknown Hyperparameters 6

Learning both noise precision 8, and BG mean/variance/sparsity 61:

0 ‘ ; , — b
—A— damped EMfAMP//Ar’A__ﬂi N =1024
-5 [ |-6— EM-VAMP 3 M/N =0.5
—— VAMP
- - MMSE 1

A = U Diag(s)VT
U,V ~ Haar

f Sn/Sn_1 = ¢ ¥n

¢ determines k(A)

X, ~Bernoulli-Gaussian
i Pr{Xo #0} =0.1

median NMSE [dB]

SNR = 40dB

.50 ‘ ‘ ‘ ‘ ‘
10° 10’ 102 10° 10* 10° 10°
condition number k(A)

EM-VAMP achieves oracle performance at all condition numbers!!3

I3EM-AMP proposed in Vila,Schniter'll and Krzakala,Mézard,Sausset,Sun,Zdeborova’'12
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Variational Interpretation and EM-VAMP

Experiment with Unknown Hyperparameters 6

Learning both noise precision 82 and BG mean/variance/sparsity 61:

condition number=1

=~

10 ‘ —A— damped EM-AMP|
- 5 ——VAMP
—— EM-VAMP

median NMSE [dB]
)
o

median NMSE [dB]
&
o

A
S

-
=)
>
o
o.‘
o
=)
)
-
=)
)

iterations

EM-VAMP nearly as fast as VAMP and much faster than damped EM-GAMP.

Phil Schniter (Ohio State Univ.)

N = 1024
M/N =05

A = U Diag(s)VT
U,V ~ Haar
Sn/sn—1= ¢ Vn

¢ determines k(A)

X, ~Bernoulli-Gaussian
Pr{Xo #0} =0.1

SNR = 40dB

LSIT — May'19
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Plug-and-play VAMP

m Recall the scalar denoising step of VAMP (or AMP):
Z1 < g1(ri;m) where vy =z, + N(0,I/7)

m For certain signal classes (e.g., images), very sophisticated non-scalar denoising
procedures have been developed (e.g., BM3D, DnCNN).

m Such denoising procedures can be “plugged into” signal recovery algorithms like
ADMM, AMP! VAMP. Divergence can be approximated via

K
L [20 ~lzpﬂgl(rﬂpkm)*gl(r,%)]
N 87'1 K 1 Ne

with random vectors p,, € {1}" and small ¢ > 0. Empirically, K =1 suffices.

m Rigoruous state-evolutions established for plug-and-play AMP!> and VAMP.16

14Metzler,MaIeki,Baraniuk'lll, 15Berthier,Montanari,Nguyen’17, 16FIetcher,Rangan,Sarkar,Schniter'lB
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Plug-and-play VAMP

Bilinear estimation via Lifting

m As we now describe, non-scalar denoising facilitates bilinear recovery.

m Say the goal is to recover b= [by,...,bz]T and ¢ from measurements

L

Y= Zbl'I’l c+w
=1

where {®;} are known. This arises in calibration problems.

m We can “lift" 7 this bilinear problem to the linear problem
y=[® ® - ®r]vec(ch')+w
————

A T
and apply VAMP with an appropriate denoiser.

17Candes,Strohmer,Voroninski'l3,  Ahmed,Recht,Romberg’14

Phil Schniter (Ohio State Univ.) LSIT — May’19

32/42



Experiment: Compressed Sensing with Matrix Uncertainty

Goal: Recover'® b and sparse ¢ from y = (Zlel bﬂIh)c +w= Az +w.

State Evolution: NMSE versus condition number of A:
: o[ "
—8— WSS-TLS %
O =" L
hvg =2 o
U <3 S
S . % 30 3—'_7 30
Z . = w0 = 40
= =
B0 m e o e e mmm—e S0 e m e ocmm—=
“ 3 60 60
0y 5 o 1 10° 10! 102 10° 10! 102
iterations cond(A) cond(A)

18\WSS-TLS is from Zhu,Leus,Giannakis'1l, P-BiG-AMP is from Parker,Schniter'16.
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VAMP as a Deep Neural Network

Deep learning for sparse reconstruction

m Until now we've focused on designing algorithms to recover x, ~ p(x) from

measurements y = Ax, + w. P

Y — algorithm —= 2

model p(x), A

m What about training deep networks to predict x, from y?
Can we increase accuracy and/or decreas/e computation?

deep ~

Y= network [~ %

training data {(z4,y4) 5,

m Are there connections between these approaches?

Phil Schniter (Ohio State Univ.) LSIT — May'19 35/42



Unfolding Algorithms into Networks

Consider, e.g., the classical sparse-reconstruction algorithm, ISTA.*°

S271-ATA
B2 AT

vi=y — Az S+ ot
ﬁtJrl :g<£t + AT'Ut) ~ (S =+ By) with

Gregor & LeCun?® proposed to “unfold” it into a deep net and “learn” improved
parameters using training data, yielding “learned ISTA" (LISTA):

..99..@
- Dol S --ooi-at

The same “unfolding & learning” idea can be used to improve AMP, yielding
“learned AMP" (LAMP).2

YDaubechies,Defrise,DeMol'04.  2°Gregor,LeCun’10.  21Borgerding,Schniter'16.
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Onsager-Corrected Deep Networks

™ LISTA layer:

~t
er

v tH1

Yy
to exploit low-rank B* A" in linear stage S' =T — B'A".

™ LAMP layer:

z' s> "
t t cllellz
Yy

Onsager correction now aims to decouple errors across layers.

Phil Schniter (Ohio State Univ.) LSIT — May’19 37/42



LAMP performance with soft-threshold denoising

LISTA beats AMP,FISTA,ISTA . .
LAMP beats LISTA " convergence speed and asymptotic MSE.

ceq ‘ ‘
L $ 280 o
54 e :—t Seeeeesey
* o .

B | ¢
= 10 e ISTA b . QQplot of LAMP
= . —e- FISTA * N 4
w 1e e —e— AMP ] s ¢
2 . —— LISTA tied g
= 20¢ ® o | 7% LISTA untied 1 il
o e —&— LAMP tied 2"

80 05 | —%— LAMP untied :
@ -30 B o
> ©
35 Tu
3
¥ ol
40 ¢ ¥ " “Standard Normal Quantiles

5 10 15 20
layers / iterations
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LAMP beyond soft-thresholding

So far, we used soft-thresholding to isolate the effects of Onsager correction.

What happens with more sophisticated (learned) denoisers?

average NMSE [dB]

0t —%—LISTA
—8— LAMP-I1

45k —A— L AMP-bg
—v— LAMP-expo

20 | —O— LAMP-pwlin

-20 —+— LAMP-spline

support oracle

25

-30 -

-35 1

-40

45t ; ; 7

22Guo,Davies’15.  23Kamilov,Mansour’16.
Phil Schniter (Ohio State Univ.)

Here we learned the parameters of
these denoiser families:

m scaled soft-thresholding
m conditional mean under BG

m Exponential kernel??

m Piecewise Linear®
m Spline®

Big improvement!

LSIT — May'19
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VAMP as a Deep Neural Network

LAMP & versus VAMP

How does our best Learned AMP compare to MMSE VAMP?

—A— VAMP-bg

—O— LAMP-pwlin

support oracle

average NMSE [dB]

2 4 6 8 10 12
layers / iterations

So what about “learned VAMP"?

Phil Schniter (Ohio State Univ.)

14

VAMP wins!

LSIT — May'19
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Learned VAMP

m Suppose we unfold VAMP and learn (via backprop) the parameters {S*, g*}7_,

that minimize the training MSE.

LT NI [ et NI/

L g'() :

L g'()

Sf, Sf,

I
¢
Onsager

I
¢
Onsager

m Remarkably, backpropagation learns the parameters prescribed by VAMP!
Theory explains the deep network!

m Onsager correction decouples the design of {S*, g*(-)}Z_;:
Layer-wise optimal S%,g’(:) = Network optimal {S*, g*(-)}{=,

Phil Schniter (Ohio State Univ.) LSIT — May’19

41/42



VAMP as a Deep Neural Network

Conclusions

m VAMP is a computationally efficient algorithm for linear regression.

m For inference under large, right orthogonally-invariant A, VAMP has a rigorous
state evolution whose fixed-points, when unique, match the replica prediction
of the MMSE.

m For convex optimization problems, VAMP is provably convergent for any A.

m VAMP can be combined with EM to handle priors/likelihood with unknown
parameters, again with a rigorous state evolution.

m VAMP supports nonseparable (i.e., “plug-in") denoisers, with a rigorous state
evolution.

m Can unfold VAMP into an interpretable deep network.

m Not discussed: GLMs, multilayer approaches, bilinear approaches.
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