


ABSTRACT

We consider channel identification techniques for a transmission scheme which

consists of a sequence of frames with each frame consisting of pilots and data. We

consider two systems, the first one having pilots in the time multiplexed fashion, and

the second one being a multi-carrier system with frequency multiplexed pilots. We

consider scenarios in which the channel is both frequency and time selective.

For the time multiplexed pilots system, channel estimation performance of the

pilot-only technique is limited by pilot spacing. The standard optimal decision-

directed techniques are computationally expensive. In response, we propose a novel

two-stage estimation technique whose performance is close to that of the optimal es-

timators but whose complexity is significantly less. The first stage finds smoothed

estimates of the channel during previous frames, while the second stage uses these

smoothed estimates for channel prediction within the current frame.

The frequency multiplexed pilots system suffers from the inter-carrier interference

(ICI) in doubly-selective channels. We present channel estimation techniques which

take the ICI effects into account. We also present a novel pilot tone selection criterion

and the theoretical MSE calculations show its efficacy for a wide range of Doppler

frequencies. The performance limitation due to ICI can be reduced by employing

decision-directed estimators. We develop a low-complexity estimation technique and

simulation results show good performance of the proposed techniques.
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CHAPTER 1

INTRODUCTION

1.1 Wireless Communications

The rapidly evolving global information structure includes broadband wireless

communication as a key component. Future wireless links are expected to provide

high data rate transmission of multimedia services in high mobility situations.

The reliable communication over wireless channels has been a challenging problem

because of the multipath fading phenomenon [1]. The transmitted signal arrives at the

receiver via multiple propagation paths at different delays. These signal components

may add constructively or destructively at the receiver resulting in wide variations

in the signal strength and this phenomenon is generally referred as the multipath

fading. When the bandwidth of the transmitted signal is large, the fading results in

inter-symbol interference (ISI) and the channel becomes frequency-selective.

When there is mobility between the transmitter and receiver, the channel fad-

ing characteristics change with time and the channel becomes time-selective. The

channels which are both time and frequency selective are referred as doubly-selective

channels. A simple way of characterizing these channels is by modeling them as a

linear time varying (LTV) filter. The received sequence yn (after match filtering and
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sampling) is related to the transmit sequence tn (in the complex baseband) by

yn =
Nh−1
∑

d=0

hn,dtn−d + vn (1.1)

where hn,d denotes the fading coefficients at time instant n and vn is additive white

Gaussian noise (AWGN). The fading coefficients hn,d are samples of a random process

which can be characterized statistically.

1.2 Channel Estimation Problem

The quality of the channel estimation has a major impact on the overall sys-

tem performance and hence reliable estimation of doubly-selective channels is well

motivated. One of the common ways of acquiring channel state information (CSI)

is by transmitting training symbols which are known a priori at the receiver. For

time-invariant channels, a training sequence is usually sent at the beginning of each

transmission burst which may not work well for time-selective channels. This moti-

vates periodic transmission of the training sequence during the transmission.

We consider channel estimation for two different transmission systems which trans-

mit multiple frames. The first system transmits pilots in time multiplexed fashion,

where each frame has a data block followed by a pilot block as shown in Fig. 1.1.

Now onwards, we refer this system as time-multiplexed pilots (TMP) system.

The second system is a multi-carrier system with frequency multiplexed pilots

(hereafter referred as FMP system). In this system, pilot symbols are assigned fre-

quencies different from that of data symbols. We focus on the orthogonal frequency

division multiplexing (OFDM) systems.

Channel estimation for OFDM systems was previously considered in, e.g., [2–7].

The works [2–5] considered fading scenarios in which the channel variation within a

2
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Figure 1.1: Time Multiplexed Pilots System.

frame is negligible. Decision-directed adaptive algorithms for channel tracking were

discussed in [2]. Pilot-based linear MMSE (LMMSE) techniques were discussed in [4]

where the channel corresponding to the data portion is obtained by MMSE interpola-

tion of the observations due to pilot portion. A decision-directed LMMSE prediction

technique was proposed in [5], including modifications to make the predictor coeffi-

cients invariant to the transmitted data.

We focus on the fast fading scenario, in which there is significant variation of the

channel within each frame. OFDM systems suffer from inter-carrier interference (ICI)

in fast fading channels [8]. For these fast fading scenarios, pilot-based LMMSE and

least squares (LS) techniques were proposed in [6] and [7], respectively, and a recursive

decision-directed LS technique was given in [9]. In [10], low complexity estimation

techniques were presented based on a clever selection of pilot blocks. To improve on

the MSE performance available from pilot-only schemes, we consider decision-directed

pilot-aided MMSE estimation.
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1.3 Organization and Contribution

In Chapter 2, we give the details of the doubly-selective channels and their statis-

tical characterization. We also present the standard estimation techniques that can

be applied for channel tracking in the TMP system. In Chapter 3 and Chapter 4, we

present the novel computationally less expensive channel tracking techniques for the

TMP and FMP systems in the fast fading doubly-selective channels.

1.3.1 Time Multiplexed Pilots System

A low complexity two-stage decision/pilot aided channel tracking technique (LCP)

is presented in Chapter 3. The modifications for LCP are presented which helps in

reducing the computational and memory requirements further. We find a benchmark

on the prediction performance by transmitting the ’asymptotically optimal’ sequence

for prediction and using infinite past observations. The simulation results are pre-

sented which show that the LCP performance is close to that of standard optimal

estimators.

1.3.2 Frequency Multiplexed Pilots System

In Chapter 4, we present channel estimation techniques for OFDM systems which

take the ICI effects into account. We present a novel pilot tone selection criterion

for OFDM systems and the theoretical MSE calculations show its efficacy for a wide

range of Doppler frequencies. We also present a low complexity decision-directed

estimation technique and the numerical results are presented which show the good

performance of the proposed techniques.

4



CHAPTER 2

BACKGROUND

2.1 Wireless Channels

Because of the multipath fading, the received signal is modeled as a filtered version

of the transmitted signal, with the filter taps being random fading coefficients. In

doubly-selective channels, these filter taps are continuously changing with time. There

are different representations for the doubly-selective channels and the ones used in

the thesis are discussed below.

2.1.1 Time-Lag Representation

Time-lag model is basically the impulse response of the LTV channel, denoted by

hn,d, n ∈ Z, d ∈ {0, .., Nh − 1}, where Nh is the number of taps of the channel. Here

hn,d denotes the response of the channel at time index n to a Kronecker delta applied

at time index n − d. One particular realization of the channel is shown in Fig. 2.1.

2.1.2 Doppler-Lag Representation

The time-lag coefficients hn,d within time window n ∈ {0, ..., N − 1} are equiva-

lently represented by Doppler-lag coefficients h̆k,d by taking the DFT across the time

5
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Figure 2.1: A realization of the channel in time-lag domain

dimension. We have,

h̆k,d =
1√
N

N−1
∑

n=0

hn,de
−j 2π

N
nk, k ∈ {0, ..., N − 1} (2.1)

2.2 Statistics of Wireless Channels

Since the fading coefficients are random, they are characterized statistically. One

of the common ways of characterizing the random sequence is by its auto-correlation

function. We assume the channel fading statistics to be wide sense stationary uncor-

related scattering (WSSUS). Hence, we have

E{hn,dh
∗
n−k,d−m} = rhh(k, d)δ(m), (2.2)

6



where δ(·) denotes the Kronecker-Delta function. For the Rayleigh fading channel [11],

the auto-correlation function is given by

rhh(k, d) = σ2
dJ0(2πfdk) (2.3)

where σ2
d denotes the variance of the dth path, J0(·) is the 0th order Bessel function

of the first kind and fd denotes the normalized Doppler frequency. The normalized

Doppler frequency characterizes the rate of variation of the channel in time, higher

the value of fd, more rapidly the channel varies. The auto-correlation function (2.3)

for different Doppler frequencies is shown in Fig. 2.2. Note that, for higher fd, the

correlation ’decays’ fast which means that the rate of channel variation is high. The

0 500 1000 1500 2000
−0.5

0

0.5

1

0 500 1000 1500 2000
−0.5

0

0.5

1
fd=0.01fd=0.001

Figure 2.2: rhh(k, d) as a function of k with σ2
d = 1
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corresponding power spectral density of the process is given by

Shh(f, d) =

{
σ2

d

πfd

√
1−(f/fd)2

, |f | < fd

0, |f | ≥ fd

(2.4)

So, the Rayleigh fading channel is a band limited random process with the maximum

frequency being fd. In this thesis we consider Rayleigh fading scenario with σ2
d = N−1

h ,

though the techniques presented are applicable to other WSSUS fading scenarios too.

2.3 System Model for TMP

We consider identification of a doubly-selective channel when the transmitted

signal consists of a sequence of frames, and when each frame consists of a data block

followed by a pilot block (see Fig. 2.3). Identification is accomplished using the current

pilot block and past frames, where the data in past frames is assumed to be perfectly

decoded. The length-Np pilot block is assumed to have a Kronecker delta structure,

where Np = 2Nh−1 and Nh is the channel delay spread. This pilot sequence has been

claimed to satisfy several MSE- and capacity-based optimality criteria in the case of

non-decision-directed identification of a doubly-selective channel from a single zero-

padded frame [12]. We derive some additional optimality results in the Appendix A.

The structure of the length-Nd data block is not important; it could be composed of

frequency-domain symbols, as in OFDM [13], or time domain symbols, as in single

carrier cyclic prefix (SCCP) [14]. Nf := Nd + Np denotes the frame interval.

We use T (i)
d :=

{

t
(i)
n

}Nd−1

n=0
to denote the data portion of the ith transmission frame

and T (i)
p :=

{

t
(i)
n

}Nd+Np−1

n=Nd
to denote the corresponding pilot portion. The Kronecker

pattern implies that t
(i)
Nd+Nh−1 =

√
2Nh − 1 and that all the other elements in T (i)

p

are zero. The complete set of samples transmitted during the ith frame is denoted

8



       DATA DATA DATA
......

FRAMEi − 1 ith

Nf

Figure 2.3: Transmission pattern of TMP.

by T (i) := T (i)
d ∪ T (i)

p =
{

t
(i)
n

}Nf−1

n=0
, and the multi-frame transmitted signal {tn} is

defined by tn := t
(#n/Nf $)
〈n〉Nf

.

The transmitted signal passes through a noisy doubly-selective linear channel

before observation at the receiver. The time-n observation can be written as

yn =
Nh−1
∑

d=0

hn,d tn−d + vn for n ∈ Z, (2.5)

where hn,d denotes the response of the channel at time n to an impulse applied at

time n−d, and where {vn} is proper complex zero-mean white Gaussian noise process

with variance σ2
v . If y

(i)
n := yiNf +n and h

(i)
n,d := hiNf +n,d and v

(i)
n := viNf +n, then

y(i)
n =

Nh−1
∑

d=0

h
(i)
n,dt

(i)
n−d + v(i)

n for 0 ≤ n ≤ Nf − 1, (2.6)

with t
(i)
n = 0, −(Nh − 1) ≤ n < 0.

The following notation will be useful in the sequel. Y (i)
d :=

{

y
(i)
n

}Nd+Nh−2

n=0
and

Y (i)
p :=

{

y
(i)
n

}Nf−1

n=Nd+Nh−1
will denote the data and pilot portions of the received samples

in the ith frame, respectively, and Y (i) := Y (i)
d ∪ Y (i)

p . Arranging the elements of

Y (i)
d ,Y (i)

p , and Y (i) in increasing order yields the vectors y
(i)
d , y

(i)
p , and y(i), respectively.

9



Similarly, H(i)
d :=

{

h
(i)
n,d ∀d

}Nd+Nh−2

n=0
, H(i)

p :=
{

h
(i)
n,d ∀d

}Nf−1

n=Nd+Nh−1
, and H(i) :=

H(i)
d ∪H(i)

p . The vectors h
(i)
d and h(i)

p are defined element-wise as
[

h
(i)
d

]

l
= h

(i)
#l/Nh$,〈l〉Nh

and
[

h(i)
p

]

l
= h

(i)
Nd+Nh−1+#l/Nh$,〈l〉Nh

, and h(i) =
[

h
(i)t
d , h(i)t

p

]t
.

Based on the convolution (2.6), y
(i)
d can be written

y
(i)
d = T

(i)
d h

(i)
d + v

(i)
d (2.7)

where v
(i)
d =

[

v
(i)
0 , v

(i)
1 , . . . , v

(i)
Nd+Nh−2

]t
and where T

(i)
d is given by

T
(i)
d =









t
(i)
0 · · · t

(i)
−(Nh−1)

t
(i)
1 · · · t

(i)
−(Nh−2)

. . .

t
(i)
Nd+Nh−2 · · · t

(i)
Nd−1









Let bp denote the pth column of INh
and let Bp be the diagonal matrix formed from

bp. With Gp :=
√

2Nh − 1 [B0, . . . , BNh−1], we have

y(i)
p = Gph

(i)
p + v(i)

p (2.8)

where v
(i)
p =

[

v
(i)
Nd+Nh−1, . . . , v

(i)
Nf−1

]t
. Recalling y(i) =

[

y
(i)t
d , y

(i)t
p

]t
, (2.7) and (2.8)

imply

y(i) =

[

T
(i)
d

Gp

]

︸ ︷︷ ︸

T (i)

[

h
(i)
d

h(i)
p

]

︸ ︷︷ ︸

h(i)

+

[

v
(i)
d

v
(i)
p

]

︸ ︷︷ ︸

v(i)

(2.9)

Taking the point of view that h
(i)
d is useful for detection of the unknown data in

T (i), our goal is estimation of h
(i)
d using current and past observations

{

Y (i−k)
}

k≥0
,

current pilots T (i)
p , and past transmission frames

{

T (i−k)
}

k≥1
. The pilots are known

a priori by the receiver, and, under the assumption of perfect decoding, past trans-

mission frames are known as well.

10



2.4 Review of Standard Estimators

In this section, we review the “standard” methods of channel identification and

tracking. These techniques are MMSE estimators and uses the second-order channel

fading statistics for estimation [15]. We also present their draw backs.

2.4.1 Pilot-aided Wiener Estimator

The pilot-aided Wiener estimator (PW) uses only the received samples from the

pilot block in the ith frame and M previous frames, i.e.,
{

Y (i−k)
p

}k=M

k=0
. Hence we form

the observation vector y(i)
p

=
[

y
(i)t
p , . . . , y

(i−M)t
p

]t
. Using (2.8), we have

y(i)
p

=






Gp

. . .
Gp






︸ ︷︷ ︸

GM






h(i)
p
...

h(i−M)
p






︸ ︷︷ ︸

h(i)
p

+






v
(i)
p

...

v
(i−M)
p




 . (2.10)

Since h
(i)
d and y(i)

p
are jointly Gaussian, the MMSE estimator is linear and given

by [15]

ĥ
(i)

d

∣
∣
pilot

= RH
hp,hd

GH
M

(

GMRhp,hp
GH

M + σ2
vI
)−1

y(i)
p

(2.11)

where Rhp,hd
= E

{

h(i)
p h

(i)H
d

}

and Rhp,hp
= E

{

h(i)
p h(i)H

p

}

.

The estimator coefficients in (2.11) are frame invariant. Hence PW doesn’t require

matrix inversion at frame rate. The pilot observations give the samples of the channel

process with the interval of Nf . If fd > 1
2Nf

then the channel is under-sampled and

identification breaks down. This limits the MSE performance of PW at high Doppler

frequencies.

11



2.4.2 Pilot-aided Decision-directed Wiener Estimator

The pilot-aided decision-directed Wiener estimator (PDW) uses the pilot block

in the ith frame Y (i)
p as well all received samples in M previous frames

{

Y (i−k)
}M

k=1
.

Here we form the observation vector y(i)
w

=
[

y
(i)t
p , y(i−1)t, . . . , y(i−M)t

]t
and the channel

vector h(i)
w =

[

h(i)t
p , h(i−1)t, . . . , h(i−M)t

]t
. Using (2.8) and (2.9), we have

y(i)
w

= T (i)
w h(i)

w + v(i)
w (2.12)

where v
(i)
w =

[

v
(i)t
p , v(i−1)t, . . . , v(i−M)t

]t
and

T (i)
w = blkdiag

(

Gp, T
(i−1), T (i−2), . . . , T (i−M)

)

. Assuming that all the previous data

blocks have been correctly decoded, the matrix T (i)
w is known and the quantities y(i)

w

and h(i)
w are jointly Gaussian. Hence the MMSE estimator is linear and given by

ĥ
(i)

d

∣
∣
wiener

= RH
hw,hd

T (i)H
w

(

T (i)
w Rhw,hw

T (i)H
w + σ2

vI
)−1

y(i)
w

(2.13)

where Rhw,hd
= E

{

h(i)
w h

(i)H
d

}

and Rhw,hw
= E

{

h(i)
w h(i)H

w

}

. In the estimator equation

(2.13), the inverted matrix is of size (MNf +Nh)× (MNf +Nh) and the inverse must

be computed for each frame index i. Though PDW doesn’t suffer from the sampling

limitation, it has huge computational complexity. Thus increasing M leads to higher

performance but increased complexity.

2.4.3 Pilot-aided Decision-directed Kalman Estimator

In this section, we find the pilot-aided decision-directed Kalman estimator (PDK)

by formulating our channel estimation as a Kalman prediction problem [16]. We

assign h(i−1) as the current state of the channel, h(i) as the next state, and y(i−1)
k

=

[

y
(i−1)t
d , y

(i)t
p

]t
as the current observation. The state dynamics can be written as

h(i) = Akh
(i−1) + Dkw

(i−1)
k (2.14)

12



where w
(i−1)
k is a white Gaussian vector, i.e., E

{

w
(i−1)
k w

(i−1−p)H
k

}

= σ2
wk

Iδ(p). The

matrices Ak and Dk, and the state noise variance σ2
wk

, are obtained by auto regressive

(AR) modeling of the Doppler channel. The WSSUS assumption implies that Ak,

Dk and σ2
wk

are constant from frame to frame. Using (2.7),

y
(i−1)
d = T

(i−1)
d h(i−1) + v

(i−1)
d , (2.15)

y(i)
p = Gh(i) + v(i)

p , (2.16)

where G = [0Nh×(Nd+Nh−1)Nh
, Gp]. Using (2.14), we can rewrite (2.16) as

y(i)
p = GAkh

(i−1) + GDkw
(i−1)
k + v(i)

p . (2.17)

With (2.15) and (2.17) we have

y(i−1)
k

=

[

T
(i−1)
d

GAk

]

︸ ︷︷ ︸

C
(i−1)
k

h(i−1) +

[

v
(i−1)
d

GDkw
(i−1)
k + v

(i)
p

]

︸ ︷︷ ︸

v
(i−1)
k

(2.18)

We define Sk = E
{

w
(i−1)
k v

(i−1)H
k

}

and Rk = E
{

v
(i−1)
k v

(i−1)H
k

}

for use in the se-

quel. From (2.14) and (2.18), the MMSE estimate of h(i) using the observations

{

y(i−1)
k

, . . . , y(0)
k

}

, denoted by ĥ
(i)∣
∣
kalman

, is given recursively as

ĥ
(i)∣
∣
kalman

= Akĥ
(i−1)∣

∣
kalman

+ L
(i−1)
k

(

y(i−1)
k

− C
(i−1)
k ĥ

(i−1)∣
∣
kalman

)

where the predictor gain L
(i−1)
k is given by

L
(i−1)
k =

(

AkP
(i−1)
k C

(i−1)H
k + DkSk

)(

C
(i−1)
k P

(i−1)
k C

(i−1)H
k + Rk

)−1

(2.19)

and P
(i−1)
k is given recursively as

P
(i−1)
k = σ2

wk
DkD

H
k + AkP

(i−2)
k AH

k − L
(i−2)
k

(

C
(i−2)
k P

(i−2)
k AH

k + SH
k DH

k

)

13



with initializations P
(0)
k = E{h(0)h(0)H} and ĥ

(0)∣
∣
kalman

= 0.

Note that the Kalman estimator uses all previous observations in its prediction

of h(i); this is the advantage of the PDK over the PDW. However, the performance

of the PDK depends on how well the model (2.14) describes the true evolution of

the state process. Increasing the AR model order helps in the making the ’match’ of

the true and model auto-correlation function ’longer’ (See Fig. 2.4). But even with

higher model order, note that there is deviation from the true auto-correlation for

large values of the ’time difference’. Note also, from (2.19), that the PDK requires a

matrix inversion of size Nf × Nf once per frame.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

1.5
true
model (order = 2)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1
true
model (order = 100)

Figure 2.4: Auto-correlation mismatch for fd = 0.01.
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CHAPTER 3

LOW COMPLEXITY ESTIMATION FOR TIME
MULTIPLEXED PILOTS SYSTEM

3.1 Low Complexity Predictor

In this section, we describe a novel computationally-efficient decision-directed

channel tracker (LCP) that does not require large matrix inversions [17]. We break

the prediction of h
(i)
d into two stages. In the first stage, we find “smoothed” channel

estimates during the (i − 1)th frame. In the second stage, we use the received pilot

block in the ith frame as well as smoothed channel estimates from M previous frames

to predict h
(i)
d . With some approximations, the predictor can be made time-invariant,

leading to significant computational savings.

3.1.1 Kalman Smoothing Stage

The smoothed channel estimates of the (i−1)th frame are obtained using Kalman

filtering. We divide each frame into K =
Nf

L sub-frames of size L and design the

Kalman smoother such that it finds the smoothed channel estimates of each particular

sub-frame using the received samples during that sub-frame. Since we process only

L measurements at a time, this requires only K inversions of size L × L per frame.

Details are provided below.

15



.

Pilotsmoothed frames

Current frame...

. . .
. . .

  
          Current frame

predict, smooth, predict, smooth, etc...

Wiener Prediction Stage

Kalman Smoothing Stage

Nf

Nf

L

Figure 3.1: Two stages of LCP.

Let H(i−1,k) and Y (i−1,k) denote the kth sub-frame’s channel coefficients and obser-

vations, respectively, with H(i−1,k) =
{

h
(i−1)
n,d ∀d

}(k+1)L−1

n=kL
and Y (i−1,k) =

{

y
(i−1)
n

}(k+1)L−1

n=kL

for k ∈ {0, . . . , K − 1}. The vectors h(i−1,k) and y(i−1,k) are defined element-wise as

[

h(i−1,k)
]

l
= h

(i−1)
kL+#l/Nh$,〈l〉Nh

and
[

y(i−1,k)
]

l
= y

(i−1)
kL+l . The smoother’s dynamical equa-

tion relating the current channel state, h(i−1,k), the next state, h(i−1,k+1) is

h(i−1,k+1) = Alh
(i−1,k) + Dlw

(i−1,k)
l (3.1)

where w
(i−1,k)
l is a white Gaussian process with E

{

w
(i−1,k)
l w

(i−1−p,k−q)
l

}

= σ2
wl

Iδ(p)δ(q).

The matrices Al and Dl and σ2
wl

are obtained by AR modeling of the channel. The

current observation y(i−1,k) can be written as

y(i−1,k) = T
(i−1,k)
l h(i−1,k) + v(i−1,k) (3.2)
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where T
(i−1,k)
l is an L × LNh matrix with the structure

T
(i−1,k)
l =








t
(i−1)
kL ··· t

(i−1)
kL−(Nh−1)

t
(i−1)
kL+1 ··· t

(i−1)
kL+1−(Nh−1)

...
t
(i−1)
(k+1)L−1 ··· t

(i−1)
(k+1)L−Nh








(3.3)

and v(i−1,k) =
[

v
(i−1)
kL , . . . , v

(i−1)
(k+1)L−1

]t
.

For the system described by (3.1) and (3.2), let h̃
(i−1,k)

l denote the smoothed

MMSE estimate of h(i−1,k) using observations
{

y(i−1,k), . . . , y(i−1,0), y(i−2), . . . , y(0)
}

,

and let ĥ
(i−1,k)

l denote the predicted MMSE estimate of h(i−1,k) using the observations

{y(i−1,k−1), . . . , y(i−1,0), y(i−2), . . . , y(0)}. The smoothed estimate and smoother gain

are [16]

h̃
(i−1,k)

l = ĥ
(i−1,k)

l + M
(i−1,k)
l

(

y(i−1,k) − T
(i−1,k)
l ĥ

(i−1,k)

l

)

M
(i−1,k)
l = P

(i−1,k)
l T

(i−1,k)H
l

(

T
(i−1,k)
l P

(i−1,k)
l T

(i−1,k)H
l + σ2

vI
)−1

(3.4)

The predicted estimate and P
(i−1,k)
l are given recursively as

ĥ
(i−1,k)

l = Alĥ
(i−1,k−1)

l + AlM
(i−1,k−1)
l

(

y(i−1,k−1) − T
(i−1,k−1)
l ĥ

(i−1,k−1)

l

)

P
(i−1,k)
l = σ2

wl
DlD

H
l + AlP

(i−1,k−1)
l AH

l − AlM
(i−1,k−1)
l T

(i−1,k−1)
l P

(i−1,k−1)
l AH

l

with initializations P
(i−1,0)
l = P

(i−2,K)
l , ĥ

(i−1,0)

l = ĥ
(i−2,K)

l , P
(0,0)
l = E{h(0,0)h(0,0)H},

and ĥ
(0,0)

l = 0. We form the smoothed estimate of the channel tap vector for the

(i − 1)th frame by collecting the smoothed estimates of the channel in all K sub-

frames as h̃
(i−1)

l =
[

h̃
(i−1,0)t

l , . . . , h̃
(i−1,K−1)t

l

]t
. This smoothed channel estimate vector

is related to the true channel vector h(i−1) and the smoothing error e
(i−1)
l via

h̃
(i−1)

l = h(i−1) + e
(i−1)
l . (3.5)
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3.1.2 Wiener Prediction Stage

We form the prediction stage observation vector as y(i)
l

=
[

y
(i)t
p , h̃

(i−1)t

l , . . . , h̃
(i−M)t

l

]t
.

From (2.16) and (3.5), we have

y(i)
l

=








G
INfNh

. . .
INf Nh








︸ ︷︷ ︸

B








h(i)

h(i−1)

...
h(i−M)








︸ ︷︷ ︸

h
(i)
l

+








v
(i)
p

e
(i−1)
l
...

e
(i−M)
l








︸ ︷︷ ︸

v
(i)
l

Experimentally, we find that the smoothing error e
(i)
l is dominated by the measure-

ment noise. So, to reduce predictor complexity, we make the following approxima-

tions.

1. The smoothing errors are white with variance σ2
v ,

E{e(p)
l e

(q)H
l } = σ2

vIδ(p − q) (3.6)

E{v(p)
p e

(q)H
l } = 0 ∀ p )= q. (3.7)

2. The smoothing errors are uncorrelated with the channel,

E{h(p)e
(q)H
l } = 0 ∀ p, q. (3.8)

With (3.6)-(3.8), the predictor equation is

ĥ
(i)

d

∣
∣
lcp

= RH
hl,hd

BH
(

BRhl,hl
BH + σ2

vI
)−1

y(i)
l

, (3.9)

where Rhl,hd
= E

{

h
(i)
l h

(i)H
d

}

and Rhl,hl
= E

{

h
(i)
l h

(i)H
l

}

.

The predictor coefficients in (3.9) are time invariant; matrix inversion is not re-

quired at the frame rate. Thus LCP requires at most an L × L matrix inversion in

the smoothing stage (3.4). The choice of L is a tradeoff between performance and

complexity.
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3.2 LCP Modifications

Here we discuss modifications to the LCP prediction stage motivated by further

reductions in complexity and memory requirements.

3.2.1 LCP with Doppler-Lag Coefficients

The Doppler-lag channel coefficients are obtained by taking the DFT of the time-

lag coefficients across the time dimension. With F denoting the Nf × Nf unitary

DFT matrix, the ith-frame Doppler-lag coefficients h
(i)
dl are obtained as

h
(i)
dl = (F ⊗ INh

) h(i) (3.10)

where ⊗ denotes Kronecker product. Out of these, only a few coefficients have sig-

nificant energy [10]. In LCP with Doppler-lag coefficients (LCPD), we use only these

significant Doppler coefficients of the past smoothed frames. Let S be the selection

matrix,

S =

[

Ir+1 0(r+1)×(Nf−2r−1) 0(r+1)×r

0r×(r+1) 0r×(Nf−2r−1) Ir

]

(3.11)

with 2r + 1 being the number of significant Doppler-coefficients of each tap. The

significant Doppler coefficients in the ith frame h
(i)
ds are

h
(i)
ds = (S ⊗ INh

)h(i)
dl

= (S ⊗ INh
)(F ⊗ INh

)h(i)

= (SF ⊗ INh
)

︸ ︷︷ ︸

J

h(i). (3.12)
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The significant smoothed Doppler coefficients of the (i − 1)th frame are

h̃
(i−1)

ds = Jh̃
(i−1)

l

= h
(i−1)
ds + Je

(i−1)
l

︸ ︷︷ ︸

e
(i−1)
ds

. (3.13)

With (3.6), we have [18]

E{e(i−1)
ds e

(i−1)H
ds } = E{Je

(i)
l e

(i)H
l JH}

= (SF ⊗ INh
)(σ2

vI)(SF ⊗ INh
)H

= σ2
v(SF ⊗ INh

)({SF }H ⊗ INh
)

= σ2
v(SFF HSH) ⊗ INh

= σ2
vI(2r+1)Nh

. (3.14)

We form the LCPD observation vector as y(i)
ds

=
[

y
(i)t
p , h̃

(i−1)t

ds , . . . , h̃
(i−M)t

ds

]t
, yielding

y(i)
ds

=








G
J

. . .
J








︸ ︷︷ ︸

Ads








h(i)

h(i−1)

...
h(i−M)








︸ ︷︷ ︸

h
(i)
ds

+








v
(i)
p

e
(i−1)
ds
...

e
(i−M)
ds








︸ ︷︷ ︸

e
(i)
ds

. (3.15)

Using (3.6)-(3.8) and (3.14), the MMSE estimate of h
(i)
d using y(i)

ds
is given by

ĥ
(i)

d

∣
∣
lcpd

= RH
hds,hd

AH
ds

(

AdsRhdshds
AH

ds + σ2
vI
)−1

y(i)
ds

where Rhds,hd
= E

{

h
(i)
ds h

(i)H
d

}

and Rhds,hds
= E

{

h
(i)
ds h

(i)H
ds

}

. Since, typically, (2r +

1) + Nf , LCPD has a reduced computational and memory load relative to LCP.

3.2.2 LCP with Kalman Prediction

The prediction stage of LCP was based on Wiener prediction using smoothed esti-

mates of M previous frames. Here we present LCP with Kalman prediction (LCKP).
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As stated before, the Kalman predictor incorporates all previously smoothed esti-

mates, giving an advantage over the Wiener predictor if the dynamical equation—in

this case (2.14)—models the true evolution of the state process. For prediction, the

current observation can be written as

y(i−1)
lk

=
[

h̃
(i−1)t

ld , y(i)t
p

]t
(3.16)

where h̃
(i−1)

ld is the smoothed channel estimate during the data portion of the (i−1)th

frame:

h̃
(i−1)

ld =
[

I(Nd+Nh−1)Nh
0(Nd+Nh−1)Nh×N2

h

]

︸ ︷︷ ︸

Blk

h̃
(i−1)

l

= Blkh
(i−1) + Blke

(i−1)
l . (3.17)

Using (2.14), (2.16), and (3.17), y(i−1)
lk

can be rewritten as

y(i−1)
lk

=

[

Blk

GAk

]

︸ ︷︷ ︸

C lk

h(i−1) +

[

Blke
(i−1)
l

v
(i)
p + GDkw

(i−1)
k

]

︸ ︷︷ ︸

v
(i−1)
lk

(3.18)

Defining Rlk = E
{

v
(i−1)
lk v

(i−1)H
lk

}

and S lk = E
{

w
(i−1)
k v

(i−1)H
lk

}

, approximations (3.6)-

(3.8) imply

Rlk =

[

σ2
vBlkB

H
lk

σ2
vI + σ2

wk
GDkD

H
k GH

]

(3.19)

S lk =
[

0NfNh×(Nd+Nh−1)Nh
σ2

wk
DH

k GH
]

. (3.20)

Since constant matrices are used in the dynamical equation (2.14), the observation

equation (3.18), and the correlation matrix definitions (3.19) and (3.20), the steady

state Kalman predictor suffices [16]. Denoting ĥ
(i)∣
∣
lckp

as the MMSE estimate of

h(i) using the observations
{

y
(i−1)
lk , . . . , y

(0)
lk

}

, the recursive steady state predictor
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equations are

ĥ
(i)∣
∣
lckp

= Akĥ
(i−1)∣

∣
lckp

+ L∞

(

y(i−1)
lk

− C lkĥ
(i−1)∣

∣
lckp

)

L∞ = (AkP∞C lk + DkS lk)
(

C lkP∞CH
lk + Rlk

)−1

with symmetric, positive semi-definite Riccati solution

P∞ = σ2
wk

DkD
H
k + AkP∞AH

k − (AkP∞C lk + DkS lk)

×
(

C lkP∞CH
lk + Rlk

)−1 (
C lkP∞AH

k + SH
lk DH

lk

)

.

Note that L∞ and P∞ are frame invariant. Whereas the LCP observation includes

smoothed estimates from M previous frames, the LCKP observation includes only

smoothed estimates from the most recently decoded frame, thus reducing memory

requirements.

3.3 Persistent Training and Prediction

In this section, we consider a reference scheme “persistent training and prediction”

(PTP), in which we consider channel estimation with a persistent training sequence.

The training sequence is chosen to minimize the approximate expression for MSE,

and we use infinite past observations for prediction. The performance of PTP will

give the benchmark of the performance of our estimators.

3.3.1 Training Sequence Design

We search for the MSE-minimizing training sequence for doubly-selective channel

parameter estimation. The estimator is assumed to know the pilots in the current

frame and both data and pilots in M past frames, for the frame structure of Fig. 2.3.

For simplicity, though, we assume the frame duration is an integer multiple of the
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delay spread Nh, i.e., Nf = QNh for Q ∈ Z, and that the channel is block-fading :

the coefficients are fixed within Nh-sample temporal blocks but change arbitrarily

between blocks. In addition, we focus on the high SNR regime, in that we find the

sequence which minimizes a truncated series expansion of MSE rather than MSE itself.

Finally, we restrict ourselves to Nf -periodic transmissions, since we are interested in

estimation of h
(i)
d at every frame index i.

Adapting (2.9) to the block fading model, the ith-frame observation becomes

y(i) = T
(i)
b h

(i)
b + v(i).

where the block-fading coefficients h
(i)
b are defined element-wise as [h(i)

b ]l := h
(i)
Nh#l/Nh$,〈l〉Nh

,

and where T
(i)
b := blkdiag

(

T
(i)
0 , . . . , T

(i)
Q−1

)

for Toeplitz

T (i)
q :=






t
(i)
qNh

· · · t
(i)
qNh−Nh+1

...
. . .

...

t
(i)
qNh+Nh−1 · · · t

(i)
qNh




 .

Note that the assumed frame structure guarantees T
(i)
Q−1 =

√
2Nh − 1 INh

. Since

Nf -periodicity implies that T
(i)
b is invariant to i, we henceforth drop the superscript

notation on transmission matrices.

The observations due to the ’pilot’ in the ith frame is written as

y(i)
p = T Q−1h

(i)
p + v(i)

p

where h(i)
p = [h(i)

Nf−Nh,0, ...h
(i)
Nf−Nh,Nh−1]

t and v
(i)
p = [v(i)

Nf−Nh
, ..., v

(i)
Nf−1]

t.

The multi-frame observation y(i) :=
[

y
(i)t
p , y(i−1)t, . . . , y(i−M)t

]t
can be written

y(i) = T bh
(i)
b + v

(i)
b ,

where T b := blkdiag(T Q−1, IM ⊗T b), h
(i)
b :=

[

h(i)t
p , h

(i−1)t
b , . . . , h

(i−M)t
b

]t
and v

(i)
b :=

[

v
(i)t
p , v(i−1)t, . . . , v(i−M)t

]t
.
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The MMSE estimate of h
(i)
d using y(i) is given by

ĥ
(i)

d = P HT H
b

(

T bRbT
H
b + σ2

vI
)−1

y(i)

where Rb := E
{

h
(i)
b h

(i)H
b

}

and P := E
{

h
(i)
b h

(i)H
d

}

. Defining Rd := E
{

h
(i)
d h

(i)H
d

}

,

the total MSE is given by

(σ(i)
e )2 := tr

(

E

[
(

h
(i)
d − ĥ

(i)

d

)(

h
(i)
d − ĥ

(i)

d

)H
])

= tr
(

Rd − P HT H
b

(

T bRbT
H
b + σ2

vI
)−1

T bP
)

= tr
(

Rd − P H
(

Rb + σ2
vT

−1
b T−H

b

)−1
P
)

. (3.21)

At high SNR, the inverse in (3.21) can be well approximated using a truncated power

series expansion [19]:

(

Rb + σ2
vT

−1
b T−H

b

)−1

=
(

I + σ2
vR

−1
b T −1

b T−H
b

)−1
R−1

b

≈ R−1
b − σ2

vR
−1
b T −1

b T−H
b R−1

b . (3.22)

Equations (3.21) and (3.22) suggest that the “data” sequence should be chosen to

minimize, subject to unit power constraint,

tr
(

P HR−1
b T −1

b T−H
b R−1

b P
)

,

i.e., tr
(

T−1
b T −H

b Z
)

for Z := R−1
b PP HR−1

b .

For k ∈ {0, . . . , MQ}, let Zk denote the kth Nh × Nh diagonal sub-matrix of Z,

i.e., Zk = [Z]kNh:kNh+Nh−1,kNh:kNh+Nh−1. Because T b is block diagonal with Nh × Nh

blocks, we have

tr
(

T−1
b T −H

b Z
)

≥
M
∑

k=0

λ−1
Q−1 tr(ZkQ) +

Q−2
∑

k=0

λ−1
k z(k) (3.23)
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where λk denotes the maximum eigenvalue of T kT
H
k and z(k) :=

∑M−1
l=0 tr(Zk+lQ+1).

The first term on the right of (3.23) is contributed by pilots and the second by data.

Equality in (3.23) is achieved iff all eigenvalues of T kT
H
k equal λk. Assuming that this

is the case—(we shall give an example) we minimize the second term under the unit-

power constraint. Note that all eigenvalues of T Q−1T
H
Q−1 equal λQ−1 = 2Nh−1. Using

Lagrange optimization to minimize
∑Q−2

k=0 λ
−1
k z(k) subject to

∑Q−2
k=0 λk = Nf−2Nh+1,

we find the optimal values to be

λk =
(Nf − 2Nh + 1)
∑Q−2

l=0

√

z(l)

√

z(k), k ∈ {0, . . . , Q − 2} (3.24)

where z(k) ≥ 0 ∀k since Z is positive semi-definite. Now, consider the frame sequence

t(i−1)
n =

√

λ# n
Nh

$δ
(

〈n〉Nh

)

n ∈ {0, . . . , Nf − 2Nh},

with {λk}Q−2
k=0 from (3.24). This sequence satisfies the criterion that all the eigen

values of T kT
H
k are equal to the optimal values found in (3.24) and hence achieves

the minimum value of the lower bound (3.23) on the truncated MSE expansion.

We find the the performance of PTP by letting M approach ∞, using an IIR

Wiener estimator and transmitting the sequence found from the previous section.

This will give the benchmark for the prediction techniques considered earlier, since

we are transmitting an optimal sequence in minimizing the approximate MSE and we

are predicting the channel using infinite number of past observations.

3.4 Simulation Results

We consider frame size Nf = 80 and channel delay spread Nh = 8. For each

estimation technique, the required matrix inversion size is given in Table 3.1. The

nominal values of M and L in our simulations are 2 and 10 respectively. Though
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Technique Size of matrix inversion per frame
PW n.a.

PDW (MNf + Nh) × (MNf + Nh)
PDK Nf × Nf

LCP,LCPD,LCKP L × L

Table 3.1: Relative Algorithm Complexity.

LCP, LCPD and LCKP require K =
Nf

L matrix inversions (of size L) per frame, the

O(N3) matrix inversion complexity rule implies that LCP, LCPD and LCKP are more

computationally efficient than PDW and PDK. For all simulations, MSE performance

is averaged over at least 1000 channel realizations, where each realization spans at

least 10 frames.

In Fig. 3.2, we plot MSE versus SNR at fd = 0.01, and in Fig. 3.3, we plot

MSE versus fd at SNR = 15dB. When fd > (2Nf)−1 ≈ 0.006, it is seen that the

performance of PW is poor. For all fd, LCP performance is relatively close to PDW

and PDK. For SNRs below about 15dB, LCP, PDW, and PDK are relatively close to

the PTP benchmark.

In Fig. 3.4, we show the effect of M , the number of previous frames, on LCP

and PDW. Increasing M improves both PDW and LCP performance at the cost of

increased complexity. In Fig. 3.5, we show the effect of L, the sub-frame size, on LCP

performance. Increasing L improves Kalman smoothing performance at the cost of

increased complexity.

In Fig. 3.6, we compare the MSE performance of LCP and LCPD for different

values of L. The number of significant Doppler coefficients are chosen according to

r = 0Nffd + 41 = 5. The results show that the MSE performance of LCPD is very
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close to that of LCP, even though the number of smoothed coefficients employed in

prediction was reduced by a factor of Nf

2r+1 ≈ 7.

In Fig. 3.7, we compare LCKP to LCP and PDK. As expected, LCKP performs

better than LCP, though the difference is significant only at high SNR. Also as ex-

pected, LCKP performs worse than PDK, though the performance gap would decrease

with an increase in L.
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Figure 3.2: Comparison of estimation techniques for fd = 0.01.
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Figure 3.3: Effect of fd on MSE performance at SNR = 15dB.
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Figure 3.4: Effect of M on PDW and LCP for fd = 0.01.
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Figure 3.5: Effect of L on LCP with M = 2 for fd = 0.01.
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Figure 3.6: Performance of LCPD with M = 2 for fd = 0.01.
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CHAPTER 4

CHANNEL TRACKING FOR FREQUENCY
MULTIPLEXED PILOTS SYSTEM

In this section, we consider the channel tracking problem for a multi-carrier system

with pilot tones. The multi-carrier systems suffer from inter-carrier interference (ICI)

in doubly-selective channels and this poses challenges in estimating the channel using

pilot tones.

We consider a cyclic prefix OFDM (CP-OFDM) system (Fig. 4.1), since it is

one of the most common multi-carrier systems. The channel estimation techniques

presented are applicable to zero-prefix OFDM (ZP-OFDM) systems as well but with

slight modifications.

4.1 System Model

Since we consider a system different from that of Chapter 2 and Chapter 3, we

reintroduce the notation applicable to the new system, which will be used in the rest

of this chapter.

We consider a cyclic-prefix OFDM system with the transmission pattern shown in

Fig. 4.1. Each frame consists of a cyclic prefix portion followed by a OFDM symbol

portion. The length of OFDM symbol is N , while that of cyclic-prefix portion is Nc
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Figure 4.1: Transmission Pattern of FMP.

and Nc is chosen to be Nh − 1, where Nh denotes the delay spread of the channel.

Let Nf = N + Nc denote the frame interval. Let S(i) = {s(i)
k }k=N−1

k=0 denote the set of

frequency domain symbols of the ith OFDM symbol. Np out of N frequency domain

symbols are reserved for pilots and the rest are data symbols. The transmitted signal

t
(i)
n in the ith frame is given by

t
(i)
n+Nc

=
1√
N

N−1
∑

k=0

s
(i)
k ej 2π

N
kn, n = −Nc, ..., N − 1 (4.1)

The complete set of samples transmitted during the ith frame is denoted by T (i) =

{t(i)n }Nf−1
n=0 , and the multi-frame transmitted signal {tn} is defined by tn := t

(#n/Nf $)
〈n〉Nf

.

The transmitted signal passes through a noisy doubly-selective linear channel

before observation at the receiver. The time-n observation can be written as

yn =
Nh−1
∑

d=0

hn,dtn−d + vn for n ∈ Z, (4.2)

where hn,d denotes the response of the channel at time n to an impulse applied at

time n−d, and where {vn} is proper complex zero-mean white Gaussian noise process

with variance σ2
v . If y

(i)
n := yiNf +n and h

(i)
n,d := hiNf +n,d and v

(i)
n := viNf +n, then

y(i)
n =

Nh−1
∑

d=0

h
(i)
n,dt

(i)
n−d + v(i)

n for 0 ≤ n ≤ Nf − 1, (4.3)
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with t
(i)
−n = t

(i−1)
Nf−n for 0 < n ≤ Nh − 1.

The following notation will be useful in the sequel. Y (i) := {y(i)
n }n=Nf−1

n=0 and

H(i) := {h(i)
n,d ∀d}Nf−1

n=0 will denote the set of received samples and the set of channel

tap coefficients of the ith frame respectively.

Taking the point of view that H(i) is useful for detection of the unknown data in

T (i), our goal is estimation of H(i) using current and past observations {Y (i−k)}k≥0,

and past transmission frames {T (i−k)}k≥1. The pilot symbols are known a priori by

the receiver, and, under the assumption of perfect decoding, past transmission frames

are known as well.

4.1.1 Matrix/Vector Notation

For convenience, we introduce vector/matrix notation for our system which will

be used in the subsequent sections. Let sp
(i) denote N × 1 vector of pilot symbols in

the ith OFDM block with zeros put in the position of data symbols. The pilot symbols

are kept the same in all the OFDM blocks and we define sp := s
(i)
p . Similarly, we

form the vector s
(i)
d of data symbols with zeros inserted in the pilot positions. We

define s(i) := sp + s
(i)
d . Let F denote N -point energy-preserving IDFT matrix. We

define tp := Fsp and t
(i)
d := Fs

(i)
d . Forming the vector t(i) = [t(i)0 , ..., t

(i)
Nf−1]

t, we have

t(i) =

[

A0

IN

]

︸ ︷︷ ︸

A

(tp + t
(i)
d )

︸ ︷︷ ︸

t
(i)
s

, (4.4)

where A0 =
[

0Nc×N−NcINc

]

. t
(i)
cp - the cyclic-prefix portion of ith frame is given by

t(i)
cp = A0t

(i)
s . (4.5)
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The received sample vector y(i) = [y(i)
0 , ..., y

(i)
Nf−1]

t can be written as

y(i) = H(i)

[

t
(i−1)
cp

t(i)

]

︸ ︷︷ ︸

t(i)

+v(i) (4.6)

where

H(i) =









h
(i)
0,Nh−1 h

(i)
0,Nh−2 · · · h

(i)
0,0

h
(i)
1,Nh−1 h

(i)
1,Nh−2 · · · h

(i)
1,0

. . . . . . · · · . . .

h
(i)
Nf−1,Nh−1 h

(i)
Nf−1,Nh−2 · · · h

(i)
Nf−1,0









(4.7)

and v(i) = [v(i)
0 , ..., v

(i)
Nf−1]. The convolution in (4.6) can be rearranged as

y(i) = T (i)
s h(i) + v(i) (4.8)

where

T (i)
s =









t
(i)
0 · · · t

(i)
−Nc

t
(i)
1 · · · t

(i)
−(Nc−1)

. . .

t
(i)
Nf−1 · · · t

(i)
Nf−Nh









(4.9)

and h(i) is NfNh×1 vector, described element-wise as [h(i)]l = h
(i)

# l
Nh

$,〈l〉Nh

. Using (4.4)

we divide T (i)
s into the pilot and data components as T (i)

s = T p + T
(i)
d and similarly

t(i) = tp + t
(i)
d .

4.2 Pilot-aided Wiener Estimation

Reasonably accurate estimates of time-invariant channels for OFDM systems can

be obtained with Nh pilot tones. But in doubly-selective channels, the scenario is

different because of the ICI introduced. We give a pilot- based Wiener estimation

technique(PW) which takes complete account of these ICI effects.
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We use the received samples of M previous frames and also the current frame

to estimate the channel during the current frame. We form the observation vector,

y(i)
m

= [y(i−M)t, ...,y(i)t]t and we have

y(i)
m

= H(i)
m t(i)

m + v(i)
m (4.10)

where

H(i)
m =














h
(i−M)
0,Nh−1 · · · h

(i−M)
0,0

. . . . . . . . .

h
(i−M)
Nf−1,Nh−1 · · · h

(i−M)
Nf−1,0

h
(i−M+1)
0,Nh−1 · · · h

(i−M+1)
0,0

. . . . . . . . .

h
(i)
Nf−1,Nh−1 · · · h

(i)
Nf−1,0














t
(i)
m = [t(i−M−1)t

cp , t(i−M)t, t(i−M+1)t, ..., t(i)t]t and v
(i)
m = [v(i−M)t, ...,v(i)t]t. We assume

that the data vector t
(i)
d is zero-mean and uncorrelated with the data vector of other

OFDM symbols, i.e., E{t(i)
d t

(j)H
d } = Rdδ(i − j). Now, we have

Ry
m

,y
m

= E{y(i)
m

y(i)H
m

}

= E{H(i)
m t(i)

m t(i)H
m H(i)H

m } + σ2
vI

= E{E{H(i)
m t(i)

m t(i)H
m H(i)H

m |H(i)
m }} + σ2

vI

= E{H(i)
m E{t(i)

m t(i)H
m }

︸ ︷︷ ︸

Rtm,tm

H(i)H
m } + σ2

vI (4.11)

= σ2
vI +

Nh−1
∑

k=0

Rm 2 R
(k)
tm,tm

(4.12)

where 2 denotes point-wise multiplication, Rm is a (M +1)Nf × (M +1)Nf Toeplitz

matrix with its first column and row being [Rm]l,0 = [Rm]0,l = N−1
h J0(2πfdl) and

R
(k)
tm,tm

= [Rtm,tm
]k:(M+1)Nf +k−1,k:(M+1)Nf+k−1. (4.12) follows from (4.11) since different
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channel taps are uncorrelated but have the same fading statistics. Now,

t(i)
m =








A0

A
. . .

A








︸ ︷︷ ︸

Am

(








tp

tp

...
tp








︸ ︷︷ ︸

tpm

+








t
(i−M−1)
d

t
(i−M)
d

...

t
(i)
d








︸ ︷︷ ︸

tdm

) (4.13)

and hence, we have

Rtm,tm
= E{t(i)

m t(i)H
m } (4.14)

= Am{tpmtH
pm + blkdiag(Rd, ...,Rd

︸ ︷︷ ︸

M+2 times

)}AH
m . (4.15)

Now, we rewrite (4.10) as

y(i)
m

= blkdiag(T p, ...,T p
︸ ︷︷ ︸

M+1 times

)h(i) + blkdiag(T (i−M)
d , ...,T

(i)
d )h(i) + v(i)

m (4.16)

where h(i) = [h(i−M)t, ...,h(i)t]t. We have,

Ry
m

,h = E{y(i)
m

h(i)H} (4.17)

= blkdiag(T p, ...,T p
︸ ︷︷ ︸

M+1 times

) E{h(i)h(i)H} (4.18)

and the LMMSE estimate of h(i) using y(i)
m

is given by

ĥ
(i)∣
∣
pilot

= RH
y

m
,hR−1

y
m

,y
m
y(i)

m
(4.19)

4.2.1 Pilot Tone Selection

In case of LTI channels, the pilot tones are uniformly spaced across the band [20].

In the doubly-selective channels, OFDM systems suffer from ICI [8]. In flat fading

time-selective channels, it has been shown in [7], all the pilot tones have to be grouped

together to minimize the ICI effects. So, based on these results, it has been suggested
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in [7], that, for doubly-selective channels, the pilot tones can be grouped as small

clusters and these clusters are spaced uniformly across the band. We address the

issues of cluster size Ncs selection in this section.

We define H
(i)
df := F HH

(i)
d F where [H(i)

d ]n,l = h
(i)
n+Nh−1,〈l−n〉N

, n, l ∈ {0, ..., N−1}.

With y
(i)
d = [y(i)

Nh−1, ..., y
(i)
Nf−1]

t and v
(i)
d = [v(i)

Nh−1, ..., v
(i)
Nf−1]

t, we have

F Hy
(i)
d = H

(i)
df s

(i) + F Hv
(i)
d (4.20)

The above equation relates the DFT of the received samples and the frequency do-

main transmitted symbols. Note that the elements of H
(i)
df are obtained from a linear

transformation of h(i) and hence the MMSE estimate of the elements of H
(i)
df is ob-

tained by the same linear transformation of the MMSE estimate of h(i). Choosing

the pseudo-random pilot symbols in the frequency domain, we calculate the MSE for

the estimate for the elements of pilot and data ’columns’ of H
(i)
df . Note, kth column

of H
(i)
df is decided as a pilot or data column depending on whether s

(i)
k is a pilot or

data symbol.

If we increase the cluster size, the MSE of the pilot columns decreases because

of less interference from the data. This is illustrated in Fig. 4.2. If we increase the

cluster size, the MSE of the data columns decreases up to a certain value of cluster

size and increases afterwards (Fig. 4.3). This is because, as the cluster size increases,

the maximum spacing between the pilot subcarrier and the data subcarrier increases,

which causes the correlation to decrease and hence the MSE performance degrades.

For LTI channel with Nh taps, reliable channel estimates can be obtained with Nh

equi-spaced pilot tones [20]. From the plot Fig. 4.3, we note that, for doubly-selective

channels, the pilot pattern with Nh equi-spaced clusters performs well. Hence the
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cluster size will be

Ncs ≈
Np

Nh
. (4.21)
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Figure 4.2: MSE of pilot ’columns’, N = 32, Nh = 4, Np = 16

The MSE per tap for the estimator in (4.19) is given by

σ2
e =

1

NfNh
tr(Rh ⊗ INh

− RH
y

m
,hR−1

y
m

,y
m
Ry

m
,h) (4.22)

where Rh is a Nf ×Nf Toeplitz matrix with its first column and row being [Rh]l,0 =

[Rh]0,l = N−1
h J0(2πfdl).

For a system with N = 64, Np = 16, and pilot symbols selected from a pseudo-

random sequence, the value of σ2
e in dB is plotted for different channel parameters

and Ncs values in Fig. 4.4 and Fig. 4.5.
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Figure 4.3: MSE of data ’columns’, N = 32, Nh = 4, Np = 16

In Fig. 4.4, we experiment with different values of Nh at fd = 0.01. For each delay

spread, the cluster size given by (4.21) is found to have minimum MSE.

In Fig. 4.5, we experiment with different Doppler frequencies. We note that for

high Doppler frequencies, the cluster size given by (4.21) is better than others. But,

for very low Doppler frequencies, the cluster size of 1 seems to be better than others.

This is because, for very low Doppler frequencies, ICI effects are very little and hence

there is no advantage in grouping the pilot tones. Even in this case, the difference in

performance between cluster size of 1 and that given by (4.21) is very little.

So, the given pilot tone selection procedure provides an extension for doubly-

selective channels and the theoretical MSE plots show its efficacy for wide range of

Doppler frequencies.
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Figure 4.4: Effect of Nh at fd = 0.01, SNR = 15dB, M = 0.
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Figure 4.5: Effect of fd at Nh = 4, SNR = 15dB, M = 0.
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Though, PW is optimal LMMSE estimator, its performance is dominated by ICI

at high Doppler rates.

4.3 Pilot-aided Decision-directed Wiener Estimation

In this pilot-aided decision-directed Wiener estimation(PDW), we use previously

decoded data to improve the MSE performance. The details are given below:

Forming the same observation vector in (4.10), with the assumption that the

previous frames are decoded properly, we compute the auto-correlation matrix R(i)
y

m
,y

m

as in (4.12), with Rtm,tm
replaced by

R
(i)
tm,tm

= Am{twtH
w + blkdiag(0Nf×Nf

, ...,0Nf×Nf
︸ ︷︷ ︸

M+1 times

, Rd)}AH
m (4.23)

where tw = [t(i−M−1)t
s , ..., t

(i−1)t
s , tt

p]
t. Similarly, we have

R
(i)
y

m
,h = E{y(i)

m
h(i)H} (4.24)

= blkdiag(T (i−M)
s , ...,T (i−1)

s , T p)E{h(i)h(i)H} (4.25)

and the LMMSE estimate of h(i) using y(i)
m

is given by

ĥ
(i)∣
∣
wiener

= R
(i)H
y

m
,h(R(i)

y
m

,y
m
)−1y(i)

m
. (4.26)

We note that the PDW requires a matrix inversion of size (M +1)Nf × (M +1)Nf

per frame (4.26). When we increase M , PDW uses more observations for estima-

tion and hence MSE performance improves but the matrix inversion complexity also

increases.

4.4 Pilot-aided Decision-directed Kalman Estimation

In this section, we find the pilot-aided decision-directed Kalman estimator (PDK)

by formulating our channel estimation as a Kalman prediction problem [16]. We
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assign h(i−1) as the current state of the channel, h(i) as the next state, and y(i−1) as

the current observation. The state dynamics can be written as

h(i) = Akh
(i−1) + Dkw

(i−1)
k (4.27)

where w
(i−1)
k is a white Gaussian vector, i.e., E{w(i−1)

k w
(i−1−p)H
k } = σ2

wk
Iδ(p). The

matrices Ak and Dk, and the state noise variance σ2
wk

, are obtained by auto regressive

(AR) modeling of the Doppler channel. The WSSUS assumption implies that Ak, Dk

and σ2
wk

are constant from frame to frame. Let ĥ
(i)

k denote the LMMSE estimate of

h(i) using the observations {y(i−1), ...,y(0)} with the knowledge of previous data and

h̃
(i)

k denote the LMMSE estimate of h(i) using the observations {y(i), ...,y(0)} with the

knowledge of previous data and the current pilot. From the Kalman filter theory [16],

we have

ĥ
(i)

k = Akĥ
(i−1)

k + L
(i−1)
k {y(i−1) − T (i−1)

s ĥ
(i−1)

k } (4.28)

with ĥ
(0)

k = 0 and the predictor gain is given by

L
(i−1)
k = A

(i−1)
k P

(i−1)
k T (i−1)H

s (T (i−1)
s P

(i−1)
k T (i−1)H

s + σ2
vI)−1 (4.29)

and P
(i)
k is given recursively as

P
(i)
k = AkP

(i−1)
k AH

k − L
(i−1)
k T (i−1)

s P
(i−1)
k AH

k + σ2
wk

DkD
H
k (4.30)

with P
(0)
k = Rh ⊗ INh

. Now, h̃
(i)

k is given as

h̃
(i)

k = ĥ
(i)

k + M
(i)
k {y(i) − T pĥ

(i)

k } (4.31)

and

M
(i)
k = P

(i)
k T H

p (T pP
(i)
k T H

p + Ryd + σ2
vI)−1 (4.32)
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where

Ryd = E{H(i)t
(i)
d t

(i)H
d H(i)H} (4.33)

=
Nh−1
∑

k=0

Rh 2 Rtd,td
(k : k + Nf − 1, k : k + Nf − 1) (4.34)

and

Rtd,td
= E{t(i)

d t
(i)H
d } (4.35)

=

[

A0

A

] [

Rd

Rd

] [

A0

A

]H

. (4.36)

Note that the Kalman estimator uses all previous observations in its prediction

of h(i); this is the advantage of the PDK over the PDW. However, the performance

of the PDK depends on how well the model (4.27) describes the true evolution of

the state process. These mismatch related issues are already discussed in Chapter 2.

Note also, from (4.29) and (4.32), that the PDK requires matrix inversions of size

Nf × Nf for each frame.

4.5 Low Complexity Prediction

In this section, we derive a low-complexity predictor for CP-OFDM system sim-

ilar to the one discussed in Chapter 3, which has a smoothing stage followed by a

prediction stage. The details are given below:

4.5.1 Kalman Smoothing Stage

The smoothed channel estimates of the (i−1)th frame are obtained using Kalman

filtering. We divide each frame into sub-frames of size L and design the Kalman

smoother such that it takes the received samples of each sub-frame and finds the

smoothed estimates of the channel of that sub-frame. To find the smoothed estimates
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of the channel during the entire frame, this procedure must be repeated K =
Nf

L times.

Since we use only L measurements at a time, inversion will be performed on at most

an L × L matrix. Details are provided below.

Let H(i−1,k) and Y (i−1,k) denote the set of kth sub-frame’s channel coefficients

and observations respectively, with H(i−1,k) = {h(i−1)
n,d ∀d}(k+1)L−1

n=kL and Y (i−1,k) =

{y(i−1)
n }(k+1)L−1

n=kL for k ∈ {0, ..., K − 1}. The vectors h(i−1,k) and y(i−1,k) are defined

element-wise as [h(i−1,k)]l = h
(i−1)
kL+#l/Nh$,〈l〉Nh

and [y(i−1,k)]l = y
(i−1)
kL+l . Let h(i−1,k) be the

current channel state of the smoother, h(i−1,k+1) be the next state, and y(i−1,k) be the

current observation vector. We write the dynamical equation as

h(i−1,k+1) = Alh
(i−1,k) + Dlw

(i−1,k)
l (4.37)

where w
(i−1,k)
l is a white Gaussian process with E{w(i−1,k)

l w
(i−1−p,k−q)
l } = σ2

wl
Iδ(p)δ(q).

The matrices Al and Dl and σ2
wl

are obtained by AR modeling of the channel. The

current observation y(i−1,k)can be written as

y(i−1,k) = T
(i−1,k)
l h(i−1,k) + v(i−1,k) (4.38)

where T
(i−1,k)
l is a L × LNh matrix with the same structure given in (3.3). For

the system described by (4.37) and (4.38), h̃
(i−1,k)

l denote smoothed MMSE estimate

of h(i−1,k) using observations {y(i−1,k), ...,y(i−1,0), y(i−2), ...,y(0)} and ĥ
(i−1,k)

l denote

predicted MMSE estimate of h(i−1,k) using {y(i−1,k−1), ...,y(i−1,0), y(i−2), ...,y(0)}. The

smoothed estimate is given by [16]

h̃
(i−1,k)

l = ĥ
(i−1,k)

l + M
(i−1,k)
l {y(i−1,k) − T

(i−1,k)
l ĥ

(i−1,k)

l }

with smoother gain

M
(i−1,k)
l = P

(i−1,k)
l T

(i−1,k)H
l (T (i−1,k)

l P
(i−1,k)
l T

(i−1,k)H
l + σ2

vI)−1 (4.39)
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The predicted estimate is given recursively as

ĥ
(i−1,k)

l = Alĥ
(i−1,k−1)

l + AlM
(i−1,k−1)
l {y(i−1,k−1) − T

(i−1,k−1)
l ĥ

(i−1,k−1)

l }

where P
(i−1,k)
l is given recursively as

P
(i−1,k)
l = σ2

wl
DlD

H
l + AlP

(i−1,k−1)
l AH

l − AlM
(i−1,k−1)
l T

(i−1,k−1)
l P

(i−1,k−1)
l AH

l

with initializations P
(i−1,0)
l = P

(i−2,K)
l , ĥ

(i−1,0)

l = ĥ
(i−2,K)

l , P
(0,0)
l = E{h(0,0)h(0,0)H},

and ĥ
(0,0)

l = 0. We form the smoothed estimate of the channel tap vector for the

(i − 1)th frame by collecting the smoothed estimates of channel of all the K sub-

frames as

h̃
(i−1)

l = [h̃
(i−1,0)t

l , ..., h̃
(i−1,K−1)t

l ]t. (4.40)

This smoothed channel estimate vector is related to the true channel vector as

h̃
(i−1)

l = h(i−1) + e
(i−1)
l (4.41)

where e
(i−1)
l denotes the smoothing error.

4.5.2 Wiener Prediction Stage

We form the observation vector as y(i)
l

= [h̃
(i−M)t

l , ..., h̃
(i−1)t

l , y(i)t]t and

y(i)
l

=

[

IMNf Nh

T p

]

︸ ︷︷ ︸

Al

h(i) +

[
0MNfNh×1

T
(i)
d h(i)

]

+








e
(i−M)
l

...

e
(i−1)
l

v(i)








︸ ︷︷ ︸

e
(i)
l

(4.42)

Experimentally, we find that the smoothing error e
(i)
l is dominated by the measure-

ment noise. So, to reduce predictor complexity, we make the following approxima-

tions.
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1. The smoothing errors are uncorrelated with variance σ2
v ,

E{e(p)
l e

(q)H
l } = σ2

vIδ(p − q). (4.43)

E{v(p)e
(q)H
l } = 0 ∀ p )= q. (4.44)

2. The smoothing errors are uncorrelated with the channel,

E{h(p)e
(q)H
l } = 0 ∀ p, q. (4.45)

Now, with (4.43) - (4.45), we have

Ry
l
,y

l
= E{y(i)

l
y(i)H

l
} (4.46)

= Al(Rm ⊗ INh
)AH

l +

[

0MNfNh×MNfNh

Ryd

]

+ σ2
vI (4.47)

We also have

Ry
l
,h = E{y(i)

l
h(i)H} (4.48)

= AlE{h(i)h(i)H}. (4.49)

The LMMSE estimate of h(i) using y(i)
l

is given by

ĥ
(i)∣
∣
lcp

= RH
y

l
,hR−1

y
l
,y

l
y(i)

l
. (4.50)

Note that, the predictor coefficients in (4.50) are time invariant. The matrix

inversion of size L×L is needed in smoothing stage of LCP (4.39) and choice of L is

a tradeoff between performance and complexity.

4.6 Persistent Training and Prediction

In this section, we consider a reference scheme “persistent training and prediction”

(PTP) similar to Section 3.3. We find the benchmark for the performance of our
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estimation techniques by transmitting a persistent training sequence and using a

estimator which incorporates infinite past observations. The training sequence is

chosen to minimize the approximate expression for MSE of the MMSE estimator.

4.6.1 Training Sequence Design

We search for the MSE-minimizing training sequence for doubly-selective channel

parameter estimation. The estimator is assumed to know the pilots in the current

frame and both data and pilots in M past frames, for the frame structure of Fig. 4.1.

For simplicity, though, we assume the frame duration is an integer multiple of the

delay spread Nh, i.e., Nf = QNh for Q ∈ Z, and that the channel is block-fading :

the coefficients are fixed within Nh-sample temporal blocks but change arbitrarily

between blocks. In addition, we find the sequence which minimizes a truncated series

expansion of MSE rather than MSE itself.

With the block fading model, the ith-frame observation becomes

y(i) = T
(i)
b h

(i)
b + v(i).

where the block-fading coefficients h
(i)
b are defined element-wise as [h(i)

b ]l := h
(i)
Nh#l/Nh$,〈l〉Nh

,

and where T
(i)
b := blkdiag

(

T
(i)
0 , . . . , T

(i)
Q−1

)

for Toeplitz

T (i)
q :=






t
(i)
qNh

· · · t
(i)
qNh−Nh+1

...
. . .

...

t
(i)
qNh+Nh−1 · · · t

(i)
qNh




 .

Since the transmitted sequence in the ith frame is composed of pilots and data

(4.4), we can split T
(i)
b into pilot and data component as T

(i)
b = T bp + T

(i)
bd . In the

past frames, we transmit a persistent training sequence, since we are interested in

minimal estimation error for each frame, we restrict our training sequence to be Nf

periodic. Let T b := T
(i−k)
b ∀ k > 0.
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The multi-frame observation y(i) :=
[

y(i)t, y(i−1)t, . . . , y(i−M)t
]t

can be written

y(i) = T bh
(i)
b + v

(i)
b ,

where T b := blkdiag(T bp, IM ⊗ T b), h
(i)
b :=

[

h
(i)t
b , h

(i−1)t
b , . . . , h

(i−M)t
b

]t
and v

(i)
b :=

[

v(i)t + T
(i)
bdh

(i)
b , v(i−1)t, . . . , v(i−M)t

]t
.

The MMSE estimate of h
(i)
b using y(i) is given by

ĥ
(i)

b = P HT H
b

(

T bRbT
H
b + σ2

vRv

)−1
y(i)

where Rb := E{h(i)
b h

(i)H
b }, P := E{h(i)

b h
(i)H
b } and Rv = blkdiag( 1

σ2
v
E{T (i)

bdh
(i)
b h

(i)H
b T

(i)H
bd }+

INf
, IMNf

). Defining R := E{h(i)
b h

(i)H
b }, the total MSE is given by

(σ(i)
e )2 = tr

(

E

[
(

h
(i)
b − ĥ

(i)

b

)(

h
(i)
b − ĥ

(i)

b

)H
])

= tr
(

R − P HT H
b

(

T bRbT
H
b + σ2

vRv

)−1
T bP

)

= tr
(

R − P H
(

Rb + σ2
vT

−1
b RvT

−H
b

)−1
P
)

. (4.51)

We approximate the inverse in the above equation by a truncated power series ex-

pansion [19]:

(

Rb + σ2
vT

−1
b RvT

−H
b

)−1
=

(

I + σ2
vR

−1
b T−1

b RvT
−H
b

)−1
R−1

b

≈ R−1
b − σ2

vR
−1
b T−1

b RvT
−H
b R−1

b . (4.52)

Equations (4.51) and (4.52) suggest that the training sequence should be chosen

to minimize, subject to unit power constraint,

tr
(

P HR−1
b T −1

b RvT
−H
b R−1

b P
)

, (4.53)

i.e., tr
(

T −1
b RvT

−H
b Z

)

for Z := R−1
b PP HR−1

b .
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For l ∈ {0, ..., M}, let Z l denote the lth Nf × Nf sub-diagonal matrix of Z, i.e.,

Z l = [Z]lNf :lNf+Nf−1,lNf :lNf+Nf−1. Due to the block diagonal structure of T b, we have

tr
(

T−1
b RvT

−H
b Z

)

= tr
(

T−1
bp ([Rv]0:Nf−1,0:Nf−1)T

−H
bp Z0

)

+
M
∑

l=1

tr
(

T−1
b T −H

b Z l

)

(4.54)

We minimize the second term in the above equation, by ’proper’ selection of T b.

Now, with the block diagonal structure of T b we have,

M∑

l=1

tr
(

T−1
b T −H

b Z l

)

≥
Q−1
∑

k=0

1

λk
z(k) (4.55)

where λk is the maximum eigen value of T kT
H
k , z(k) =

∑M
l=1 tr (Z l,k) and Z l,k is kth

Nh × Nh diagonal sub-matrix of Z l, i.e., Zl,k = [Z l]kNh:kNh+Nh−1,kNh:kNh+Nh−1. The

equality in (4.55) holds iff all the eigen values of T kT
H
k equal λk. Assuming that this

is the case - (we shall give an example), we minimize RHS of (4.55) with the unit

power constraint
∑Q−1

k=0 λk = Nf . Using the method of Lagrange optimization, we

find the optimal values to be

λk =
Nf

∑Q−1
l=0

√

z(l)

√

z(k), k ∈ {0, . . . , Q − 1} (4.56)

where z(k) ≥ 0 ∀k since Z is positive semi-definite. Now, consider the frame sequence

t(i−1)
n =

√

λ# n
Nh

$δ
(

〈n〉Nh

)

n ∈ {0, . . . , Nf − 1},

with {λk}Q−1
k=0 from (4.56). This sequence satisfies the criterion that all the eigen

values of T kT
H
k are equal to the optimal values found in (4.56) and hence achieves

the minimum value of the lower bound (4.55) on the truncated MSE expansion.

We find the the performance of PTP by letting M approach ∞, using an IIR

Wiener estimator and transmitting the sequence found from the previous section.
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This will give the benchmark for the prediction techniques considered earlier, since

we are transmitting an optimal sequence in minimizing the approximate MSE and we

are predicting the channel using infinite number of past observations.

4.7 Simulation Results

We consider the system with the parameters N = 64 and Nh = 7. For simulations,

the MSE performance is averaged over at least 1000 channel realizations. The typical

values of M and L in our simulations are 1 and 5 respectively.

In Fig. 4.6, we plot MSE versus SNR for different techniques at fd = 0.01. The

performance of PW is worse than LCP, PDK and PDW because of the limitation due

to ICI. PDK, PDW and LCP perform nearly the same and their performance is close

to that of the benchmark PTP scheme.

In Fig. 4.7, we see that the MSE increases with increase in Doppler frequency.

This is because, the correlation with past frame observations decreases and the ICI

power in the pilot tones of the current frame increases.

In Fig. 4.8, we show the effect of M on the MSE performance. As M increases, the

estimation techniques incorporate more observations and hence the MSE performance

improves but the improvements are very little.

In Fig. 4.9, we show that effect of L on LCP. Increasing L improves the perfor-

mance of the Kalman smoothing stage and hence the prediction performance. But

increasing the value of L increases the size of matrix inversion and hence the com-

plexity. Also, the performance gains with the increase of L are very little.
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Figure 4.6: Comparison of different techniques at fd = 0.01.

.005 .01 .02 .03 .05 .08

−24

−22

−20

−18

−16

−14

−12

−10

Normalized Doppler frequency

M
SE

 in
 d

B

PW M=1
LCP M=1,L=5
PDW M=1
PDK
PTP

Figure 4.7: Performance for different Doppler frequencies at SNR = 15dB

51



0 5 10 15 20 25
−21

−20

−19

−18

−17

−16

−15

−14

−13

−12

−11

SNR in dB

M
SE

 in
 d

B

PW M=1
PW M=2
LCP M=1,L=5
LCP M=2,L=5
PDW M=1
PDW M=2

Figure 4.8: Effect of M at fd = 0.01.
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Figure 4.9: Effect of L on LCP at fd = 0.01.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we considered channel identification techniques for a transmission

scheme which consists of a sequence of frames with each frame consisting of pilots and

data. We considered two systems, the first one having pilots in the time multiplexed

fashion, and the second one being a multi-carrier system with frequency multiplexed

pilots. We considered scenarios in which the channel is both frequency and time

selective.

In Chapter 2, we reviewed the standard optimal estimation techniques. In Chap-

ter 3, we proposed a novel computationally efficient decision-directed estimators for

time multiplexed pilots system. We also found the benchmark for the performance

of the estimators with the persistent training and prediction scheme. The simulation

results presented show the good performance of the proposed techniques.

In Chapter 4, we considered channel tracking techniques for a multi-carrier system

with pilot tones. We presented estimation techniques which take the ICI effects into
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account. We also presented a pilot tone selection criterion for OFDM in doubly-

selective channels and showed its efficacy by theoretical MSE calculations. We also

developed a low-complexity estimation technique and presented the simulation results.

5.2 Future Work

The sampling limitation for time multiplexed pilots system and the ICI limitation

of the multi-carrier system can be reduced if we could develop joint channel and

data estimation techniques. The challenge would be to make these techniques less

computationally expensive.

In doubly-selective channels, the time multiplexed pilots suffer from sampling

limitation. The ’embedded’ pilots are limited by the interference from data. We

investigate the choice of the pilot sequence and design of optimal pilot pattern, given

the channel fading statistics.

For OFDM systems, increasing the frame length reduces the fraction of overhead

due to preamble. But increasing the frame length increases the ICI and hence causes

performance degradation. We investigate to find the optimal frame length depending

on the channel fading statistics.

Multi-antenna systems are popular since they significantly improve the capacity

of the wireless links. We investigate the extension of channel tracking techniques and

pilot design issues for MIMO systems.
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APPENDIX A

OPTIMALITY RESULTS FOR KRONECKER-DELTA
PILOT SEQUENCE

In this appendix, we establish some optimality properties of the Kronecker delta

pilot structure considered in our TMP system. We consider the estimation of doubly-

selective channel parameters over a frame interval of N time-samples. We focus

on estimators which employ outputs of a channel driven by a known unit-variance

sequence and corrupted by additive circular white Gaussian noise. Specifically, we

are interested in determining the transmitted sequence which minimizes the MSE of

channel estimates. For the results presented here, we assume a block-fading channel,

where channel variation is negligible within a block of Nh samples, where Nh denotes

the channel delay spread.

We now describe the system model used in this appendix. As before, we use

{yn} to denote observations, {tn} the transmitted sequence, {vn} the additive noise,

and hn,l the time-n channel response to an impulse applied at time n − d. From

these we define the ith-frame quantities y
(i)
n = yiN+n, t

(i)
n = tiN+n, v

(i)
n = viN+n, and

h
(i)
n,l = hiN+n,l. For convenience, we assume that N = QNh for some Q ∈ Z. The

ith-frame observation y(i) = [y(i)
0 , . . . , y

(i)
N−1]

t can be written

y(i) = T (i)h(i) + v(i) (A.1)
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where h(i) is an N × 1 vector described element-wise as [h(i)]l = h
(i)
Nh#l/Nh$,〈l〉Nh

, where

v(i) is a circular white Gaussian vector with covariance σ2
vI, and where the block-

fading assumption implies T (i) = blkdiag
(

T
(i)
0 , . . . , T

(i)
Q−1

)

for

T (i)
q =






t
(i)
qNh

· · · t
(i)
qNh−Nh+1

...
. . .

...

t
(i)
qNh+Nh−1 · · · t

(i)
qNh




 .

We are interested in estimating the ith frame channel coefficients using ith frame

observations.

The channel vector h(i) is zero-mean Gaussian, is uncorrelated with the noise, and

has covariance E
{

h(i)h(i)H
}

= Rh. Employing the WSSUS assumption, we can write

Rh = R ⊗ INh
, where ⊗ denotes the Kronecker product and R the autocorrelation

matrix of [h0,0, hNh,0, h2Nh,0, . . . , hN−Nh,0]t.

Consider the following persistent Kronecker-Delta (KD) pilot sequence:

tn =

{ √
Nh if n

Nh
∈ Z

0 otherwise
(A.2)

Lemma 1. The persistent KD sequence (A.2) is among the sequences minimizing

the MSE of zero forcing (ZF) estimates for the block-fading channel assumed in this

appendix.

Proof. The ZF estimate of h(i) from y(i) is ĥ
(i)

=
(

T (i)
)−1

y(i) = h(i) +
(

T (i)
)−1

v(i) ,

with ith-frame MSE

(

σ(i)
e

)2
= tr

(

E

{
(

h(i) − ĥ
(i)
)(

h(i) − ĥ
(i)
)H

})

= tr

(

E

{
(
(

T (i)
)−1

v(i)
)(

(

T (i)
)−1

v(i)
)H

})

= tr
(

σ2
v

(

T (i)
)−1(

T (i)
)−H

)

. (A.3)
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Thus, the MSE-minimizing transmitted sequence minimizes tr
((

T (i)
)−1(

T (i)
)−H)

sub-

ject to the power constraint. Note that, to minimize average MSE, it is sufficient to

consider T (i) = T (0) ∀i, i.e., an N -periodic sequence. Hence, we drop the superscript

(·)(i) for the remainder of this proof.

The unit-power constraint can be rewritten NNh = tr
(

T HT
)

=
∑N−1

i=0 λi, where

{λi}i=N−1
i=0 are the eigenvalues of T HT , and where the structure of T HT guarantees

that λi ≥ 0 ∀i. Note that tr
(

T −1T−H
)

= tr
([

T HT
]−1)

=
∑N−1

i=0 λ
−1
i . Minimizing

∑N−1
i=0 λ

−1
i subject to the constraints λi ≥ 0 ∀i and

∑N−1
i=0 λi = NNh can be accom-

plished via the method of Lagrange multipliers. This yields λopt
0 = λopt

1 = · · · =

λopt
N−1 = Nh, or, equivalently, T H

optT opt = NhIN . The persistent KD sequence (A.2)

leads to T q =
√

NhINh
∀q, and hence is among the minimum-MSE transmitted se-

quences.

Lemma 2. The persistent KD sequence (A.2) is among the Nh-periodic sequences

minimizing the MSE of Wiener estimates for the block-fading channel assumed in

this appendix.

Proof. The Nh-periodicity assumption implies that T (i)
q = T

(0)
0 ∀i, q, where T

(0)
0 is

a circulant matrix with first column [t0, t1, . . . , tNh−1]t. Since T (i) = IQ ⊗ T
(0)
0 is

invariant to i, we omit the superscript notation on T (i) and T
(0)
0 . The Wiener estimate

of h(i) using y(i) is then given by [15]

ĥ
(i)

= RhT
H
(

TRhT
H + σ2

vI
)−1

y(i) (A.4)

with ith-frame MSE

(σ(i)
e )2 = tr

(

Rh − RhT
H
(

TRhT
H + σ2

vI
)−1

TRh

)

= tr
(
[

R−1
h + σ−2

v T HT
]−1

)

. (A.5)
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Since σ(i)
e is invariant to i we omit its superscript as well. Noting that the structure

of Rh implies an eigenvalue decomposition Rh = (U ⊗ INh
)(Λ ⊗ INh

)(U ⊗ INh
)H ,

where U is unitary and Λ is diagonal, and that the structure of T implies T HT =

IQ ⊗
(

T H
0 T 0

)

, the MSE (A.5) can be rewritten as

σ2
e = tr

([
(

U ⊗ INh

)(

Λ−1 ⊗ INh

)(

UH ⊗ INh

)

+ σ−2
v

(

IQ ⊗
(

T H
0 T 0

))
]−1)

= tr
([

(

Λ−1 ⊗ INh

)

+ σ−2
v

(

UH ⊗ INh

)(

IQ ⊗
(

T H
0 T 0)

)(

U ⊗ INh

)
]−1)

.

Since
(

UH⊗INh

)(

IQ⊗
(

T H
0 T 0

))(

U⊗INh

)

=
(

UH⊗INh

)(

U⊗
(

T H
0 T 0

))

=
(

UHU
)

⊗
(

T H
0 T 0

)

= IQ ⊗
(

T H
0 T 0

)

,

σ2
e = tr

([
(

Λ−1 ⊗ INh

)

+ σ−2
v

(

IQ ⊗
(

T H
0 T 0

))
]−1)

=
Q−1
∑

i=0

tr
(
[

λ−1
i INh

+ σ−2
v T H

0 T 0

]−1
)

≥
Q−1
∑

i=0

Nh−1
∑

m=0

1

λ−1
i + σ−2

v

(

T H
0 T 0

)

m,m

(A.6)

=
Q−1
∑

i=0

Nh−1
∑

m=0

1

λ−1
i + Nhσ−2

v

(A.7)

where the equality in (A.6) holds iff T H
0 T 0 is diagonal and (A.7) follows from the

unit power constraint. Note that the persistent KD sequence (A.2) ensures T H
0 T 0 =

NhINh
and thus attains the MMSE lower bound (A.7).
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