
Phil Schniter The Ohio State University✬

✫

✩

✪

Turbo-AMP: A Graphical-Models

Approach to Compressive Inference

Phil Schniter

(With support from NSF CCF-1018368 and DARPA/ONR N66001-10-1-4090.)

June 27, 2012

1



Phil Schniter The Ohio State University✬

✫

✩

✪

Outline:

1. Motivation.

(a) the need for non-linear inference schemes,

(b) some problems if interest.

2. The focus of this talk:

(a) compressive sensing (in theory),

(b) compressive sensing (in practice).

3. Recent approaches to these respective problems:

(a) approximate message passing (AMP),

(b) turbo-AMP.

4. Illustrative applications of turbo-AMP:

(a) compressive imaging,

(b) compressive tracking,

(c) communication over sparse channels.
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Motivations for nonlinear inference:

• Linear inference (e.g., matched filtering, linear equalization, least-squares,

Kalman filtering, etc.) has been extremely popular in engineering and statistics

due to computational efficiency and a well-developed theory.

– Indeed, linear inference is optimal in problems well-modeled by linear

observations and Gaussian signal and noise.

• In many cases, though, linear inference is not good enough.

– The signal or noise may be non-Gaussian, or the observation mechanism

may be nonlinear, in which case linear inference is suboptimal.

– For example, the observations may be “compressed” (i.e., sampled below

the Nyquist rate), in which case nonlinear inference becomes essential.

• But is there an accurate and computationally efficient framework for

high-dimensional nonlinear inference?

– For a wide (and expanding) range of problems, Yes!

– Based on “belief propagation” or “message passing.”
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A few problems of interest:

Linear additive:

• y =Ax +w with A known, x ∼ px, w ∼ pw

• examples: communications, imaging, radar, compressive sensing (CS).

Generalized linear:

• y ∼ p(y∣z) for z =Ax with A known, x ∼ px

• examples: quantization, phase retrieval, classification.

Generalized bilinear:

• Y ∼ p(Y ∣Z) for Z =AX with A ∼ pA, X ∼ pX

• examples: dictionary learning, matrix completion, robust PCA.

Parametric nonlinear:

• y ∼ p(y∣z) for z =A(θ)x with A(⋅) known, θ ∼ pθ, x ∼ px

• examples: frequency estimation, calibration, autofocus.

4



Phil Schniter The Ohio State University✬

✫

✩

✪

Compressive sensing (in theory):

• Say N -length signal of interest u is sparse or “compressible” in a known

orthonormal basis Ψ (e.g., wavelet, Fourier, or identity basis):

u =Ψx, where x has only K ≪ N large coefficients.

• We observe M ≪ N noisy linear measurements y:

y = Φu +w = ΦΨx +w = Ax +w

from which we want to recover u (or, equivalently, x).

• If A is well-behaved (e.g., satisfies RIP), the sparsity of x can be exploited for

provably accurate reconstruction with computationally efficient algorithms.

– Caution: usually need to tune an algorithmic parameter that balances

sparsity with data fidelity. If using “cross-validation,” this can be expensive!

• Such A results (with high probability) from Φ constructed randomly (e.g., i.i.d

Gaussian) or semi-randomly (e.g., from random rows of fixed unitary Φ).
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Compressive sensing (in practice):

• Usually, real-world applications exhibit additional structure. . .

– in the support of large signal coefficients (e.g., block, tree, etc.),

– among the values of large signal coefficients (e.g., correlation, coherence),

and exploitation of these additional structures may be essential.

• But, exploiting this additional structure complicates tuning, since...

– many more parameters are involved in the model, and

– mismatch in these parameters can severely bias the signal estimate.

• Also, many real-world applications are not content with point estimates. . .

– since the estimates may be later used for decision-making, control, etc.,

– in which case confidence intervals are needed, or preferably the full posterior

probability distribution on the unknowns.
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Solving the theoretical CS problem — AMP:

• Approximate message passing (AMP) [Donoho/Maleki/Montanari 2009/10]

refers to a family of signal reconstruction algorithms that are

– designed to solve the theoretical CS problem,

– inspired by principled approximations of belief propagation.

• AMP highlights:

– Very computationally efficient: a form of iterative thresholding.

– Very high performance (with sufficiently large N,M):

▸ Can be configured to produce near-MAP or near-MMSE estimates.

– Admits rigorous asymptotic analysis [Bayati/Montanari 2010, Rangan 2010]

(under i.i.d-Gaussian A and N,M →∞ with fixed N/M):

▸ AMP follows a (deterministic) state-evolution trajectory.

▸ Agrees with analysis under the (non-rigorous) replica method.

▸ Agrees with belief propagation on sparse matrices, where marginal

posterior distributions are known to be asymptotically optimal.
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Solving practical compressive inference problems — Turbo-AMP:

• The Bayesian graphical-model framework is a flexible and powerful way to

incorporate and exploit probabilistic structure.
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Solving practical compressive inference problems — Turbo-AMP:

• The Bayesian graphical-model framework is a flexible and powerful way to

incorporate and exploit probabilistic structure.
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Simple sparsity with unknown model parameters

Or treat (νw, νx, λ) as deterministic unknowns, and do ≈ML estimation via EM.
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Solving practical compressive inference problems — Turbo-AMP:

• The Bayesian graphical-model framework is a flexible and powerful way to

incorporate and exploit probabilistic structure.
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Structured sparsity with known model parameters:

• For these problems, AMP is used as a soft-input soft-output inference block,

like a “channel decoder” in a “turbo” receiver. [Schniter CISS 10]
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Solving practical compressive inference problems — Turbo-AMP:

• The Bayesian graphical-model framework is a flexible and powerful way to

incorporate and exploit probabilistic structure.
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Structured sparsity with unknown model parameters:

• For these problems, AMP is used as a soft-input soft-output inference block,

like a “channel decoder” in a “turbo” receiver. [Schniter CISS 10]
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So what approximations lead to AMP?:

Assume sum-product form of AMP. Then. . .

pX(x1)

pX(x2)

pX(xN)

x1

x2

xN

p1→1(x1)

pM←N(xN)

N (y1; [Ax]1, νw)

N (y2; [Ax]2, νw)

N (yM ; [Ax]M , νw)

⋮ ⋮⋮

1. Message from yi node to xj node:

pi→j(xj) ∝ ∫
{xr}r≠j

N(yi;
≈ N via CLT³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑r airxr, ν

w)∏r≠j pi←r(xr)

≈∫
zi

N(yi; zi, νw)N(zi; ẑi(xj), νz
i (xj)) ∼ N

To compute ẑi(xj), νzi (xj), the means and variances of {pi←r}r≠j suffice, thus

Gaussian message passing!

Remaining problem: we have 2MN messages to compute (too many!).

2. Exploiting similarity among the messages

{pi←j}Mi=1, AMP employs a Taylor-series ap-

proximation of their difference whose error

vanishes as M→∞ for dense A (and similar

for {pi←j}Ni=1 as N →∞). Finally, need to

compute only O(M+N) messages!

pX(x1)

pX(x2)

pX(xN)

x1

x2

xN

p1→1(x1)

pM←N(xN)

N (y1; [Ax]1, νw)

N (y2; [Ax]2, νw)

N (yM ; [Ax]M , νw)

⋮⋮⋮
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Extrinsic information transfer (EXIT) charts:

EXIT charts, developed to predict the convergence of turbo decoding [ten Brink 01],

can help to understand the interaction between turbo-AMP inference blocks:
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In this EXIT chart, we are plotting the mutual-information between the true and

(AMP or MC)-estimated support pattern {sn}.
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We will now detail three applications of the turbo-AMP approach:

1. Compressive imaging

. . . with (persistence across scales) structure in the signal support.

2. Compressive tracking

. . . with (slow variation) structure in the signal’s support and coefficients.

3. Communication over sparse channels

. . . involving a generalized linear model, and

. . . where AMP is embedded in a larger factor graph.
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1) Compressive imaging:

• Wavelet representations of natural images are not only sparse, but also exhibit

persistence across scales:

• Can be efficiently modeled using a Bernoulli-Gaussian hidden-Markov-tree:

p(xn ∣ sn) = snN (xn; 0, νj) + (1 − sn)δ(xn) for sn ∈ {0,1}
p(sn ∣ sm) ∶ state transition mtx ( p00j 1−p00j

1−p11j p11j
) , for n ∈ children(m), j = level(n)

y = Φu +w = ΦΨx +w, w ∼N (0, νw)
• The model parameters νw and {νj , p00j , p11j }Jj=0 are treated as random with

non-informative hyperpriors (Gamma and Beta, respectively). We approximate

those messages by passing only the means.
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Comparison to other methods:

Average over Microsoft Research class recognition database (591 images):

For M = 5000 random measurements of 128 × 128 images (N = 16384). . .

Algorithm Authors (year) Time NMSE

IRWL1 Duarte, Wakin, Baraniuk (2008) 363 s -14.4 dB

ModelCS Baraniuk, Cevher, Duarte, Hegde (2010) 117 s -17.4 dB

Variational Bayes He, Chen, Carin (2010) 107 s -19.0 dB

MCMC He & Carin (2009) 742 s -20.1 dB

Turbo-AMP Som & Schniter (2010) 51 s -20.7 dB

Turbo-AMP beats other approaches simultaneously in speed and accuracy!
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Comparison to other methods:

True ModelCS IRWL1

Variational Bayes MCMC Turbo-AMP

17



Phil Schniter The Ohio State University✬

✫

✩

✪

2) Compressive tracking / Dynamic compressive sensing:

• Now say we observe the vector sequence

y(t) =A(t)x(t) +w(t), t = 1 ∶ T, w(t)m ∼ i.i.d N (0, νw)
with sparse x(t) whose coefficients and support change slowly with time t.

• The slowly varying sparse signal can be modeled as Bernoulli-Gaussian with

Gauss-Markov coefficient evolution and Markov-chain support evolution:

x(t)n = s
(t)
n θ(t)n for s(t)n ∈ {0,1} and θ(t)n ∈ R

θ(t)n = (1 − α)θ(t−1)n + αv(t)n , v(t)n ∼ i.i.d N (0, νv)
p(s(t)n ∣ s(t−1)n ) ∶ state transition matrix ( p00 1−p00

1−p11 p11
)

where here the model parameters {νw, νv, α, p00, p11} are treated as

deterministic unknowns and learned using the EM algorithm.

• Note: Our message-passing framework allows a unified treatment of tracking

(i.e., causal estimation of {x(t)}Tt=1) and smoothing.
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Factor graph for compressive tracking/smoothing:
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Near-optimal MSE performance:
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• With a Bernoulli-Gaussian signal, the support-aware Kalman smoother

provides an oracle bound on MSE.

• The proposed “dynamic” turbo-AMP performs very close to the bound, and

much better than standard AMP (which does not exploit temporal structure).
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Performance on dynamic-MRI dataset:

Frames 1, 2, 5, and 10 of a dynamic MRI image sequence:

True images

Basis pursuit

Modified-CS

Turbo-AMP

Algorithm TNMSE (dB) Runtime

Basis Pursuit -17.22 47 min

Modified-CS [Vaswani/Lu 09] -34.30 7.39 hrs

Turbo-AMP (Filter) -34.62 8.08 sec
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3) Communication over sparse channels:

• Consider communicating reliably over a channel that is

– Rayleigh block-fading with block length B,

– frequency-selective with delay spread N ,

– sparse impulse response x with K < N non-zero coefs,

where both coefs and support are unknown to the transmitter & receiver.

• The ergodic capacity is C(SNR) = B−K
B

log(SNR) +O(1) at high SNR.

• Say, with B-subcarrier OFDM, we use M pilot subcarriers, yielding observations

yp =DpΦpΨx +wp

with known diagonal pilot matrix Dp, selection matrix Φp, and DFT Ψ.

• In “compressed channel sensing” (CCS), the channel x is estimated from yp

and the resulting x̂ is used to decode the (B−M) data subcarriers

yd =DdΦdΨx +wd.

RIP analyses prescribe the use of M = O(K polylogN) pilots, but
communicating near capacity requires using no more than M =K pilots!
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Rethinking communication over sparse channels:

• The fundamental problem with the conventional CCS approach is the separation

between channel-estimation and data decoding.

• To communicate at rates near capacity, we need joint estimation/decoding,

which we can do using turbo-AMP:

SISO decoding generalized AMP

y0

y1

y2

y3

x1

x2

x3

uniform
prior

info
bits

code &
interlv

pilots &
training

coded
bits

symbol
mapping

QAM
symbs

OFDM
observ

impulse
response

sparse
prior

• Note: Here we need to use the generalized AMP from [Rangan 10]

• Note: We can now place pilots at the bit-level, rather than the symbol level.
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NMSE & BER versus pilot/sparsity ratio (M/K):

• Assume B=1024 subcarriers with K =64-sparse channels of length N =256.
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LMMSE= LMMSE-based CCS SG= support-aware genie
LASSO= LASSO-based CCS BSG= bit- and support-aware genie
BP-n=BP after n turbo iterations

• For the plots above, we used M uniformly spaced pilot subcarriers.

• Since spectral efficiency is fixed, more pilots necessitates a weaker code!
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Outage rate and the importance of bit-level pilots:
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• Solid-line rates used 64-QAM and M = 4K = N pilot subcarriers.

• Dashed-line rate used 256-QAM with K log2(256) pilot bits as MSBs.

turbo-AMP achieves the channel capacity’s prelog factor!
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Conclusions:

• The AMP algorithm of Donoho/Maleki/Montanari offers a state-of-the-art

solution to the theoretical compressed sensing problem.

• Using a graphical-models framework, we can handle more complicated

compressive inference tasks, with

– structured signals (e.g., Markov structure in imaging & tracking),

– structured generalized-linear measurements (e.g., code structure in comms),

– self-tuning (e.g., noise variance, sparsity, Markov parameters), and

– soft outputs,

using the turbo-AMP approach, which leverages AMP as a sub-block.

• Ongoing work includes

– applying turbo-AMP approach to challenging new problems, and

– analyzing turbo-AMP convergence/performance.

• Matlab code is available at

http://ece.osu.edu/~schniter/EMturboGAMP
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Thanks!
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