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Parametric Bilinear Generalized Approximate
Message Passing

Jason T. Parker, Member, IEEE, and Philip Schniter, Fellow, IEEE

Abstract—We propose a scheme to estimate the parameters bi
and cj of the bilinear form zm =

∑
i,j biz

(i,j)
m cj from noisy

measurements {ym}M
m=1, where ym and zm are related through

an arbitrary likelihood function and z
(i,j)
m are known. Our scheme

is based on generalized approximate message passing (G-AMP):
it treats bi and cj as random variables and z

(i,j)
m as an i.i.d.

Gaussian 3-way tensor in order to derive a tractable simplifica-
tion of the sum-product algorithm in the large-system limit. It
generalizes previous instances of bilinear G-AMP, such as those
that estimate matrices B and C from a noisy measurement of
Z = BC, allowing the application of AMP methods to problems
such as self-calibration, blind deconvolution, and matrix compres-
sive sensing. Numerical experiments confirm the accuracy and
computational efficiency of the proposed approach.

Index Terms—Approximate message passing, belief propaga-
tion, bilinear estimation, blind deconvolution, self-calibration,
joint channel-symbol estimation, matrix compressive sensing.

I. INTRODUCTION

A. Motivation

M ANY problems in engineering, science, and finance can
be formulated as the estimation of a structured matrix

Z ∈ R
M×L from a noisy (or otherwise corrupted) observa-

tion Y ∈ R
M×L. For various types of structure, the problem

reduces to a well-known specialized problem. For example,
when Z has a low-rank structure and only a subset of its entries
are observed (possibly in noise), the estimation of Z is known
as matrix completion (MC) [2]. When Z = L+ S for low-
rank L and sparse S, the estimation of L and S from a (noisy)
observation of Z is known as robust principal components
analysis (RPCA) [3], [4] or stable principle components pur-
suit (SPCP) [5]. When Z = BC with sparse C, the problem
of estimating B and C from a (noisy) observation of Z is
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known as dictionary learning (DL) [6]. When Z = BC and
both B and C are positive, the problem of estimating B,C
from a (noisy) observation of Z is known as nonnegative matrix
factorization (NMF) [7].

In this paper, we propose an AMP-based approach to a more
general class of structured-matrix estimation problems. Our
work is motivated by problems like the following.

1) Estimate b and C from a noisy observation of1

Z = Diag(Hb)AC (1)

with known H and A. This problem manifests, e.g., in
• Self-calibration [8]. Here the columns of C are mea-

sured through a linear system, represented by the
matrix A, whose outputs are subject to unknown
(but structured) gains of the form Hb. The goal
is to simultaneously recover the signal C and the
calibration parameters b.

• Blind circular deconvolution: Here the columns of
C are circularly convolved with the channel b, and
the goal is to simultaneously recover C and b from
a noisy version of the Fourier-domain convolution
outputs.2

2) Consider the more general3 problem of estimating {bi}
and C from a noisy observation of

Z =
∑

i biA
(i)C (2)

with known {A(i)}. This problem manifests, e.g., in
• Compressive sensing with matrix uncertainty [9].

Here, Z = AC where A =
∑

i biA
(i) is an

unknown (but structured) sensing matrix and the
columns of C ∈ R

N×L are sparse signals. The
goal is to simultaneously recover C and the matrix
uncertainty parameters {bi}.

• Joint channel-symbol estimation. Say a symbol
stream {ci} is transmitted through a length-Nb

convolutive channel {bi}, where the same length-
Ng ≥ Nb − 1 guard interval is repeated every Np

samples in {ci}. Then the noiseless convolution

1For clarity, we typeset matrices in bold capital, vectors in bold lowercase,
and scalars in non-bold. Furthermore, we typeset random variables in san-serif
font (e.g., Z) and deterministic realizations in serif font (e.g., Z).

2Recall that circular convolution between b and cl can be written as vl =
Circ(b)cl, with circulant matrix Circ(b) = AH Diag(

√
NAb)A for uni-

tary discrete Fourier transform (DFT) matrix A. The DFT of the convolution
outputs is then Avl = Diag(

√
NAb)Acl, matching (1).

3Note (1) is a special case of (2) with A(i) = Diag(hi)A, where hi

denotes the ith column of H .

1932-4553 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



796 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 4, JUNE 2016

outputs can be written as Z =
∑

i biA
(i)C, where

A(i) = [ 0Np×(Ng−i+1) INp 0Np×(i−1) ] and where the
first and last Ng rows in C are guard symbols. The
goal is to jointly estimate the channel {bi} and the
(finite-alphabet) data symbols in C.

3) Consider the yet more general4 problem of estimating
low-rank L and sparse S from noisy observations of

zm = tr{ΦT
m(L+ S)} for m = 1, . . . , Nz (3)

with known {Φm}. This problem is sometimes known
as matrix compressive sensing (MCS), which has appli-
cations in, e.g., video surveillance [11], hyperspectral
imaging [11], quantum state tomography [12], multi-task
regression [13], and image processing [14].

B. Approach

To solve structured-matrix estimation problems like those
above, we start with a noiseless model of the form

z =
∑Nb

i=0

∑Nc

j=0 biz
(i,j)cj ∈ R

M , (4)

where b0 = 1/
√
Nb, c0 = 1/

√
Nc, and z(i,j) ∈ R

M∀i, j are
known. Note that the collection {z(i,j)}∀i,j defines a ten-
sor of size M × (Nb + 1)× (Nc + 1). We then estimate the
parameters b = [b1, . . . , bNb

]T and c = [c1, . . . , cNc
]T from y,

a “noisy” observation of z. In doing so, we treat b and c
as realizations of random vectors b and c with independent
components, i.e.,

pb,c(b, c) =
∏Nb

i=1 pbi(bi)
∏Nc

j=1 pcj (cj), (5)

and we assume that the likelihood function of z takes the
separable form

py |z(y | z) =∏M
m=1 pym|zm(ym | zm). (6)

Note that our definition of “noisy” is quite broad due to the
generality of pym|zm . For example, (6) facilitates both addi-
tive noise and nonlinear measurement models like those arising
with, e.g., quantization [15], Poisson noise [16], and phase
retrieval [17]. Note also that, since b0 and c0 are known,
the model (4) includes bilinear, linear, and constant terms. In
Section IV, we demonstrate how (4)-(6) can be instantiated to
solve various structured-matrix estimation problems.

Our estimation algorithm is based on the AMP framework
[18]. Previously, AMP was applied to the generalized linear
problem: “estimate i.i.d. x from y, a noisy realization of z =
Ax ,” leading to the G-AMP algorithm [19], and the gener-
alized bilinear problem: “estimate i.i.d. A and X from Y, a
noisy realization of Z = AX ,” leading to the BiG-AMP algo-
rithm [20]–[22]. In this paper, we apply AMP to estimate b and
c from a noisy measurement of the parametric bilinear out-
put Z = A(b)X(c), where A(·) and X(·) are matrix-valued
affine linear functions. We write the relationship between b, c,
and z � vec(Z) more concisely as (4) and coin the resulting
algorithm “Parametric BiG-AMP” (P-BiG-AMP).

4[10] shows that (2) is a special case of (3) with rank-one L and S = 0.

We also show that, using an expectation-maximization
(EM) [23] approach similar to those used in other AMP-based
works [24]–[26], we can generalize our approach to the case
where the parameters governing the distributions pbi , pcj , and
pym|zm are unknown.

C. Relation to Previous Work

We now describe related literature, starting with versions of
compressive sensing (CS) under sensing-matrix uncertainty.

Consider first the problem of multiple measurement vec-
tor (MMV) CS with output gain uncertainty, i.e., recovering
C with sparse columns from a noisy observation of Z =
Diag(b)AC, where A is known and b is unknown. For the case
of positive b and no noise, [27] proposed a convex approach
based on �1 minimization, which was generalized to arbitrary
b in [28]. For MMSE estimation in the noisy case, a G-AMP-
based approach to the MMV version was proposed in [29], and
G-AMP approaches to the single measurement vector (SMV)
version with coded-symbol b and constant-modulus b were pro-
posed in [30] and [17]. Our proposed P-BiG-AMP approach
handles more general forms of matrix uncertainty than [17],
[29], [30].

MMV CS with input gain uncertainty, i.e., recover-
ing possibly-sparse C from a noisy observation of Z =
ADiag(b)C, where A is known and b is unknown, was
considered in [31]. There, G-AMP estimation of C was alter-
nated with EM estimation of b using the EM-AMP frame-
work from [26]. As such, [31] does not support a prior
on b.

A related problem is SMV CS with subspace-structured
output gain uncertainty, i.e., recovering sparse c from a
noisy observation of z = Diag(Hb)Ac with known A,H .
This problem is perhaps better known as blind deconvolution
of sequences b, c when H,A are DFT matrices and z is
the DFT-domain noiseless measurement vector. Several con-
vex approaches to blind deconvolution have been proposed
using the “lifting” technique, which transforms the problem
to that of recovering a rank-1 matrix L from a (noisy) obser-
vation of zm = tr{ΦT

mL} for m = 1, . . . ,M . For example,
[32] proposed a convex relaxation that applies to linear con-
volution with sparse c, [33] proposed a convex relaxation
(with guarantees) that applies to circular convolution with
non-sparse b, c, [8] proposed a convex relaxation (with guar-
antees) that applies to circular convolution with sparse c,
and [34] proposed alternating and greedy schemes for sparse
b, c. Meanwhile, identifiability conditions were studied in
[35]–[38].

For (2), i.e., CS with general matrix uncertainty, [9] proposed
an alternating minimization scheme and [39] showed that the
problem can be convexified via lifting and then used that insight
to study identifiability issues.

Finally, consider the matrix CS problem given by (3). For
generic5 {Φm}, greedy schemes were proposed in [11] and [41]
and convex ones in [12]–[14], [42].

5For the special case where each Φm has a single unit-valued entry (i.e.,
noisy elements of L+ S are directly observed), many more schemes have been
proposed (e.g., [3], [4], [40]), including AMP-based schemes [20]–[22].
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The P-BiG-AMP approach that we propose in this work
supports all of the above matrix-uncertain CS, blind deconvo-
lution, and low-rank-plus-sparse recovery models. Moreover, it
allows arbitrary priors on bi and cj , allowing the exploitation
of (approximate) sparsity, constant-modulus structure, finite-
alphabet structure, etc. Furthermore, it allows a generic likeli-
hood function of the form (6), allowing non-linear measurement
models like quantization, Poisson noise, phase-retrieval, etc.
Although it is non-convex and comes with no performance
guarantees, it attacks the MMSE problem directly, and the
empirical results in Section V suggest that it offers better MSE
recovery performance than recent convex relaxations while
being computationally competitive (if not faster).

D. Organization and Notation

The remainder of this manuscript is organized as follows. In
Section II we present preliminary material on belief propaga-
tion and AMP, and in Section III we derive our P-BiG-AMP
algorithm. In Section IV we show how the implementation of
P-BiG-AMP can be simplified for several problems of interest,
and in Section V we present the results of several numerical
experiments. In Section VI, we conclude. A long version of this
paper, with proofs and more details, can be found at [10].

Notation: For random variable x, we use px(x) for the pdf,
E{x} for the mean, and var{x} for the variance. N (x; x̂, νx)
denotes the Gaussian pdf with mean x̂ and variance νx. For
a matrix X , we use xl = [X]:,l to denote the lth column,
xnl = [X]nl to denote the entry in the nth row and lth column,
XT the transpose, X∗ the conjugate, XH the conjugate trans-
pose, ‖X‖F the Frobenius norm, and ‖X‖∗ the nuclear norm.
For vectors x, we use xn = [x]n to denote the nth entry and
‖x‖p = (

∑
n |xn|p)1/p to denote the �p norm. Diag(x) is the

diagonal matrix with diagonal elements x, Conv(x) is the con-
volution matrix with first column x, and Circ(x) is the circular
convolution matrix with first column x.

II. PRELIMINARIES

A. Bayesian Inference

For the model defined by (4)-(6), the posterior pdf is

pb,c|y (b, c |y) = py |b,c(y | b, c) pb(b) pc(c)/py (y) (7)

∝ py |z(y | z(b, c)) pb(b) pc(c) (8)

=
(∏

m pym|zm
(
ym | zm(b, c)

))(∏
i pbi(bi)

)(∏
j pcj (cj)

)
,

(9)

where (7) used Bayes’ rule and ∝ denotes equality up to a scale
factor. This pdf can be represented using the bipartite factor
graph shown in Fig. 1. There, the factors in (9) are represented
by “factor nodes” appearing as black boxes and the random
variables in (9) are represented by “variable nodes” appearing
as white circles. Note that the observed data {ym} are treated as
parameters of the pym|zm(ym|·) factor nodes, and not as random
variables. Although Fig. 1 shows an edge between every bi and
pym|zm node pair, the edge will vanish when zm(b, c) does not
depend on bi, and similar for cj .

Fig. 1. The factor graph for parametric generalized bilinear inference under
Nb = 2, Nc = 3, and M = 4.

TABLE I
SPA MESSAGE DEFINITIONS AT ITERATION t ∈ Z

B. Loopy Belief Propagation

Our goal is to compute minimum mean-squared error
(MMSE) estimates of b and c, i.e., the means of the marginal
posteriors pbi|y (· |y) and pcj |y (· |y). Since exact computation
is intractable in our problem (see below), we consider approxi-
mate computation using loopy belief propagation (LBP).

In LBP, beliefs about the random variables (in the form of
pdfs or log pdfs) are propagated among the nodes of the factor
graph until they converge. The standard way to compute these
beliefs, known as the sum-product algorithm (SPA) [43], [44],
says that the belief emitted by a variable node along a given
edge of the graph is computed as the product of the incom-
ing beliefs from all other edges, whereas the belief emitted by
a factor node along a given edge is computed as the integral
of the product of the factor associated with that node and the
incoming beliefs on all other edges. The product of all beliefs
impinging on a given variable node yields the posterior pdf for
that variable. In cases where the factor graph has no loops, exact
marginal posteriors result from two (i.e., forward and back-
ward) passes of the SPA [43], [44]. For loopy factor graphs like
ours, exact inference is in general NP hard [45] and so LBP
does not guarantee correct posteriors. However, it often gives
good approximations [46].

C. Sum–Product Algorithm

We formulate the SPA using the messages and log-posteriors
specified in Table I. All take the form of log-pdfs with arbi-
trary constant offsets, which can be converted to pdfs via
exponentiation and scaling.
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Applying the SPA to the factor graph in Fig. 1, we arrive at
the following update rules for the four messages in Table I:

Δb
m→i(t, bi) = log

∫
{br}r �=i,{ck}Nc

k=1
pym|zm

(
ym|zm(b, c)

)
×∏r �=i exp

(
Δb

m←r(t, br)
)∏Nc

k=1 exp
(
Δc

m←k(t, ck)
)

+ const (10)

Δc
m→j(t, cj) = log

∫
{br}Nb

r=1,{ck}k �=j
pym|zm

(
ym | zm(b, c)

)
×∏Nb

r=1 exp
(
Δb

m←r(t, br)
)∏

k �=j exp
(
Δc

m←k(t, ck)
)

+ const (11)

Δb
m←i(t+ 1, bi) = log pbi(bi) +

∑
r �=m Δb

r→i(t, bi) + const

(12)

Δc
m←j(t+ 1, cj) = log pcj (cj) +

∑
r �=m Δc

r→j(t, cj) + const,

(13)

where const denotes a constant (w.r.t bi in (10) and (12) and
w.r.t cj in (11) and (13)). In the sequel, we denote the mean
and variance of the pdf 1

C exp(Δb
m←i(t, .) by b̂m,i(t) and

νbm,i(t), respectively, and we denote the mean and variance of
1
C exp(Δc

m←j(t, .)) by ĉm,j(t) and νcm,j(t). We refer to the

vectors of these statistics for a given m as b̂m(t),νb
m(t) ∈

R
Nb and ĉm(t),νc

m(t) ∈ R
Nc . For the log-posteriors, the SPA

implies

Δb
i (t+ 1, bi) = log pbi(bi) +

∑
m Δb

m→i(t, bi) + const (14)

Δc
j(t+ 1, cj) = log pcj(cj) +

∑
mΔc

m→j(t, cj) + const (15)

and we denote the mean and variance of 1
C exp(Δb

i (t, .)) by

b̂i(t) and νbi (t), and the mean and variance of 1
C exp(Δc

j(t, .))
by ĉj(t) and νcj (t). Finally, we denote the vectors of these

statistics as b̂(t),νb(t) ∈ R
Nb and ĉ(t),νc(t) ∈ R

Nc .

D. Approximate Message Passing

When the priors and/or likelihood are generic, as in our
case, exact representation of the SPA messages becomes diffi-
cult, motivating SPA approximations. One such approximation
technique, known as approximate message passing (AMP)
[18], becomes applicable when the statistical model involves
multiplication of the unknown vectors with large random matri-
ces. In this case, central-limit-theorem (CLT) and Taylor-series
arguments can be used to arrive at a tractable SPA approxi-
mation that can be rigorously analyzed [47]. In the sequel, we
propose an AMP-based approximation of the SPA in Section II-
C.

III. PARAMETRIC BIG-AMP

We now derive the proposed AMP-based approximation of
the SPA algorithm from Section II-C, which we refer to as P-
BiG-AMP. Due to space constraints, some details are omitted.
The full derivation can be found in [10].

A. Randomization and Large-System Limit

For the derivation of P-BiG-AMP, we treat z
(i,j)
m as real-

izations of i.i.d. zero-mean unit-variance Gaussian random

variables z(i,j)m , and we treat z(i,j)m , bi, cj as independent for all
m, i, j. Furthermore, we consider a large-system limit (LSL)
where M,Nb, Nc → ∞ such that Nb/M and Nc/M converge
to fixed positive constants. Without loss of generality (w.l.o.g.)
we will assume that E{b2i } and E{c2j} scale as O(1/M). Given
these assumptions, it is straightforward to show from (4) that
E{z2m} scales as O(1).

To derive P-BiG-AMP, we will examine the SPA updates
(10)-(15) and drop those terms that vanish in the LSL, i.e., as
M → ∞.

B. SPA Message From Node pym|zm to Node bi

We begin by approximating the message defined in (10).
First, we invoke the LSL to apply the central limit theorem
(CLT) to zm � zm(b, c), where b and c are distributed accord-
ing to the pdfs in (10). (Details on the application of the CLT
are given in [10].) With the CLT, we can treat zm conditioned
on bi = bi as Gaussian and thus completely characterize it by a
(conditional) mean and variance. In particular, the conditional
mean is

E{zm|bi = bi}
= E

{∑
k,j bkcjz

(k,j)
m + (bi − bi)

∑
j cjz

(i,j)
m

}
(16)

=
∑

k,j b̂m,k(t)ĉm,j(t)z
(k,j)
m︸ ︷︷ ︸

� ẑ(∗,∗)→m (t)

+
(
bi − b̂m,i(t)

)∑
j ĉm,j(t)z

(i,j)
m︸ ︷︷ ︸

� ẑ(i,∗)→m (t)

(17)

= ẑ
(∗,∗)
→m (t) − b̂m,i(t)ẑ

(i,∗)
→m (t)︸ ︷︷ ︸

� p̂i,m(t)

+biẑ
(i,∗)
→m (t), (18)

and it can be shown [10] that the conditional variance is

var{zm | bi = bi} = νpi,m(t) + b2i
∑Nc

j=1 ν
c
m,j(t)z

(i,j)2
m (19)

+ 2bi
∑Nc

j=1 ν
c
m,j(t)

(
ẑ
(∗,j)
→m (t)z

(i,j)
m − b̂m,i(t)z

(i,j)2
m

)
,

for ẑ(∗,j)→m (t) �
∑

k b̂m,k(t)z
(k,j)
m and

νpi,m(t) �
∑

k �=i ν
b
m,k(t)

(
ẑ
(k,∗)
→m (t)2 +

∑Nc

j=1 ν
c
m,j(t)z

(k,j)2
m

)
+
∑Nc

j=1 ν
c
m,j(t)

(
ẑ
(∗,j)
→m (t)2 + b̂m,i(t)

2z
(i,j)2
m

−2b̂m,i(t)ẑ
(∗,j)
→m (t)z

(i,j)
m

)
. (20)

The Gaussian approximation of zm|bi=bi (with mean and
variance above) can now be used to simplify the representation
of the SPA message (10) from an (Nb +Nc − 1)-dimensional
integral to a one-dimensional integral:

Δb
m→i(t, bi) ≈ log

∫
zm

pym|zm(ym | zm)

×N (
zm; E{zm | bi = bi}, var{zm | bi = bi}

)
(21)

= Hm

(
p̂i,m(t) + biẑ

(i,∗)
→m (t), νpi,m(t) + b2i

∑
j ν

c
m,j(t)z

(i,j)2
m

+2bi
∑Nc

j=1 ν
c
m,j(t)

[
ẑ
(∗,j)
→m (t)z

(i,j)
m − b̂m,i(t)z

(i,j)2
m

])
+ const, (22)



PARKER AND SCHNITER: PARAMETRIC BILINEAR GENERALIZED APPROXIMATE MESSAGE PASSING 799

where we have introduced the shorthand notation

Hm (q̂, νq) � log
∫
z
pym|zm(ym| z)N (z; q̂, νq). (23)

We now further approximate (22). For this, we first introduce
i-invariant versions of p̂i,m(t) and νpi,m(t):

p̂m(t) � ẑ(∗,∗)→m (t) (24)

νpm(t) �
∑Nc

j=1 ν
c
m,j(t)ẑ

(∗,j)
→m (t)2 +

∑Nb

k=1 ν
b
m,k(t)

[
ẑ
(k,∗)
→m (t)2

+
∑Nc

j=1 ν
c
m,j(t)z

(k,j)2
m

]
, (25)

noting that

p̂m,i(t) = p̂m(t)− b̂m,i(t)ẑ
(i,∗)
→m (t) (26)

νpi,m(t) = νpm(t)− νbm,i(t)
[
ẑ
(i,∗)
→m (t)2 +

∑Nc

j=1 ν
c
m,j(t)z

(i,j)2
m

]
+
∑Nc

j=1 ν
c
m,j(t)

[
b̂m,i(t)

2z
(i,j)2
m − 2b̂m,i(t)ẑ

(∗,j)
→m (t)z

(i,j)
m

]
.

(27)

Next, we define

ẑ(i,∗)m (t) �
∑

j ĉj(t)z
(i,j)
m (28)

ẑ(∗,j)m (t) �
∑

i b̂i(t)z
(i,j)
m (29)

ẑ(∗,∗)m (t) �
∑

i,j b̂i(t)ĉj(t)z
(i,j)
m , (30)

which are versions of ẑ(i,∗)→m (t), ẑ
(∗,j)
→m (t), ẑ

(∗,∗)
→m (t) evaluated at

b̂(t) and ĉ(t), the means of the SPA-approximated posteriors,
rather than at b̂m(t) and ĉm(t), the means of the SPA messages.
Note that ẑ(i,∗)m (t), ẑ

(∗,j)
m (t), z

(i,j)
m can also be interpreted as as

partial derivatives:

ẑ(i,∗)m (t) = ∂
∂bi

zm(b, c)
∣∣∣
b = b̂(t), c = ĉ(t)

(31)

ẑ(∗,j)m (t) = ∂
∂cj

zm(b, c)
∣∣∣
b = b̂(t), c = ĉ(t)

(32)

z(i,j)m = ∂2

∂bi∂cj
zm(b, c)

∣∣∣
b = b̂(t), c = ĉ(t)

. (33)

With these new quantities, it can be shown [10] that (22) can be
expressed as

Δb
m→i(t, bi) = const

+Hm

(
p̂m(t) + (bi − b̂i(t))ẑ

(i,∗)
→m (t) +O(1/M), (34)

νpm(t) + (bi − b̂i(t))
2
∑Nc

j=1 ν
c
m,j(t)z

(i,j)2
m

+ 2(bi − b̂i(t))
∑Nc

j=1 ν
c
m,j(t)ẑ

(∗,j)
m (t)z

(i,j)
m +O(1/M)

)
.

The next step is to perform a Taylor series expansion of (34)
in bi about b̂i(t). By carefully analyzing the scaling of all terms
in the expansion, and neglecting those that vanish as M → ∞,
it can be shown [10] that

Δb
m→i(t, bi) (35)

≈ const+
[
ŝm(t)ẑ

(i,∗)
→m (t) + νsm(t)̂bi(t)ẑ

(i,∗)
m (t)2

+
(
ŝ2m(t)− νsm(t)

)∑
j ν

c
j (t)z

(i,j)
m (ẑ

(∗,j)
m (t)− b̂i(t)z

(i,j)
m )

]
bi

− 1
2

[
νsm(t)ẑ

(i,∗)
m (t)2− (ŝ2m(t)− νsm(t)

)∑
j ν

c
j (t)z

(i,j)2
m

]
b2i ,

TABLE II
THE SCALAR-VARIANCE P-BIG-AMP ALGORITHM

using the definitions

ŝm(t) � H ′m
(
p̂m (t) , νpm (t)

)
(36)

νsm(t) � −H ′′m
(
p̂m(t), νpm(t)

)
, (37)

where H ′m(·, ·) and H ′′m(·, ·) respectively denote the first and
second derivative w.r.t. the first argument of Hm(·, ·). Note
that, since (35) is quadratic, the (exponentiated) message from
pym|zm to bi is Gaussian in the LSL.

Furthermore, the derivation in [20, App. A] shows that (36)-
(37) can be rewritten as

ŝm(t) =
(
ẑm(t)− p̂m(t)

)
/νpm(t) (38)

νsm(t) =
(
1− νzm(t)/νpm(t)

)
/νpm(t), (39)

using the conditional mean and variance

ẑm(t) � E{zm | pm = p̂m(t); νpm(t)} (40)

νzm(t) � var{zm | pm = p̂m(t); νpm(t)}, . (41)

Note (40)-(41) are computed according to the pdf given in (D1)
of Table II, which is P-BiG-AMP’s iteration-t approximation to
the true marginal posterior pzm|y (zm|y).

C. SPA Message From Node pym|zm to Node cj

Since zm =
∑Nb

i=0

∑Nc

j=0 biz
(i,j)
m cj implies a symmetry

between bi and cj , the procedure to approximate Δc
m→j(t, ·)
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is essentially the same as that to approximate Δb
m→i(t, ·) from

Section III-B. The end result is

Δc
m→j(t, cj) (42)

≈ const+
[
ŝm(t)ẑ

(∗,j)
→m (t) + νsm(t)ĉj(t)ẑ

(∗,j)
m (t)2

+
(
ŝ2m(t)− νsm(t)

)∑
i ν

b
i (t)z

(i,j)
m

(
ẑ
(i,∗)
m (t)− ĉj(t)z

(i,j)
m

)]
cj

− 1
2

[
νsm(t)ẑ

(∗,j)
m (t)2 − (ŝ2m(t)− νsm(t)

)∑
i ν

b
i (t)z

(i,j)2
m

]
c2j .

D. SPA Message From Node cj to pym|zm
We now turn our attention to approximating the messages

flowing out of the variable nodes. To start, we plug the approx-
imation of Δc

m→j(t, cj) from (42) into (13) and find

Δc
m←j(t+ 1, cj)

≈ const+ log
(
pcj (cj)N

(
cj ; r̂m,j(t), ν

r
m,j(t)

))
(43)

where

νrm,j(t) �
[∑

r �=m

(
νsr (t)ẑ

(∗,j)
r (t)2 (44)

− (ŝ2r(t)− νsr (t)
)∑Nb

i=1 ν
b
i (t)z

(i,j)2
r

)]−1
r̂m,j(t) � ĉj(t) + νrm,j(t)

∑
r �=m

((
ŝ2r(t)− νsr (t)

)
(45)

× ∑Nb

i=1 ν
b
i (t)z

(i,j)
r ẑ

(i,∗)
r (t) + ŝr(t)ẑ

(∗,j)
→r (t)

)
.

The mean and variance of the pdf associated with the
Δc

m←j(t+ 1, cj) message approximation from (43) are

ĉm,j(t+ 1) � 1
K

∫
c
c pcj (c)N

(
c; r̂m,j(t), ν

r
m,j(t)

)︸ ︷︷ ︸
� gcj

(
r̂m,j(t), ν

r
m,j(t)

) (46)

νcm,j(t+ 1)

� 1
K

∫
c
|c− ĉm,j(t+ 1)|2 pcj (c)N

(
c; r̂m,j(t), ν

r
m,j(t)

)︸ ︷︷ ︸
νrm,j(t) g

′
cj

(
r̂m,j(t), ν

r
m,j(t)

)
(47)

with K =
∫
c
pcj (c)N

(
c; r̂m,j(t), ν

r
m,j(t)

)
and where g′cj

denotes the derivative of gcj with respect to its first argument.
The fact that (46) and (47) are related through a derivative was
shown in [19].

Next we develop mean and variance approximations that do
not depend on the destination node m. For this, we introduce
m-invariant versions of r̂m,j(t) and νrm,j(t):

νrj (t) �
[∑

m

(
νsm(t)ẑ

(∗,j)
m (t)2 (48)

− (ŝ2m(t)− νsm(t)
)∑Nb

i=1 ν
b
i (t)z

(i,j)2
m

)]−1
r̂j(t) � ĉj(t) + νrj (t)

∑
m

((
ŝ2m(t)− νsm(t)

)
(49)

× ∑Nb

i=1 ν
b
i (t)z

(i,j)
m ẑ

(i,∗)
m (t) + ŝm(t)ẑ

(∗,j)
→m (t)

)
.

Comparing (44)–(45) to (48)–(49) reveals that
(
νrm,j(t)−

νrj (t)
)

scales as O(1/M2) and that r̂m,j(t) = r̂j(t)−
νrj (t)ŝm(t)ẑ

(∗,j)
m (t) +O(1/M3/2), and thus (46) implies

ĉm,j(t+ 1)

= gcj

(
r̂j(t)− νrj (t)ŝm(t)ẑ(∗,j)m (t) +O(1/M3/2),

νrj (t) +O(1/M2)
)

(50)

= gcj

(
r̂j(t)− νrj (t)ŝm(t)ẑ(∗,j)m (t), νrj (t)

)
+O(1/M3/2)

(51)

= gcj
(
r̂j(t), ν

r
j (t)

)
(52)

− νrj (t)g
′
cj

(
r̂j(t), ν

r
j (t)

)
ŝm(t)ẑ(∗,j)m (t) +O(1/M3/2)

= ĉj(t+ 1)− ŝm(t)ẑ(∗,j)m (t)νcj (t+ 1) +O(1/M3/2), (53)

where (51) follows by taking Taylor series expansions of (50)
about the perturbations to the arguments; (52) follows by taking
a Taylor series expansion of (51) in the first argument about the
point r̂j(t); and (53) follows from the definitions

ĉj(t+ 1) � gcj
(
r̂j(t), ν

r
j (t)

)
(54)

νcj (t+ 1) � νrj (t)g
′
cj

(
r̂j(t), ν

r
j (t)

)
. (55)

E. SPA Message From Node bi to pym|zm

Once again, due to symmetry, the derivation for Δb
m←i(t+

1, bi) closely parallels that for Δc
m←j(t+ 1, cj). Plugging

approximation (35) into (12), we obtain

Δb
m←i(t+ 1, bi) ≈ log

(
pci(bi)N

(
bi; q̂m,i(t), ν

q
m,i(t)

))
+ const (56)

νqm,i(t) �
[∑

r �=m

(
νsr (t)ẑ

(i,∗)
r (t)2 (57)

− (ŝ2r(t)− νsr (t)
)∑Nc

j=1 ν
c
j (t)z

(i,j)2
r

)]−1
q̂m,i(t) � b̂i(t) + νqm,i(t)

∑
r �=m

((
ŝ2r(t)− νsr (t)

)
(58)

× ∑Nc

j=1 ν
c
j (t)z

(i,j)
r ẑ

(∗,j)
r (t) + ŝr(t)ẑ

(i,∗)
→r (t)

)
.

The mean and variance of the pdf associated with the
Δb

m←i(t+ 1, bi) approximation from (56) are then

b̂m,i(t+ 1) � 1
K

∫
b
b pbi(b)N

(
b; q̂m,i(t), ν

q
m,i(t)

)︸ ︷︷ ︸
� gbi(q̂m,i(t), ν

q
m,i(t))

(59)

νbm,i(t+ 1)

� 1
K

∫
b
|b− b̂m,i(t+ 1)|2pbi(b)N

(
b; q̂m,i(t), ν

q
m,i(t)

)︸ ︷︷ ︸
νqm,i(t) g

′
bi(q̂m,i(t), ν

q
m,i(t))

(60)

where K =
∫
b
pbi(b)N

(
b; q̂m,i(t), ν

q
m,i(t)

)
and where g′bi

denotes the derivative of gbi with respect to the first argument.
As before, we define the m-invariant quantities

νqi (t) �
[∑

m

(
νsm(t)ẑ

(i,∗)
m (t)2 (61)

− (ŝ2m(t)− νsm(t)
)∑Nc

j=1 ν
c
j (t)z

(i,j)2
m

)]−1
q̂i(t) � b̂i(t) + νqi (t)

∑
m

((
ŝ2m(t)− νsm(t)

)
(62)

× ∑Nc

j=1 ν
c
j (t)z

(i,j)
m ẑ

(∗,j)
m (t) + ŝm(t)ẑ

(i,∗)
→m (t)

)
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and perform several Taylor series expansions, finally dropping
terms that vanish in the LSL, to obtain

b̂m,i(t+ 1) = b̂i(t+ 1)− ŝm(t)ẑ(i,∗)m (t)νbi (t+ 1)

+O(1/M3/2), (63)

b̂i(t+ 1) � gbi
(
q̂i(t), ν

q
i (t)

)
(64)

νbi (t+ 1) � νqi (t)g
′
bi

(
q̂i(t), ν

q
i (t)

)
. (65)

F. Closing the Loop

To complete the derivation of P-BiG-AMP, we use (53) and
(63) to eliminate the dependence on m in the bi and cj esti-
mates and on i and j in the zm estimates. By plugging (53) and
(63) into the expression (24) for p̂m(t) and dropping terms that
vanish in the LSL, it can be shown [10] that

p̂m(t)≈ ẑ
(∗,∗)
m (t)− ŝm(t−1)

(∑Nb

i=1 ẑ
(i,∗)
m (t−1)ẑ

(i,∗)
m (t)νbi (t)

+
∑Nc

j=1 ẑ
(∗,j)
m (t− 1)ẑ

(∗,j)
m (t)νcj (t)

)
. (66)

Although not justified by the LSL, we also approximate∑Nb

i=1 ẑ
(i,∗)
m (t− 1)ẑ

(i,∗)
m (t)νbi (t) ≈

∑Nb

i=1 ẑ
(i,∗)
m (t)2νbi (t)

(67)∑Nc

j=1 ẑ
(∗,j)
m (t− 1)ẑ

(∗,j)
m (t)νcj (t) ≈

∑Nc

j=1 ẑ
(∗,j)
m (t)2νcj (t)

(68)

for the sake of algorithmic simplicity, yielding

p̂m(t) ≈ ẑ
(∗,∗)
m (t)− ŝm(t− 1) (69)

×
(∑Nb

i=1 ẑ
(i,∗)
m (t)2νbi (t) +

∑Nc

j=1 ẑ
(∗,j)
m (t)2νcj (t)

)
︸ ︷︷ ︸

� νpm(t)

,

noting that similar approximations were made for BiG-AMP
[20], where empirical tests showed little effect. Of course, a
more complicated variant of P-BiG-AMP could be stated using
(66) instead of (69).

Equations (53) and (63) can also be used to simplify νpm(t).
For this, we first use the facts νcm,j(t) = νcj (t) +O(1/M3/2)

and νbm,i(t) = νbi (t) +O(1/M3/2) to write (25) as

νpm(t) =
∑Nc

j=1 ν
c
j (t)ẑ

(∗,j)
→m (t)2 +

∑Nb

i=1 ν
b
i (t)ẑ

(i,∗)
→m (t)2 (70)

+
∑Nb

i=1

∑Nc

j=1 ν
b
i (t)ν

c
j (t)z

(i,j)2
m +O(1/M1/2).

Then we use (53) with (17) and (28) to write

ẑ(i,∗)→m (t) = ẑ
(i,∗)
m (t)− ŝm(t− 1)

∑Nc

j=1 ẑ
(∗,j)
m (t− 1)z

(i,j)
m νcj (t)

+O(1/M), (71)

and similarly we use (63) to write

ẑ(∗,j)→m (t) = ẑ
(∗,j)
m (t)− ŝm(t− 1)

∑Nb

i=1 ẑ
(i,∗)
m (t− 1)z

(i,j)
m νbi (t)

+O(1/M). (72)

Plugging (71)-(72) into (70) and dropping the terms that vanish
in the LSL yields [10]

νpm(t) ≈ νpm(t) +
∑Nb

i=1

∑Nc

j=1 ν
b
i (t)ν

c
j (t)z

(i,j)2
m . (73)

Next, we eliminate the dependence on ẑ
(∗,j)
→m (t) from r̂j(t).

Plugging (72) into (49) and dropping the terms that vanish in
the LSL yields

r̂j(t) ≈ ĉj(t) + νrj (t)
∑

m

(
ŝ2m(t)− νsm(t)

)
(74)

×∑Nb

i=1 ν
b
i (t)z

(i,j)
m ẑ

(i,∗)
m (t) + νrj (t)

∑
m ŝm(t)

×
(
ẑ
(∗,j)
m (t)− ŝm(t−1)

∑Nb

i=1 ẑ
(i,∗)
m (t−1)z

(i,j)
m νbi (t)

)
,

Although not justified by the LSL, we also approximate∑
m ŝm(t)ŝm(t− 1)

∑Nb

i=1 ν
b
i (t)z

(i,j)
m ẑ

(i,∗)
m (t− 1)

≈∑m ŝ2m(t)
∑Nb

i=1 ν
b
i (t)z

(i,j)
m ẑ

(i,∗)
m (t) (75)

for the sake of algorithmic simplicity, yielding

r̂j(t) ≈ ĉj(t) + νrj (t)
∑

m

(
ŝm(t)ẑ

(∗,j)
m (t)

−νsm(t)
∑Nb

i=1 ν
b
i (t)z

(i,j)
m ẑ

(i,∗)
m (t)

)
, (76)

noting that a similar approximation was made for BiG-AMP
[20]. The expression (76) then simplifies. Using (28) to expand
ẑ
(i,∗)
m (t), the last term in (76) can be written as

νrj (t)
∑

m νsm(t)
∑Nb

i=1 ν
b
i (t)z

(i,j)
m ẑ

(i,∗)
m (t)

= νrj (t)ĉj(t)
∑Nb

i=1 ν
b
i (t)

∑
m νsm(t)z

(i,j)2
m (77)

+ νrj (t)
∑Nb

i=1 ν
b
i (t)

∑
k �=j ĉk(t)

∑
m νsm(t)z

(i,j)
m z

(i,k)
m

≈ νrj (t)ĉj(t)
∑Nb

i=1 ν
b
i (t)

∑
m νsm(t)z

(i,j)2
m , (78)

where (78) holds in the LSL [10]. Thus, (76) reduces to

r̂j(t) ≈ ĉj(t) + νrj (t)
∑

m ŝm(t)ẑ
(∗,j)
m (t)

− νrj (t)ĉj(t)
∑

m νsm(t)
∑Nb

i=1 ν
b
i (t)z

(i,j)2
m . (79)

Similarly, we substitute (71) into (62) and make analogous
approximations to obtain

q̂i(t) ≈ b̂i(t) + νqi (t)
∑

m ŝm(t)ẑ
(i,∗)
m (t)

− νqi (t)̂bi(t)
∑

m νsm(t)
∑Nc

j=1 ν
c
j (t)z

(i,j)2
m . (80)

Next, we simplify expressions for the variances νrj (t) and
νqi (t). First, it can be shown [10] that (38) and (39) can be used
to rewrite the second half of νrj (t) from (48) as∑

m

(
ŝ2m(t)− νsm(t)

)∑Nb

i=1 ν
b
i (t)z

(i,j)2
m (81)

=
∑

m

(
E
{

(zm−p̂m(t))2

νp
m(t)

}
− 1
) ∑Nb

i=1 νb
i (t)z

(i,j)2
m

νp
m(t)

,

where the random variable zm above is distributed according
to the pdf in line (D1) of Table II. For the G-AMP algorithm,
[19, Sec. VI.D] clarifies that, under i.i.d priors and scalar vari-
ances, in the LSL, the true zm and the G-AMP iterates p̂m(t)



802 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 4, JUNE 2016

converge empirically to a pair of random variables (z, p) that
satisfy pz|p(z|p̂(t)) = N (z; p̂(t), νp(t)). This suggests that (81)
is negligible in the LSL, in which case (48) implies

νrj (t) ≈
(∑

m νsm(t)ẑ
(∗,j)
m (t)2

)−1
. (82)

A similar argument yields

νqi (t) ≈
(∑

m νsm(t)ẑ
(i,∗)
m (t)2

)−1
. (83)

The final step in the derivation of P-BiG-AMP is to approxi-
mate the SPA posterior log-pdfs in (14) and (15). Plugging (35)
and (42) into these expressions, we get

Δb
i (t+ 1, bi) ≈ const+ log

(
pbi(bi)N

(
bi; q̂i(t), ν

q
i (t)

))
(84)

Δc
j(t+ 1, cj) ≈ const+ log

(
pcj (cj)N

(
cj ; r̂j(t), ν

r
j (t)

))
(85)

using steps similar to those used for (43). The correspond-
ing pdfs are given as (D2) and (D3) in Table II and represent
P-BiG-AMP’s iteration-t approximations to the true marginal
posteriors pbi|y (bi |y) and pcj |y (cj |y). The quantities b̂i(t+

1) and νbi (t+ 1) are then respectively defined as the mean and
variance of the pdf associated with (84), and ĉj(t+ 1) and
νcj (t+ 1) are the mean and variance of the pdf associated with
(85). This completes the derivation of P-BiG-AMP.

A table summarizing the steps of the P-BiG-AMP algorithm
is given in [10] but is omitted here for reasons of space.

G. Scalar-Variance Approximation

The P-BiG-AMP algorithm derived above stores and
processes variance terms νpm, νpm, νzm, νsm, νrj , ν

q
i , ν

c
j , ν

b
i that

depend on the indices m, j, i. The use of scalar (i.e., index-
invariant) variances significantly reduces its complexity.

To derive scalar-variance P-BiG-AMP, we first assume
∀i : νbi (t) ≈ νb(t) � 1

Nb

∑Nb

i=1 ν
b
i (t) and ∀j : νcj (t) ≈ νc(t) �

1
Nc

∑Nc

j=1 ν
c
j (t). Then we approximate νpm(t) as

νpm(t) ≈ νb(t)
∑Nb

i=1 |ẑ(i,∗)m (t)|2 + νc(t)
∑Nc

j=1 |ẑ(∗,j)m (t)|2
(86)

≈ νb(t)
M

∑Nb

i=1 ‖ẑ(i,∗)(t)‖2 + νc(t)
M

∑Nc

j=1 ‖ẑ(∗,j)(t)‖2 � νp(t).

(87)

Similarly, νpm(t) is approximated as

νpm(t) ≈ νp(t) + νb(t)νc(t)
∑Nb

i=1

∑Nc

j=1 |z(i,j)m |2 (88)

≈ νp(t) + νb(t)νc(t)
M

∑Nb

i=1

∑Nc

j=1 ‖z(i,j)‖2 � νp(t), (89)

where 1
M

∑Nb

i=1

∑Nc

j=1 ‖z(i,j)‖2 can be pre-computed. Even
with the above scalar-variance approximations, νsm(t) is not
guaranteed to be m-invariant. Still, it can be approximated as
such using νs(t) � 1

M

∑M
m=1 ν

s
m(t), in which case

νrj (t) ≈
(
νs(t)‖ẑ(∗,j)(t)‖2)−1 (90)

≈
(
νs(t) 1

Nc

∑Nc

j=1 ‖ẑ(∗,j)(t)‖2
)−1

� νr(t) (91)

r̂j(t) = ĉj(t) + νr(t)
∑M

m=1 ŝm(t)ẑ
(∗,j)
m (t)∗

− νr(t)νs(t)νb(t)ĉj(t)
∑Nb

i=1 ‖z(i,j)‖2, (92)

TABLE III
WORST-CASE COMPLEXITY OF SCALAR-VARIANCE P-BIG-AMP

where
∑Nb

i=1 ‖z(i,j)‖2 can be pre-computed. Similarly,

νqi (t) ≈
(
νs(t)‖ẑ(i,∗)(t)‖2)−1 (93)

≈
(
νs(t) 1

Nb

∑Nb

i=1 ‖ẑ(i,∗)(t)‖2
)−1

� νq(t) (94)

q̂i(t) = b̂i(t) + νq(t)
∑M

m=1 ŝm(t)ẑ
(i,∗)
m (t)∗

− νq(t)νs(t)νc(t)̂bi(t)
∑Nc

j=1 ‖z(i,j)‖2. (95)

The scalar-variance P-BiG-AMP algorithm is summarized in
Table II. Noting the Hermitian transposes in lines (R12) and
(R14), the algorithm allows the use of complex-valued quanti-
ties, in which case N in (D1)-(D3) becomes a circular complex
Gaussian pdf. The complexity scaling of each line in Table II
is tabulated in Table III assuming that all MNbNc entries in
the tensor z(i,j)m are nonzero. In practice, z(i,j)m is often sparse
or implementable using a fast transformation, allowing drastic
reduction in complexity, as shown in Section IV. Thus, Table III
should be interpreted as “worst-case” complexity.

H. Damping

Damping has been applied to both G-AMP [48] and BiG-
AMP [20] to prevent divergence. Essentially, damping (or
“relaxation” in the optimization literature) slows the evolution
of the algorithm’s state variables. For G-AMP, damping yields
provable local-convergence guarantees with arbitrary matri-
ces [48] while, for BiG-AMP, damping has been shown to
be very effective through an extensive empirical study [21].
Furthermore, adaptive damping has been proposed for G-AMP
with the goal of preventing divergence with minimal impact
on runtime [49]. The same damping strategies can be straight-
forwardly applied to P-BiG-AMP. For details, we direct the
interested reader to [10] and the public domain GAMPmatlab
implementation [50].

I. Tuning of the Prior and Likelihood

To run P-BiG-AMP, one must specify the priors and like-
lihood in lines (D1)-(D3) of Table II. Although a reasonable
family of distributions may be dictated by the application, the
specific parameters of the distributions must often be tuned
in practice. To address this issue, we propose to apply the
expectation-maximization (EM) [23] based approach devel-
oped for G-AMP [25] and later extended to BiG-AMP in [20].
In this approach, the user specifies the families of P-BiG-
AMP priors {pbi(·;θ), pcj (·;θ), pym|zm(ym|·;θ)}∀m,n,l and the
EM algorithm is used to (locally) maximize the likelihood of
the parameter vector θ, i.e., to find θ̂ � argmaxθpy (y;θ). If
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the families themselves are unknown, it may suffice to use
Gaussian-mixture models and learn their parameters [25]. Since
the details are nearly identical to the BiG-AMP case, we omit
them and refer the reader to [10].

IV. EXAMPLE PARAMETERIZATIONS

P-BiG-AMP was summarized and derived in Section III
for generic parameterizations z(i,j) in (4). A naive imple-
mentation, which treats every z

(i,j)
m as nonzero, would lead

to the worst-case complexities stated in Table III. In prac-
tice, however, {z(i,j)m } is often sparse or implementable
using a fast transformation, in which case the implementa-
tion can be dramatically simplified. We now describe sev-
eral examples of structured z(i,j), detailing the computa-
tions needed for the essential scalar-variance P-BiG-AMP
quantities ẑ(∗,∗)(t),

∑Nb

i=1 ‖ẑ(i,∗)(t)‖2,
∑Nc

j=1 ‖ẑ(∗,j)(t)‖2,

{ẑ(i,∗)H(t)ŝ(t)}Nb
i=1 and {ẑ(∗,j)H(t)ŝ(t)}Nc

j=1.

A. Multisnapshot Structure

With multi-snapshot structure, the noiseless outputs become

Z =
∑Nb

i=0 biA
(i)C with known {A(i)}, (96)

where Z ∈ C
K×L and C ∈ C

N×L for6 L > 1. Thus we
have A(i) ∈ C

K×N , M = KL, and Nc = NL. Defining z �
vec(Z) and c � vec(C), we find

z =
∑Nb

i=0 bi
(
IL ⊗A(i)

)
c, (97)

which implies that

z(i,j) =
[
IL ⊗A(i)

]
:,j

(98)

ẑ(i,∗)(t) = vec
(
A(i)Ĉ(t)

)
(99)

ẑ(∗,j)(t) =
[
IL ⊗ Â(t)

]
:,j

(100)

ẑ(∗,∗)(t) =
∑Nb

i=0 b̂i(t)vec
(
A(i)Ĉ(t)

)
= vec

(
Â(t)Ĉ(t)

)
(101)

Â(t) �
∑Nb

i=0 b̂i(t)A
(i), (102)

where [X]:,j denotes the jth column of X and Ĉ(t) ∈ C
N×L

is a reshaping of ĉ(t). Note that (98)-(100) follow directly from
(96) via the derivative interpretations (31)-(33).

From the above expressions, it can be readily shown that∑Nb

i=1 ‖ẑ(i,∗)(t)‖2 =
∑Nb

i=1 ‖A(i)Ĉ(t)‖2F = tr
(
ΓĈ(t)Ĉ(t)H

)
(103)∑Nc

j=1 ‖ẑ(∗,j)(t)‖2 = L‖Â(t)‖2F (104)

with pre-computed

Γ �
∑Nb

i=1 A
(i)HA(i). (105)

6When L = 1, (96) reduces to the general parameterization (4).

Furthermore, under the scalar variance approximation,

R̂(t) =
(
1− νr(t)νs(t)νb(t)Dr

)
Ĉ(t)

+ νr(t)ÂH(t)Ŝ(t) (106)

q̂(t) = (1− νq(t)νs(t)νc(t)Dq) b̂(t)

+ νq(t)

⎡⎢⎢⎢⎣
vec
(
A(1)Ĉ (t)

)H
...

vec
(
A(Nb)Ĉ(t)

)H
⎤⎥⎥⎥⎦ ŝ(t), (107)

with the following pre-computed using a
(i)
n � [A(i)]:,n:

Dr � diag
{∑Nb

i=1 ‖a(i)
1 ‖2, . . . ,∑Nb

i=1 ‖a(i)
N ‖2

}
(108)

Dq � Ldiag
{
‖A(1)‖2F , . . . , ‖A(Nb)‖2F

}
. (109)

Note that (101)-(109) specify the essential quantities needed for
the implementation of scalar-variance P-BiG-AMP. We discuss
the complexity of these steps for two cases below.

First, suppose w.l.o.g. that each A(i) has Na ≤ KN
nonzero elements, with possibly different supports among
{A(i)}. This implies that Â(t) has at most min(NbNa,KN)
nonzero elements. It then follows that (101) consumes
min(NbNa,KN)L multiplies, (102) consumes NbNa, (103)
consumes Lmin(Nb(Na +K), N2) and (104) consumes
min(NbNa,KN) multiplies. Furthermore, (106) consumes
≈ min(NbNa,KN)L multiplies and (107) consumes ≈
NbL(Na +K). In total, O(min(NbNa,KN)L+NbNaL+
NbKL+ Lmin(Nb(Na +K), N2)) multiplies are consumed.
For illustration, suppose that NbNa < KN and NbNa < N2.
Then O(NL+NbL(Na +K)) multiplies are consumed, in
contrast to O(MNbNc) = O(KNL2Nb) for the general case.

Now suppose w.l.o.g. that, for a given b, the multiplication
of A(b) by a vector x can be accomplished implicitly using
Na multiplies. For example, Na = O(N logN) in the case of
an FFT. Then (101) consumes NaL multiplies, (103) consumes
KL (using {A(i)Ĉ(t)} computed for q̂(t)), and (104) can
be approximated using O(Na) multiplies. Furthermore, (106)
consumes ≈ (N +Na)L multiplies and (107) consumes ≈
NbL(Na +K). In total, O(L(N +NbNa +NbK)) multiplies
are consumed, in contrast to O(MNbNc) = O(KNL2Nb) for
the general case.

B. Low-Rank Structure

With low-rank signal structure, the noiseless outputs become

zm = tr
(
ΦH

mBTC
)
,m = 1, . . . ,M, (110)

with known {Φm}, where B ∈ C
N×K , C ∈ C

N×L for7 N >
1. Thus we have Φm ∈ C

K×L, Nb = NK, and Nc = NL.
Defining φm � vec(Φm), b � vec(B), and c � vec(C),

zm = φH
mvec(BTC) = bT (Φ∗m ⊗ IN ) c (111)

= vec (BΦ∗m)
T
c (112)

= vec
(
CΦH

m

)T
b (113)

7When N = 1, (110) reduces to the general parameterization (4).
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from which the derivative interpretations (31)-(33) imply

z(i,j)=

⎡⎣ [Φ1 ⊗ IN ]i,j...
[ΦM ⊗ IN ]i,j

⎤⎦, ẑ(∗,∗)(t)=

⎡⎣ tr(ΦH
1 B̂(t)TĈ(t))...

tr(ΦH
MB̂(t)TĈ(t))

⎤⎦
(114)

ẑ(i,∗)(t)=

⎡⎣vec(Ĉ(t)ΦH
1 )

T
...

vec(Ĉ(t)ΦH
M )T

⎤⎦
:,i

, ẑ(∗,j)(t)=

⎡⎣vec(B̂(t)Φ∗1)
T

...
vec(B̂(t)Φ∗M )T

⎤⎦
:,j

.

(115)

From the above expressions, it can be readily shown that∑Nb

i=1 ‖ẑ(i,∗)(t)‖2 =
∑M

m=1 ‖ΦmĈ(t)H‖2F (116a)

= tr
(
Γ1Ĉ(t)HĈ(t)

)
(116b)∑Nc

j=1 ‖ẑ(∗,j)(t)‖2 =
∑M

m=1 ‖B̂(t)∗Φm‖2F (117a)

= tr
(
Γ2B̂(t)TB̂(t)∗

)
(117b)

with pre-computed

Γ1 �
∑M

m=1 Φ
H
mΦm, Γ2 �

∑M
m=1 ΦmΦH

m. (118)

Furthermore, under the scalar variance approximation,

R̂(t) = Ĉ(t)
(
IL − νr(t)νs(t)νb(t) Diag Γ1

)
+ νr(t)B̂(t)∗

(∑M
m=1 ŝm(t)Φm

)
(119)

Q̂(t) = B̂(t)
(
IK − νq(t)νs(t)νc(t) Diag Γ2

)
+ νq(t)Ĉ(t)∗

(∑M
m=1 ŝm(t)ΦT

m

)
. (120)

Note that (114)-(120) specify the essential quantities needed for
the implementation of scalar-variance P-BiG-AMP. We discuss
the complexity of these steps below.

Suppose w.l.o.g. that Φm has Nφ≤KL nonzero entries,
with possibly different supports among {Φm}. This
implies that

∑
m ŝm(t)Φm has at most min(KL,MNφ)

nonzero elements. It then follows that ẑ(∗,∗)(t) from
(114) consumes NKL+MNφ multiplies, (116) con-
sumes ≈N min{L2,M(Nφ+K)}, and (117) consumes
≈N min{K2,M(Nφ+L)}. Furthermore, (119) consumes
NL+N min(KL,MNφ)+MNφ multiplies and (120) con-
sumes NK+N min(KL,MNφ). In total, O(N min(L2,
M(Nφ+K))+N min(K2,M(Nφ+L))+NKL+MNφ) mul-
tiplies are consumed. For illustration, suppose that Nφ < K,L
and M < K,L. Then O(NKL) multiplies are consumed, in
contrast to O(MNbNc) = O(MN2KL) in the general case.

C. Matrix-Product Structure

A special case of (96) and (110) is when

Z = BC (121)

which occurs, e.g., in applications such as MC, RPCA, DL, and
NMF, as discussed in Section I-A. In particular, (96) reduces
to (121) when Nb = KN and vec(A(i)) = [I]:,i, and (110)
reduces to (121) when M = KL and vec(Φm) = [I]:,m. It
can be verified [1] that, under (121), P-BiG-AMP reduces to
BiG-AMP from [20].

D. Low-Rank Plus Sparse Structure

Recall (3), the problem of recovering a “low-rank plus
sparse” matrix. Writing the low-rank component as L = BTC1

with B ∈ C
N×K , C1 ∈ C

N×L, and N < min{K,L}, we can
invoke (111) to get

zm = bT (Φ∗m ⊗ IN ) c1 + φH
mc2,m = 1, . . . ,M, (122)

with b0 � 1 (recall Section I-B), b � vec(B), c1 � vec(C1),
c2 � vec(S) (recall S was the sparse matrix from (3)), and c =
[cT1 , c

T
2 ]

T.
Note that the structure of the first term of (122) can be

exploited through (114)-(115), as discussed in Section IV-B.
Meanwhile, straightforward computational simplifications of
the second term in (122) result when φH

m is sparse. But care
must be taken in applying the scalar-variance approximation
in this case: it may be advantageous to use different scalar
variances for c1 and c2 (e.g., νr1 , ν

c
1 and νr2 , ν

c
2).

V. NUMERICAL EXPERIMENTS

We now present the results of several numerical experiments
that test the performance of P-BiG-AMP and EM-P-BiG-AMP
in various applications. In most cases, we quantify recovery per-
formance using NMSE(b̂) � ‖b− b̂‖22/‖b‖22 and NMSE(ĉ) �
‖c− ĉ‖22/‖c‖22. Matlab code for P-BiG-AMP and EM-P-BiG-
AMP can be found in [50].

A. I.i.d. Gaussian Model

First, we examine the performance of P-BiG-AMP in the
case of i.i.d. Gaussian z

(i,j)
m , as assumed for its deriva-

tion. In particular, {z(i,j)m } were drawn i.i.d. CN (0, 1), b =
[b1, . . . , bNb

]T were drawn Bernoulli-CN (0, 1) with spar-
sity rate ξb, and c = [c1, . . . , cNc

]T were drawn Bernoulli-
CN (0, νc) with sparsity rate ξc. We then attempted to recover
b and c from M noiseless measurements of the form (4) under
b0 = 0 and c0 = 0. For our experiment, we used Nb = Nc =
100 and νc = 1, and we varied both the sparsity rate ξb = ξc =
K/100 and the number of measurements M .

We tested the performance of both P-BiG-AMP, which
assumed oracle knowledge of all distributional parameters,
and EM-P-BiG-AMP, which estimated the parameters θ �
[νc, ξb, ξc]T as well as the additive white Gaussian noise
(AWGN) variance.8 Figure 2 shows the empirical success rate
for both algorithms, averaged over 50 independent problem
realizations, as a function of the sparsity K and the number
of measurements M . Here, we declare a “success” when both
NMSE(b̂) < −60 dB and NMSE(ĉ) < −60 dB. The figure
shows that both P-BiG-AMP and EM-P-BiG-AMP gave sharp
phase transitions. Moreover, their phase transitions are very
close to the counting bound “M ≥ 2K,” shown by the red line
in Fig. 2.

8EM-P-BiG-AMP was not told that the measurements were noiseless.
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Fig. 2. Empirical success rate for noiseless sparse signal recovery under the
i.i.d. parametric bilinear model (4) as a function of the number of measurements
M and the signal sparsity K. Success rates were averaged over 50 independent
realizations. Points above the red curve are infeasible due to counting bound,
as described in the text.

Fig. 3. Empirical success rate for noiseless self-calibration as a function of the
number of calibration parameters Nb and the signal sparsity K. Results are
averaged over 10 independent realizations.

B. Self-calibration

We now consider the self calibration problem described in
Section I-A. In particular, we consider the noiseless single mea-
surement vector (SMV) version, where the goal is to jointly
recover the K-sparse signal c ∈ R

Nc and calibration param-
eters b ∈ R

Nb from M noiseless measurements of the form
z = Diag(Hb)Ac, where H and A are known. For our exper-
iment, we mimic the setup used for [8, Figure 1]. Thus, we set
Nc = 256 and M = 128, we chose H as the first Nb columns
of a M -point unitary DFT matrix, and we drew the entries of A
as i.i.d. N (0, 1). Furthermore, we drew K-sparse c with i.i.d.
N (0, νc) non-zero elements chosen uniformly at random, and
we drew b as i.i.d. N (0, 1).

We compared the performance of EM-P-BiG-AMP to
SparseLift [8], a recently proposed convex relaxation, using
CVX for the implementation. EM-P-BiG-AMP modeled c as
Bernoulli-N (0, νc) and learned νc, the sparsity rate ξ, and
the AWGN variance.9 Figure 3 shows empirical success rate
as a function of signal sparsity K and number of calibration
parameters Nb. As in [8], we considered NMSE � ‖bcT −
b̂ĉT‖2F /‖bcT‖2F , and we declared “success” when NMSE <
−60 dB. Figure 3 shows that EM-P-BiG-AMP’s success region
was much larger than SparseLift’s,10 although it was not close
to the counting bound M ≥ Nb +K, which lives just outside
the boundaries of the figure. Still, the shape of EM-P-BiG-
AMP’s empirical phase-transition suggests successful recov-
ery when M � α1(Nb +K) for some α1, in contrast with

9See footnote (8).
10The SparseLift results in Fig. 3 agree with those in [8, Figure 1].

Fig. 4. Parameter estimation NMSE (left) and signal estimation NMSE (right)
versus sampling ratio M/N for CS with parametric matrix uncertainty. Results
are averaged over 10 independent realizations.

SparseLift’s empirical and theoretical [8] success condition of
M � α2NbK for some α2.

C. Noisy CS With Parametric Matrix Uncertainty

Next we consider noisy compressive sensing with para-
metric matrix uncertainty, as described in Section I-A. Our
goal is to recover a single, K-sparse, Nc-length signal c
from measurements y = (A(0) +

∑Nb

i=1 biA
(i))c+w ∈ R

M ,
where b = [b1, . . . , bNb

]T are unknown calibration parameters
and w is AWGN. For our experiment, Nc = 256, K = 10,
c had i.i.d. N (0, νc) non-zero elements chosen uniformly at
random with νc = 1, b was i.i.d. N (0, νb) with νb = 1, A(0)

was i.i.d. N (0, 10), and {A(i)}10i=1 was i.i.d. N (0, 1). The
noise variance νw was adjusted to achieve an SNR � ‖y −
w‖22/‖w‖22 of 40 dB.

We compared P-BiG-AMP and EM-P-BiG-AMP to i) the
MMSE oracle that knows c, ii) the MMSE oracle that knows b
and support(c), and iii) the WSS-TLS approach from [9], which
aims to solve the non-convex optimization problem

(b̂, ĉ) = argmin
b,c

∥∥∥∥∥
(
A(0) +

Nb∑
i=1

biA
(i)

)
c− y

∥∥∥∥∥
2

2

+ νw‖b‖22 + λ‖c‖1 (123)

via alternating minimization. For WSS-TLS, we used oracle
knowledge of νw, oracle tuning of the regularization param-
eter λ, and code from the authors’ website (with a trivial
modification to facilitate arbitrary A(i)). P-BiG-AMP used a
Bernoulli-Gaussian prior with sparsity rate ξ = K/Nc and per-
fect knowledge of νc and νw, whereas EM-P-BiG-AMP learned
the statistics [ξ, νc, νw]T � θ from the observed data. Figure 4
shows that, for estimation of both b and c, P-BiG-AMP gave
near-oracle NMSE performance for M/N ≥ 0.2. Meanwhile,
EM-P-BiG-AMP performed only slightly worse than P-BiG-
AMP. In contrast, the NMSE performance of WSS-TLS was
about 10 dB worse than P-BiG-AMP, and its “phase transition”
occurred later, at M/N = 0.3.

D. Totally Blind Deconvolution

We now consider recovering an unknown signal ci and chan-
nel bi from noisy observations yi = zi + wi of their linear
convolution {zi} = {bi} ∗ {ci}, where wi ∼ i.i.d. N (0, νw).
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Fig. 5. Channel estimation NMSE (left), Gaussian-symbol estimation NMSE
(center), and QPSK symbol error rate (right) versus SNR for totally blind
deconvolution. Results are averaged over 500 independent realizations.

In particular, we consider the case of “totally blind decon-
volution” from [51], where the signal contains zero-valued
guard intervals of duration Ng ≥ Nb − 1 and period Np > Ng ,
guaranteeing identifiability. Recalling the discussion of joint
channel-symbol estimation in Section I-A, we see that a zero-
valued guard allows the convolution outputs to be organized as
Z = Conv(b)C, where Conv(b) ∈ R

Np×(Np−Ng) is the linear
convolution matrix with first column b. For our experiment, we
used an i.i.d. CN (0, 1) channel b, and two cases of i.i.d. sig-
nal c: Gaussian cj ∼ CN (0, 1) and equiprobable QPSK (i.e.,
cj ∈ {1, j,−1,−j}). Also, we used guard period Np = 256,
guard duration Ng = 64, channel length Nb = 63, and L = 3
signal periods.

We compared P-BiG-AMP to i) the known-symbol and
known-channel MMSE oracles and ii) the cross-relation (CR)
method [52], which is known to perform close to the
Cramer-Rao lower bound [52]. In particular, we used CR
for blind symbol estimation, then (in the QPSK case) de-
rotated and quantized the blind symbol estimates, and finally
performed maximum-likelihood channel estimation assuming
perfect (quantized) symbols. Figure 5 shows that, with both
Gaussian and QPSK symbols, P-BiG-AMP outperformed the
CR method by about 5 dB in the SNR domain. Moreover, by
exploiting the QPSK constellation, both methods were able to
achieve oracle-grade NMSE(b̂) at high SNR.

E. Matrix Compressive Sensing

Finally, we consider the problem of matrix compressive
sensing, as described in Section I-A and further discussed in
Section IV-D. Our goal was to jointly recover a low rank matrix
L = BTC1 ∈ C

100×100 and a sparse outlier matrix S = C2 ∈
C

100×100 from M noiseless linear measurements of their sum,
i.e., {zm}Mm=1 in (3). For our experiment, the sparse outliers
were drawn with amplitudes uniformly distributed on [−10, 10]

Fig. 6. Empirical success rate for noiseless matrix compressive sensing as a
function of rank R and outlier sparsity rate ξ for M = 5000 (top), M = 8000
(middle), and M = 10000 (bottom) measurements. The left column shows
EM-P-BiG-AMP and the right column shows CPCP solved using TFOCS. All
results are averaged over 10 independent realizations. Points above the red
curve are infeasible due to the counting bound, as described in the text.

and uniform random phases, similar to [14, Figure 2]. But
unlike [14, Figure 2], the sensing matrices {Φm} were sparse,
with K = 50 i.i.d. CN (0, 1) non-zero entries drawn uniformly
at random.

We compare the recovery performance of EM-P-BiG-AMP
to the convex formulation known as compressive principal
components pursuit (CPCP) [14], i.e.,

argmin
L,S

‖L‖∗ + λ‖S‖1 s.t. zm = tr{ΦT
m(L+ S)}∀m,

(124)

which we solved with TFOCS using a continuation scheme. In
accordance with [14, Theorem 2.1], we used λ = 1/10 in (124).
EM-P-BiG-AMP learned the variance of the entries in C1, the
sparsity and non-zero variance of C2, and the additive AWGN
variance.11 Although EM-P-BiG-AMP was given knowledge of
the true rank R, we note that an unknown rank could be accu-
rately estimated using the scheme proposed for BiG-AMP in
[20, Sec. V-B2] and tested for the RPCA application in [21,
Sec. III-F2].

Figure 6 shows the empirical success rate of EM-P-BiG-
AMP and CPCP versus R (i.e., the rank of L) and ξ = K/1002

(i.e., the sparsity rate of S) for three fixed values of M (i.e., the

11See footnote (8).
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Fig. 7. log10(average runtime), in seconds, for noiseless matrix compressive
sensing as a function of rank R and outlier sparsity rate ξ for M = 10000 mea-
surements. Runtimes were averaged over 10 successful trials; locations (R, ξ)
with any unsuccessful trials are shown in white.

number of measurements). Each point is the average of 10 inde-

pendent trials, with success defined as ‖L− L̂‖2F /‖L‖2F <
−60 dB. Figure 6 shows that, for the three tested values of
M , EM-P-BiG-AMP exhibited a sharp phase-transition that
was significantly better than that of CPCP.12 In fact, EM-
P-BiG-AMP’s phase transition is not far from the counting
bound M ≥ R(200−R) + ξ1002, shown by the red curves in
Fig. 6.

Figure 7 shows the corresponding log10(average runtime)
versus rank R and sparsity rate ξ at M = 10000 measurements.
Runtimes were averaged over 10 successful trials; locations
(R, ξ) with any unsuccessful trials are shown in white. The
figure shows that EM-P-BiG-AMP’s average runtimes were
faster TFOCS’s throughout the region that both algorithms
were successful. The runtimes for other values of M (not
shown) were similar.

VI. CONCLUSION

We proposed P-BiG-AMP, a scheme to estimate the param-
eters b = [b1, . . . , bNb

]T and c = [c1, . . . , cNc
]T of the para-

metric bilinear form zm =
∑Nb

i=0

∑Nc

j=0 biz
(i,j)
m cj from noisy

measurements {ym}Mm=1, where ym and zm are related through
an arbitrary likelihood function and z

(i,j)
m , b0, c0 are known. Our

approach treats bi and cj as random variables and z
(i,j)
m as an

i.i.d. Gaussian tensor in order to derive a tractable simplification
of the sum-product algorithm in the large-system limit, gen-
eralizing the bilinear AMP algorithms in [20], [22]. We also
proposed an EM extension that learns the statistical parame-
ters of the priors on bi, cj , and ym|zm. Numerical experiments
suggest that our schemes yield significantly better phase tran-
sitions than several recently proposed convex and non-convex
approaches to self-calibration, blind deconvolution, CS under
matrix uncertainty, and matrix CS, while being competitive (or
faster) in runtime.
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