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ABSTRACT

Wireless communication systems targeting at broadband and mobile transmissions

commonly face the challenge of fading channels that are both time and frequency

selective. Therefore, design of effective equalization and estimation algorithms for

such channels becomes a fundamental problem. Although multi-carrier transmissions

demonstrate prominent potential to combat doubly selective fading, several factors

may retard their applications, such as: high peak-to-average power ratio, sensitivity

to phase noise, etc. Meanwhile, single-carrier transmission is a conventional approach

and has important applications, such as HDTV broadcasting, underwater acoustic

communication. In this dissertation, we focus on receiver design for single-carrier

transmissions. Our goal is to design and develop a group of channel estimation

and equalization algorithms in the frequency-domain, which enable high performance

and low complexity reception of single-carrier transmissions through doubly selective

channels.

For single-carrier transmissions over moderately fast fading channels with long-

delay spread, we present an improved iterative frequency-domain equalization (IFDE)

algorithm based on soft-interference-cancellation (SIC) and propose a novel adaptive

frequency-domain channel estimation (AFDCE) based on soft-input Kalman filter,

where soft information feedback from the IFDE can be exploited in the channel

estimator. Simulation results show that, compared to other existing schemes, the
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proposed scheme offers lower MSE in channel prediction, lower BER after decoding,

and robustness to non-stationary channels.

We extend the IFDE/AFDCE scheme to accommodate the application of dig-

ital television (DTV) signal reception. Compared with the traditional joint deci-

sion feedback equalization (DFE) /decoding plus frequency-domain least-mean-square

(FDLMS) channel estimation approach, the proposed scheme achieves better perfor-

mance at a fraction of the implementation cost.

For very fast fading large-delay-spread channels, traditional FDE methods fail,

because channel variation within a FFT block induces significant off-main-diagonal

coefficients in the frequency domain. To conquer the problem, we apply Doppler

channel shortening to shape the energy distribution of those coefficients and derive a

pilot-aided MMSE estimator to estimate them for SIC. We also propose a novel IFDE

by leveraging both the sparse structure of shortened channel and finite-alphabet prop-

erty of transmitted symbols. Numerical results show that the proposed scheme has

advantages over the well-known FIR-MMSE-DFE/RLS-CE scheme in both perfor-

mance and complexity.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In mobile wireless and digital television (DTV) transmission, time-varying multi-

path phenomenon is generally induced by the randomly changing propagation charac-

teristics as well as the reflection, diffraction and scattering of the transmitted signals

from the buildings, large moving vehicles, mountains, etc. Such phenomenon distorts

received signals and poses critical challenges in the design of communication systems

for high-rate and high-mobility wireless communication applications. High rate in-

formation symbols, after transmitting through multipath channel, often spread into

neighboring symbol periods, and cause serious inter-symbol interference (ISI) at the

receiver side. In addition, relative mobility between the transmitter and receiver lead-

ing to fast channel variations, along with oscillator drifts and phase noise, gives rise

to time selectivity. The combined time-frequency selectivity induces Doppler-delay

spreading, which significantly affects communication system performance. Therefore,

the design of effective equalization and estimation algorithms for such channels be-

comes a fundamental problem of communication systems.
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In order to implement commercially competitive communication systems, low-

complexity and low-cost systems are highly desirable. Among various proposed can-

didates for the new system design, the diversity reception with multiple transmitter

and receiver antennas [3, 4] and the multi-carrier transmission [5] combined with ad-

vanced signal processing algorithms to estimate and equalize the dynamic channels

are considered to be the most promising. However, the introduction of multiple an-

tennas demands dedicated amplifiers in all configurations. Multi-carrier transmission

exhibits very high peak-to-average-power ratio (PAPR) and utilizes a combination of

highly linear power amplifiers, amplitude clipping and amplifier backoff to mitigate

the problem [6]. Since a big portion of the cost of terminals in communication sys-

tems is due to the transmitter power amplifier, single-carrier (SC) modulation system

is a favorable alternative for commercial success. In addition, in some applications

such as HDTV transmission, the transmitter is standardized to adopt SC modulation,

which also motivates the receiver design for SC transmission systems.

This dissertation considers receiver design for effective and efficient reception of

single-carrier transmission through time-varying multipath channels. Our goal is to

design and develop a group of channel estimation and equalization algorithms in the

frequency domain, which enable high performance reception of SC transmission with

low computational complexity.
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1.2 Background

1.2.1 Doubly Selective Channels

Wireless communications operate through electromagnetic radiation from the trans-

mitter to the receiver. The communication medium, commonly referred as the chan-

nel, usually distorts the signal based on its propagation characteristics. Two impor-

tant factors which characterize the distortion effects of the channel are multipath

fading and Doppler effect. Multipath fading is the phenomenon in which the trans-

mitted signal arrives at the receiver via multiple propagation paths at different delays

due to reflection, diffraction and scattering of the radio waves. It results in a wide

variation of the received signal strength, since the multiple signals arriving at the

receiver may add up constructively or destructively. The Doppler effect, named af-

ter Christian Doppler, is the change in frequency and wavelength of a wave that is

perceived by an observer moving relative to the source of the waves [7]. In mobile

wireless communication scenario, Doppler effect is attributed to the relative move-

ment of the surrounding objects as well as the transmitter and receiver. It leads to

fast phase oscillation of the received signals on multiple paths, thus accelerates the

time variation of the channel distortion.

Future wireless communication services featuring high-data-rate and high-mobility

can aggravate the multipath and Doppler effect. In digital communication systems,

for most of the channels, the discrete information bearing symbols are modulated with

a continuous pulse shape and transmitted across the channel [8]. In most cases, the

pulse shapes are localized in time and frequency so that transmission of each symbol

consumes a small tile in the time-frequency plane. For high data rate transmission,

the duration of the pulse becomes small and comparable to the multipath delay, thus
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ISI occurs and the channel distortion is called frequency-selective. In high-mobility

scenarios, the channel response varies significantly in the signaling duration due to

Doppler effect, thus the channel distortion becomes time-selective within a single

processing block. Channels whose response are both time and frequency selective are

commonly referred as doubly-selective channels.

Theoretically, the doubly selective channel can be modeled as a linear time-varying

system [9]. When the surrounding objects are stationary, the input and output rela-

tionship between transmitter and receiver can be represented as a linear time-invariant

system with the impulse response

c(τ) =

Nℓ∑

ℓ=1

cℓδ(τ − τℓ), (1.1)

where cℓ and τℓ are the attenuation and propagation delay of the ℓ-th path respec-

tively. This model is widely adopted for description of multipath frequency-selective

channel. When there is relative movement between the surrounding objects including

transmitter and receiver, the attenuation and delay of the ℓ-th path vary with time.

Therefore the impulse response of the channel becomes

c(t, τ) =

Nℓ∑

ℓ=1

cℓ(t)δ(τ − τℓ(t)). (1.2)

This is the continuous time model for a doubly selective channel.

Doppler spread and delay spread are two important quantities that measure the

time selectivity and frequency selectivity of the channel respectively. The Doppler

shift of the ℓ-th path is defined as fc
dτl(t)

dt
, where fc is the carrier frequency. The

Doppler spread fd is defined as the largest difference between the Doppler shift of all

paths.

fd = max
i,j

fc

∣∣∣∣
dτi(t)

dt
− dτj(t)

dt

∣∣∣∣ (1.3)
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Larger fd implies that the channel varies more rapidly in time. The delay spread (or

multipath spread) is defined as the difference in the propagation time between the

longest and shortest path. Thus,

Td := max
i,j

|τi(t) − τj(t)| . (1.4)

When Td is larger, the multipath effect is more evident.

1.2.2 System Model

Estimator
Channel

Equalizer
T

h

sk

a(t)
s(t)

c(t, τ)

µ(t)

a∗(−t)

r(t) rn

sn

Figure 1.1: Base band transmission system model.

The continuous time transmission system model is depicted in Fig. 1.1, where the

information signal is first modulated by a pulse shaping filter (PSF) a(t) and then

transmitted through time-varying frequency-selective channel c(t, τ), the received sig-

nal is distorted by AWGN noise µ(t) and then passes through matched PSF a∗(t).

The base-band transmitted symbol sequence and modulated signal waveform of data

rate 1/T symbols/sec depicted in Fig. 1.1 are given by

sT (t) =
∑

k

skδ(t − kT ), (1.5)

s(t) = sT (t) ∗ a(t) =
∑

k

ska(t − kT ), (1.6)

where {sk} are the transmitted symbols.
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To include the transmitter PSF a(t) and receiver PSF a∗(−t), the composite

channel impulse response can be defined as

h(t, τ) = a(τ) ∗ c(t, τ) ∗ a∗(−τ) = c(t, τ) ∗ b(τ) (1.7)

=

Nℓ∑

ℓ=1

cℓ(t)b(τ − τℓ(t)), (1.8)

where b(τ) = a(τ) ∗ a∗(−τ). As implied by (1.3), when fd ≪ fc, we can assume

τℓ(t) = τℓ for a long time period (approximately proportional to fc

2fdfs
, where fs is the

sampling frequency). In this case, we can rewrite (1.8) as

h(t, τ) =

Nℓ∑

ℓ=1

cℓ(t)b(τ − τℓ). (1.9)

In general, the received signal r(t) is defined as

r(t) = h(t, τ) ∗ sT (t) + ν(t) =

∫ Nℓ∑

ℓ=1

cℓ(t)b(τ − τℓ(t))
∑

k

skδ(t − τ − kT )dτ + ν(t)

(1.10)

=
∑

k

sk

Nℓ∑

ℓ=1

cℓ(t)b(t − kT − τℓ(t)) + ν(t), (1.11)

where ν(t) = µ(t) ∗ a∗(−t) and µ(t) is the AWGN noise. Sampling r(t) with period

T , we obtain

r(nT ) =
∑

k

sk

Nℓ∑

ℓ=1

cℓ(nT )b(nT − kT − τℓ(nT )) + ν(nT ) (1.12)

=
∑

l

sn−l

Nℓ∑

ℓ=1

cℓ(nT )b(lT − τℓ(nT )) + ν(nT ) (1.13)

Define rn = r(nT ), νn = ν(nT ) and hn,l =
∑Nℓ

ℓ=1 cℓ(nT )b(lT − τℓ(nT )), then discrete

time system model is given by:

rn =

L∑

l=0

sn−lhn,l + vn, (1.14)
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where we assume hn,l has finite support [0 L]. Generally, the PSF is assumed to be a

Nyquist filter of bandwidth fs, therefore {vn} can be treated as AWGN noise. While

for North America terrestrial digital TV transmission, the PSF is a root raised cosine

filter of bandwidth fs/2, therefore {vn} is a colored noise. However in this thesis we

would still treat it as AWGN similar as in [10,11], and extension to the colored noise

case can be done with a little bit more efforts.

1.2.3 Channel Equalization

In this section, we give a brief retrospection on channel equalization schemes.

First, we consider channel equalization schemes for moderately fast-fading channels,

where the channel can be viewed as static within one processing block and varying

across blocks, then we move on to discuss channel equalization algorithms for vary

fast-fading channels, where the channel’s time-variation within a single block can not

be ignored.

In traditional low-mobility communication applications, the dominant factors which

degrade the performance of communication systems are the multipath fading and

noise. A conventional anti-multipath approach, which was pioneered in voiceband

telephone modems, is to transmit a single carrier modulated by data symbols and a

time-domain equalizer is applied at the receiver to compensate for ISI [12]. Various

equalization methods, ranging from optimal approaches such as maximum a posteriori

probability (MAP) symbol detection, maximum-likelihood (ML) sequence detection

to suboptimal linear equalization such as zero-forcing (ZF), minimum mean square

error (MMSE) symbol estimation, and nonlinear minimum mean square error decision

feedback equalization (MMSE-DFE) have been proposed and researched in various
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ways of trading of complexity for performance. However for severe multipath chan-

nels, which is more evident in wireless high-data-rate transmission, all these single

carrier time-domain equalization (SC-TDE) schemes suffer from heavy computation

complexity due to the long delay spread.

Multi-carrier modulation with frequency-domain equalization (FDE) techniques

are proposed as alternative anti-multipath approaches for such kind of channels, and

orthogonal frequency division multiplexing modulation (OFDM) with FDE system

can be viewed as a successful example. OFDM transmits symbols through a large

number of closely-spaced orthogonal sub-carriers, which is essentially using many

slowly-modulated narrow band signals rather than one rapidly-modulated wide-band

signal [13], therefore it transfers a severe frequency-selective channel into an parallel

array of frequency-flat channels on each sub-carrier. As a favorable result, the channel

equalization is simplified to a channel inversion operation on each sub-carrier, and

the computational complexity of OFDM-FDE is approximately proportional to the

logarithm of delay spread per symbol, which is much lower than the SC-TDE schemes.

However, the transmitted OFDM signal is the sum of a large number of modulated

sub-carriers, so OFDM suffers from high PAPR. This drawback increases the cost of

power amplifiers. In addition, OFDM can be sensitive to carrier frequency offset and

phase noise [6].

Single carrier FDE (SC-FDE) schemes are proposed as a promising alternatives

to solve the high PAPR issue associated with OFDM [1]. SC-FDE transfers the FFT

module from transmitter to receiver, thus avoids the high PAPR, but still inherits

the low complexity advantage attributed to frequency-domain signal processing. In

addition, it has some merits not shared by OFDM system. For example, coding,
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while desirable, is not necessary for combating frequency selectivity, as it is in OFDM.

Meanwhile, SC modulation is a well-proven technology in many existing wireless and

wireline applications, and its radio frequency (RF) system linearity requirements are

well known [1]. As shown in table 1.1, SC-FDE scheme possesses attractive features

and especially fits applications with constraints on PAPR and power. Furthermore,

SC-FDE shares a number of common signal processing functions with OFDE-FDE,

thus SC and OFDM modems can easily be configured to coexist. In this dissertation,

we conduct investigation of new equalization schemes to combat the doubly selective

channels in the framework of SC-FDE.

Table 1.1: A Comparison of Anti-multipath Schemes [1].
OFDM SC-FDE SC-TDE

Signal PAPR High Low Low
Computational Complexity Low Low High

Coding Requirement Strict Flexible Flexible

With the increasing application/deployment of high-mobility and high-rate wire-

less communication, Doppler spread becomes an important factor in the system de-

sign. When the channel varies significantly within one OFDM symbol duration,

sub-carriers are no longer perfectly orthogonal, severe ICI will degrade system per-

formance substantially. The same dilemma also plagues SC-FDE schemes, since the

resulting frequency-domain (FD) channel matrix is not diagonal any more, there-

fore the simple one-tap equalizer is not viable. Effective equalization for rapid time-

varying frequency-selective channels is a challenging problem. In recent years, various

approaches to suppress ICI for multi-carrier systems are investigated. Choi proposes
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a MMSE successive detection algorithm [14] to cancel ICI, but the computation com-

plexity is too high if the number of subcarrier is large. Assuming that some “small”

ICI coefficients can be directly ignored, several ICI suppression algorithms with lower

complexity are proposed in [15–17]. However, such assumption may not be valid

as shown in [18], where a maximizing signal to noise plus interference ratio (SINR)

window is derived to restrict ICI influence and then an iterative MMSE estimator is

applied to cancel ICI as well as estimate finite-alphabet frequency-domain symbols.

Rugini applies banded LDL factorization [19] to further reduce the complexity of

estimation step in [18]. Besides, some parametric models are adopted to describe the

doubly selective channel, various equalization algorithms based on those models are

explored. Gorokhov [20] uses Taylor series expansion to linearly approximate time-

domain channel variations and achieves low complexity channel equalization based

on the structural property of data model. Barhumi proposes a frequency-domain per-

tone equalizer based on complex exponential basis expansion model (CE-BEM) [21].

Motivated by the low-complexity ICI suppression scheme for OFDM systems in [18],

we studied the FDE with analogous ICI suppression for SC systems and proposed

iterative FDE schemes for both cyclic prefixed (CP) and non-cyclic prefixed (NCP)

SC systems with the desired logarithmic per-symbol processing complexity.

1.2.4 Turbo Equalization

Turbo codes are first introduced by Berrou, Glavieux and Thitimajshima in [22].

They present stunning results that performance near the theoretical limits of shan-

non can be achieved with relatively simple code structure and decoding algorithm.
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The magic comes from the decoding algorithm: iterative exchanging soft information

between two simple constituent codes.

Inspired by the success of turbo decoding, researchers start investigating the ap-

plication of such iterative soft information exchanging algorithms, which is termed

“turbo principle”, to solve other problems. Ever since then, turbo equalization be-

comes an active research direction. The idea of turbo equalization is first introduced

in [23], where a soft-output Viterbi algorithm (SOVA) is applied for soft-in-soft-out

channel equalization and decoding. A soft multi-user interference cancellation algo-

rithm is proposed for code division multiple access (CDMA) system in [24]. Such

idea is applied to turbo equalization in [25–27], and various techniques to reduce

the computational cost required to compute the equalizer coefficients are discussed.

Frequency-domain approaches for MMSE turbo equalization are proposed in [28–30]

and [31] for single-input-single-output and multiple-input-multiple-output systems,

respectively.

The key philosophy behind turbo equalization is to incorporate “soft information”

into the equalization and decoding tasks. Traditionally, the equalizer estimates the

symbols, makes a hard decision, and then feeds them to a decoder. This approach

actually destroys information pertaining to how likely each of the possible data sym-

bols might have be. However, this additional “soft” information can be converted

into probabilities that a optimal decoding algorithm (such as BCJR algorithm [32])

can exploit for better performance.

Another key characteristic of turbo equalization is its iterative treatment. In turbo

equalization, once the decoder processes the soft information it can, in turn, generate

its own soft information indicating the relative likelihood of each transmitted bit. This
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soft information from the decoder is fed back to the equalizer to aid symbol estimation.

This process is often termed “belief propagation”or “message passing” [33,34] and has

connections to methods in artificial intelligence, statistical inference, and graphical

learning theory.

A closely related research topic with Turbo equalization is iterative channel esti-

mation. For coherent detection (detecting transmitted symbols from received signal

using an estimated channel impulse response (CIR)), channel estimator plays an im-

portant role. A number of researches consider exploiting the soft output information

of turbo equalizer to improve the accuracy of channel estimation. Iterative CIR esti-

mators based on least mean square (LMS), recursive least square (RLS) and Kalman

filter are proposed in [35] and [36] respectively, which take soft information of data

symbol estimates from equalizer as input and update filter coefficients accordingly.

Application of iterative detection and channel estimation techniques in global sys-

tems for mobile communications (GSM) and enhanced data rates for global evolution

(EDGE) shows a significant performance enhancement in [37]. In this dissertation, we

also consider fitting soft input channel estimation into the turbo equalization frame-

work, giving a receiver with iterative channel estimation, equalization, and decoding.

The most relevant references to our work are [25, 28, 29, 36].

1.2.5 Channel Estimation

Channel estimation (CE) for doubly selective channel is a challenging and interest-

ing problem. Generally speaking, CE schemes can be divided into two big families,

one is training based CE (TB-CE) or decision directed CE (DD-CE) schemes, the

other is blind CE schemes. For doubly selective channel, TB-CE and DD-CE are
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more common, which can be roughly categorized into three classes: finite paramet-

ric model based CE schemes, statistical model based CE schemes and adaptive CE

schemes.

Finite parametric model based CE schemes assume that the time variation of

each independent channel coefficient can be captured by a linear combination of

limited number of basis functions, thus CIR over a time interval can be attained by

estimating those basis expansion parameters. Such models are commonly adopted

for estimating very fast fading channels over a block duration. Various CE schemes

have been researched for difference parametric models. Kalman filter, MMSE and LS

channel estimator based on basis expansion model (BEM), Slepian basis, kernels for

Rayleigh fading are investigated in [38–42]. A Taylor expansion based channel model

is proposed in [43] to facilitate the design of ICI cancellation filter.

Statistical model based CE schemes assume the second-order statistics informa-

tion of the channel is either known or available through estimation, thus CIR can

be obtained by exploiting the correlation between received signal and priori known

pilot symbols/ detected symbols. For very fast fading channels, pilot-aided channel

estimation for multicarrier modulation are investigated in [44, 45]. For moderately

fast fading channels, various frequency-domain channel estimation (FDCE) schemes

have been proposed to track and predict wireless channels for OFDM systems, with

or without pilot symbols, and with or without knowledge of channel statistics [46–48].

For SC systems, time-domain channel estimation is the typical approach [30, 36, 49],

though a few pilot-aided FDCE schemes have been proposed [50–52]. A survey about

linear channel estimation for systems with multiple antennas is presented in [53].
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Adaptive CE schemes apply an adaptive filter to track channel variation in time,

while both pilot symbols and detected data symbols can be used to update the filter

coefficients. For rapid time-varying channels, adaptive filters are adopted to estimate

the model parameters with low computational complexity for a BEM and polynomial

basis in [54] and [55] respectively. Iterative CIR estimators based on LMS and RLS

filter is investigated in [35]. For modest time-varying channels, a frequency-domain

adaptive algorithm is proposed in [56] to track channels for SC transmission systems.

Blind CE schemes are adopted in communication system where training symbols

are not available or not sufficient to initialize channel estimates. Various blind equal-

ization methods have been proposed during the last ten years. These methods include

higher-order statistical approaches [57], constant modulus algorithm (CMA) [58], sub-

space method based on second-order statistics [59], etc. In adaptive CE schemes, blind

CE can serve as initialization step.

In this dissertation, we focus on FDCE algorithms and develop adaptive Kalman

filter based per-tone channel estimator to track and predict channels for SC systems.

the most relevant references with our work are [36, 39, 52].

1.3 Contribution and Outline

In the sequel, we give the dissertation outline and its main contributions.

In Chapter 2, we consider the receiver design for single carrier transmission sys-

tems over moderately fast-fading frequency-selective channels [60,61]. Particularly we

investigate iterative frequency-domain equalization (IFDE) with explicit frequency-

domain channel estimation (FDCE). First, an improved IFDE algorithm is presented
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based on soft iterative interference-cancellation. Second, soft-decision-directed chan-

nel estimation algorithms are derived and analyzed both in time and frequency do-

main. As it turns out, frequency-domain approach is more computational efficient

than time-domain approach. Therefore a new adaptive FDCE (AFDCE) algorithm

based on per-tone Kalman filtering is proposed to track and predict the frequency-

domain channel coefficients. The AFDCE algorithm employs across-tone noise reduc-

tion, exploits temporal correlation between successive blocks, and adaptively updates

the auto-regressive model coefficients, bypassing the need for prior knowledge of chan-

nel statistics. Finally, a block overlapping idea is proposed which facilitates the joint

operation of IFDE and AFDCE. Simulation results show that, compared to other

existing IFDE and adaptive channel estimation schemes, the proposed schemes offer

lower mean-square error (MSE) in channel prediction, lower BER after decoding, and

robustness to non-stationary channels.

In Chapter 3, we consider a frequency-domain turbo equalization and adaptive

frequency-domain channel estimation (FDTE/AFDCE) scheme for the reception of

transmissions that employ trellis coded vestigial sideband (TCVSB) modulation, as

specified by the ATSC North American terrestrial digital television (DTV) stan-

dard [62, 63]. The proposed FDTE/AFDCE scheme enables low-cost and high-

performance reception of highly impaired DTV signals. Through numerical simu-

lation, we demonstrate that our FDTE/CE scheme outperforms the traditional joint

DFE/decoding plus frequency-domain least-mean-square (FDLMS) channel estima-

tion approach at a fraction of the implementation cost.
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In Chapter 4, we consider the receiver design for single carrier transmission sys-

tems over very fast fading frequency-selective channels [64–66]. In these quickly vary-

ing large-delay-spread channels, the traditional FDE methods fail when the channel

response varies significantly over the FFT analysis window. Here we propose a novel

FDE that is based on Doppler channel shortening, soft iterative interference cancella-

tion, and block decision feedback. In addition, we derive a MMSE channel estimator

for the pilot-aided estimation of significant channel coefficients in frequency domain,

which are necessary for FDE. Numerical simulations show that the proposed scheme

has advantages over the well-known FIR-MMSE-DFE plus RLS based CE scheme in

both performance and complexity.

Finally in Chapter 5, we offer some concluding remarks and indicate future re-

search possibilities.

To enhance the flow of the dissertation, we collect all detailed derivations in the

appendices of each chapter.

1.4 Notation and Abbreviations

Matrices (column vectors) are denoted by upper (lower) bold face letters. Conju-

gate, transpose, Hermitian transpose, and inverse of A are denoted by A∗, AT , AH

and A−1, respectively. The Frobenius norm and l2 norm are denoted by ‖ · ‖F and

‖ · ‖, respectively. The expectation, Kronecker delta, Kronecker product, modulo-N

and integer ceiling operations are denoted by E[·], δ(·), ⊗, < · >N , ⌈·⌉, respectively.

The N ×N identity matrix and unitary discrete Fourier transform (DFT) matrix are

denoted by IN×N and F N×N , in for the nth column of I. C(a) denotes the circulant

matrix with first column a, and D(a) is the diagonal matrix with diagonal elements
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a. Re(·) denotes the real part, and diag(A) is the vector formed from the diagonal el-

ements of square matrix A. Finally, CN(µ,Σ) denotes the multi-dimensional circular

Gaussian distribution with mean vector µ and covariance matrix Σ.
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Table 1.2: Abbreviations

AWGN Additive White Gaussian Noise
AFDCE Adaptive Frequency-Domain Channel Estimation
APPLE Approximate Linear Estimation
AR Auto-regressive
ATCR Across Tone Channel Refinement
BER Bit Error Rate
BPSK Binary PSK (2-PSK)
CE Channel Estimation
CIR Channel Impulse Response
CMA Constant Modulus Algorithm
CP Cyclic Prefix
CPR Cyclic Prefix Reconstruction
CSI Channel State Information
CWGN Circular White Gaussian Noise
DFE Decision Feedback Equalizer
DTV Digital Television
FDCE Frequency-Domain Channel Estimation
FDE Frequency-Domain Equalization
FDLMS Frequency-Domain Least Mean Square
FDTE Frequency-Domain Turbo Equalization
FFT Fast Fourier Transform
FIR Finite Impulse Response
IBI Interblock Interference
ICI InterCarrier Interference
IFDE Iterative Frequency-Domain Equalization
i.i.d. independent and identically distributed
ISI InterSymbol Interference
LMS Least Mean Square
LS Least Square
MAP Maximum a Posterior
MF Match filter
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MMSE-DFE Minimum Mean Square Error Decision Feedback Equalization
MSE Mean Squared Error
OFDM Orthogonal Frequency Division Multiplexing
PAPR Peak-to-Average-Power Ratio
QPSK Quaternary PSK (4-PSK)
RLS Recursive Least Squares
SC Single Carrier
SCCP Single Carrier Cyclic Prefix
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SC-FDE Single Carrier Frequency-Domain Equalization
SC-TDE Single Carrier Time-Domain Equalization
SDD-CE Soft-Decision-Directed Channel Estimation
SDD-TDCE Soft-Decision-Directed Time-Domain Channel Estimation
SDD-FDCE Soft-Decision-Directed Frequency-Domain Channel Estimation
SER Symbol Error Rate
SISO Single Input Single Output
SNR Signal to Noise Ratio
TE Turbo Equalization
TCVSB Trellis Coded Vestigial Side-band
VSB Vestigial side-band
WSSUS Wide-Sense-Stationary uncorrelated scattering
ZF Zero-Forcing
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CHAPTER 2

FREQUENCY-DOMAIN EQUALIZATION OF
MODERATELY FAST FADING

FREQUENCY-SELECTIVE CHANNELS

2.1 Introduction

Broadband wireless access systems offering high data-rates are likely to face se-

vere multipath fading, including channel delay spreads spanning tens or hundreds

of symbol intervals. While orthogonal frequency division multiplexing (OFDM) is

a popular means of combating these multipath effects, its drawbacks include high

PAPR and high sensitivity to carrier-frequency offset (CFO). Single carrier (SC)

transmission with FDE presents an alternative to OFDM that retains robustness to

channel delay spread without the disadvantages of high peak-to-average power ratio

(PAPR) and CFO-sensitivity [1]. When FDE is accomplished via turbo equaliza-

tion (TE) [23, 27], an iterative reception scheme whereby the equalizer and decoder

iteratively exchange soft information to jointly exploit channel structure and code

structure, significant performance gains result with only modest increase in demodu-

lator complexity [28,29,62]. Hence, the focus of this chapter is SC transmission with

turbo FDE.
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When targeting practical implementation, accurate and efficient channel estima-

tion (CE) is critical. For OFDM systems, various frequency-domain channel esti-

mation (FDCE) schemes have been proposed to track and predict either slow-fading

or fast-fading wireless channels, with or without pilot symbols, and with or without

knowledge of channel statistics [39, 46, 47]. For SC systems, time-domain channel es-

timation is the typical approach [30,36,49], though a few pilot-aided FDCE schemes

have been proposed [50–52]. With the decision-directed time-domain schemes, it has

been observed that performance improvements result from the use of soft decoder

outputs in place of hard symbol estimates [36, 49].

In this chapter, we propose a new joint channel-estimation/equalization scheme

for the reception of SC transmissions over wireless channels with moderately fast

fading and long delay spread. First, an improved iterative FDE (IFDE) algorithm is

presented based on a frequency-domain TE idea. Second, soft-decision-directed chan-

nel estimation (SDD-CE) is studied both in time and frequency domain. Though the

time-domain approach is optimal in minimizing the MSE, its heavy computational

complexity prohibit practical applications. Therefore, we focus on frequency-domain

approach, where a new adaptive FDCE (AFDCE) algorithm based on soft-input

Kalman filtering and across-tone noise reduction is proposed to track and predict

the channel in each frequency bin. Our AFDCE algorithm also exploits the tempo-

ral correlation between successive blocks and adaptively updates the channel’s auto-

regressive (AR) model coefficients in case the channel statistics are unknown. Finally,

a block-overlapping scheme is adopted to facilitate the joint operation of IFDE and

AFDCE. Our approach differs from related work in the following ways.
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1. Existing1 IFDE algorithms [28,29] are derived in the time domain and approx-

imately translated to the frequency domain using the cyclic property of the

equalizer. In contrast, our IFDE algorithm is derived in the frequency domain

directly.

2. Existing soft-input CE algorithms [36, 49] work in the time domain. We focus

on soft-input frequency-domain CE, hoping for low-complexity operation in the

case of long channel delay spread.

3. Existing FDCEs [39, 46, 52] are pilot-aided in nature, even though practical

pilots may be sparse. To better track time-varying channels, we consider (soft)

decision-directed CE.

The chapter is organized as follows. Section 2.2 briefly introduces the communica-

tion system model. Section 2.3 summarizes the receiver architecture and section 2.4

describes the CPR procedure. IFDE and SDD-CE are detailed in sections 2.5 and

section 2.6, respectively. Section 2.7 discusses implementation issues, and section 2.8

presents numerical results. Finally, section 2.9 concludes.

2.2 System Model

Consider coded single-carrier transmission where a bit stream {bm} is coded and

mapped to symbols {sn} in a finite alphabet S and transmitted over a noisy lin-

ear time-varying multipath wireless channel. For simplicity, we assume {sn} to be

uncorrelated. The complex-baseband channel can be described by the time-varying

length-Nh impulse response {hn,l}Nh−1
l=0 , where hn,l denotes the time-n response to an

1The IFDE we proposed in [62], appropriate for vestigial side-band (VSB) modulation, is a special
case of the IFDE described here.
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impulse applied at time n − l. The complex-valued observations {rn} are then given

by

rn =

Nh−1∑

l=0

hn,lsn−l + un, (2.1)

where {un} is zero-mean circular white Gaussian noise with variance σ2
w. Note that

(2.1) describes SC transmission without cyclic prefix (CP).

To implement IFDE and AFDCE jointly, we will eventually use overlapped block-

processing with block length N and block shift interval Nd. (A detailed discussion

is postponed until section 2.7.) Furthermore, we assume channel variation is slow

enough to be modeled as time-invariant within a block. Thus, in terms of the block-

based quantities rn(i) = riNd+n, sn(i) = siNd+n, un(i) = uiNd+n, and hl(i) = hiNd+ N
2

,l,

the signal received during the ith block can be expressed as

rn(i) =






un(i) +
∑n

l=0 hl(i)sn−l(i) +
∑Nh−1

l=n+1 hl(i)s<n−l>N
(i − 1), 0 ≤ n < Nh − 1,

un(i) +

Nh−1∑

l=0

hl(i)sn−l(i), Nh − 1 ≤ n < N.

(2.2)

Note that {rn(i)}Nh−2
n=0 contain inter-block interference (IBI), i.e., symbol contribu-

tions from the previous block. In the sequel, we will make extensive use of the N -

dimensional vectors r(i) := [r0(i), . . . , rN−1(i)]
T , s(i) := [s0(i), . . . , sN−1(i)]

T , u(i) :=

[u0(i), . . . , uN−1(i)]
T , and h(i) := [h0(i), . . . , hNh−1(i), 0, · · · , 0]T .

2.3 Receiver Structure

The proposed receiver is illustrated in Fig. 2.1 and the corresponding processing

steps are described below (for the ith block). Since steps 1-5 can be repeated several

times for the same block, a superscript j is used to denote the iteration index.
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Figure 2.1: Receiver structure.

1. Perform IBI-cancellation and CP-reconstruction (CPR) on r(i) using the meth-

ods of [67, 68].

2. With the aid of FFTs, perform frequency-domain MMSE equalization assuming

symbol means and variances obtained through the previous round of decoding.

From the time-domain symbol estimates ŝ(i), extract the conditional probabil-

ities
{
p(j) (ŝn(i)|sn(i) = s) , ∀s ∈ S

}N−1

n=0
for later use in decoding.

3. Perform maximum a posteriori (MAP) decoding, and update the extrinsic a

priori distribution p
(j)
ext(sn(i)).

4. Using p
(j)
ext(sn(i)), generate symbol means s(j)(i) and variances v

(j)
s (i) to be used

as priors in the next round of equalization.

5. Use s(j)(i) and v
(j)
s (i) to smooth current channel estimates and predict the

channel for the next block.

For step 3, we assume that the LOGMAP algorithm [69] is used for MAP decoding

and that the standard procedure is used to generate the a priori distribution (see,

e.g., [27, 62]). In the following three sections, we describe the IBI cancellation and
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CPR (step 1), IFDE algorithm (Steps 2 and 4) and the AFDCE algorithm (Step 5)

in detail.

2.4 Cyclic Prefix Reconstruction

Usually, for OFDM or SC-FDE systems, a CP is added to the beginning of each

transmission block to prohibit IBI as well as transform the linear convolution between

channel and transmitted data block into a circular convolution, thus simplify channel

equalization task. The CP is a repetition of the last data symbols in a block and for

sufficient IBI cancellation, the length of CP should be larger or equal to Nh−1. When

CP is not available, the received signal is contaminated by IBI as shown in (2.2). In

order to recover the contaminated samples, two steps, called IBI-cancellation and

CPR must be taken [67, 68]. We adopted the IBI-cancellation and CPR algorithm

proposed in [68] in our system, and here we briefly describe it for completeness of the

dissertation.

An iterative IBI-cancellation and CPR is implemented jointly with IFDE. For the

first iteration where j = 1, the IBI-cancellation and CPR is performed as

y(1)
n (i) =





rn(i) −
Nh−1∑

l=n+1

hl(i)ŝ<n−l>N
(i − 1) +

Nh−1∑

l=n+1

hl(i)ŝ
(0)
<n−l>N

(i), 0 ≤ n < Nh − 1

rn(i) Nh − 1 ≤ n < N

.

(2.3)

where {ŝn(i−1)} are the final estimates of previous-block symbols, and {ŝ(0)
<n−l>N

(i)}

can be linearly estimated from {y(0)
n (i)}, which is obtained from a linear combination

between r(i) and r(i + 1) as:
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y(0)
n (i) =





rn(i) −
Nh−1∑

l=n+1

hl(i)ŝ<n−l>N
(i − 1) + ξnrn+N−Nd

(i + 1) , 0 ≤ n < Nh − 1

rn(i) Nh − 1 ≤ n < N

(2.4)

The optimum weighting coefficients {ξn} to minimize the interference power in (2.4)

is given by [68]

ξn =

∑Nh−1
l=n+1 |hl(i)|2∑Nh−1
l=0 |hl(i)|2

. (2.5)

For the subsequent iterations where j > 1, we perform CPR with {s̄(j−1)
n (i)}—the

most recent estimates of current-block symbols after the j − 1th iteration, according

to

y(j)
n (i) =





rn(i) −
Nh−1∑

l=n+1

hl(i)ŝ<n−l>N
(i − 1) +

Nh−1∑

l=n+1

hl(i)s̄
(j−1)
<n−l>N

(i), 0 ≤ n < Nh − 1

rn(i) Nh − 1 ≤ n < N

.

(2.6)

More details on the generation of {ŝn(i − 1)} and {s̄(j−1)
n (i)} will be provided in the

sequel.

2.5 Iterative Frequency-Domain Equalization

Throughout this section, we will assume perfect knowledge of the channel coef-

ficients {hl(i)}Nh−1
l=0 . In practice, these coefficients are estimated using the AFDCE

algorithm described in section 2.6.2.
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Assuming that IBI-cancellation and CP-restoration are perfectly executed, y(j)(i) :=

[y
(j)
0 (i), . . . , y

(j)
N−1(i)] can be considered as a noise-corrupted output of a circular con-

volution between the channel h(i) and the transmitted symbols s(i), i.e.,

y(i) = C
(
h(i)

)
s(i) + u(i), (2.7)

where, for notational simplicity, we suppress the iteration index j for the remainder

of this section. Taking the discrete Fourier transform (DFT) of both sides of (2.7),

we obtain the frequency-domain description

x(i) = G(i)t(i) + w(i), (2.8)

where x(i), t(i) and w(i) denote the DFTs of y(i), s(i) and u(i), respectively, and

where G(i) = D
(
g(i)

)
, g(i)=

√
NFh(i), and w(i) ∼ CN(0, σ2

wI). In the sequel, we

refer to the elements in t(i) as virtual subcarriers.

Packing the mean and variance of each element in s(i) into the vectors s(i) and

vs(i), respectively, it follows that

t(i) := E[t(i)]

= Fs(i), (2.9)

Rtt(i) := E
[(

t(i) − t(i)
)(

t(i) − t(i)
)H]

= F D
(
vs(i)

)
F H , (2.10)

R̃tt(i) := D
(
diag

(
Rtt(i)

))
. (2.11)

To simplify the equalization task, we use the approximate correlation matrix R̃tt(i)

in place of the true correlation matrix Rtt(i). Note that, when the elements in s(i)

are i.i.d, the approximation is perfect (i.e., R̃tt(i) = Rtt(i)). Note also that the
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approximate linear estimation (APPLE) algorithm proposed in [28, 29] makes the

more severe approximation Rtt(i) ≈ I.

Taking t(i) and R̃tt(i) as priors, the MMSE estimate of t(i) becomes [70]

t̂(i) = t(i) + R̃tt(i)G
H(i)R−1

xx

(
x(i) − G(i)t(i)

)
, (2.12)

Rxx = G(i)R̃tt(i)G
H(i) + σ2

wI. (2.13)

From a straightforward examination of R̃tt(i), it can be shown that the diagonal

elements identically equal vt(i) = 1
N

∑N−1
n=0 vsn

(i), so that R̃tt(i) = vt(i)I. Therefore,

from (2.12), the kth element in t̂(i) can be conveniently computed via

t̂k(i) = tk(i) +
vt(i)g

∗
k(i)

vt(i)|gk(i)|2 + σ2
w︸ ︷︷ ︸

:= bk(i)

(
xk(i) − gk(i)tk(i)

)
. (2.14)

The time-domain symbol estimates are then obtained via inverse FFT as ŝ(i) =

F−1t̂(i). Assuming that the symbol estimation error has a Gaussian distribution

(which is reasonable for large N), we can generate priors for the MAP decoder as

follows:

p(ŝn(i)|sn(i) = s) =
1√

πσ2
n,i|s

exp

(
−(ŝn(i) − un,i|s)

2

σ2
n,i|s

)
, (2.15)

un,i|s := E{ŝn(i)|sn(i) = s}, (2.16)

σ2
n,i|s := var{ŝn(i)|sn(i) = s}, (2.17)

where s ∈ S. In Appendix 2.A we show that un,i|s and σ2
n,i|s can be written as

un,i|s = sn(i) +
s − sn(i)

N

N−1∑

k=0

bk(i)gk(i), (2.18)

σ2
n,i|s ≈ 1

N

N−1∑

k=0

|bk(i)|2
(
|gk(i)|2ṽn(i) + σ2

w

)
, (2.19)
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where ṽn(i) := 1
N

∑
k 6=n vsk

(i) and where bk(i) was defined in (2.14). The approx-

imation in (2.19) follows from the use of R̃tt(i) in place of Rtt(i), as was done in

(2.12)-(2.13).

Finally, we consider the update of a priori information for the MMSE estimator

using the extrinsic information provided by the decoder. As in [27, 62], the soft

feedback information can be expressed as {P (sn(i) = s|ŝ(i))}s∈S , which can be used

to update the mean and variance of sn(i) as follows:

s̄n(i) := E{sn(i)|ŝ(i)}

=
∑

s∈S
sP (sn(i) = s|ŝ(i)) (2.20)

vsn(i) := var{sn(i)|ŝ(i)}

=
∑

s∈S
|s − s̄n(i)|2P (sn(i) = s|ŝ(i)). (2.21)

2.6 Soft-Decision-Directed Channel Estimation

In this section, we investigate soft-decision-directed channel estimation (SDD-CE)

algorithms that works in conjunction with the IFDE. Unlike conventional approaches

for channel estimation, which rely on pilot symbols [50–52] or hard decisions [47],

the soft outputs of a turbo equalizer can be exploited to improve CE performance

[36, 49] and combat error propagation. First we consider a SDD time-domain CE

(SDD-TDCE) in section 2.6.1, which is the optimal estimator to minimize the MMSE

under perfect model match assumption. However, the SDD-TDCE is computational

intensive, thus not attractive for practical applications. Motivated by a significant

reduction in complexity, we propose a two-stage channel estimator, the structure of

which is depicted in Fig. 2.2. In the first stage, per-tone soft-input Kalman filtering
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is applied to track the channel in the frequency-domain. In the second stage, across-

tone filtering is applied to refine the channel estimates. Finally, to handle the case

where the channel statistics are unknown or time-varying, we propose a method to

track the channel statistics inspired by [39].

Kalman Filter

Soft Input Frequency Domain

Filtering

Estimator

Channel Statistics

AR coefficients

x(i)

t(i)

vt(i)

ĝ(i + 1|Xi)

ĝ(i|Xi)

ĝ(i + 1)

ĝ(i)

Figure 2.2: Adaptive frequency-domain channel estimator.

2.6.1 Soft-Decision-Directed Time-Domain Channel Estima-
tion

In order to exploit the soft outputs of IFDE, we write the symbol sk(i) as

sk(i) = sk(i) + s̃k(i), (2.22)

where it is assumed that the mean sk(i) is known and the deviation s̃k(i) has zero

mean and a correlation that obeys E[s̃k(i)s̃k+p(i + q)∗] = vsk
(i)δpδq.

In this section, we assume a wide sense stationary uncorrelated scattering (WS-

SUS) channel, in which case we can write E[hl(i)hl+p(i + q)] = σ2
hl

ρqδp, where {ρq}

is the time-domain autocorrelation sequence (normalized so that ρ0 = 1) and where

{σ2
hl
}Nh−1

l=0 is the ISI-power profile. Taking the above decomposition of sk(i) into con-

sideration, the AR model and observation equation for the lth channel tap can be
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formulated as (see Appendix 2.B):

hl(i) =
M∑

m=1

αlhl(i − m) + ǫl(i), (2.23)

yn(i) =

Nh−1∑

l=0

hl(i)s̄<n−l>N
(i) +

Nh−1∑

l=0

hl(i)s̃<n−l>N
(i) + un(i)

︸ ︷︷ ︸
:= µn(i)

n ∈ {0, · · · , N − 1}

(2.24)

where it is shown that the combined noise term µn(i) =
∑Nh−1

l=0 hl(i)s̃<n−l>N
(i) +

un(i) is zero-mean Gaussian with autocorrelation E[µn(i)µ∗
n+p(i+ q)] = σ2

µn(i)δpδq and

σ2
µn(i) = ρq

∑Nh−1
l=0 σ2

s̃<n−l>N
(i)σ

2
hl

+ σ2
u.

In the sequel, we define hl(i) = [hl(i), hl(i − 1), · · · , hl(i − M + 1)]T , h(i) =

[h0(i)
T , · · · , hNh−1(i)

T ]T , ǫl(i) = [ǫl(i), 0, · · · , 0]T , ǫ(i) = [ǫ0(i)
T , ǫ1(i)T , · · · , ǫNh−1(i)

T ]T ,

y(i) = [y0(i), · · · , yN−1(i)]
T , µ(i) = [µ0(i), · · · , µN−1(i)]

T , Then (2.23) and (2.24) can

be rewritten in state-space model as:

h(i) = (INh
⊗ A)h(i − 1) + ǫ(i) (2.25)

y(i) =
√

NF H
N×N D

(
t(i)
)
F N×Nh

(INh
⊗ iH

1 )h(i) + µ(i) (2.26)

where E[µ(i)µ(i + q)H ] = D(σ2
µ(i))δq, σ2

µ(i) = [σ2
µ0(i), · · · , σ2

µN−1(i)]
T , and

A =




α1 α2 · · · αM−1 αM

1 0
. . .

. . . 0

0 1
. . .

. . . 0
...

. . .
. . .

. . .
...

0 0 · · · 1 0




, (2.27)

using {αl}M
l=1 to denote the AR model coefficients. Note ǫl(i) ∼ CN(0, σ2

ǫl
), and

given the channel statistics, {αl}M
l=1 and σ2

ǫl
can be obtained via the Yule-Walker

method [70].
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In time domain, the Kalman filtering process with “soft” input can be carried out

iteratively through [70]

Qi :=
√

NF H
N×N D

(
t(i)
)
F N×Nh

(INh
⊗ iH

1 ) (2.28)

Gi = P i|i−1Q
H
i

(
QiP i|i−1Q

H
i + D(σ2

µ(i))
)−1

(2.29)

e(i) = y(i) − E[y(i)|Yi−1] = y(i) − Qiĥ(i|Yi−1) (2.30)

ĥ(i|Yi) = E[ĥ(i)|Yi] = ĥ(i|Yi−1) + Gie(i) (2.31)

ĥ(i + 1|Yi) = E[h(i + 1)|Yi] = Aĥ(i|Yi) (2.32)

P i+1|i = A
(
I − GiQi

)
P i|i−1A

T + D(σ2
ǫ(i)) (2.33)

where A = INh
⊗ A, σ2

ǫl(i)
= [σ2

ǫl
, 0, · · · , 0]T , σ2

ǫ(i) = [σ2
ǫ0(i)

T
, · · · , σ2

ǫNh−1(i)
T

]T , and

P i+1|i = E

[(
h(i + 1) − ĥ(i + 1|Yi)

)(
h(i + 1) − ĥ(i + 1|Yi)

)H
]
. Yi denotes the set

of all observations up to the ith block, namely, Yi = {y(j)}i
j=0.

In general, Qi and P i|i−1 are time varying. The implementation of the TD Kalman

filter would require an online inversion of a N × N matrix in each block. Since

this is clearly impractical for large N , we will next develop a simplified FDCE with

significantly reduced complexity.

2.6.2 Soft-Decision-Directed Frequency-Domain Channel Es-

timation

The motivation to search for a lower computational demanding CE algorithm leads

us to an alternative approach - FDCE. First we derive the FD state-space model and

compare it with the TD state-space model. The similarity between these two models

stimulated us to propose a two-stage channel estimator to approximate the TDCE

scheme, where per-tone soft-input Kalman filtering is applied to track each frequency

bin and across-tone filtering is applied to refine the channel estimates. Finally, a
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recursive filter inspired by [39] is adopted to track the channel statistics so as to

adaptively update AR model.

Soft-Input Per-Tone Channel Estimation

Since the virtual subcarrier vector t(i) is the DFT of s(i), we can write

tk(i) = tk(i) + t̃k(i), (2.34)

where t̄k(i) is given in (2.9) and t̃k(i) is a random variable with zero mean and variance

vt(i). Consistent with the use of R̃tt(i) in place of Rtt(i) for MMSE equalization,

we assume that E[t̃k(i)t̃k+p(i + q)∗] = vt(i)δpδq, which holds without approximation

when vsk
(i) is invariant over k. Numerical experiments have convinced us that this

is a reasonable assumption.

Taking the above decomposition of tk(i) into consideration, the state-space model

for the kth frequency bin can be formulated as (see Appendix 2.C):

g
k
(i) = Ag

k
(i − 1) + η

k
(i), (2.35)

xk(i) = gk(i)t̄k(i) + gk(i)t̃k(i) + wk(i)︸ ︷︷ ︸
:= vk(i)

, (2.36)

where g
k
(i) = [gk(i), gk(i − 1), · · · , gk(i − M + 1)]T , η

k
(i) = [ηk(i), 0, · · · , 0]T , and

ηk(i) ∼ CN(0, σ2
η). Given the channel statistics, {αl}M

l=1 and σ2
η can be obtained

via the Yule-Walker method [70]. In Appendix 2.C, it is shown that the combined

noise term vk(i) = gk(i)t̃k(i) + wk(i) is zero-mean Gaussian with autocorrelation

E[vk(i)v∗
k+p(i + q)] = σ2

v(i)δpδq where σ2
v(i) = vt(i)

∑Nh−1
l=0 σ2

hl
+ σ2

w.

It follows naturally that the Kalman filtering process [70] can be carried out

iteratively through the following steps. Assuming that P k(i) and ĝ
k
(i|Xk,i−1) are
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available from the previous block,2

qk(i) = P k(i)t̄k(i)∗i1

(
t̄k(i)iH

1 P k(i)i1t̄
∗
k(i) + σ2

v(i)
)−1

(2.37)

ek(i) = xk(i) − t̄k(i)iH
1 ĝ

k
(i|Xk,i−1) (2.38)

ĝ
k
(i|Xk,i) = ĝ

k
(i|Xk,i−1) + ek(i)qk(i) (2.39)

ĝ
k
(i + 1|Xk,i) = Aĝ

k
(i|Xk,i) (2.40)

P k(i + 1) = A(I − qk(i)t̄k(i)iH
1 )P k(i)AT + D(σ2

η), (2.41)

where σ2
η = [σ2

η, 0, . . . , 0]T and where Xk,i denotes the set of all observations up to

the ith block, namely, Xk,i = {xk(j)}i
j=0. Recall that ik denotes the kth column of

the identity matrix, and note that P k(i) := E
[
εk(i)εH

k (i)
]

where εk(i) := g
k
(i) −

ĝ
k
(i|Xk,i−1).

The channel estimator presented above is for a particular frequency bin. While

channel is independently distributed for each frequency bin, we can formulate the

state space equations for the channel over all frequency bins as:

g(i + 1) = (IN ⊗ A)g(i) + η
N

(i) (2.42)

x(i) = D(t(i))(IN ⊗ iH
1 )g(i) + v(i) (2.43)

where g(i) = [g
0
(i)T , · · · , g

N−1
(i)T ]T , η

N
(i) = [η

0
(i)T , · · · , η

N−1
(i)T ]T , v(i) =

[v0(i), · · · vN−1(i)]T .

Compare (2.42)-(2.43) with (2.25)-(2.26), we can see that when Nh = N , these

two models are exactly the same. Actually we can attain (2.43) from (2.26) by noting

that (INh
⊗ iH

1 )h(i) = 1√
N

F H
N×Nh

(IN ⊗ iH
1 )g(i). When Nh < N , such relationship

does not hold and TD channel model might be able to achieve better estimation

2For initialization (i.e., i = 0), we set ĝ
k
(0|Xk,0) = 0 and P k(0) = R := E{g

k
(0)gH

k
(0)}.

34



performance, since we ignore the correlation between frequency bins in the state

equation (2.42). However only FD state space model can enable us to attain decoupled

channel estimator, which greatly simplify the computation. Therefore, we propose a

two-stage channel estimator. In the first stage, we track and predict the channel for

each frequency bin as in (2.37)-(2.41). In the second stage, we apply a across-tone

channel refinement to exploit the correlation between frequency bins and reduce the

noise contaminating the channel estimates.

Across-Tone Channel Refinement

Because the above channel tracking scheme is done on a per-tone basis, it has

significantly less complexity than the optimal Kalman filtering (i.e., across all tones).

However, it is suboptimal because it ignores correlation between the elements of g(i) =

[g0(i), g1(i), . . . , gN−1(k)]T . Therefore, in this section, we propose a computationally

efficient means of refining the per-tone channel estimates by leveraging the correlation

structure of g(i).

Say that ĝ(i|Xi) := [ĝ0(i|X0,i), ĝ1(i|X1,i), · · · , ĝN−1(i|XN−1,i)]
T denotes the per-

tone estimates of g(i) generated via (2.37)-(2.41), and that ε(i) := ĝ(i|Xi) − g(i)

denotes the corresponding estimation error. We are interested in the linear refinement

ğ(i) = Bĝ(i|Xi) which minimizes the MSE E{‖ğ(i) − g(i)‖2}. Assuming that ε(i) is

zero-mean with E{ε(i)εH(i)} = σ2
εI and that E{ε(i)gH(i)} = 0, the orthogonality

principle of MMSE estimation (i.e., E{(ğ(i)−g(i))ĝH(i|Xi))} = 0) straightforwardly

implies that

B = Σg

(
Σg + σ2

εI
)−1

, (2.44)
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where Σg := E{g(i)gH(i)}. For our WSSUS channel, we show in Appendix 2.C that

E[gk(i)gp(i)
∗] =

∑Nh−1
l=0 σ2

hl
e−j 2π

N
(k−p)l, which implies that

Σg = NF D(σ2
h)F H (2.45)

for length-N vector σ2
h := [σ2

h0
, σ2

h1
, . . . , σ2

hNh−1
, 0, . . . , 0]T . Using (2.45), we can

rewrite (2.44) as

B = F D(γ)F H (2.46)

where γ = [γ0, γ1, . . . , γN−1]
T such that γl = (1 + σ2

ε/(Nσ2
hl

))−1. Equation (2.46) im-

plies that MMSE refinement can be accomplished using a fast FFT-based algorithm.

In the case that {σ2
ε/σ

2
hl
}Nh

l=0 are unknown, the high-SNR approximation σ2
ε → 0 can

be used, which leads to

γl =

{
1 0 < l ≤ Nh − 1

0 Nh ≤ l ≤ N − 1
. (2.47)

Note that this high-SNR approximation solution is the same as the constrained least-

square solution minğ(i)∈FN×Nh
‖ğ(i)−g(i)‖2, which is optimal in minimizing the square

error with the assumption σ2
ε = 0.

While so far we have discussed across-tone refinement of a single vector ĝ(i|Xi),

merging the across-tone refinement procedure with the per-tone Kalman algorithm

(2.37)-(2.41) requires that, for each i, across-tone refinement is applied to the entire

M-sample block Ĝ(i|Xi) := [ĝ
0
(i|X0,i), ĝ1

(i|X1,i), · · · , ĝ
N−1

(i|XN−1,i)]
T , and that the

refined outputs are used in the forward-prediction step (2.40). In total, this procedure

consumes 2M FFTs at each index i.
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Adaptive Tracking of AR Model Coefficients

When the Doppler spread of the channel is unknown or time-varying, we can

estimate the AR model coefficients by tracking the channel statistics. As we can see

from (2.35) and (2.27),

gk(i) = αHg
k
(i − 1) + ηk(i), (2.48)

where α = [α1, α2, · · · , αM ]H . For a stationary channel with R := E{g
k
(i)gH

k
(i)}

and r := E{g∗
k(i + 1)g

k
(i)}, the Yule-Walker equations [70] specify that

α = R−1r, (2.49)

σ2
η = [R]0,0 − αHRα. (2.50)

When the statistics are slowly varying, we can use (2.49) to track the unknown AR

coefficients α(i) using estimates of R(i) and r(i), similar to [39]. In particular, we

can use the recursive estimates

r̂(i) = λr̂(i − 1) +
(1 − λ)

N

N−1∑

k=0

ĝ∗
k(i)ĝ

k
(i − 1), (2.51)

R̂(i) = λR̂(i − 1) +
(1 − λ)

N

N−1∑

k=0

ĝ
k
(i − 1)ĝH

k
(i − 1), (2.52)

where λ ∈ (0, 1) is a suitably chosen forgetting factor, to generate the AR-coefficient

estimate

α̂(i) = R̂
−1

(i)r̂(i). (2.53)

While one might think to estimate σ2
η(i) via (2.50) with R̂(i) and α̂(i) from (2.52)-

(2.53), our experiments indicate that more robust estimates of σ2
η(i) can be obtained
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via

η̂k(i) = ĝk(i) − α̂H(i)ĝ
k
(i − 1), (2.54)

σ̂2
η(i) = λσ̂2

η(i − 1) +
(1 − λ)

N

N−1∑

k=0

|η̂k(i)|2. (2.55)

2.7 Implementation Considerations

In this section, we describe how the IFDE algorithm described in section 2.5 can

be mated with the adaptive FDCE (AFDCE) algorithm described in section 2.6.2.

In addition, we analyze the complexity of the joint IFDE/AFDCE algorithm and

compare to existing approaches in the literature.

2.7.1 Block Overlapping
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Queue:

ŝfin(i − 2)
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ŝ(i − 1)

ŝ(i)

ŝ(i + 1)

ŝd(i − 1)

ŝd(i − 1)

ŝd(i)

ŝd(i) ŝd(i + 1)

ŝd(i + 1)

Figure 2.3: The block-overlapping scheme.

As mentioned in [62], due to causal channel dispersion and lack of CP, the symbols

near the end of the block contribute little energy to the observation. As a result, these

symbols are prone to detection errors. Though the CP-restoration procedure attempts

to mitigate this problem, the procedure itself makes use of these end-of-block symbol

estimates, which are inherently unreliable, and thus ultimately fails. Note that the
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symbol estimates near the beginning of the block are contaminated by errors in IBI-

cancellation as well as CP-restoration, due to both imperfect channel and symbol

estimates. For these reasons, we propose the block-overlapping technique shown in

Fig. 2.3. The key idea is to retain only the Nd < N symbol estimates from the middle

of the block (shown in grey), since only they are reliable; the symbols at the edges of

a given block will be better estimated when they land near the center of a different

block.

In particular, we propose to perform the equalization and channel estimation tasks

as follows. Say that ŝd(i − 1), estimates of the beginning symbols in s(i − 1), have

been computed and saved in a queue of “final symbol estimates.” Then, as shown

in Fig. 2.3, ŝd(i − 1) is enough to complete the estimation of s(i − 2). With final

estimates of s(i − 2), we can compute our final estimate of channel g(i − 2) and

forward-predict a tentative estimate of channel g(i). Using this tentative estimate

of ĝ(i), in conjunction with IBI-cancellation based on the final estimates of s(i − 2)

and g(i−2), we can estimate s(i) and output the middle symbols ŝd(i) to the queue.

Fig. 2.3 shows that we now have enough reliable symbol estimates to complete ŝ(i−1).

With final estimates of s(i−1), we can compute our final estimate of channel g(i−1)

and forward-predict a tentative estimate of channel g(i + 1). These three latter

quantities can be used to estimate s(i + 1), after which the middle symbols sd(i + 1)

are added to the queue, and so on.

2.7.2 Complexity Analysis

The computational complexity of the IFDE and AFDCE algorithms is reported in

Table 2.13. The complexity of similar algorithms from the literature is also reported

3|S| denotes the size of symbol constellation S.
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for comparison. For the symbol detection algorithms, Table 2.1 reports the num-

ber of real multiplications/divisions required per-iteration4 to yield N time-domain

symbol estimates, while for the CE algorithms, Table 2.1 reports the number of real

multiplications/divisions required to yield N frequency-domain channel coefficient

estimates.

Focusing first on symbol detection, we compare IFDE to the APPLE/MF algo-

rithm from [28, 29]. As described in [28, 29], APPLE/MF alternates between the

APPLE and MF tasks depending on the current system state, making an exact com-

plexity count impossible. However, since we know that APPLE/MF complexity falls

somewhere in-between the APPLE and MF complexities, we anticipate from Table 2.1

that IFDE is slightly cheaper than APPLE/MF. We note that Table 2.1 includes the

cost of generating priors for MAP-decoding, but does not include the cost of comput-

ing priors for MMSE-equalization, since this latter cost is identical for APPLE/MF

and IFDE.

Focusing next on channel estimation, we compare AFDCE to the least-mean-

square structured channel estimation (LMS-SCE) algorithm from [56]. Notice that,

in reporting AFDCE complexity, we have isolated the costs of across-tone channel

refinement (ATCR) and adaptive tracking of AR model coefficients (ATARMC). As-

suming the typical case of large block-length N and small AR-model order M (e.g.,

M = 2), the dominant complexity terms5 in Table 2.1 indicate that the complexity

4We find it appropriate to report per-iteration complexity in Table 2.1 since we have observed
that APPLE/MF and IFDE require approximately the same number of iterations before saturating.

5In deriving Table 2.1, we assumed radix-2 FFTs that cost 2N log2(N) real multiplications and
real additions per real N -vector and 4N log

2
(N) real multiplications and real additions per complex

N -vector.

40



Table 2.1: Computational Complexity
Task Real × Real ÷
IFDE 8N log2(N) + 18N + |S|N 2N
APPLE 8N log2(N) + 11N + |S|N 2N
MF 14N log2(N) + 12N + |S|N + 24Nh log2(2Nh) N
AFDCE N(4M2 + 8M + 11) + 8N log2(N) N
(from ATCR) + 8MN log2(N)
(from ATARMC) + M2N + 7MN + 2

3
M3 + 3M2 1

LMS-SCE 16N log2(N) + 6N

of AFDCE is about M times that of LMS-SCE. In other words, the complexities of

the two algorithms are of the same order.

2.8 Numerical Results

2.8.1 Simulation Setup

We consider a single-carrier non-CP system, where the information bit sequence

is encoded with the code generator G(D) = (1 + D2, 1 + D + D2) and mapped

to QPSK symbols via Gray mapping. The time-varying channel is simulated using

Jakes’ model with delay spread Nh = 128, uniform power profile σ2
Nl

= 1
Nh

, and

autocorrelation ρq = J0(2πfdTsNq), where J0(·) denotes the 0th-order Bessel func-

tion of the first kind. Note that the factor “N” appears in ρq because “q” denotes

time-lag in blocks. Our experiments focused on (single-sided) normalized Doppler

spread fdTs ∈ {0.00001, 0.00005}, which, e.g., corresponds to Doppler spreads of

fd ∈ {100, 500}Hz at sampling rate T−1
s = 10 MHz. Our receiver used a block with

length N = 512, offset No = 50, and reliable-symbol duration Nd = 256. The AR

model order was M = 2, and Niter = 5 iterations were used for both APPLE/MF
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and IFDE (since more iterations did not appreciably improve performance). In the

AFDCE across-tone channel-refinement step, we used the “high-SNR” approxima-

tion (2.47). The reported numerical results represent the average of 100 indepen-

dent experiments of 51200 consecutive data symbols. Each length-51200 data-symbol

sequence was preceded by a length-N pilot-symbol sequence (containing randomly

chosen QPSK) that was used to initialize the channel estimator.

2.8.2 Performance Assessment

AR Model Based Time-Varying Channel

The time-varying channel is simulated as an AR process for each channel tap, while

the second order AR model coefficients and the driving noise’s variance is obtained

through solving the Yule-Walker equations for the autocorrelation described above.

In this set of simulations, we assume perfect IBI cancellation and CPR, which is

equivalent to a cyclic-prefixed transmission, and assume perfect knowledge of the

AR model. We evaluate the BER and MSE performance of IFDE/FDCE algorithm

through simulations.

In Fig. 2.4, we compare the BER performance of IFDE/FDCE versus IFDE with

perfect CSI, it can be seen that channel estimation error is negligible when fdTs =

0.00001 and for faster fading where fdTs = 0.00005, there is less than 0.25dB loss at

high SNR region. In Fig. 2.5, we compare the MSE performance of IFDE/FDCE,

FDCE with training versus the theoretical lower bound derived in Appendix 2.D.

For the training based FDCE, all the transmitted symbols are pilot symbols and are

selected from a particular class of polyphase, constant-magnitude sequences known as

Chu sequences [71], which has constant frequency-domain amplitude [1,50]. It can be

seen from Fig. 2.5 that the training based FDCE algorithm achieves the lower bound
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at all SNR region, and IFDE/FDCE approaches the lower bound as SNR increase

when fdTs = 0.00001, while has a almost constant gap when fdTs = 0.00005.
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Figure 2.4: BER versus SNR for AR channels.

Rayleigh Fading Time-Varying Channel

We evaluate the performance of the proposed IFDE/AFDCE algorithm in Rayleigh

fading time-varying channel. First, we compare the proposed IFDE/AFDCE algo-

rithm with the LMS-SCE algorithm proposed by Morelli, Sanguinetti and Mengali

in [56]. Three variants of our AFDCE algorithm were tested: (a) adaptive soft-

input Kalman CE (ASKCE), where the inputs to the Kalman filter are the mean

and variance of the virtual subcarrier symbols t; (b) adaptive hard-input Kalman CE

(AHKCE), where the inputs to the Kalman filter are hard-decisions on the virtual

subcarrier symbols with the variance set at zero; and (c) adaptive soft/hard Kalman

CE (ASHKCE), which uses AHKCE when the estimation error variance vt is above
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Figure 2.5: MSE versus SNR for AR channels.

a threshold (e.g., 0.1 in our simulations) and ASKCE otherwise. For LMS-SCE, we

empirically chose step-sizes of µ = 0.1 when fdTs = 0.00001, and µ = 0.5 when

fdTs = 0.00005, since no optimal choice of µ was specified in [56]. Steady-state BER

and channel-estimation-MSE are reported in Fig. 2.6 and Fig. 2.7, respectively. There

it can be seen that AHKCE and ASHKCE yield better performance than LMS-SCE

throughout the SNR range, with significant improvements at higher Doppler. In

Fig. 2.6, we also plot the BER of IFDE with perfectly known channel. There we

see that both AHKCE and ASHKCE perform within 1dB of this genie-aided case.

Though ASKCE does not perform well at low SNR, it slightly outperforms AHKCE

at high SNR. ASHKCE combines the best features of the ASKCE and AHKCE algo-

rithms, as seen in Fig. 2.6.

In Fig. 2.8, we compare the performance of ASKCE to adaptive-step-size LMS-

SCE in a non-stationary channel. In particular, we use a channel for which fdTs =
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0.00001 for the first 51200 symbols, and fdTs = 0.00005 for the last 51200 symbols.

During the intermediate phase (i.e., the middle 51200 symbols), the channel smoothly

transitioned between those two states. Both BER and channel-estimate-MSE are

reported in Fig. 2.8. There we see that ASKCE achieves lower MSE than adaptive-

stepsize LMS-SCE and that ASKCE demonstrates the ability to adapt to changing

channel statistics while maintaining excellent BER performance.

Finally, we compare the channel equalization performance of our proposed IFDE

algorithm with Tüchler and Hagenauer’s APPLE/MF algorithm from [28,29]. Fig. 2.9

shows that our proposed IFDE/ASHKCE scheme outperforms APPLE/MF when the

latter is used with either AHKCE or ASKCE.
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Figure 2.6: BER versus SNR for WSSUS Rayleigh channels.
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Figure 2.7: Channel-estimate-MSE versus SNR for WSSUS Rayleigh channels.
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Figure 2.9: BER versus SNR for WSSUS Rayleigh channels.

2.9 Conclusion

In this chapter, we present an algorithm for joint frequency-domain equalization

and channel estimation appropriate for the reception of single-carrier non-CP trans-

missions over time-varying long-delay-spread channels. In particular, we detail an

improved IFDE algorithm based on frequency-domain turbo equalization, and pro-

pose a novel AFDCE with robustness to fast-fading. Numerical results show that

the proposed IFDE-plus-AFDCE scheme demonstrates state-of-the-art performance

in both stationary and non-stationary channels and maintains low complexity as a

result of its frequency-domain operation. Deeper analytical insights into the conver-

gence behavior of AFDCE will be the subject of future work.
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Appendix

2.A Derivation of Conditional Mean and Variance

Combining (2.12) with ŝ(i) = F−1t̂(i), we can write

ŝn(i) = iH
n F H t̂(i)

= iH
n F H

N−1∑

k=0

ik t̂k(i)

= iH
n F H

N−1∑

k=0

iktk(i) + iH
n F H

N−1∑

k=0

ikbk(i)
(
xk(i) − gk(i)tk(i)

)

= iH
n F H

N−1∑

k=0

iki
H
k Fs(i) + iH

n F H
N−1∑

k=0

ikbk(i)
(
gk(i)iH

k Fs(i) − gk(i)iH
k Fs(i) + wk(i)

)

= sn(i) + iH
n F H

N−1∑

k=0

iki
H
k bk(i)gk(i)F

(
s(i) − s(i)

)
+ iH

n F H
N−1∑

k=0

ikbk(i)wk(i). (2.56)

Furthermore,

E [ŝn(i)|sn(i) = s] = sn(i) + iH
n F H

N−1∑

k=0

iki
H
k bk(i)gk(i)F E [s(i) − s(i)|sn(i) = s]

= sn(i) + iH
n F H

N−1∑

k=0

iki
H
k bk(i)gk(i)F in

(
s − sn(i)

)

= sn(i) +
s − sn(i)

N

N−1∑

k=0

bk(i)gk(i), (2.57)

and

var [ŝn(i)|sn(i) = s] = E
[
|ŝn(i) − E [ŝn(i)|sn(i) = s]|2

]

= E

[∣∣∣∣∣i
H
n F H

N−1∑

k=0

iki
H
k bk(i)gk(i)F

(
s(i) − s(i) − in(s − sn(i)

)

+ iH
n F H

N−1∑

k=0

ikbk(i)wk(i)

∣∣∣∣∣

2



≈ 1

N

N−1∑

k=0

|bk(i)|2
(
|gk(i)|2ṽn(i) + σ2

w

)
, (2.58)
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where ṽn(i) := 1
N

∑
k 6=n vsk

(i). In arriving at (2.58), we ignored the off-diagonal

elements of

E
[
F
(
s(i) − s(i) − in(s − sn(i)

)(
s(i) − s(i) − in(s − sn(i)

)H
F H
]

in a manner consistent with our previous approximation that used R̃tt(i) in place of

Rtt(i) for MMSE estimation.

2.B State-Space Model for Time-Domain Kalman Filter

In this appendix, we formulate the state-space model of Kalman filter for the case

that the channel is WSSUS and an M-order Kalman filter is used to track the channel

variation in each channel tap. The auto-regressive (AR) model for the lth channel

tap is given by

hl(i) =

M∑

m=1

αm,lhl(i − m) + ǫl(i), (2.59)

where {αm,l}M
m=1 are AR model coefficients and ǫl(i) is white Gaussian noise with

zero mean and variance σ2
ǫl

. Here, the parameters {αm,l}M
m=1 and σ2

ǫl
are selected to

match the desired autocorrelation function E[hl(i)hl(i + q)∗] = σ2
hl

ρq, implying that

{αm,l}M
m=1 are invariant w.r.t. tap index l, hence we omit the l-dependence from these

parameters in the state-space formulation (2.23)-(2.24). Though σ2
hl

might be variant

across l.

Assume perfect IBI cancellation and CPR, combine (2.6) and (2.22), the observa-

tion equation is defined as:

yn(i) =

Nh−1∑

l=0

hl(i)s̄<n−l>N
(i) +

Nh−1∑

l=0

hl(i)s̃<n−l>N
(i) + un(i) n ∈ {0, · · · , N − 1}

(2.60)
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Defining the combined noise term µn(i) =
∑Nh−1

l=0 hl(i)s̃<n−l>N
(i) + un(i), we note

that, since both s̃<n−l>N
(i) and un(i) are Gaussian, µn(i) must also be Gaussian.

Since s̃<n−l>N
(i) and un(i) are independent zero-mean Gaussian random variables,

E[µn(i)] = E

[
Nh−1∑

l=0

hl(i)s̃<n−l>N
(i) + un(i)

]
= 0, (2.61)

E[µn(i)µ∗
n+p(i + q)]

= E

[(
Nh−1∑

l=0

hl(i)s̃<n−l>N
(i) + un(i)

)(
Nh−1∑

l′=0

h∗
l′(i + q)s̃∗<n+p−l′>N

(i + q) + u∗
n+p(i + q)

)]

=

Nh−1∑

l=0

Nh−1∑

l′=0

E
[
s̃<n−l>N

(i)s̃∗<n+p−l′>N
(i + q)

]
E [hl(i)h

∗
l′(i + q)] + σ2

uδpδq

=

Nh−1∑

l=0

E
[
s̃<n−l>N

(i)s̃∗<n+p−l>N
(i)
]
σ2

hl(i)
ρqδq + σ2

uδpδq

=
(
ρq

Nh−1∑

l=0

σ2
s̃<n−l>N

(i)σ
2
hl

+ σ2
u

)
δpδq. (2.62)

2.C State-Space Model for Frequency-Domain Kalman Fil-

ter

In this appendix, we formulate the state-space model of Kalman filter used to

track the channel variation in each frequency bin. The auto-regressive (AR) model

for the kth frequency bin is given by

gk(i) =
M∑

m=1

αm,kgk(i − m) + ηk(i), (2.63)

where {αm,k}M
m=1 are AR model coefficients and ηk(i) is white Gaussian noise with

zero mean and variance σ2
ηk

. Here, the parameters {αm,k}M
m=1 and σ2

ηk
are selected

to match the desired autocorrelation function E[gk(i)gk(i + q)∗]. Since, for a WSSUS
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channel, E[hl(i)hl+p(i + q)] = σ2
hl

ρqδp with ρ0 = 1, we can see that

E[gk(i)gk(i + q)∗] = E

[
Nh−1∑

l=0

hl(i)e
−j 2π

N
kl

Nh−1∑

m=0

hm(i + q)∗ej 2π
N

km

]
,

= ρq

Nh−1∑

l=0

σ2
hl

, (2.64)

implying that {αm,k}M
k=1 and σ2

ηk
are invariant w.r.t. bin index k. Hence, we omit the

k-dependence from these parameters in the state-space formulation (2.35)-(2.36). We

can also see the across-tone correlation that is ignored in per-tone channel tracking:

E[gk(i)gp(i)
∗] = E

[
Nh−1∑

l=0

hl(i)e
−j 2π

N
kl

Nh−1∑

m=0

hm(i)∗ej 2π
N

pm

]
,

=

Nh−1∑

l=0

σ2
hl

e−j 2π
N

(k−p)l, (2.65)

Combining (2.8) and (2.34), the observation equation for per-tone filtering be-

comes

xk(i) = gk(i)tk(i) + gk(i)t̃k(i) + wk(i). (2.66)

Defining the combined noise term vk(i) := gk(i)t̃k(i) + wk(i), we note that, since both

t̃k(i) and wk(i) are Gaussian, vk(i) must also be Gaussian. Since wk(i) and t̃k(i) are

independent zero-mean Gaussian random variables,

E[vk(i)] = 0, (2.67)

E[vk(i)v∗
k+p(i + q)] = E

[(
gk(i)t̃k(i) + wk(i)

)(
g∗

k+p(i + q)t̃∗k+p(i + q) + w∗
k+p(i + q)

)]
,

= E
[
gk(i)g∗

k+p(i + q)
]

E
[
t̃k(i)t̃∗k+p(i + q)

]
+ σ2

wδpδq,

= E

[
Nh−1∑

l=0

hl(i)e
−j 2π

N
kl

Nh−1∑

m=0

h∗
m(i + q)ej 2π

N
(k+p)m

]
vt(i)δpδq

+ σ2
wδpδq, (2.68)

=

(
vt(i)

Nh−1∑

l=0

σ2
hl

+ σ2
w

)
δpδq. (2.69)
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In (2.68), we utilize the assumption that E[t̃k(i)t̃k+p(i + q)∗] = vt(i)δpδq mentioned in

section 2.6.2.

2.D Performance Bound of Channel Estimator

Assume block fading channel and perfect IBI cancellation and CP restoration, we

evaluate the performance of the proposed CE scheme in a genie aided mode, where

N constant pilot symbols {pk} are transmitted over the channel repeatedly. Further-

more, the pilot symbols are selected from a particular class of polyphase, constant-

magnitude sequences known as Chu sequences [71], which satisfied the desired prop-

erty that the training sequence has constant frequency-domain amplitude [1,50]. Then

(2.35)-(2.36) changes to

g
k
(i) = Ag

k
(i − 1) + η

k
(i), (2.70)

xk(i) = iH
1 g

k
(i)pk + wk(i). (2.71)

First, without the consideration of the frequency-domain filtering process, for such

time invariant system, the discrete algebraic Riccati equation (DARE) is defined as

P k = AP kA
T − |pk|2AP ki1i

H
1 P kA

T

|pk|2iH
1 P ki1 + σ2

w

+ σ2
ηi1i

H
1 . (2.72)

The unique stabilizing solution of (2.72) can be attained through applying the invari-

ant subspace method as in [72] Theorem E.7.1.

M k :=

[
A−1 −σ2

ηA
−1iH

1 i1

− 1
σ2

w
iH
1 i1A

−1 AH − σ2
η

σ2
w
iH
1 i1A

−1iH
1 i1

]
, (2.73)

M k

[
U k

V k

]
=

[
U k

V k

]
Λk, (2.74)

P k = U kV
−1
k , (2.75)
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where U k and V k can be any M × M matrices that form a basis for the stable

eigenspace of the symplectic matrix M k in (2.73) and Λk is an M × M matrix

with all its eigenvalues inside the unit disc. For channel with i.i.d frequency bins,

we can omit the subscript k from (2.72)-(2.75). In addition, since iH
1 P k(i)i1 =

Var (gk(i) − gk(i|Xk,i−1)), the variance of prediction error at steady state can be pre-

dicted through iH
1 Pi1.

Second, we examine the influence of the channel refinement process on the lower

bound when high SNR approximation is applied. To facilitate our analysis, we refor-

mulate equation (2.37)-(2.41) as:

q̃k(i) = P k(i)i1

(
|pk|2iH

1 P k(i)i1 + σ2
w

)−1
, (2.76)

ẽk(i) = p∗kxk(i) − |pk|2iH
1 ĝ

k
(i|Xk,i−1), (2.77)

ĝ
k
(i|Xk,i) = ĝ

k
(i|Xk,i−1) + ẽk(i)q̃k(i), (2.78)

P k(i + 1)=A(I − q̃k,i|pk|2iH
1 )P k(i)AT+D(σ2

η). (2.79)

Without lose of generality, we can assume |pk|2 = 1, since they are of constant

amplitude. It follows that q̃k(i) is k-independent with the same initialization of

P k(0), thus we omit the index k. Furthermore, ẽk can be decomposed as:

ẽk(i) = p∗k
(
pkgk(i) + wk(i)

)
− |pk|2ĝk(i|Xk,i−1),

= |pk|2
(
gk(i) − ĝk(i|Xk,i−1)

)
+ p∗kwk(i),

= gk(i) − ĝk(i|Xk,i−1) + p∗kwk(i). (2.80)

Now denote Ĝ(i|Xi−1) = [ĝ
0
(i|X0,i−1), ĝ1

(i|X1,i−1), · · · , ĝ
N−1

(i|XN−1,i−1)]
T , ĝ(i|Xi−1) =

[ĝ0(i|X0,i−1), ĝ1(i|X1,i−1), · · · , ĝN−1(i|XN−1,i−1)]
T , ẽ(i) = [ẽ0(i), ẽ1(i), · · · , ẽN−1(i)]

T , and
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p∗ = [p∗0, p
∗
1, · · · , p∗N−1]

T it follows that

Ĝ(i|Xi)=Ĝ(i|Xi−1) + ẽ(i)q̃(i)T ,

=Ĝ(i|Xi−1) +
(
g(i) − ĝ(i|Xi−1) + p∗ · w(i)

)
q̃(i)T . (2.81)

Assume {Ĝ(i|Xi−1), Ĝ(i|Xi−1)} ∈ span(FN×Nh
), then

Ğ(i) = F N×Nh
F H

N×Nh
Ĝ(i|Xi),

= Ĝ(i|Xi−1) +
(
g(i) − ĝ(i|Xi−1)

)
q̃(i)T + F N×Nh

F H
N×Nh

(
p∗ · w(i)

)
q̃(i)T .(2.82)

Furthermore, denote w̃(i) = F N×Nh
F H

N×Nh

(
p∗ · w(i)

)
, it is easy to show that

ğ
k
(i) = ĝ

k
(i|Xk,i−1) +

(
gk(i) − ĝk(i|Xk,i−1)

)
q̃(i) + w̃k(i)q̃(i), (2.83)

and E[w̃k(i)w̃k(i)∗] = Nh

N
σ2

w. Therefore, the channel refinement process reduces the

noise energy by a factor Nh

N
. As a result, in order to calculate the new lower bound,

we only need to scale σ2
w in (2.72) and (2.73) by the factor Nh

N
. Meanwhile, we need

to update (2.76) to comply with this result.
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CHAPTER 3

FREQUENCY-DOMAIN TURBO EQUALIZATION FOR
DIGITAL TV TRANSMISSION SYSTEMS

3.1 Introduction

The performance of ATSC [2] digital television (DTV) receivers has been steadily

increasing over the last decade [73,74]. Receivers have become increasingly reliable in

difficult channel conditions, such as indoor reception in urban settings, where dense

multipath can heavily impair the transmitted signal. The current state-of-the-art

ATSC reception scheme employs decision feedback equalization (DFE) [75, 76]. To

handle difficult channels, receiver complexity—in particular, the DFE filter length—

has increased significantly. While first-generation ATSC receivers typically employed

DFEs with 100 forward and 400 feedback taps, current-generation receivers typically

employ DFEs with 500 forward and 600 feedback taps. If broadcasters adopt the

use of repeaters and distributed transmitters to increase coverage [77], then further

increases in filter lengths can be expected.

For channels with large delay spreads, which are commonly encountered in DTV

applications, even linear equalization can be quite costly when implemented in the
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time domain, as suggested by DFE filter lengths mentioned above. For such chan-

nels, it might be more effective to consider frequency-domain equalization (FDE),

which leverages fast circular convolution via the FFT to drastically reduce the cost of

implementing long filters [1]. Motivated by the success of IFDE/AFDCE algorithm

proposed in Chapter 2, here we attempt to design the receiver in the same framework.

As it turns out, for DTV applications, both the FDTE and AFDCE algorithms are fur-

ther complicated by the ATSC’s use of 8-ary TCVSB modulation. Thus, we propose

a novel FDTE/AFDCE scheme suitable for non-CP TCVSB modulated transmission

system. Through numerical comparisons, we find that the proposed scheme gives si-

multaneous performance and complexity gains over time-domain DFE reception plus

FDLMS CE.

The chapter is organized as follows. Section 3.2 and section 3.3 briefly describe

TCVSB modulation and the communication system model. Section 3.4 and sec-

tion 3.5 extends the proposed IFDE and AFDCE algorithms in Chapter 2 to adapt

to TCVSB modulation. Section 3.6 presents numerical results. Finally, section 3.7

concludes.

3.2 Trellis Coded Vestigial Sideband Modulation

North American DTV transmission systems adopt TCVSB modulation for both

power and spectrum efficiency. Here we briefly describe its properties for better

understanding of the challenges for receiver design.

The VSB spectrum in a 6-MHz channel is depicted in Fig. 3.1 [2]. The digital

VSB spectrum is flat throughout most of the channel due to the noise-like feature

of randomized data. The RF peaks can only be described in terms of a statistical

56



cumulative distribution function [78] and remains within 6.3dB of the total in-band

average power for 99.9% of time. As can be seen from Fig. 3.1, the half-power

frequencies of the VSB signal are 5.38MHz apart with two steep transition bands (each

of 0.62MHz wide). The 8-VSB modulation is implemented by a root raised cosine

(RRC) pulse shaping filter (PSF) with roll-off factor β = 0.115 and the composite

pulse waveform b(t) is raised cosine (RC) waveform. These waveforms are illustrated

in Fig. 3.2 and Fig. 3.3. Detailed time and frequency domain representation of these

filters are provided in Appendix 3.B. As implied in Fig. 3.4, about half spectrum

of the received signal will be suppressed by the PSFs, therefore special treatment is

needed to restore the transmitted symbols as illustrated in section 3.4.

The transmission system employs a two-thirds rate (R=2/3) trellis code [2]. One

input bit is encoded into two output bits using a one-half rate convolutional code

while the other input bit is precoded. Standard 4-state optimal Ungerboeck code

is used for the encoding. The signaling waveform used with the trellis code is an

8-level (3 bit) real valued constellation. The transmitted signal is referred to as 8-

VSB. In ATSC standard, trellis code intrasegment interleaving shall be used, where

twelve identical trellis encoders and precoders operating on interleaved data symbols.

Fig. 3.5 shows the trellis code utilizes the 4-state feedback encoder as well as the

precoder and the symbol mapper. The trellis coded modulation (TCM) complicates

the soft information generation process for the Turbo equalization, which is discussed

in details in section 3.4.2.
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Figure 3.2: 8-VSB root raised cosine pulse shape .
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Figure 3.3: 8-VSB raised cosine pulse shape .
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59



3.3 System Model

For terrestrial DTV transmission, the normalized Doppler spread is relatively

small, therefore, the composite channel impulse response with pulse shaping filters

included can be defined as in (1.9)

h(t, τ) =

Nℓ∑

ℓ=1

cℓ(t)b(τ − τℓ), (3.1)

where the PSF a(t) is the Hermitian symmetric RRC pulse such that a(t) = a∗(−t),

and b(t) is the RC pulse. Similar as in (1.11), the received signal r(t) is defined as

r(t) = h(t, τ) ∗ sT (t) + ν(t) =

∫ Nℓ∑

ℓ=1

cℓ(t)b(τ − τℓ)
∑

k

skδ(t − τ − kT )dτ + ν(t)

(3.2)

=

Nℓ∑

ℓ=1

∑

k

skcℓ(t)b(t − kT − τℓ) + ν(t), (3.3)

where ν(t) = µ(t) ∗ a∗(t) and µ(t) is the AWGN noise. Due to the impact of PSF

a(t), ν(t) is a colored additive Gaussian noise, however in this chapter we would still

treat it as AWGN similar as in [10, 11], and extension to the colored noise case can

be done with a little bit more efforts.

The equivalent discrete time base-band transmission model can be obtained through

sampling with period T . Define rn = r(nT ), cn,ℓ = cℓ(nT ), bl,ℓ = b(lT − Tℓ) and

νn = ν(nT ), the discrete time model is given by

hn,l =

Nℓ∑

ℓ=1

cn,ℓbl,ℓ, (3.4)

rn =

L∑

l=0

hn,lsn−l + νn, (3.5)

where νn is assumed to be circular white Gaussian noise (CWGN) with mean zero

and variance σ2. Since two real-valued observations are made for every real-valued

symbol sn, one might consider (3.5) to be oversampled by a factor of two.
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For our FDTE scheme, we assume block-wise processing with block length N .

In fact, we focus on overlapping blocks, with block interval Nd < N . Further-

more, we assume that the channel is time-invariant over the duration of a sin-

gle block. For convenience, we define the block-based quantities rn(i) = riND+n,

hl(i) = hiNd+N/2,l, sn(i) = siNd+n, and νn(i) = νiNd+n, and their vector coun-

terparts r(i) := [r0(i), r1(i), . . . , rN−1(i)], s(i) := [s0(i), s1(i), . . . , sN−1(i)], h(i) :=

[h0(i), . . . , hL(i), 0, · · · , 0], and ν(i) := [ν0(i), ν1(i), . . . , νN−1(i)]. Thus, the signal re-

ceived during the i-th block can be expressed as

rn(i) =





νn(i) +

n∑

l=0

hl(i)sn−l(i) +

L∑

l=n+1

hl(i)s<n−l>N
(i − 1), 0 ≤ n < L,

νn(i) +
L∑

l=0

hl(i)sn−l(i), L ≤ n < N,

(3.6)

where < n >N denotes n modulo N . Note that the samples {rn(i)}L−1
n=0 contain IBI

from s(i − 1).

The receiver structure and major processing steps for the DTV transmission sys-

tem are exactly the same as those described in Section 2.3, while the implementation

of FDTE and AFDCE modules are different due to the TCVSB modulation of DTV

signal. For simplicity, here we only describe the special aspect of proposed FDTE

and AFDCE algorithms, while directly refer to Section 2.3 for details of other similar

modules, such as IBI cancellation and CPR, etc.

We assume that CP restoration has been perfectly executed, so that y(i) can be

considered as a noise-corrupted output of a circular convolution between the channel

h(i) and the transmitted symbols s(i). Assuming perfect CPR, the time-domain

system model can be rewritten in matrix form as

y(i) = C(h(i))s(i) + ν(i), (3.7)
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where C(h(i)) denotes the circulant matrix with first column h(i). Taking the discrete

Fourier transform (DFT) of both sides of (3.7), we obtain

x(i) = D(g(i))t(i) + w(i), (3.8)

where x(i), t(i) and w(i) denote DFTs of y(i), s(i) and ν(i), respectively, and

g(i) =
√

NFh(i). We refer to the elements in t(i) as virtual subcarriers.

3.4 Frequency-Domain Turbo Equalization

3.4.1 MMSE Estimation of Virtual Subcarriers

For notational brevity, the symbol index (i) will be suppressed for the remainder

of this section. In our VSB model, the time-domain symbols s are real valued, so

that the virtual subcarriers exhibit conjugate symmetry, i.e.,

tn =

{
t∗n, n ∈ {0, N

2
}

t∗N−n, n ∈ {1, 2, . . . , N
2
− 1}

. (3.9)

Using this fact, (3.8) can be rewritten with t ∈ CN/2+1:

x = Ht + w, (3.10)

tn := tn n ∈ {0, . . . ,
N

2
} (3.11)

H =




g0 0 0 · · · 0
0 g1 0 · · · 0
0 g∗

N−1 0 · · · 0

0
...

. . .
. . . 0

... · · · 0 gN/2−1

...
0 · · · 0 g∗

N/2+1 0

0 · · · 0 0 gN/2




(3.12)
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where

xn :=






xn n = 0

x∗
N−k n = 2k k ∈ {1, . . . , N

2
− 1}

xk+1 n = 2k + 1 k ∈ {0, . . . , N
2
− 2}

xN
2

n = N − 1

(3.13)

wn :=






wn n = 0

w∗
N−k n = 2k k ∈ {1, . . . , N

2
− 1}

wk+1 n = 2k + 1 k ∈ {0, . . . , N
2
− 2}

wN
2

n = N − 1.

. (3.14)

Essentially, (3.10) removes the redundancy inherent in the VSB system model (3.8).

We note that, with bandlimited VSB pulse shapes, some entries in x may contain

little signal energy. To reduce complexity, these elements could be ignored when

estimating t. Doing so would require only that certain rows be omitted from x, w,

and H.

We use a linear MMSE technique to estimate the virtual subcarrier vector t, where

we incorporate prior statistics on t (i.e., mean and covariance) calculated from the

MAP decoder outputs during the previous iteration. To simplify equalization task,

similar as in (2.11), we approximate E{(t− t̄)(t− t̄)H} by the diagonal matrix D(vt),

where vt := diag
(
E
[
(t − t̄)(t − t̄)H

])
. Therefore, the MMSE estimate of t ∈ C

N/2+1

can be computed as

t̂ = t̄ + D(vt) H
H
(
HD(vt)H

H + σ2IN
)−1

︸ ︷︷ ︸
:=G

(x − Ht̄) (3.15)

where t̄ := E{t}. For the first iteration, we set t̄(i) = 0 and vt(i) = 1. Due to the

sparse structure of H, (3.15) can be computed via

t̂k =






g∗
kxk + σ2

vtk

t̄k

|gk|2 + σ2

vtk

, k = 0, N
2

g∗
kxk + gN−kx

∗
N−k + σ2

vtk

t̄k

|gk|2 + |gN−k|2 + σ2

vtk

, 1 ≤ k ≤ N−1
2

(3.16)
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where vtk
:= [vt]k. From t̂, we reconstruct t̂ via (3.9) and (3.11).

3.4.2 Generation of MAP Inputs

The soft information that is passed to the MAP decoder is computed from the

conditional probabilities {p(ŝn|sn = s)}s∈S , where S denotes the symbol alphabet.

Here we describe how these conditional probabilities are generated from the equalizer

outputs, and how they are passed to the decoder.

Assuming Gaussian-distributed symbol estimation error,

p(ŝn|sn = s) =
1√

2πσ2
n,s

exp

(
−(ŝn − un,s)

2

2σ2
n,s

)
(3.17)

un,s := E [ŝn|sn = s] (3.18)

σ2
n,s := var [ŝn|sn = s] . (3.19)

It is shown in Appendix 3.A that un,s and σ2
n,s can be calculated as

un,s = s̄n +
(s − s̄n)

N

N−1∑

k=0

dk (3.20)

σ2
n,s ≈ 1

N

N−1∑

k=0

(|dk|2ṽn + σ2bk) (3.21)

where s̄n := E{sn}, and dk, bk, ṽn are defined in Appendix 3.A.

With TCM, a subset of the bits that determine each symbol are left uncoded, and

this influences the way that soft information is passed to and from the MAP decoder.

Let us represent sn ∈ S via sn ≡ [cn, bn], where cn ∈ {0, 1}m and bn ∈ {0, 1}m̃

are vectors of coded and uncoded bits, respectively. Since the ATSC standard does

not employ bit-level random interleaving, we will not assume that the bits in cn are
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independent. As a result, we pass {p(ŝn|cn = c), ∀c} to the MAP decoder, where

p(ŝn|cn = c)

=
∑

b

p(ŝn|cn = c, bn = b)P (bn = b|cn = c) (3.22)

=
∑

b

p(ŝn|cn = c, bn = b)2−m̃ (3.23)

= 2−m̃
∑

s∈S(c)

p(ŝn|sn = s), (3.24)

and where S(c) denotes the subset of S corresponding to bits c.

3.4.3 Update of Virtual Subcarrier Statistics

MAP decoding yields the posterior probabilities {P (cn = c|ŝ), ∀c}, which can be

combined with information on the uncoded bits to update the symbol means and

variances for use in the next turbo iteration. With the correspondence s ≡ [c, b], we

have

P (s|ŝ) = P (b|c, ŝ)P (c|ŝ) (3.25)

=
p(ŝ|b, c)P (b|c)

p(ŝ|c)
P (c|ŝ) (3.26)

=
p(ŝ|b, c)P (b|c)∑
b′ p(ŝ|b′, c)P (b′|c)

P (c|ŝ) (3.27)

=
p(ŝ|s)∑

s′∈S(c) p(ŝ|s′)P (c|ŝ), (3.28)

where we used the shorthand P (b|c, ŝ) = P (bn = b|cn = c, ŝ). For (3.28), we

assumed that P (bn = b|cn = c) is uniform over b.

The posteriors {P (sn = s|ŝ)}s∈S from (3.28) are then used to update the mean

and variance of sn as follows.

s̄n := E [sn|ŝ] =
∑

s∈S
sP (sn = s|ŝ) (3.29)

vsn
:= var [sn|ŝ] =

∑

s∈S
|s − s̄n|2P (sn = s|ŝ). (3.30)

65



Assuming that {sn} are uncorrelated, the mean and variance of the virtual sub-

carriers {tn} become

t := E{t} = F s̄ (3.31)

vt := diag(E
[
(t − t)(t − t)H

]
) (3.32)

= diag(F D(vs)F
H). (3.33)

Since (3.33) implies that all the elements in vt are identical, the variance calculation

can be simplified to

vtk =
1

N

N−1∑

n=0

vsn
, ∀k. (3.34)

3.5 Modified Adaptive Frequency-Domain Channel Estima-

tion

In this section, we modify the AFDCE algorithm proposed in Chapter 2 to exploit

the property of VSB modulation. Though (2.8) and (3.8) appear the same at the first

glance, there is a big difference between them due to VSB modulation. In both

cases, g(i) is the FFT of h(i), however, in (2.8), we assume that E[hl(i)hl+p(i + q)] =

σ2
hl

ρqδp, while in (3.8), hn,l =
∑Nℓ

ℓ=0 cn,ℓbl,ℓ and we assume E[cℓ(i)cℓ+p(i+q)] = σ2
cℓ
ρqδp.

Therefore, the influence of the composite PSF {bl,ℓ} should be taken into account in

designing the channel estimator.

Consider the CIR h(t, τ) given by equation (3.1). Taking the Fourier transform

on both sides w.r.t the τ variable, we obtain

g(t, f) = C(t, f)B(f), (3.35)
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where g(t, f) and B(f) are continuous Fourier transform of g(t, τ) and b(τ) respec-

tively, and C(t, f) =
∑

ℓ cℓ(t)e
−j2πfτℓ . Evaluating g(t, f) at discrete time and fre-

quency points and defining gk(i) = g(iNTs,
k
N

fs), ck(i) = c(iNTs,
k
N

fs), bk = b( k
N

fs),

where fs is the sampling frequency, we obtain

gk(i) = bkck(i) (3.36)

Substitute (3.36) into (3.8), we can set up the state space model for VSB modulated

system as

ck(i) = Ack(i − 1) + ηk(i) (3.37)

xk(i) = bk t̂k(i)ck(i) + wk(i) (3.38)

where ck(i) = [ck(i), ck(i− 1), · · · , ck(i−M + 1)]T , η
k
(i) = [ηk(i), 0, · · · , 0]T , ηk(i) ∼

CN(0, σ2
η). Given the channel statistics, A and σ2

η can be obtained via the Yule-Walker

method [70].

Then it follows that the Kalman filtering process is carried out through:

qk(i) = P k(i)b∗
k t̂k(i)∗i1

(
bk t̂k(i)iH

1 P k(i)i1t̂
∗
k(i)b∗

k + σ2
v(i)
)−1

(3.39)

ek(i) = xk(i) − bk t̂k(i)iH
1 ĉk(i|Xk,i−1) (3.40)

ĉk(i|Xk,i) = ĉk(i|Xk,i−1) + ek(i)qk(i) (3.41)

ĉk(i + 1|Xk,i) = Aĉk(i|Xk,i) (3.42)

P k(i + 1) = A(I − qk(i)bk t̂k(i)iH
1 )P k(i)AT + D(σ2

η) (3.43)

ĝk(i + 1) = bki
H
1 ĉk(i + 1|Xk,i), (3.44)

Finally across-tone CE refinement and AR model coefficients adaptation can be im-

plemented on {ĉk(i|Xk,i)} similar as in Chapter 2.
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In the following, we describe a technique to reduce the computational cost of

AFDCE by leveraging the property of VSB modulation. As can be seen from Fig. 3.4,

almost half spectrum of the channel is suppressed by the PSF, therefore we can

ignore those channel coefficients with small energy to simplify computation without

sacrificing much performance. Here we examine the relationship between performance

loss and the threshold which is used to decide whether the kth tap ck(i) is set to zero

directly or need to be estimated by AFDCE. Particulary, we focus on analyzing the

initial state of Kalman filtering, which is equivalent to analyze a MMSE estimator,

since a good start is the key to guarantee the success of joint IFDE/AFDCE for the

subsequent symbols.

Given (3.38), the MMSE estimate ĉk(i) and estimation errors are defined as

ĉk(i) =
E{|ck(i)|2}t̂∗k(i)b∗

k

bk t̂k(i) E{|ck(i)|2}t̂∗k(i)b∗
k + σ2

xk(i), (3.45)

E{|ĉk(i) − ck(i)|2} =
E{|ck(i)|2}σ2

|bk|2|t̂k(i)|2 E{|ck(i)|2} + σ2
. (3.46)

Note if ĉk(i) is set to 0, E{|ĉk(i) − ck(i)|2} = E{|ck(i)|2}. Denote the extra MMSE

ratio as κ, then it is clear that

E{|ck(i)|2}
E{|ck(i)|2}σ2

|bk |2|t̂k(i)|2 E{|ck(i)|2}+σ2

= 1 +
|bk|2|t̂k(i)|2 E{|ck(i)|2}

σ2︸ ︷︷ ︸
:=κ

(3.47)

Since we assume E{|ck(i)|2} = 1 and E{|tk(i)|2} = 1 while σ2
s = 1, therefore κ ∝ |bk|2

σ2 .

Fix κ, the threshold Γ is determined by Γ = κσ2. Therefore, only those channel

coefficients {ck(i), k ∈ K} will be tracked through AFDCE, where K = {k, |bk|2 > Γ},

while other channel coefficients will be set to 0 directly. This technique reduces the

computational cost roughly by half.
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3.6 Numerical Results

In this section, we compare the performance and complexity of the proposed

FDTE with that of the DFE-plus-Viterbi-decoding (DFE-VD) method proposed by

Ariyavisitakul and Li [79] using the fast DFE filter update proposed by Al-Dhahir

and Cioffi [80]. In the DFE-VD scheme, the (delayed) Viterbi estimates are fed to

adequately-delayed DFE feedback taps, while sub-optimal symbol-by-symbol deci-

sions are fed to the DFE feedback taps corresponding to shorter delays. In addition,

we compare the performance and complexity of the modified AFDCE with FDLMS

algorithm [70], which is widely used in tracking slow fading channels.

3.6.1 Simulation Setup

For performance comparison, we used the three propagation models summarized

in Table 3.1. These were chosen similar to the ATSC R2.2 ensembles from [81]. Six

paths were employed, each with a different delay, and with either a constant phase

offset or a single-sided Doppler frequency spread of fd = 50Hz. With the ATSC

sampling rate T−1
s = 10.76MHz, this corresponds to a normalized Doppler spread

fdTs = 0.000005. The relative attenuations of the reflected paths vary among the

three propagation models in Table 3.1; channel #1 is the least selective channel, #2

is the most time-selective, and #3 is the most frequency selective. To create the

{hn,l}L
l=0, we generated propagation responses using Jakes method [82] and convolved

them with the PSF, using an overall channel order of L = 511.

We assumed an 8-VSB modulated single-carrier system (i.e., no CP) that used

rate-2/3 Ungerboeck coding with constraint length 3 [83]. For perfect CSI case, the

receiver was assumed to have perfect knowledge of the CIR during the middle of each
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N -length block. Otherwise, estimated CIR was used for symbol detection purpose.

For FDTE/AFDCE, we used N = 2048 and Nd = N/2, and we reconstructed a CP

of length L. Meanwhile we set the maximum iteration number to be 5. For DFE-

VD/FDLMS, we updated the filter coefficients once every Nd symbols, and we used

a feedforward filter of length Nf = 2(L + 1) and a feedback filter of length L. The

feedback filter length allows perfect post-cursor ISI cancellation, and the feedforward

filter length was chosen so that further increases yielded little improvement in BER

performance. The DFE-VD decoding delay was 30. For FDLMS, the step size was set

to be 0.0005. For all the simulations, we averaged 20 realizations of 100 contiguous

data blocks preceded by a pilot block (to initialize channel estimates).

3.6.2 Performance Assessment

Figure 3.6 shows the BER performance of FDTE and DFE-VD with perfect CSI

(denoted by Perfect FDTE and Perfect DFE), FDTE/AHKCE and DFE-VD/FDLMS.

From Fig. 3.6, we can see that, after 5 iterations, FDTE outperforms DFE-VD by

1dB (in SNR) approximately when perfect CSI is available. At BER= 10−4, there

is less than 1dB loss between FDTE/AHKCE and FDTE with perfect CSI, and

FDTE/AHKCE achieves about 1dB gain over DFE-VD/FDLMS .

Figure 3.7 and Fig. 3.8 show the BER and steady state symbol estimation MSE

performance of FDTE/AHKCE versus FDTE/FDLMS. From Fig. 3.7, we can see that

FDTE/AHKCE performs better than FDTE/FDLMS in all the scenario, especially in

the most time selective case. Figure 3.8 demonstrates that FDTE/AHKCE achieves

lower steady state MSE than FDTE/FDLMS.
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Figure 3.9 shows the symbol estimation MSE after CPR. Here CPR H denotes

CPR with perfect known CSI, CPR Hhat denotes CPR with predicted channel output

from AHKCE. Note both MSE measurements of CPR H and CPR Hhat are took right

before the first iteration of FDTE algorithm, where the symbols located at the end

of block are estimated through a simple FDE (it is equivalent to MMSE estimator

described in section 3.4.1 without any priors ). Since those symbol estimates are

noisy, therefore the MSE of CPR are higher than 0.01 ( noise variance at 20dB ) at

pass band of VSB filter. CPR CE denotes CPR with channel estimates and symbol

estimates right before the AFDCE. In this case, symbol estimates output from FDTE

are much more reliable, therefore, the MSE of CPR are close to 0.01. As illustrated

in Fig. 3.9, symbol estimation errors take a more important role in influencing the

CPR performance than channel estimation error. As a result, we combat the CPR

error before FDTE through block overlapping idea, while ignore the CPR error in

AFDCE.

Table 3.2 specifies the cost to generate Nd symbol estimates for fast DFE-VD (with

feedback filter length L) and for FDTE (per iteration). Meanwhile, it also specifies

the cost to update channel estimates once per Nd symbols for AFDCE and FDLMS

algorithm, where Nc denotes the number of active sub-carriers tracked by AFDCE.

Figure 3.10 plots DFE-VD and FDTE complexity for the same design choices used

in Fig. 3.66, i.e., FDTE with CP length L, N = 4(L + 1), Nd = N/2, and 5 iter-

ations; and DFE-VD with Nf = 2(L + 1). We see that, when the channel order

L ≥ 64, the FDTE is cheaper to implement than the fast DFE-VD. Practical DTV

receivers need to handle channels of order L ≈ 511, in which case the FDTE is

6We assume that 1 division is equivalent to 10 multiplications when we generate those plots,
which is a reasonable assumption when finite precision is applied in practical implementations.
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Table 3.1: DTV Propagation Models.
path delay −1.8µs 0µs 0.15µs 1.8µs 5.7µs 39.8µs

chan gain −8 dB 0 dB −3 dB −4 dB −3 dB −12 dB
#1 Doppler 125◦ 0◦ 80◦ 45◦ 50 Hz 90◦

chan gain −8 dB 0 dB −3 dB −4 dB −3 dB −12 dB
#2 Doppler 50 Hz 0◦ 50 Hz 50 Hz 50 Hz 50 Hz

chan gain −3 dB 0 dB −1 dB −1 dB −3 dB −9 dB
#3 Doppler 125◦ 0◦ 80◦ 45◦ 50 Hz 90◦

an order of magnitude cheaper than DFE-VD. Figure 3.11 compares the computa-

tional complexity of AFDCE versus FDLMS, where we assumed Nc = N/2 approxi-

mately. It can be seen that both curves demonstrate increasing slope of order log2(N),

while AFDCE is about 2 times more complex than FDLMS as N increase. However,

combine Figure 3.10 with Figure 3.11, we can see that the computation complex-

ity of FDTE/AFDCE scheme is an order-of-magnitude lower than DFE-VD/FDLMS

scheme as N ≥ 512, since the computation complexity of channel equalization is the

dominating factor.

3.7 Conclusions

We presented a FDTE/AFDCE scheme suitable for TCVSB modulation, as is

used in the ATSC DTV standard. Simulations show that it outperforms the fast

DFE-VD/FDLMS approach while maintaining up to an order-of-magnitude lower

complexity.
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Figure 3.6: BER performance comparison for DFE-VD/FDLMS versus
FDTE/AHKCE.
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Figure 3.7: BER performance comparison for FDTE/AHKCE versus FDTE/FDLMS.
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Figure 3.8: MSE performance comparison for FDTE/AHKCE versus FDTE/FDLMS.
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Figure 3.9: MSE of CPR with perfect CSI, estimated channels at SNR=20dB.
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Table 3.2: Computational Complexity (per Nd symbols).
algorithm real × real ÷ exp log

FDTE 54.5N + 6N log2(N) + 11 6.5N + 3 12N 4N

DFE-VD
14NfL + 30.5Nf + 0.5N2

f

+2Nf + 2NfND + LND

+8Nd − L2 − 12L − 21
2Nf + Nd 0 0

AFDCE Nc(4M2 + 12M + 19) + 6N log2(N) Nc

(from ATCR) + 8MN log2(N) 0 0 0
(from ATARMC) + M2Nc + 7MNc + 2

3
M3 + 3M2 1

FDLMS 14N log2(N) + 10N 0 0 0
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Figure 3.10: Computational complexity (per symbol).
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Figure 3.11: Computational complexity (per symbol).
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Appendix

3.A Derivation of Conditional Mean and Variance

Symbol estimates s can be calculated by taking the inverse FFT of the virtual

subcarriers,

ŝ = F H t̂.

where by the conjugate symmetric property (3.9), t̂ is

t̂ =

[
t̂

J t̂
∗

]
, J :=

[
0(N

2
−1)×1 ΠN

2
−1 0(N

2
−1)×1

]
, (3.48)

ΠN
2
−1 :=




0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · · · · 0


 . (3.49)

Observe the special structure of G and H, we can rewrite Jt̂
∗

as

Jt̂
∗

= Jt̄
∗

+ D(Jvt)(JG∗)(x∗ − H
∗JHJt̄

∗
). (3.50)

Combine (3.48), (3.15) and (3.50), we rewrite t̂ as

t̂ = t + D(vt)G̃(x̃ − H̃t), (3.51)

where

G̃ :=

[
G 0
0 JG∗

]
, H̃ :=

[
H 0
0 H

∗JH

]
, (3.52)

t =

[
t̄

J t̄
∗

]
= Fs, x̃ :=

[
x

x∗

]
. (3.53)

It follows that

ŝ = s + F H D(vt)G̃(x̃ − H̃t), (3.54)

ŝn = s̄n + iH
n F H D(vt)G̃(x̃ − H̃t)

= s̄n + iH
n F H D(vt)G̃H̃F (s − s) + iH

n F H D(vt)G̃w̃, (3.55)
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where w̃ =
[

wT wH
]T

. Therefore,

E [ŝn|sn = s] = s̄n + iH
n F H D(vt)G̃H̃︸ ︷︷ ︸

G

F in(s − s̄n)

= s̄n + iH
n F HGF in(s − s̄n)

= s̄n +
s − s̄n

N

N−1∑

k=0

dk, (3.56)

where

dk =





|gk|2
|gk|2 + σ2

vtk

k ∈ {0, N/2},

|gk|2 + |gN−k|2
|gk|2 + |gN−k|2 + σ2

vtk

, k /∈ {0, N/2}.
(3.57)

var [ŝn|sn = s] = E
[
|ŝn − E [ŝn|sn = s] |2

]
(3.58)

= E
[
|iH

n F HGF
(
s − s − in(s − s̄n)

)
+ iH

n F H D(vt)G̃w̃|2
]

(3.59)

= iH
n F HG E

[
F
(
s − s − in(sn − s̄n)

)(
s − s − in(sn − s̄n)

)H
F H
]
GHF in

+ iH
n F H D(vt)G̃D(σ2

w̃)G̃
H D(vt)F in (3.60)

≈ 1

N

N−1∑

k=0

(|dk|2ṽn + σ2bk), (3.61)

where

bk =






|gk|2
(|gk|2 + σ2

vtk

)2
, k ∈ {0, N/2},

|gk|2 + |gN−k|2
(|gk|2 + |gN−k|2 + σ2

vtk

)2
, k /∈ {0, N/2},

(3.62)

ṽn =
1

N

∑

k 6=n

vsk
, (3.63)

and vsk
:= var{sk}. Here we have applied the approximation that

E
[
F
(
s − s − in(sn − s̄n)

)(
s − s − in(sn − s̄n)

)H
F H
]

(3.64)

≈ D
(

diag
(
E
[
F
(
s − s − in(sn − s̄n)

)(
s − s − in(sn − s̄n)

)H
F H
] ))

. (3.65)
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3.B 8-VSB Pule Shape

In this section we review the pulse shapes used by the 8-VSB TV systems [84]. The

8-VSB DTV transmitter uses a transmit pulse shaping filter with spectrum shifted

root-raised cosine response. The transmit filter is denoted by a(t). The receiver uses

a∗(−t) as the matched filter, which is optimal for AWGN channel.

Let T denote the symbol period and 1/T is the symbol rate, define

Fs =
1

2T
. (3.66)

The roll-off factor for 8-VSB standard is β = 0.115.

3.B.1 Root-Raised Cosine Pulse

The time domain response of general RRC is defined as

aRRC(t) =
Fs

1 − (4βFst)2

[
(1 − β)

sin(π(1 − β)Fst)

π(1 − β)Fst
+

4β

π
cos(π(1 + β)Fst)

]
, (3.67)

which has a symmetric spectrum around frequency 0Hz. The PSF a(t) is Fs

2
shifted

version of aRRC(t), which is defined as

a(t) = ejπFstaRRC(t). (3.68)

It is straightforward to show that

a(t) = a∗(−t), (3.69)

(3.69) means that the pulse shape a(t) is Hermitian symmetric, therefore the receiver

filter is the same as the transmit filer. The Fourier transform of a(t) is:

A(f) =





1 β
2
Fs ≤ f ≤ (1 − β

2
)Fs

cos( π
2βFs

[f − (1 − β
2
)Fs]) (1 − β

2
)Fs ≤ f ≤ (1 + β

2
)Fs

cos( π
2βFs

[f − β
2
Fs]) −β

2
Fs ≤ f ≤ β

2
Fs

(3.70)

which implies that a(t) has a roughly flat spectrum of width Fs and centers at Fs

2
.
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3.B.2 Raised Cosine Pulse

The convolution of the transmit and receive filter is denoted by b(t) and the

composite pulse shape is given by

b(t) = a(t) ∗ a∗(−t) = a(t) ∗ a(t). (3.71)

The general RC filter is defined as

bRRC(t) = Fs
sin(πFst) cos(πβFst)

πFst
(
1 − (2βFst)2

) . (3.72)

b(t) is Fs

2
shifted version of bRC(t), which is defined as

b(t) = ejπFstbRRC(t). (3.73)

b(t) has the Fourier transform:

b(f) =





1 β
2
Fs ≤ f ≤ (1 − β

2
)Fs

0.5
[
1 + cos( π

βFs
[f − (1 − β

2
)Fs])

]
(1 − β

2
)Fs ≤ f ≤ (1 + β

2
)Fs

0.5
[
1 + sin( π

βFs
f)
]

−β
2
Fs ≤ f ≤ β

2
Fs

(3.74)

81



CHAPTER 4

FREQUENCY-DOMAIN EQUALIZATION OF VERY
FAST FADING FREQUENCY-SELECTIVE CHANNELS

4.1 Introduction

The FDE techniques discussed in previous chapters assume a delay-spread channel

whose impulse response varies only moderately quickly. Some applications, however,

have channels with more significant time variation, i.e., significant Doppler spread.

For such doubly dispersive channels, the standard approach to FDE (i.e., pointwise

multiplication in the frequency-domain) fails when the channel varies significantly

over the FFT block duration. Essentially, the channel variation induces significant

off-main-diagonal coefficients in the frequency domain channel matrix, which leads to

ICI (virtual ICI) in multi-carrier (single-carrier) transmission systems. In response,

several equalization schemes for doubly dispersed CP-OFDM have been proposed

(see, e.g., [85–89] and the references within). While most of these schemes are com-

putationally intensive, [88] maintains per-symbol processing complexity logarithmic

in the block length, in keeping with the spirit of FDE. In addition, [88] exploits the

finite-alphabet property of frequency-domain symbols, allowing its performance to

surpass that of MMSE linear equalization. The CP-OFDM FDE scheme [88] was
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extended to SCCP in [90]. Though the SCCP FDE scheme [90] is complicated by

the fact that the finite-alphabet property resides in the time domain, it nevertheless

maintains the desired logarithmic per-symbol processing complexity.

Though capable of FDE on doubly dispersive channels, the algorithms [85–88]

and [90] require block-based transmissions with an adequate inter-block guard inter-

val. While [89] does not require a guard, its complexity scaling properties restrict its

application to channels with mild spreading. Thus, one might wonder: Is it possible

to build a FDE algorithm for single-carrier continuous-stream modulation over dou-

bly dispersive channels that exhibits logarithmic complexity scaling? If so, such an

algorithm would present an efficient frequency-domain alternative to the time-domain

equalization approaches that are commonly used in doubly selective single-carrier re-

ceivers (e.g., for North American terrestrial digital television [91] and underwater

acoustic communication [92]).

In this chapter, we propose joint pilot-aided CE (PACE) and IFDE for the recep-

tion of a continuous finite-alphabet stream corrupted by a noisy and doubly dispersive

channel. First, motivated by [44], we derive a MMSE channel estimator, which di-

rectly utilize the pilot symbols to estimate the significant frequency domain channel

coefficients during the data symbols’ transmission in between and then feeds those

estimates to enable IFDE. Then, we present the IFDE. In brief, the algorithm first

parses the received time-domain signals into blocks which are first windowed and then

transformed into the frequency domain by an FFT. The window is designed so that

both channel variations and the lack-of-CP manifest as a sparse frequency-domain

response. A low-complexity serial technique is then applied to equalize the channel

response in the presence of off-main-diagonal channel coefficients, and the output is
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transformed back to the time domain, yielding soft symbol estimates. Using the finite-

alphabet symbol property, reliability information on these soft estimates is computed

for use in another round of (frequency-domain) equalization and interference cancel-

lation. The time- and frequency-domain steps are alternated until the soft symbols

estimates converge.

Simulation results demonstrate superb performance of IFDE algorithm with or

without the influence of channel estimation error. When perfect CSI is available, our

IFDE algorithm’s performance is compared to that of the FIR-MMSE-DFE [93], a

well-known benchmark, as well as to that of the matched filter bound (MFB) [94]—

the “holy grail” of uncoded equalization. We find that our IFDE performs 1 dB worse

than the MFB, and several dB better than the FIR-MMSE-DFE, over the SNR range

of interest. When CSI is not available, the joint IFDE/CE scheme is compared with

FIR-MMSE-DFE plus RLS based CE (RLS-CE) scheme, which is the state-of-art

technique in tracking and equalizing fast time-varying channels [95]. It turns out

that our IFDE/CE scheme can handle faster fading and perform better than FIR-

MMSE-DFE/RLS-CE. In addition, we analyze the number of multiplications required

by our IFDE and compare it to that of the FIR-MMSE-DFE updated using a fast

algorithm. We find that our IFDE has complexity advantages over the FIR-MMSE-

DFE for channels of a reasonable length.

The chapter is organized as follows. Section 4.2 gives the system model (in time-

and frequency- domains), Section 4.3, 4.4 and 4.5 describe our IFDE scheme and the

PACE algorithm. Section 4.6 presents our fast IFDE implementation. Section 4.7

reports the results of numerical studies, and section 4.8 concludes.
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4.2 System Model

.  .  .Data Data Data.  .  .

q-1 th Frame q-th Frame q+1 th Frame

Figure 4.1: Frame structure of transmitted signal.

We consider identification and equalization of a doubly-selective channel when

the transmitted signal is an infinite stream of frames, where each frame consists of a

pilot block followed by a data block as shown in Fig. 4.1. Channel identification of

current frame is accomplished using pilot blocks of current and the next consecutive

frame. The length-Np pilot block is assumed to have a Kronecker delta structure

with Np = 2Nh, where Nh is the channel delay spread. The length-QN data block

consists of a stream of finite-alphabet symbols {sn}, since we adopts single-carrier

modulation. For simplicity of presentation, we assume N = Np, therefore the frame

length Nf = (Q + 1)N . We use S(q)
p := {s(q)

n }Np−1
n=0 to denote the pilot portion of

the q-th transmission frame and S(q)
d := {s(q)

n }Nf−1
n=Np

to denote the corresponding data

portion. The Kronecker pattern implies that s
(q)
n = 0 for 0 ≤ n ≤ Nh − 1 and

Nh +1 ≤ n ≤ Np−1, and that s
(q)
Nh

=
√

2Nh. The complete set of samples transmitted

during the p-th frame is denoted by S(q) := S(q)
p ∪ S(q)

d = {s(q)
n }Nf−1

n=0 , and the multi-

frame transmitted signal {sn} is defined by sn := s
⌊ n

Nf
⌋

〈n〉Nf

.

The channel is described by its time-variant discrete impulse response hn,l, defined

as the time-n response to an impulse applied at time n−l. We assume a causal impulse
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response of length Nh. The signal observed by the receiver is

rn = νn +

Nh−1∑

l=0

hn,lsn−l (4.1)

where νn denotes samples of zero-mean CWGN with variance σ2. We assume WS-

SUS [94] so that E{hn,lh
∗
n−q,l−m} = ρqσ

2
hl

δm. Here, ρq denotes the normalized auto-

correlation (i.e., ρ0 = 1) and σ2
hl

denotes the variance of the channel at delay lth.

To facilitate the block-based FDE processing, we first segment the qth received

frame into overlapping blocks of length Nb and then window each block by a pulse

shaping filter {bn}Nb−1
n=0 so as to mitigate ICI. Those windowed Nb samples are trans-

formed into frequency domain with spacing 2π
PN

, where IFDE is applied and N most

reliable symbol estimates are detected and output. Therefore, the consecutive pro-

cessing blocks are of shift N . The remainder of this section establishes the block-

based frequency-domain equivalent of (4.1). At each block index i ∈ Z, the receiver

windows an iN -shifted version of the time-domain observation {rn} and applies a

DFT with frequency spacing 2π
PN

, yielding the ith-block frequency domain observation

{xd(i)}PN−1
d=0 :

x
(q)
d (i) =

1√
PN

∑

n

r
(q)
iN+No+nbne−j 2π

PN
dn. (4.2)

Note that the window length Nb is arbitrary. The offset No in (4.2) is set to satisfy

the condition that {x(q)
d (0)}PN−1

d=0 yields output {ŝ(q)
n }Np+N−1

n=Np
(the estimates of the first

N data symbols of q-th frame) after channel equalization. For convenience, we define

s(q)
n (i) := s

(q)
iN+No+n, n ∈ {0, . . . , PN − 1} (4.3)

an :=

{
1 n ∈ {0, . . . , PN − 1},
0 else,
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noting that {an} specifies a PN -length rectangular window and that

s
(q)
iN+No+n =

∞∑

ℓ=−∞
s
(q)
〈n〉PN

(i − Pℓ) aℓPN+n. (4.4)

Equation (4.4) says that, for a particular i, the transmitted sequence {siN+No+n} can

be constructed using PN -sample shifts of the disjoint subsequences {s(q)
n (i−Pℓ)}PN−1

n=0

for ℓ ∈ Z. Combining (4.1)-(4.4), we find

x
(q)
d (i) = w

(q)
d (i) +

1√
PN

PN−1∑

n=0

bn

Nh−1∑

l=0

h
(q)
iN+No+n,l

∞∑

ℓ=−∞
s
(q)
〈n−l〉PN

(i − Pℓ)aℓPN+n−le
−j 2π

PN
nd

(4.5)

w
(q)
d (i) :=

1√
PN

PN−1∑

n=0

bnν
(q)
iN+No+ne−j 2π

PN
nd. (4.6)

Frequency-domain equalization involves the ith-block virtual subcarriers {tk(i)}PN−1
k=0 ,

where

t
(q)
k (i) :=

1√
PN

PN−1∑

n=0

s(q)
n (i)e−j 2π

PN
nk. (4.7)

Equation (4.7) implies that s
(q)
n (i) = 1√

PN

∑PN−1
k=0 t

(q)
k (i)ej 2π

PN
nk for n ∈ {0, . . . , PN −

1}. Using this in (4.5) gives

x
(q)
d (i) = w

(q)
d (i) +

∞∑

ℓ=−∞

PN−1∑

k=0

t
(q)
k (i − Pℓ)H

(q)
d−k,k(i, ℓ) (4.8)

H
(q)
d,k(i, ℓ) :=

1

PN

∑

n

Nh−1∑

l=0

h
(q)
iN+No+n,lbnaℓPN+n−l e

−j 2π
PN

(kl+nd). (4.9)

Equation (4.8) indicates that H
(q)
d,k(i, ℓ) can be interpreted as the response, at DFT

output k + d in block i, to a frequency-domain impulse applied at virtual subcarrier

k in block i − ℓ.

In practice we implement a causal length-Nb window {bn} implying that, for any

i, only a finite number of terms in the set {H(q)
d,k(i, ℓ), ℓ ∈ Z} will be non-zero.
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Specifically, (4.9) implies that non-zero terms result from indices ℓ which satisfy

0 ≤ ℓNP +n− l ≤ PN −1 for some n ∈ {0, . . . , Nb−1} and some l ∈ {0, . . . , Nh−1}.

It is straightforward to show that H
(q)
d,k(i, ℓ) is non-zero for ℓ ∈ {−Lpre, . . . , Lpst} where

Lpre = −⌊Nb−1
PN

⌋ and Lpst = ⌊PN+Nh−2
PN

⌋.

With the definitions x(q)(i) := [x
(q)
0 (i), . . . , x

(q)
PN−1(i)]

T , w(q)(i) := [w
(q)
0 (i), . . . , w

(q)
PN−1(i)]

T ,

t(q)(i) := [t
(q)
0 (i), . . . , t

(q)
PN−1(i)]

T , s(q)(i) := [s
(q)
0 (i), . . . , s

(q)
PN−1(i)]

T , and [H(i, ℓ)]
(q)
d,k :=

H
(q)
d−k,k(i, ℓ), (4.8) implies the LTV multiple-input multiple-output (MIMO) system

x(q)(i) = w(q)(i) +

Lpst∑

ℓ=−Lpre

H
(q)(i, ℓ)t(q)(i − Pℓ). (4.10)

For any i, nonzero {H(q)(i, ℓ)}ℓ 6=0 cause inter-block interference (IBI) and nonzero

off-diagonal elements of {H(i, 0)} cause ICI among the virtual subcarriers. In the

sequel, we refer to {H(q)(i, ℓ)}ℓ<0 as pre-cursor IBI and {H(q)(i, ℓ)}ℓ>0 as post-cursor

IBI.

It will sometimes be convenient to write the windowed frequency-domain noise

vector w(q)(i) as

w(q)(i) = FJ D(b)︸ ︷︷ ︸
:=C

ν(q)(i) (4.11)

J :=

[
IN̄oIPN · · · IPN

0PN−N̄o×N̄o

]
(4.12)

where F denotes the PN -point unitary DFT matrix, N̄o = 〈Nb〉PN , and the number

of IPN matrices in J is
⌊

Nb

PN

⌋
.

For notational brevity, we omit the frame index q in the rest of the paper ex-

cept section 4.4, where a MMSE estimator is derived to leverage the pilot blocks of

successive frames to estimate the channel in between.
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4.3 Max-SINR Window Design
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Figure 4.2: Desired “banded” structure of matrix H(i, 0).

The choice of window {bn} affects the IBI/ICI patterns of the MIMO system

(4.10). Motivated by the low-pass nature of typical Doppler spectra, we aim to find

{bn} such that the “cursor” coefficient H(i, 0) has the banded structure illustrated

in Fig. 4.2 and the IBI coefficients {H(i, ℓ)}ℓ 6=0 vanish. This approach can be viewed

as the frequency-domain dual of inter-symbol interference (ISI) response shortening

used to reduce the complexity of maximum likelihood sequence detection (MLSD) [96].

For our purposes, the goal of time-domain windowing is to give the channel a sparse

structure that leads to low-complexity estimation of t(i), and hence, low-complexity

detection of s(i). We choose time-domain windowing, rather than a general matrix

operation on the received signal, due to its low complexity. Since complete cancella-

tion of out-of-target ICI/IBI is, in general, not possible with time-domain windowing,

we choose to maximize signal to interference-plus-noise ratio (SINR) as a means of

suppressing residual IBI/ICI.

We define SINR by Es/Eni, where Es :=
∑

d Es,d and Eni :=
∑

d Eni,d. For each xd(i),

Es,d is defined as the signal energy contributed by neighboring carriers {tk(i)}d+D
k=d−D,

and Eni,d is defined as the interference-plus-noise energy contributed by non-neighboring
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carriers {tk(i)}d−D−1
k=0 ∪ {tk(i)}PN−1

k=d+D+1, non-cursor carriers {tk(j)}j 6=i, and additive

noise w(i). Note that indices here are taken modulo-PN . The ICI radius D is

typically chosen as D = ⌈fdTsPN⌉, where fdTs is the maximum Doppler frequency

normalized to the symbol rate. Using the approach outlined in [97], we find that the

SINR-maximizing window b⋆ is given by

b⋆ = arg max
b:‖b‖2=PN

bH
(
Rb ⊙ Db ⊙ As

)
b

bH
(
σ2I + Rb ⊙ Cb ⊙ At − Rb ⊙ Db ⊙ As

)
b

= v⋆

(
Rb ⊙ Db ⊙ As, σ2I + Rb ⊙ Cb ⊙ At − Rb ⊙ Db ⊙ As

)
·
√

PN(4.13)

where Rb, As, Cb, Db and At are Nb×Nb matrices defined element-wise as [Rb]m,n :=

ρn−m, [As]m,n :=
∑Nh−1

l=0 σ2
l an−la

∗
m−l, [Cb]m,n := δ〈n−m〉PN

, [Db]m,n := 1
PN

sin( π
PN

(2D+

1)(n−m))/ sin( π
PN

(n−m)) and [At]m,n :=
∑Lpst

ℓ=−Lpre

∑Nh−1
l=0 σ2

l aℓPN+n−la
∗
ℓPN+m−l. In

(4.13), v⋆(B, C) denotes the principle generalized eigenvector [98] of the matrix pair

(B, C). Through max-SINR windowing and proper selection of other design param-

eters, the IBI and non-neighboring ICI can be made small enough to base the symbol

detection procedure on the following approximate system model.

x(i) ≈ H(i, 0)t(i) + Cν(i). (4.14)

As an alternative, the design parameters (e.g., block length PN) could be cho-

sen to yield non-negligible post-cursor IBI, which could then be canceled using block

decision-feedback equalization (BDFE). In this case, the window should be designed to

suppress only ICI and pre-cursor IBI, implying [At]m,n :=
∑0

ℓ=−Lpre

∑Nh−1
l=0 σ2

l aℓPN+n−la
∗
ℓPN+m−l.

Figure 4.3 plots windows for both BDFE and non-BDFE cases at fdTs ∈ {0.001, 0.0075}.

In generating Fig. 4.3, we assumed Nh = 64, PN = 256, Nb = PN + Nh − 1,

SNR= 10dB, and σ2
l = N−1

h , which are typical choices for the numerical results in
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section 4.7. Assuming reliable post-cursor IBI cancellation, (4.14) would still describe

the model used for detection of symbols in the current block.

0 50 100 150 200 250 300

0

0.5

1

1.5

2

0 50 100 150 200 250 300

0

0.5

1

1.5

2
BDFE
no BDFE

BDFE
no BDFE

(a)

(b)

Figure 4.3: Example window shapes for PN = 256, Nh = 64, SNR=10dB and (a)
fdTs = 0.001, (b) fdTs = 0.0075.

While windowing gives a sparse channel response that enables a reduced com-

plexity symbol detection procedure, it can lead to a non-uniform collection of energy

from symbols in the current block. Specifically, it is shown in Appendix 4.A that the

energy in x(i) contributed by sn(i) is

Ess,n :=

PN−1∑

d=0

E





∣∣∣∣∣

PN−1∑

k=0

Hd−k,k(i, 0) · 1√
PN

e−j 2π
PN

nksn(i)

∣∣∣∣∣

2




=

Nh−1∑

l=0

σ2
l |bl+n|2 (4.15)

which is clearly dependent on n, the symbol position within the block. This implies

that, for typical max-SINR window shapes, we will collect less energy from symbols

near the block edges. This phenomenon motivates the block-overlapping procedure

proposed in section 4.5.
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4.4 Pilot-Aided Channel Estimation

In this section, we will assume that the pulse {bn} is designed properly such that

(4.14) is a valid approximate system model for symbol detection purpose. In addition,

we are only interested in estimating PN(2D+1) coefficients out of H(i, 0), which are

within the shaded region of Fig. 4.2, since only them will be exploited by our proposed

IFDE algorithm in section 4.5. In [44], several methods for the pilot-aided estimation

of significant ICI coefficients resulting from pulse-shaped multicarrier modulation over

doubly selective channels are proposed. Inspired by [44], we will derive the MMSE

estimator which fits into the single-carrier transmission systems discussed here.

First we define some quantities that follow from our pilot pattern. Say that we

are interested in estimating {H(q)(i, 0)}Q−1
i=0 through the pilot block S(q)

p and S(q+1)
p ,

for these i and q we can write

r(q)
p := [r

(q)
Nh

, r
(q)
Nh+1, · · · , r

(q)
2Nh−1]T (4.16)

h(q)
p := [h

(q)
Nh,0, h

(q)
Nh+1,1, · · · , h

(q)
2Nh−1,Nh−1]

T (4.17)

ν(q)
p := [ν

(q)
Nh

, ν
(q)
Nh+1, · · · , ν

(q)
2Nh−1]

T (4.18)

r(q)
p =

√
2Nhh

(q)
p + ν(q)

p (4.19)

where (4.19) follows from the Kronecker pattern of the pilot block. Define r
(q)
p :=

[r
(q)
p

T
, r

(q+1)
p

T
]T , h(q)

p := [h(q)
p

T
, h(q+1)

p

T
]T and ν

(q)
p := [ν

(q)
p

T
, ν

(q+1)
p

T
]T , then it is clear

that

r(q)
p =

√
2Nhh

(q)
p + ν(q)

p (4.20)
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Same as in [44], for convenience, we collect those PN(2D + 1) significant ICI

coefficients into g
(q)
D (i) ∈ CPN(2D+1):

g
(q)
D (i) := [diag−D(H(q)(i, 0))T , · · · , diagD(H(q)(i, 0))T ]T (4.21)

where diagk(·) extracts the kth sub-diagonal of matrix, i.e.,

diagk(H) := [Hk,0, Hk+1,1, · · · , Hk+PN−1,PN−1]
T with modulo-N indexing assumed.

By setting ℓ = 0 in (4.9), we can show that

g
(q)
D (i) = CDh(q)(i), (4.22)

where CD ∈ C(PN(2D+1)×NbNh) and h(q)(i) ∈ CNbNh are defined element-wise as

[CD]n,m :=
1

PN
b〈m〉Nb

a〈m〉Nb
−
⌊

m
Nb

⌋e
−j 2π

PN
(
⌊

m
Nb

⌋
n+〈m〉Nb

(⌊ n
PN ⌋−D))

(4.23)

[h(q)(i)]m := h
(q)

〈m〉Nb
+No+iN,

⌊
m
Nb

⌋ (4.24)

Here we have utilized the trick that 〈n〉PN = k. Note that h(q)(i) contains all time-

domain impulse response coefficients affecting H
(q)(i, 0). Our goal is to estimate

g(q)
D

:= [g
(q)
D (0)

T
, g

(q)
D (1)

T
, · · · , g

(q)
D (Q − 1)

T
]T , which are required for coherent sym-

bol detection, from r
(q)
p , the pilot observations.

The linear MMSE estimation of g(q)
D

from r
(q)
p is [70]

ĝ(q)

D
= Rgrp

R−1
rprp

r(q)
p (4.25)

where Rgrp
:= E[g(q)

D
r

(q)
p

H
] and Rrprp

:= E[r
(q)
p r

(q)
p

H
]. Note that for stationary chan-

nel considered here, Rgrp
and Rrprp

are unrelated with frame index q, therefore we

only need to compute Rgrp
R−1

rprp
once and store them for future use, which greatly
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reduces the computational cost of PACE. From (4.19) and (4.22), we know that

Rgrp
=




R(0,0)
grp

R(0,1)
grp

R(1,0)
grp

R(1,1)
grp

...
...

R(Q−1,0)
grp

R(Q−1,1)
grp




Rrprp
=

[
R(0)

rprp
R(−1)

rprp

R(1)
rprp

R(0)
rprp

]
(4.26)

where

R(i,k)
grp

= CDR
(i,k)
hrp

(4.27)

[R
(i,k)
hrp

]m,n =
√

2Nhρ〈m〉Nb
+No+iN−Nh−kNf−nσ2

hn
δ(n −

⌊
m

Nb

⌋
) (4.28)

R(k)
rprp

= 2NhR
(k)
hphp

+ δkσ
2
νI (4.29)

R
(k)
hphp

= ρ|k|Nf
D(σ2

h) (4.30)

and σ2
h := [σ2

h0
, σ2

h1
, · · · , σ2

hNh−1
]T .

The estimation error g̃
D

= ĝ
D
− g

D
has covariance

E[g̃
D
g̃H

D
] = Rgg − Rgrp

R−1
rprp

RH
grp

(4.31)

where same as in [44], Rgg := E[g
D
gH

D
] is given by

Rgg =




R(0)
gg R(−1)

gg · · · R(1−Q)
gg

R(1)
gg R(0)

gg · · · R(2−Q)
gg

...
...

. . .
...

R(Q−1)
gg R(Q−2)

gg · · · R(0)
gg


 (4.32)

R(i)
gg = CDR

(i)
hhCH

D (4.33)

R
(i)
hh = D(σ2

h) ⊗ R(i)
ρ (4.34)

[R(i)
ρ ]m,n = ρm−n+iN m, n ∈ {0, · · · , Nb − 1} (4.35)

4.5 Symbol Detection

In section 4.5.1, we propose an iterative method for the detection of the finite-

alphabet symbol vector s(i) = F Ht(i) assuming the observation model (4.14). For

94



simplicity, we assume perfect CSI here, when it is not available, we use channel

estimates obtained through (4.25) instead. We are careful to leverage the banded

structure of H(i, 0) and the existence of fast algorithms for the transformation F .

It was previously observed that the max-SINR windowing described in section 4.3

collects less energy from symbols near the block edges, which, if unaccounted for,

could lead to high block-averaged error rates. Hence, section 4.5.2 proposes a scheme

whereby block overlap (i.e., P > 1) is exploited, in conjunction with the algorithm of

section 4.5.1, to circumvent this problem.

4.5.1 Intrablock Processing

Here we propose an iterative method for the detection of the finite-alphabet symbol

vector s(i) from the windowed frequency-domain observation x(i) in (4.14). Note that

the focus of this section is intrablock processing, whereas the focus of section 4.5.2

is interblock processing. Since here we focus exclusively on the ith symbol and on

the cursor IBI coefficient, we can omit the symbol and lag indices, abbreviating,

e.g., s(i) by s and H(i, 0) by H. We now give a brief summary of the intrablock

detection algorithm illustrated in Fig. 4.4; a more detailed description will be given

in Sections 4.5.1–4.5.1.

calculate
priors L-MMSE

update
LLRs

LLRs s, v ŝt, Rt t̂
FFT IFFT

Figure 4.4: Intrablock interference cancellation.
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Given current guesses of the log-likelihood ratios (LLRs) of the symbols {sk}

(which, on the first iteration, are set to zero), the means and variances of the ele-

ments in s are calculated as s and v, respectively. These are then transformed into

the mean and covariance of t. Using linear MMSE estimation and incorporating these

mean/variance priors, the elements {tk} are estimated one-at-a-time, leveraging the

banded structure of H for complexity reduction. The resulting estimates t̂ are then

transformed back into the s-domain, from which the LLRs are updated. To accom-

plish this last step we assume a conditionally-Gaussian model for the estimates {ŝk}.

The procedure then repeats, starting with the most recent LLRs. In the detailed

description below, we use the superscript (n) to denote the nth iteration.

Linear Estimation with Priors

+=

xk

H̆k

h̆k t

tk
Ck

w

Figure 4.5: Truncated observation model.

The banded structure of H suggests that linear estimation of a particular element

tk might be accomplished with reasonable accuracy from the truncated observation

xk := [xk−D, . . . , xk+D]t, with indices taken modulo-PN , as opposed to the full ob-

servation x. (See Fig. 4.5.) We hope to realize substantial complexity reduction in
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doing so. The truncated model becomes

xk = Hkt + Ckν, (4.36)

where Hk contains rows {k−D, . . . , k+D} of H and Ck contains rows {k−D, . . . , k+

D} of C. The MMSE linear estimate of tk given xk is [99]

t̂k = E{tk} + cov(tk, xk) cov(xk, xk)−1(xk − E{xk}). (4.37)

We assume E{ν} = 0, cov(ν, ν) = σ2I, and cov(s, ν) = 0, and we model the elements

in s as uncorrelated with means s(n) and variances v(n) during the nth iteration. Then,

defining t
(n)

:= Fs(n), (4.37) becomes

t̂
(n)
k = t̄

(n)
k + g

(n)H
k (xk − Hkt

(n)
) (4.38)

g
(n)
k :=

(
HkF D(v(n))F H

H
H
k + σ2CkC

H
k

)−1
HkF D(v(n))F Hik (4.39)

from which estimates of s can be obtained as

ŝ(n) = F H t̂
(n) ⇔ ŝ

(n)
l = iH

l F H
∑

k

ikt̂
(n)
k . (4.40)

A Conditionally Gaussian Model

Leveraging the finite-alphabet structure of the elements {sk} and assuming reason-

ably large PN (to invoke the Central Limit Theorem), we assume that the estimation

error is Gaussian, or, equivalently, that the estimates are conditionally Gaussian:

p(ŝ
(n)
l |sl = b) =

1

σ
(n)
l (b)

φ

(
ŝ
(n)
l − µ

(n)
l (b)

σ
(n)
l (b)

)
, (4.41)

where φ(w) := 1√
π
e−w2

, µ
(n)
l (b) := E{ŝ(n)

l |sl = b}, and [σ
(n)
l (b)]2 := cov(ŝ

(n)
l , ŝ

(n)
l |sl =

b).
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In Appendix 4.B we show that

µ
(n)
l (b) = s̄

(n)
l + Q

(n)∗
l,l (b − s̄

(n)
l ) (4.42)

[σ
(n)
l (b)]2 = q

(n)H
l D(v(n))q

(n)
l − |Q(n)

l,l |2v
(n)
l + σ2‖p(n)

l ‖2, (4.43)

where q
(n)
l denotes the lth column of Q(n) and where p

(n)
l denotes the lth column of

P (n):

Q(n) = F H
(∑

k

H
H
k g

(n)
k iH

k

)
F (4.44)

P (n) =
(∑

k

CH
k g

(n)H
k iH

k

)
F . (4.45)

Log-Likelihood Ratio and Update of Priors

From now on, we restrict ourselves to the BPSK alphabet so that b ∈ {−1, +1};

QAM extensions are straightforward but tedious (see, e.g., [100, 101]). The nth-

iteration a priori and a posteriori LLRs are then defined as L
(n)
l := log P (sl=+1)

P (sl=−1)

and Ll(ŝ
(n)
l ) := log

P (sl=+1|ŝ(n)
l

)

P (sl=−1|ŝ(n)
l

)
, respectively. Note that, after the first iteration,

we expect to have partial information on sl such that L
(n)
l 6= 0. The LLR update

∆(ŝ
(n)
l ) := Ll(ŝ

(n)
l ) − L

(n)
l can be written

∆(ŝ
(n)
l ) = log

p(ŝ
(n)
l |sl = +1)

p(ŝ
(n)
l |sl = −1)

=
|ŝ(n)

l − µ
(n)
l (−1)|2 − |ŝ(n)

l − µ
(n)
l (+1)|2

[σ
(n)
l (±1)]2

=
4
(

Re
(
Q

(n)
l,l (ŝ

(n)
l − s̄

(n)
l )
)

+ |Q(n)
l,l |2s̄

(n)
l

)

q
(n)H
l D(v(n))q

(n)
l − |Q(n)

l,l |2v
(n)
l + σ2‖p(n)

l ‖2
, (4.46)
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where we used the facts that σ
(n)
l (+1) = σ

(n)
l (−1) and

∣∣ŝ(n)
l − µ

(n)
l (−1)

∣∣2−
∣∣ŝ(n)

l − µ
(n)
l (+1)

∣∣2

=
∣∣ŝ(n)

l − (1 − Q
(n)∗
l,l )s̄

(n)
l + Q

(n)∗
l,l

∣∣2

−
∣∣ŝ(n)

l − (1 − Q
(n)∗
l,l )s̄

(n)
l − Q

(n)∗
l,l

∣∣2

= 4 Re
{(

ŝ
(n)
l − (1 − Q

(n)∗
l,l )s̄

(n)
l

)
Q

(n)
l,l

}

= 4 Re
{
Q

(n)
l,l (ŝ

(n)
l − s̄

(n)
l )
}

+ |Q(n)
l,l |2s̄

(n)
l , (4.47)

since the use of BPSK implies s̄
(n)
l ∈ R. Updates of the symbol mean and variance

can be accomplished via

s̄
(n+1)
l =

∑

b∈B
b · P (sl = b|ŝ(n)

l )

= tanh

(
Ll(ŝ

(n)
l )

2

)
(4.48)

v
(n+1)
l =

∑

b∈B

(
b − s̄

(n+1)
l

)2
P (sl = b|ŝ(n)

l )

= 1 − (s̄
(n+1)
l )2. (4.49)

To update the a priori LLR, we set L
(n+1)
l := Ll(ŝ

(n)
l ), giving

L
(n+1)
l = L

(n)
l + ∆(ŝ

(n)
l ). (4.50)

Hard symbol estimates can be generated as ˆ̂s
(n)
l := sign

(
Re(ŝ

(n)
l )
)

= sign
(
s̄
(n)
l

)
=

sign
(
L(sl|ŝ(n)

l )
)
. An algorithm summary appears in Table 4.1. Note that a soft

decoding algorithm could be easily embedded within the bottom path of Fig. 4.4, as

proposed in [100] and investigated in [101].

4.5.2 Interblock Processing

As previously discussed, the use of max-SINR windowing causes less energy to be

collected from symbols near the edges of block s(i) than from those near the center
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of the block. As a result, the iterative detection algorithm described in section 4.5.1

is more likely to incorrectly detect symbols near the block edges. However, by over-

lapping the frames (i.e., choosing P > 1), we can exploit the fact that every symbol

will be near the center of some block. Specifically, (4.3) implies that sm maps to the

block-quantities
{
s〈m−No〉N (⌊m−No

N
⌋), . . . , s〈m−No〉N+(P−1)N (⌊m−No

N
⌋ − P + 1)

}
, i.e., sm

appears in P distinct blocks. The block index im for which sm appears closest to

block center is easily found to be

im =

⌊
m − No

N

⌋
− jm (4.51)

jm := arg min
j=0,...,P−1

∣∣∣∣〈m − No〉N + jN − PN

2

∣∣∣∣ . (4.52)

Thus, in exploiting block overlap, we stipulate that

1. the hard estimate of sm is generated at block index im, i.e., ˆ̂sm = ˆ̂s〈m−No〉N+jmN(im),

and

2. the final LLR calculated for symbol sm during block im is used to initialize the

LLR of that symbol in subsequent frames within which it appears, i.e., in frames

with index i ∈ {im + 1, im + 2, . . . , ⌊m−No

N
⌋}.

In the case that BDFE is employed, these hard estimates are then also used for

post-cursor IBI cancellation. Figure 4.6 illustrates this process for P = 2.

Since every symbol sm is estimated P times, the overall equalizer complexity

increases linearly with P . Numerical simulations suggest that the performance with

P > 2 is not significantly better than P = 2, while the performance with P = 1 is

relatively poor. Hence, we focus on P = 2 for the remainder of the paper.
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s(i − 1)

s(i − 2)

s(i − 3)

s(i + 1)

ˆ̂s(i) ˆ̂s(i + 2)ˆ̂s(i − 2)ˆ̂s(i − 4)

Figure 4.6: Interblock detection process for P = 2. Solid arrows pass final hard
estimates; dashed arrows pass soft initializations.

4.6 Fast Algorithm and Complexity Analysis

In Table 4.2 we present a fast version of the detection algorithm summarized in

Table 4.1. In the fast version, we avoid explicit computation of Q(n) and P (n), instead

computing y
(n)
k := q

(n)H
k D(v(n))q

(n)
k , z

(n)
k := ‖p(n)

k ‖2, and Q
(n)
k,k for k ∈ {0, 1, . . . , PN −

1}. The number of complex multiplications7 per step is given in the right column

of Table 4.2, and per-symbol averages are summarized in Table 4.3 (assuming M

iterations) for both BDFE and non-BDFE cases. We include the cost of estimating

frequency-domain channel coefficients {H(i, ℓ)}, as well as that of post-cursor IBI

cancellation in the BDFE case. Table 4.3 also includes the per-symbol cost of a

fast version of the LTV-channel FIR-MMSE-DFE and RLS for CE. The details of

each step are enumerated in Appendix 4.C in correspondence with the left column of

Table 4.2.

7While the number of additions and divisions could also be counted, we feel that such an endeavor
would complicate the presentation without providing significant additional insight.
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4.7 Numerical Results

4.7.1 IFDE with Perfect CSI

In this section, we compare the performance and complexity of the fast IFDE algo-

rithm summarized in Table 4.2 with the well known FIR-MMSE-DFE. While the FIR-

MMSE-DFE was originally derived for LTI channels [93], it can be straightforwardly

extended to the LTV channel case. and then design a recursive algorithm to update

the filter coefficients at the symbol rate assuming a fixed estimation delay ∆. In

all simulations, BPSK symbols are transmitted over a noisy WSSUS Rayleigh-fading

channel with uniform power profile (i.e., σ2
l = N−1

h ) that is generated using Jakes

method [82]. Throughout, we assume IFDE uses an ICI radius of D = ⌈fdTsPN⌉ and

block overlap factor of P = 2. Both IFDE and FIR-MMSE-DFE designs are based

on known time-domain coefficients {hn,l}Nh−1
l=0 .

First, we establish IFDE-BDFE design rules for block length PN and number-

of-iterations M . While we will see that smaller values of PN (for fixed Nh) are

advantageous from a complexity standpoint (see Fig. 4.15), Fig. 4.7 suggest the choice

PN ≥ 4Nh for good symbol error rate (SER) performance. With radix-2 FFTs in

mind, we choose PN = 2⌈log2 4Nh⌉ in the sequel. A related set of experiments in Fig. 4.8

has shown that SER performance improves with M up to about M = 10, after which

there is little additional improvement. Interestingly, we find that, after 2 iterations,

IFDE-BDFE gives approximately the same performance as FIR-MMSE-DFE. Hence,

we focus on IFDE-BDFE-2 and IFDE-BDFE-10 in the sequel, i.e., IFDE-BDFE using

M = 2 and M = 10, respectively.

Next, we establish FIR-MMSE-DFE design rules for feedforward filter length Nf

and estimation delay ∆, assuming that the feedback filter is just long enough to cancel
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all post-cursor ISI. To investigate the effect of ∆, we fixed Nf = Nh and conducted

experiments measuring MSE for several values of Nf (assuming fdTs = 0.003 and

SNR=10dB). From Fig. 4.9 we can see that the choice ∆ = Nf − 1 maximized

performance in every case, we adopt this rule. To investigate the effect of Nf , we

fixed ∆ = Nf − 1 and conducted experiments measuring MSE at several values of

SNR (when fdTs = 0.003 and Nh = 64). As shown in Fig. 4.10, in every case,

performance increased with Nf , though the gains diminished rapidly when Nf > Nh.

With complexity in mind, we adopt the rule Nf = Nh.

Having established IFDE-BDFE and FIR-MMSE-DFE design rules, we are ready

to compare the two approaches in performance and complexity. In Fig. 4.11, we

compare SER performances when Nh = 64, fdTs ∈ {0.001, 0.003, 0.0075} over a wide

range of SNR. Note that, at all fdTs, IFDE-BDFE-2 performs equivalently to FIR-

MMSE-DFE whereas IFDE-BDFE-10 outperforms FIR-MMSE-DFE, significantly so

when SNR> 5. We also plot the matched-filter bound (MFB) [94]—the ultimate in

(uncoded) receiver performance—which is not far from IFDE-BDFE-10.

4.7.2 IFDE with PACE

In this section, we investigate the performance of IFDE with PACE scheme when

CSI is not available. The design rules for IFDE and FIR-MMSE-DFE are the same

as in section 4.7.1. For simplicity, we only consider IFDE without BDFE in or-

der to achieve lower computational complexity for PACE. All the simulation results

presented here are based on averaging 100 packets, and each packet consists of 10

consecutive data frames.
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First, we study the performance of joint IFDE/CE scheme in terms of SER and

MSE of CE. For simplicity, we set Q = P = 2, and test the joint IFDE/CE scheme

when Nh = 32, fdTs ∈ {0.001, 0.002} and Nh = 64, fdTs = 0.001 over a wide range of

SNR. As shown in Fig. 4.12, when fdTs × Nh is small, the IFDE/CE scheme suffers

only 1dB loss compared with perfect CSI case (Genie), though the loss increases as

fdTs × Nh increase. In Fig. 4.13, we show the experimental MSE of PACE versus

theoretic predicted MSE from (4.31). They demonstrate a good match. Notice the

parameters setting up fdTs = 0.002 with Nh = 32 and fdTs = 0.001 with Nh = 64 are

close to the limit - Nyquist frequency ( 1
12Nh

), therefore they produce similar MSE,

which is much higher than the case when Nh = 32, fdTs = 0.001. This observation

justify the increased performance loss of IFDE in more dispersive channels as shown

in Fig. 4.12.

Second, we compare the performance of joint IFDE/CE scheme with FIR-MMSE-

DFE plus RLS-CE (denoted as DFE-RLS in Fig. 4.14) [93,102]. Experimental results

show that FIR-MMSE-DFE can not work well when fdTs > 0.0005 and Nh = 32,

therefore we pick fdTs ∈ {0.0001, 0.0005}. For simplicity, we set Q = 5, P = 2,

larger Q means higher data transmission rate versus pilots. Enough pilots symbols

are inserted for the initialization of RLS-CE. From Fig. 4.14, we can see that joint

IFDE/CE scheme performs much better than FIR-MMSE-DFE plus RLS-CE scheme

and is close to the ideal case when perfect CSI is available.

Figure 4.15 examines the multiplies-per-symbol ratio of FIR-MMSE-DFE/RLS-

CE to IFDE-2/PACE using the expressions in Table 4.3. Note that values > 1 in

Fig. 4.15 imply a complexity advantage for IFDE/PACE, and that this complex-

ity advantage increases with Nh and decreases with fdTs. Since FIR-MMSE-DFE
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and IFDE-2 have similar performance, Fig. 4.15 constitutes a direct complexity com-

parison. A similar comparison in Fig. 4.16 between FIR-MMSE-DFE/RLS-CE and

IFDE-10/PACE shows simultaneously complexity and performance advantages.

A final comment regarding the complexity comparison in Fig. 4.15 and Fig. 4.16

is in order. One could argue that due to imperfect CE, IFDE/PACE may not per-

form well in some range of (fdTs, Nh), therefore the complexity gain at those points

are meaningless. The question is what is the region in Fig. 4.15 and Fig. 4.16 that

IFDE/PACE do perform well. To answer this question, first we investigate the re-

lationship between (fdTs, Nh) and CE error of PACE through numerical results. In

Fig. 4.17, we plot the contours of theoretical MSE of PACE calculated from (4.31)

versus (fdTs, Nh) when Q = P = 2. The solid lines stand for contour and the dashed

lines stand for points of constant product of fdTsNh. As illustrated in Fig. 4.17,

almost the same MSE can be achieved by PACE for those points with the same

product of fdTsNh. Bearing this conclusion in mind, we superimpose the curves

fdTsNh = {0.064, 0.016, 0.0032} on Fig. 4.15 and Fig. 4.16, which corresponds to

the Doppler and delay spread setting up in Fig. 4.12 and Fig. 4.14. We can see

that the IFDE/PACE algorithm can enjoy significant cost savings compared with the

DFE/RLS-CE scheme in a relative wide range.

4.8 Conclusion

In this chapter, we presented an iterative frequency domain equalization (IFDE)

scheme for single-carrier transmissions over noisy doubly dispersive channels. Time-

domain windowing is used to make the effective ICI/IBI response sparse, after which

iterative symbol estimation is performed in the frequency domain. The estimation
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algorithm leverages the finite-alphabet property of symbols, the sparse ICI/IBI struc-

ture, and the low computational cost of the FFT. Simulations show that with perfect

CSI, the IFDE performs significantly better than the FIR-MMSE-DFE and within

about 1 dB of the MFB over the SNR range of interest. A fast version of the IFDE

algorithm was also derived and its complexity compared to that of a fast FIR-MMSE-

DFE for LTV channels. When CSI is not available, a pilot-aided CE (PACE) is de-

rived to work jointly with IFDE, which demonstrates remarkable performance gain

versus the conventional FIR-MMSE-DFE plus RLS-CE scheme. In addition, the

IFDE/PACE algorithm was found to yield significant cost savings relative to the

FIR-MMSE-DFE plus RLS-CE scheme for reasonable channel lengths.
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Figure 4.7: Symbol error rate for various PN when M = 10.
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Figure 4.8: Symbol error rate for various M when Nh = 64 and fdTs = 0.003.
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L
(0)
l = 0 ∀l

for n = 0, 1, 2, . . .

for l = 0 . . . PN − 1,

s̄
(n)
l = tanh(L

(n)
l /2)

v
(n)
l = 1 − (s̄

(n)
l )2

end

t
(n)

= Fs(n)

for k = 0 . . . PN − 1,

g
(n)
k =

(
HkF D(v(n))F H

H
H
k + σ2CkC

H
k

)−1

× HkF D(v(n))F Hik

t̂
(n)
k = t̄

(n)
k + g

(n)H
k (xk − Hkt

(n)
)

end

ŝ(n) = F H t̂
(n)

Q(n) = F H
(∑PN−1

k=0 H
H
k g

(n)
k iH

k

)
F

P (n) =
(∑PN−1

k=0 CH
k g

(n)
k iH

k

)
F

for l = 0 . . . PN − 1,

L
(n+1)
l = L

(n)
l +

4
(

Re{Q(n)
l,l (ŝ

(n)
l − s̄

(n)
l )} + |Q(n)

l,l |2s̄
(n)
l

)

q
(n)H
l D(v(n))q

(n)
l − |Q(n)

l,l |2v
(n)
l + σ2‖pl‖2

end

end

Table 4.1: Summary of Iterative Symbol Detection.
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Step Cost Per Step

1 H(i, ℓ) 2D̃(Lpst + 1)PNNh

2 compute x(i) from (4.56) (D̃Lpst + 1)PN + 3
2
PN log2 PN

3 Σ =
√

PNC0C
H
0 2PN + 1

2
PN log2 PN

L
(0)
l = 0 ∀l 0

for n = 0, 1, . . . , M − 1

for l = 0, 1, . . . , PN − 1

s̄
(n)
l = tanh(L

(n)
l /2) 1

v
(n)
l = 1 − (s̄

(n)
l )2 1

end

t
(n)

= Fs(n) 1
2
PN log2 PN

u(n) = Fv(n) 1
2
PN log2 PN

4 R
(n)
0 = H0 C(u(n))HH

0 + Σ 3D̃3

for k = 0, 1, . . . , PN − 1

5 compute (R
(n)
k )−1 min

{
2D̃2+ 1

3
D̃3, 7D̃2

}

6 g
(n)
k = (R

(n)
k )−1

Hk C(u(n))ik 2D̃2

t̂
(n)
k = t̄

(n)
k + g

(n)H
k (xk − Hkt

(n)
) D̃2

end

ŝ(n) = F H t̂
(n)

PN log2 PN

7 compute {y(n)
l }PN−1

l=0 , {αd}2D
d=−2D (4D̃2 + 2D̃)PN log2 PN

from (4.57)-(4.59) + 5D̃2PN

8 compute {z(n)
l }PN−1

l=0 from (4.60)-(4.62) D̃2PN + (D̃2 + D̃)PN log2 PN

for l = 0, 1, . . . , PN − 1

9 Q
(n)
l,l = 1√

PN

∑2D
d=−2D[α

(n)
d ]0 ej 2π

PN
ld 2D̃

L
(n+1)
l = L

(n)
l + 4

Re{Q(n)
l,l

(ŝ
(n)
l

−s̄
(n)
l

)}+|Q(n)
l,l

|2s̄
(n)
l

y
(n)
l

−|Q(n)
l,l

|2v
(n)
l

+σ2z
(n)
l

6

end

end

Table 4.2: Fast Implementation of the Iterative Symbol Detector
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IFDE-noBDFE:

3MD̃3/N +
[
2 + M(5D̃2 + 3D̃ + 2)

]
P log2 PN

+
[
3 + M

(
min{1

3
D̃3, 5D̃2} + 11D̃2 + 2D̃ + 8

)]
P

PACE: 2D̃PNh

IFDE-BDFE:

3MD̃3/N +
[
2 + M(5D̃2 + 3D̃ + 2)

]
P log2 PN

+
[
3 + LpstD̃ + M

(
min{1

3
D̃3, 5D̃2} + 11D̃2 + 2D̃ + 8

)]
P

PACE: 2D̃(Lpst + 1)PNh

FIR-MMSE-DFE:

9
2
N2

f − 1
2
Nf − 1

RLS-CE: N2
h + 3Nh

Table 4.3: Relative Algorithm Complexity (Per Symbol).
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Appendix

4.A Signal Energy Distribution

Ess,n :=

PN−1∑

d=0

E






∣∣∣∣∣

PN−1∑

k=0

Hd−k,k(i, 0) · 1√
PN

e−j 2π
PN

nksn(i)

∣∣∣∣∣

2





=
1

PN

PN−1∑

d=0

E





∣∣∣∣∣

PN−1∑

k=0

1

PN

∑

m

Nh−1∑

l=0

hiN+m+No,lbmam−le
−j 2π

PN
m(d−k)e−j 2π

PN
k(l+n)

∣∣∣∣∣

2




=
1

(PN)3

PN−1∑

d=0

PN−1∑

k,k′=0

∑

m,m′

Nh−1∑

l=0

ρm−m
′σ2

l bmb∗
m′am−la

∗
m′−l

· e−j 2π
PN

d(m−m
′

)ej 2π
PN

k(m−l−n)e−j 2π
PN

k
′

(m
′−l−n)

=
1

(PN)3

PN−1∑

d=0

∑

m,m′

Nh−1∑

l=0

ρm−m
′σ2

l bmb∗
m

′am−la
∗
m

′−l
e−j 2π

PN
d(m−m

′

)

·
PN−1∑

k,k
′
=0

ej 2π
PN

k(m−l−n)e−j 2π
PN

k
′

(m
′−l−n)

=
1

(PN)3

PN−1∑

d=0

∑

m,m
′

Nh−1∑

l=0

ρm−m′σ2
l bmb∗

m′am−la
∗
m′−l

e−j 2π
PN

d(m−m
′

) · PNδm−l−n

· PNδm
′−l−n

=

Nh−1∑

l=0

σ2
l |bl+n|2a2

n

=

Nh−1∑

l=0

σ2
l |bl+n|2 (4.53)
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4.B Conditional Mean and Variance

From (4.38), (4.40), and the definition of µ
(n)
l (b),

µ
(n)
l (b) = iH

l F H
∑

k

ik E{t̂(n)
k |sl = b}

= iH
l F H

∑

k

ik

(
t̄
(n)
k + g

(n)H
k

(
E{xk|sl = b} − Hkt

(n)))

= s̄
(n)
l + iH

l Q(n)Hil(b − s̄
(n)
l )

which leads to (4.42). In the last step above, we used the fact that E{xk|sl = b} =

HkF
(
s(n) + il(b − s̄

(n)
l )
)

= Hkt
(n)

+ HkF il(b − s̄
(n)
l ). Next we find an expression

for [σ
(n)
l (b)]2. Before doing so, however, it will be convenient to note from (4.38) and

(4.40) that

ŝ
(n)
l = iH

l F H
∑

k

ik

(
t̄
(n)
k + g

(n)H
k

(
xk − Hkt

(n)))

= iH
l F H

∑

k

ik

(
t̄
(n)
k + g

(n)H
k

(
HkFs + Ckν − HkFs(n)

))

= s̄
(n)
l + iH

l Q(n)H(s − s(n)) + iH
l P (n)Hν

= µ
(n)
l (b) + iH

l Q(n)H
(
s − s(n) + il(s̄

(n)
l − b)

)
+ iH

l P (n)Hν (4.54)

and that, since E{s|sl = b} = s(n) − il(s̄
(n)
l − b),

E
{(

s − s(n) + il(s̄
(n)
l − b)

)(
s − s(n) + il(s̄

(n)
l − b)

)H |sl = b
}

= cov(s, s|sl = b)

= D(v(n)) − ili
H
l v

(n)
l . (4.55)

Using (4.54), (4.55), and the definition of σ
(n)
l (b),

[σ
(n)
l (b)]2 = E

{(
ŝ
(n)
l − µ

(n)
l (b)

)(
ŝ
(n)
l − µ

(n)
l (b)

)H |sl = b
}

= iH
l Q(n)H

(
D(v(n)) − ili

H
l v

(i)
l

)
Q(n)il + σ2iH

l P (n)HP (n)il

which leads to (4.43).

116



4.C Fast-IFDE Details

The details of each step are enumerated below in correspondence with the left

column of Table 4.2. For brevity, we use D̃ := 2D + 1 in the sequel. We make

frequent use of the property F D(a)F H = C(Fa/
√

PN). Finally, we assume that

PN -length FFTs require 1
2
PN log2 (PN) and PN log2 (PN) complex multiplies for

real- and complex-valued inputs, respectively (as per the radix-2 Cooley-Tukey algo-

rithm [103]).

Detail 1: At each block index i, we must compute the frequency domain coefficients

H(i, 0), or {H(i, ℓ)}Lpst

ℓ=0 when BDFE is used, using the PACE. From (4.25), we can

see that Rgrp
R−1

rprp
only need to be computed once at the beginning, therefore the

computations needed to estimate {H(i, ℓ)} from r
(q)
p is 2D̃PNNh complex multiplies

for each ℓ.

Detail 2: In the BDFE case, the frequency domain observation is computed as

x(i) = FJ D(b)r(i) −
Lpst∑

ℓ=1

H(i, ℓ)̂̂t(i − ℓP ), (4.56)

where ˆ̂t(i) := F ˆ̂s(i). The non-BDFE case is similar, but without the IBI cancel-

lation. The first term in x(i) requires Nb + PN log2 PN multiplications per block

to compute, while the second requires LpstD̃PN since H(i, ℓ) contains only D̃PN

non-zero elements. Since ˆ̂t(i) needs to be computed only when i is a multiple of P ,

it requires an average of 1
P
PN log2 PN multiplications per block. Using P = 2 and

the approximation Nb ≈ PN , we get a total of (D̃Lpst + 1)PN + 1.5PN log2 PN

multiplications per block.

Detail 3: From (4.11) and the property J D(b) = D(Jb), it follows that CCH =

F D(σ2Jb ⊙ Jb∗)F H = C
(√

PNσ2F (Jb ⊙ Jb∗)
)

. Thus, the PN coefficients that

specify CCH can be computed in roughly 2PN + 1
2
PN log2 PN multiplies. Notice

that CkC
H
k is a sub-block of CCH , and that the Toeplitz nature of CCH implies

that CkC
H
k is identical for every k.
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Detail 4: This step initializes the recursive computation of R
(n)
k :=

√
PN

(
HkF D(v(n))F H

H
H
k + CkC

H
k

)
, where we note

√
PNF D(v(n))F H = C(u(n)). For

computation of H0 C(u(n))HH
0 , we first compute H0 C(u(n)), then post-multiply the

result by H
H
0 . But since H

H
0 contains only 4D+1 ≈ 2D̃ non-zero rows, only 2D̃ non-

zero columns of H0 C(u(n)) need be computed. This requires 2D̃3 multiplications,

since H0 contains D̃ rows, each with only D̃ non-zero elements. Using a similar

reasoning, the post-multiplication also requires D̃3 multiplications.

Detail 5: R
(n)
k can be inverted directly or recursively since R

(n)
k+1 =


Θk θ̃k

θ̃
H

k θ̃k




when R
(n)
k =


θk θH

k

θk Θk


. In the direct method, we first compute [θ̃

t

k θ̃k]t to ob-

tain R
(n)
k+1 from R

(n)
k . Cost-wise, this is similar to computing one column (i.e.,

1/D̃ of the total elements) of R
(n)
0 , requiring 2D̃2 multiplies. The direct inver-

sion of Hermitian R
(n)
k+1 then requires an additional 1

3
D̃3 multiplies (using LDL∗

factorization [98]). The procedure for recursive computation of (R
(n)
k+1)

−1 follows

directly from the well-known block-matrix inversion formula [104]


A B

C D



−1

=



A−1(I + BP−1CA−1) −A−1BP−1

−P−1CA−1 P−1



, where P := D − CA−1B, and is detailed

in Table 4.4. In summary, the total cost of the direct and recursive inversions are

approximately 2D̃2 + 1
3
D̃3 and 7D̃2 multiplications, respectively.

Detail 6: Since Hk contains D̃ rows, each with only D̃ nonzero elements, the

calculation of HkṼ
(n)

ik consumes only D̃2 multiplies. Multiplication by (R
(n)
k )−1

consumes an additional D̃2.

Detail 7: LLR updating requires {y(n)
k }PN−1

k=0 , where y
(n)
k := q

(n)H
k D(v(n))q

(n)
k .

Note that the explicit calculation of Q(n), as defined in (4.44), would involve 2PN
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FFTs of length PN , and thus a total complexity of O(P 2N2 log2 PN). In Ap-

pendix 4.C.1 we show that

y(n) =
1√
PN

2D∑

d,l=−2D

F D
(
T l−du

(n)
)
F H(α

(n)
d ⊙ α

(n)∗
l ) (4.57)

where [y(n)]k = y
(n)
k , u(n) := F Hv(n), T k := C(i〈k〉PN

) is the right circular k-shift

matrix, and where

α
(n)
d = F diagd(G(n)) (4.58)

G(n) =
PN−1∑

k=0

H
H
k g

(n)
k ik (4.59)

Note that u(n) is simply a rearrangement of u(n). The kth column of G(n) equals

H
H
k g

(n)
k and requires D̃2 multiplies to compute, and so G(n) requires PND̃2 multiplies

to compute. Computation of {αd}2D
d=−2D involves 4D + 1 ≈ 2D̃ FFTs for a total

cost of 2D̃PN log2 PN multiplies. For each (d, l) pair, the computation of (4.57)

requires an additional 2PN + 2PN log2 PN multiplies. However, due to conjugate

symmetry, only about half of the ≈ 4D̃2 pairs need be evaluated. Hence, using (4.57)

rather than direct computation of Q(n), the calculation of {y(n)
k }PN−1

k=0 requires only

about 4D̃2(PN + PN log2 PN) + 2D̃PN log2 PN + PND̃2, or 5D̃2PN + (4D̃2 +

2D̃)PN log2 PN , multiplies.

Detail 8: LLR updating also requires {z(n)
k }PN−1

k=0 , where z
(n)
k := ‖p(n)

k ‖2. In Ap-

pendix 4.C.2 we show that

z(n) =
1√
PN

D∑

d,l=−D

F D
(
T l−dF

Hb
)
F H(α

(n)
d ⊙ α

(n)∗
l ), (4.60)

where [z(n)]k = z
(n)
k , [b]m :=

∑Nb−1
n=0 |b〈n〉PN

|2δ〈n〉PN−m, and

α
(n)
d = F diagd(G

(n)
) (4.61)

G
(n)

=

PN−1∑

k=0

g
(n)
k ik (4.62)

Note that F Hb can be computed in advance, G
(n)

requires no computation, and

{α(n)
d }D

d=−D involves D̃ FFTs, for a total cost of D̃PN log2 PN multiplies. For each
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(d, l) pair, (4.60) requires an additional 2PN + 2PN log2 PN multiplies, but only

about half of the D̃2 pairs need be evaluated (due to conjugate symmetry). Hence,

calculation of {z(n)
k }PN−1

k=0 requires about 1
2
D̃2(2PN +2PN log2 PN)+D̃PN log2 PN ,

or D̃2PN + (D̃2 + D̃)PN log2 PN , multiplies.

Detail 9: LLR updating also requires {Q(n)
k,k}PN−1

k=0 . From (4.44), (4.58), (4.59), and

Lemma 1, it follows that

Q
(n)
k,k =

1√
PN

2D∑

d=−2D

[α
(n)
d ]0 ej 2π

PN
kd. (4.63)

As reported in Table 4.2, direct evaluation of (4.63) requires 4D + 1 ≈ 2D̃ multiplies

for each k. Note that, if 2D̃ > log2 PN , it would be more efficient to compute

{Q(n)
k,k}PN−1

k=0 using a single PN -point FFT. However, since the cost of this step is

relatively small, the difference is insignificant.

4.C.1 Derivation of (4.57)

Here we derive an expression for y(n) enabling fast computation. First, however,

we present a useful lemma. Without loss of generality, we omit superscripts in this

appendix.

Lemma 1. If H ∈ CPN×PN has the banded structure of Fig. 4.2 with 2ρD + 1 non-

zero diagonals, and if B = F H
HF , then

[B]n,m =
1√
PN

ρD∑

d=−ρD

ej 2π
PN

nd[F diagd(H)]〈m−n〉PN
.
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Proof. Denote ad = diagd(H), so that [H]n,m = an−m,m where ak,l := [ak]l. Then,

since ad = 0 for d /∈ {−ρD, . . . , ρD},

[B]n,m =
1

PN

PN−1∑

k=0

PN−1∑

l=0

ej 2π
PN

nkak−l,le
−j 2π

PN
lm

=
1

PN

ρD∑

d=−ρD

ej 2π
PN

nd

PN−1∑

l=0

ad,le
−j 2π

PN
l(m−n)

=
1√
PN

ρD∑

d=−ρD

ej 2π
PN

nd[Fad]〈m−n〉PN
,

where we used the substitution d = k − l.

From (4.44), (4.58), (4.59), and Lemma 1

Qn,m =
1√
PN

2D∑

d=−2D

ej 2π
PN

nd[αd]〈m−n〉PN
(4.64)

where αd := F diagd(G). With αd,m := [αd]m, we find

yk =

PN−1∑

n=0

|Qn,k|2vn

=
1

PN

PN−1∑

n=0

vn

2D∑

d,l=−2D

e−j 2π
PN

n(l−d)αd,〈k−n〉PN
α∗

l,〈k−n〉PN

=
1

PN

PN−1∑

m=0

v〈k−m〉PN

2D∑

d,l=−2D

e−j 2π
PN

(l−d)(k−m)αd,mα∗
l,m (4.65)

where, for (4.65), m = 〈k − n〉PN so that n = 〈k − m〉PN . Defining the matrix

Dk := D(F ik) and the vector β(d, l) such that [β(d, l)]m = αd,mα∗
l,m,

y =
2D∑

d,l=−2D

Dl−d C(v)DH
l−dβ(d, l) (4.66)

Using the property DkF = 1√
PN

FT k,

Dl−d C(v)DH
l−d =

√
PNDl−dF D(F Hv)F HDH

l−d

=
1√
PN

FT l−d D(F Hv)T H
l−dF

H

=
1√
PN

F D
(
T l−dF

Hv
)
F H . (4.67)

Substituting (4.67) into (4.66) yields (4.57).
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4.C.2 Derivation of (4.60)

Here we derive an expression for z(n) enabling fast computation. Without loss

of generality, we omit superscripts in this appendix. From the definition of gk we

notice CH
k gk = CHgk, and thus, with (4.11), (4.45), and (4.62), we have P =

CH ∑
k gki

H
k F = CHGF = D(b∗)JHF HGF . Then we can write zk = ‖pk‖2 =

∑Nb−1
n=0 |b∗n[F HGF ]〈n〉PN ,k|2. Since G is banded with 2D+1 non-zero diagonals, Lemma 1

implies [F HGF ]〈n〉PN ,k = 1√
PN

∑D
d=−D ej 2π

PN
ndᾱd,〈k−n〉PN

for ᾱd,m := [αd]m. Thus

zk =
1

PN

Nb−1∑

n=0

∣∣∣∣∣b
∗
n

D∑

d=−D

ej 2π
PN

ndᾱd,〈k−n〉PN

∣∣∣∣∣

2

=
1

PN

Nb−1∑

n=0

|bn|2
D∑

d,l=−D

e−j 2π
PN

n(l−d)ᾱd,〈k−n〉PN
ᾱ∗

l,〈k−n〉PN

=
1

PN

PN−1∑

m=0

b̄〈k−m〉PN

D∑

d,l=−D

e−j 2π
PN

(l−d)(k−m)ᾱd,mᾱ∗
l,m

where b̄m :=
∑Nb−1

n=0 |b〈n〉PN
|2δ〈n〉PN−m. Using Dk from Appendix 4.C.1, and defining

β(d, l) such that [β(d, l)]m = ᾱd,mᾱ∗
l,m, we find that

z =
D∑

d,l=−D

Dl−d C(b)DH
l−dβ(d, l) (4.68)

where [b]m = b̄m. Similar to Appendix 4.C.1, we substitute Dl−d C(b)DH
l−d = 1√

PN

F D(T l−dF
Hb)F H into (4.68) to get (4.60).
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Step Cost

αk aH
k

ak Ak



 = R−1
k 0

Θ−1
k = Ak − α−1

k aka
H
k D̃2

compute θ̃k and θ̃k 3D̃2

bk = −Θ−1
k θ̃k D̃2

βk =
(
θ̃k − θ̃

H

k Θ−1
k θ̃k

)−1

D̃2

R−1
k+1 =


Θ−1

k + bkb
H
k βk bkβk

bH
k βk βk


 D̃2

Table 4.4: Recursive Update of (R
(n)
k )−1
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CHAPTER 5

CONCLUSION

In the dissertation, we considered the problem of receiver design for single carrier

transmissions over time-varying channels with long delay spread. The conventional

solutions for this problem are various time-domain channel equalizers and estimators.

These schemes often suffer from heavy computational burden due to deconvolution of

the long channels. Inspired by the FDE idea behind OFDM and SCCP modulation

schemes, we concentrated on designing receivers operating mainly in the frequency-

domain, so as to achieve efficient implementation in favor of practical applications. In

order to improve the performance of FDE, we adopted the idea of Turbo equalization

(TE) and used soft information to iteratively equalize and estimate the channels. In

the framework of FDE and TE, we designed and developed a group of frequency-

domain joint channel estimation and equalization algorithms, and evaluated their

performance in terms of BER and computational complexity through simulations

and analysis.

5.1 Summary of Original Work

For single carrier transmissions over relatively moderately fast fading frequency-

selective channels, we investigated iterative FDE (IFDE) with explicit frequency-

domain channel estimation (FDCE). First, an improved IFDE algorithm was pre-

sented based on soft iterative interference cancellation. Second, soft-decision-directed
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channel estimation algorithms were derived and analyzed both in time and frequency

domain. As it turns out, the frequency-domain approach is more computationally

efficient than the time-domain approach. Therefore a new adaptive FDCE (AFDCE)

algorithm based on per-tone Kalman filtering was proposed to track and predict the

frequency-domain channel coefficients. The AFDCE algorithm employed across-tone

noise reduction, which could perfectly remove the redundant noise when channels

could be modeled by an AR process, and employed Chu sequences as training se-

quences. In addition, the AFDCE algorithm exploited temporal correlation between

successive blocks to adaptively update the AR model coefficients, bypassing the need

for prior knowledge of channel statistics. Finally, a block overlapping idea was pro-

posed for the joint operation of IFDE and AFDCE. Simulation results show that,

compared to other existing IFDE and adaptive channel estimation schemes, the pro-

posed schemes offer lower MSE in channel prediction, lower BER after decoding, and

robustness to non-stationary channels.

We further extended the IFDE/AFDCE scheme to fit in the application of digital

television (DTV) signal reception, where trellis coded vestigial sideband modulation

is employed, as specified by the ATSC North American terrestrial DTV standard.

The proposed FDTE/AFDCE scheme estimates and equalizes channels only on ac-

tive subcarriers in the frequency-domain, and therefore achieves low-cost and high-

performance reception of highly impaired DTV signals. Through numerical simula-

tion, we demonstrated that our FDTE/AFDCE scheme outperformed the traditional

joint DFE/decoding plus FDLMS-CE approach at a fraction of the implementation

cost.

For single carrier transmissions over very fast fading large-delay-spread channels,

the traditional FDE methods fail when the influence of virtual ICI is not negligible.

We first applied Doppler channel shortening to concentrate the energy of virtual ICI

coefficients into a banded structure in the Doppler and frequency domain, and then

derived a pilot-aided channel estimator (PACE) to estimate those significant virtual
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ICI coefficients based on MMSE criteria. Finally a soft iterative interference cancel-

lation algorithm was proposed to efficiently detect transmitted symbols by leveraging

the banded structure of ICI, while block decision feedback and block overlapping were

employed to further combat ISI and the virtual ICI. Numerical results showed that

the proposed scheme had advantages over the well-known FIR-MMSE-DFE/RLS-CE

scheme in both performance and complexity.

5.2 Possible Future Work

In our joint CE and equalization design, we only considered the influence of symbol

detection errors on CE in soft-decision-directed CE case, while we have not considered

the influence of CE errors on channel equalization yet. Possible performance gain can

be achieved by characterizing CE errors as stochastic processes and incorporating

those information into channel equalization.

For the receiver design of DTV receiver, we investigated the FDTE/AFDCE al-

gorithm based on the assumption that there is a pilot block available to initialize the

process. In practice, the pilot symbols transmitted may be not long enough to ini-

tialize the FDTE/AFDCE, therefore a frequency-domain blind CE or blind channel

equalization algorithm is expected to start up the process. Blind DFE algorithm is

a promising candidate, which is widely adopted in current DTV receivers for reliable

reception over slow fading channels [105–108]. How to efficiently combine the startup

process with our FDTE/AFDCE algorithm would be a interesting problem to work

on in order to complete the receiver design for DTV signal reception.

In very fast fading channels, we only considered PACE, where as decision-directed

CE could also be explored to further reduce CE errors and enable reception of trans-

mitted symbols over a wider Doppler and delay spread region.
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In this dissertation, we only considered single transmitter and receiver antenna

case, while it would be interesting to see how similar performance gain and implemen-

tation gain can be achieved in multiple-input multiple-output systems jointly with

space-time coding.
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