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A Message-Passing Receiver for BICM-OFDM Over
Unknown Clustered-Sparse Channels

Philip Schniter

Abstract—We propose a factor-graph-based approach to joint
channel-estimation-and-decoding (JCED) of bit-interleaved coded
orthogonal frequency division multiplexing (BICM-OFDM).
In contrast to existing designs, ours is capable of exploiting
not only sparsity in sampled channel taps but also clustering
among the large taps, behaviors which are known to manifest
at larger communication bandwidths. In order to exploit these
channel-tap structures, we adopt a two-state Gaussian mixture
prior in conjunction with a Markov model on the hidden state. For
loopy belief propagation, we exploit a “generalized approximate
message passing” (GAMP) algorithm recently developed in the
context of compressed sensing, and show that it can be successfully
coupled with soft-input soft-output decoding, as well as hidden
Markov inference, through the standard sum-product framework.
For subcarriers and any channel length , the resulting
JCED-GAMP scheme has a computational complexity of only
� ���

�
� �, where is the constellation size. Nu-

merical experiments using IEEE 802.15.4a channels show that our
scheme yields BER performance within 1 dB of the known-channel
bound and 3–4 dB better than soft equalization based on LMMSE
and LASSO.

Index Terms—Belief propagation, blind equalizers, channel esti-
mation, decoding, message passing, orthogonal frequency-division
multiplexing (OFDM), ultra-wideband communication.

I. INTRODUCTION

W HEN designing a digital communications receiver, it
is common to model the effects of multipath propaga-

tion in discrete time using a convolutive linear channel that,
in the slow-fading scenario, can be characterized by a fixed
impulse response over the duration of one codeword.
When the communication bandwidth is sufficiently low, the
“taps” are well modeled as independent complex
Gaussian random variables, resulting in the “uncorrelated
Rayleigh-fading” and “uncorrelated Rician-fading” models
that have dominated the wireless communications literature
for many decades [1]. For receiver design, the Gaussian tap
assumption is very convenient because the optimal estimation
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scheme is well known to be linear [2]. As the communication
bandwidth increases, however, the channel taps are no longer
well-modeled as Gaussian nor independent. Rather, they tend to
be heavy-tailed or “sparse” in that only a few values in
have significant amplitude [3]–[6]. Moreover, groups of large
taps are often clustered together in lag . These behaviors
are both a blessing and a curse: a blessing because, of all tap
distributions, the independent Gaussian one is most detrimental
to capacity [7], but a curse because optimal channel estimation
becomes nonlinear and thus receiver design becomes more
complicated.

Recently, there have been many attempts to apply break-
through nonlinear estimation techniques from the field of
“compressive sensing” [8] (e.g., LASSO [9], [10]) to the wire-
less channel estimation problem. We refer to this approach as
“compressed channel sensing” (CCS), after the recent compre-
hensive overview [11]. The CCS literature generally takes a
decoupled approach to the problem of channel estimation and
data decoding, in that pilot-symbol knowledge is first exploited
for sparse-channel estimation, after which the channel estimate
is used for data decoding. However, this decoupled approach is
known to be suboptimal [12].

The considerations above motivate a joint approach to struc-
tured-sparse-channel-estimation and decoding that offers both
near-optimal decoding performance and low implementation
complexity. In this paper, we propose exactly such a scheme.
In particular, we focus on orthogonal frequency-division
multiplexing (OFDM) with bit-interleaved coded modulation
(BICM), and propose a novel factor-graph-based receiver that
leverages recent results in “generalized approximate mes-
sage passing” (GAMP) [13], soft-input/soft-output (SISO)
decoding [14], and structured-sparse estimation [15]. Our re-
ceiver assumes a clustered-sparse channel-tap prior constructed
using a two-state Gaussian mixture with a Markov model on
the hidden tap state. The scheme that we propose has only

complexity, where denotes the number
of subcarriers and denotes the constellation size, facilitating
large values of and channel length (e.g., we use

and for our numerical results). For rich
non-line-of-sight (NLOS) channels generated according to
the IEEE 802.15.4a standard [16], our numerical experiments
show bit error rate performance within 1 dB of the
known-channel bound and 3–4 dB better than soft equalization
based on LMMSE and LASSO.

We now place our work in the context of existing factor-
graph designs. Factor-graph based joint channel-estimation and
decoding (JCED) was proposed more than a decade ago (see,
e.g., the early overview [17]). To calculate the messages passed
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among the nodes of the factor graph, first instincts suggest to
apply the standard “sum-product algorithm” (SPA) [18]–[20].
Exact SPA on the JCED factor graph is computationally infea-
sible, however, and so it must be approximated. For this, there
are many options, since many well-known iterative inference al-
gorithms can themselves be recognized as SPA approximations,
e.g., the expectation–maximization (EM) algorithm [21], par-
ticle filtering [22], variational (or “mean-field”) techniques [23],
and even steepest descent [24]. Moreover, because the JCED
factor graph is loopy, even non-approximate SPA is not guaran-
teed to yield the correct output distributions, because exact in-
ference is NP hard [25]. It is perhaps not surprising that, amidst
this uncertainty about exact SPA and its “best” approximation, a
number of different factor-graph approaches to JCED over fre-
quency-selective channels have been proposed (e.g., [26]–[29]).

Our approach differs from existing factor-graph JCED de-
signs in that it uses 1) a sparse (i.e., non-Gaussian) channel-tap
prior, 2) a clustered (i.e., non-independent) channel-tap prior,
and 3) a state-of-the-art SPA approximation known as “gener-
alized approximate message passing” (GAMP), which has been
shown to admit rigorous analysis as [13]. In fact,
we conjecture that the success of our method is due in large
part to the principled approximations used within GAMP. We
also note that, although we focus on the case of clustered-sparse
channels, our approach could be applied to non-sparse (i.e.,
Gaussian) or non-clustered (i.e., independent) channel-taps or,
e.g., non-sparse channels with unknown length [26], with
minor modifications of our assumed channel prior.

Finally, we mention that this work is an evolution of our
earlier work [30], [31] that was limited to an exactly sparse
channel, that did not exploit clustering, and that was based on the
“relaxed belief propagation” (RBP) algorithm [32], which has
higher implementation complexity than GAMP. For example,
the JCED scheme from [30], [31] has complexity

, which grows with the channel length .
Our paper is organized as follows. In Section II, we detail

our assumptions on the OFDM system and the channel prior,
and provide an illustrative example of clustered-sparse behavior
with the IEEE 802.15.4a channel model. In Section III, we detail
our GAMP-based JCED approach, in Section IV we report the
results of our simulation study, and in Section V we conclude.

Throughout the paper, we use the following notation. de-
notes the field of reals and the complex field. denotes
conjugate and extracts the real part. Furthermore,
denotes the Dirac delta waveform while denotes the
Kronecker delta sequence. Also, denotes -modulo-
convolution, and denotes equality up to a scaling. We use
boldface capital letters like to denote matrices and boldface
small letters like to denote vectors. denotes the identity ma-
trix, denotes the vector of ones, and constructs a diag-
onal matrix from the vector . For matrices and vectors,
denotes transpose and denotes conjugate transpose. When

is a realization of random variable , we write
and use to denote the mean, the variance,

the pdf, and the pdf conditioned on the
event . Sometimes we omit the subscript when there is
no danger of confusion, yielding, e.g.,
and .

denotes the circular Gaussian pdf with mean and variance .
In fact, we often use when referring to the mean and
variance of . For a random vector , we use to denote
the covariance matrix.

II. SYSTEM MODEL

A. BICM-OFDM Model

We consider an OFDM system with subcarriers, each mod-
ulated by a quadrature amplitude modulation (QAM) symbol
from a -ary unit-energy constellation . Of the subcar-
riers, are dedicated as pilots,1 and the remaining

are used to transmit a total of training bits and
coded/interleaved data bits. The data bits are

generated by encoding information bits using a rate- coder,
interleaving them, and partitioning the resulting
bits among an integer number of OFDM sym-
bols. We note that the resulting scheme has a spectral efficiency
of information bits per channel use (bpcu).

In the sequel, we use for
to denote the th element of the QAM constellation, and

to denote the corresponding bits as
defined by the symbol mapping. Likewise, we use
for the QAM symbol transmitted on the th subcarrier of the
th OFDM symbol and for the

coded/interleaved bits corresponding to that symbol. We use
to denote the coded/interleaved

bits in the th OFDM symbol and to
denote the entire (interleaved) codeword. The elements of that
are a priori known as pilot or training bits will be referred to as

. The remainder of is determined from the information bits
by coding/interleaving.

To modulate the th OFDM symbol, an -point inverse dis-
crete Fourier transform (DFT) is applied to the QAM se-
quence , yielding the time-domain
sequence . The OFDM
waveform is then constructed using -cyclic-prefixed ver-
sions of and the transmission pulse :

(1)

with denoting the baud interval (in seconds) and .
The waveform propagates through a noisy channel with

an impulse response that is supported on the interval
, resulting in the receiver input waveform

(2)

where is a Gaussian noise process with flat power spectral
density . We note that a time-invariant channel is assumed
for simplicity. The receiver samples through the reception
pulse , obtaining

(3)

1For our GAMP decoder, we recommend � � �; see Section IV.
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and applies an -DFT to each time-domain sequence
, yielding the frequency-do-

main sequences for
.

Defining the pulse-shaped channel response
, it is well known (e.g., [33]) that, when the

support of is contained within the interval , the
frequency domain observation on the th subcarrier can be
written as

(4)

where is the th subcarrier’s gain and are
Gaussian noise samples. Furthermore, defining the uniformly
sampled channel “taps” , the sub-
carrier gains are related to these taps through the DFT

(5)

In addition, when is a Nyquist pulse, are
statistically independent with variance .

To simplify the development, we assume that in the
sequel (but not in the simulations), and drop the index for
brevity.

B. Clustered-Sparse Tap Prior

Empirical studies [3]–[6] have suggested that, when the baud
rate is sufficiently large, the channel taps are “sparse”
in that the tap distributions tend to be heavy tailed. The same
empirical studies suggest that large taps tend to be clustered in
the lag domain. Furthermore, both the sparsity and clustering
behaviors can be lag-dependent, such as when the receiver’s
timing-synchronization mechanism aligns the first strong mul-
tipath arrivals with a particular reference lag . A concrete ex-
ample of these behaviors will be given in Section II-C.

Since our message-passing-based receiver design is inher-
ently Bayesian, we seek a prior on the taps that is capable
of representing this lag-dependent clustered sparsity. For this
purpose, we assume a two-state Gaussian mixture (GM2) prior2

(6)

where denotes the variance while in the “small” state,
denotes the variance while in the “big” state, and

denotes the prior probability of being in the
“big” state. Here, we use to denote the hidden state,
implying the state-conditional pdf .

For example, if was presumed to be a “sparse” tap, then
we would choose and in (6). If, on the other
hand, is presumed to be (non-sparse) Rayleigh-fading, we
would choose and set equal to the tap variance,
noting that becomes inconsequential. If is presumed to
be Nakagami-fading or similar, we could fit the GM2 param-
eters appropriately using the EM algorithm, as de-
scribed in [34, p. 435]. The GM2 prior has been used success-
fully in many other non-Gaussian inference problems (see, e.g.,

2The message passing algorithm described in Section III-B can also handle
non-Gaussian mixtures and/or mixtures with more than two terms.

[35]), and our premise here is that the GM2 model achieves a
good balance between fidelity and tractability when modeling
channel taps as well.

To capture the big-tap clustering behavior, we employ
a hidden Markov model (HMM). For this, we model
the tap states as a Markov chain (MC) with
switching probabilities
and . Here, implies
that the neighbors of a big tend to be big, and
implies that the neighbors of a small tend to be small. We
note that must be consistent with in
that the following must hold for all

(7)

Although we allow correlation among the tap states, we as-
sume that the tap amplitudes are conditionally independent, i.e.,

. Our experi-
ences with IEEE 802.15.4a channels (see below) suggest that
this is a valid assumption.

We emphasize that the model parameters
are allowed to vary with lag ,

facilitating the exploitation of a priori known lag-dependencies
in sparsity and/or clustering.

C. Illustrative Example: IEEE 802.15.4a Channels

As an illustrative example of the clustered-sparse tap behavior
described above, we generated realizations of the tap vector

from channel impulse responses gener-
ated according to the method specified in the IEEE 802.15.4a
“ultra-wideband” standard [16], which uses the Saleh–Valen-
zuela model [36]

(8)

where denotes the number of clusters, the delay of the
th cluster, the number of components per cluster, the

relative component delays, the component amplitudes,
and the component phases. In particular, the 802.15.4a
standard specifies the following.

• The cluster arrival times are a Poisson process with rate ,
i.e., . The initial
cluster delay , as seen by the receiver, is a func-
tion of the timing synchronization algorithm.

• The component arrivals are a mixture of two Poisson pro-
cesses:

with .
• The component energies obey

(9)

where is the cluster decay time constant and is the
intra-cluster decay time constant.

• The amplitudes are independent and identically dis-
tributed (i.i.d.) Nakagami with -factors randomly gener-
ated via i.i.d. .

• The phases are i.i.d. uniform on .
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Fig. 1. Histograms of ���� � for lags � � ��� ��� ��	� ��
�, with “tight”
axes. With synchronization delay � � �
, note that the histogram appears
Gaussian for � � � , Laplacian for � � � , and very sparse for � � � .

• The number of clusters, , is Poisson distributed with
mean , i.e., .

• The number of components per cluster, , is set large
enough to yield a desired modeling accuracy.

Beyond the above specifications, we assume the following.
• The parameters are set ac-

cording to the 802.15.4a “outdoor NLOS” scenario [16].
• components per cluster are used.
• The pulses and are square-root raised cosine

(SRRC) designs with parameter 0.5.
• The system bandwidth equals MHz.
• The number of taps (and CP length) was set at

(implying a maximal delay spread of s) in order to cap-
ture all significant energy in .

• The initial delay was generated via ,
where and where is exponentially distributed
with mean , i.e., for

. Here, was chosen so that captures the
“pre-cursor” energy contributed by the pulse shape, while

models a positive synchronization uncertainty.
We now show results from an experiment conducted using

realizations of the tap vector . In Fig. 1, we show
histograms of for lags . There it
can be seen that the empirical distribution of changes
significantly with lag : for pre-cursor lags , it is ap-
proximately Gaussian; for near-cursor lags , it is ap-
proximately Laplacian; and, for post-cursor lags , it is
extremely heavy-tailed. In Fig. 2, we show a typical realization
of and notice clustering among the big taps. For comparison,
we also plot an empirical estimate of the power-delay profile
(PDP) in Fig. 2, where .

Next, we fit the GM2 parameters from the
realizations using the EM algorithm [34, p. 435],
which iterates the steps (10)–(13) until convergence:

(10)

Fig. 2. Sample realization of channel taps �� � generated from the IEEE
802.15.4a model with SRRC pulse shaping. Also shown is the empirically
estimated PDP, best fits of the GM2 parameters �� � � �, and the MAP
threshold for detecting the hidden state � given the tap value � .

Fig. 3. Empirically estimated statistics on the tap-states �� �. Top:
� �
�� � ��, middle: 	 �
�� � 
 � � � ��, bottom:
	 �
�� � � � � � 
�. The red dashed line shows the synchroniza-
tion reference, � � � � �
.

(11)

(12)

(13)

Above, is the posterior on the state of tap , i.e.,
. The EM-estimated

big-variance profile and small-vari-
ance profile are shown in Fig. 2, while the sparsity profile

is shown in Fig. 3. Not surprisingly, the
best-fit GM2 parameters also change significantly with lag .
In particular, as becomes larger, the variance ratio
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increases while the big-tap-probability decreases, corre-
sponding to an increase in sparsity. Meanwhile, there exists a
peak in near that results from synchronization.

Next, we empirically estimated the switching probabilities
and using maximum a posteriori

(MAP) state estimates, i.e., . In particular,

(14)

(15)

where denotes the indicator function for event . From the
plots in Fig. 3, we see that the estimated switching probabilities
are lag-dependent as well.

Finally, using the MAP state estimates , we empirically
estimated the normalized conditional correlation

�

���
���� ����� ����������

�
���

�

���
���� ����� ������������ �

���
���� ����� ����������

and found that the magnitudes were , validating our as-
sumption of conditionally independent tap amplitudes.

In summary, we see that IEEE 802.15.4a channels do indeed
yield taps with the lag-dependent clustered sparsity described
in Section II-B. Moreover, we have shown how the GM2-HMM
parameters can be estimated from realizations of . Next,
we propose an efficient factor-graph-based approach to joint
channel-estimation and decoding (JCED) for BICM-OFDM
using the GM2-HMM prior proposed in Section II-B.

III. JOINT CHANNEL ESTIMATION AND DECODING

Our goal is to infer the information bits from the OFDM ob-
servations and the pilot/training bits , without knowing the
channel state . In particular, we aim to maximize the posterior
pmf of each info bit. To exploit prior knowledge
that is clustered-sparse, we employ the GM2-HMM prior de-
scribed in Section II-B. As a result, the info-bit posterior can be
decomposed into the following product of factors:

(16)

(17)

where . This factoriza-
tion is illustrated by the factor graph in Fig. 4, where the round

Fig. 4. Factor graph of the JCED problem for a toy example with � � �

information bits, � � � pilot subcarrier (at subcarrier index � � �),� � �

training bits, � � � bits per QAM symbol, � � � OFDM subcarriers, and
channel impulse response length � � �.

nodes represent random variables and the square nodes repre-
sent the factors of the posterior exposed in (17).

A. Background on Belief Propagation

Although exact evaluation of the posteriors
is computationally impractical for the problem sizes of interest,
these posteriors can be approximately evaluated using belief
propagation (BP) [37] on the factor graph in Fig. 4. In text-
book BP, beliefs take the form of pdfs/pmfs that are propagated
among nodes of the factor graph via the sum/product algorithm
(SPA) [18]–[20].

1) Say the factor node is connected to the variable
nodes . The belief passed from to is

,
given the beliefs recently passed to .

2) Say the variable node is connected to the factor
nodes . The belief passed from to
is , given the beliefs

recently passed to .
3) Say the variable node is connected to the factor nodes

. The posterior on is the product of all re-
cently arriving beliefs, i.e., .

When the factor graph contains no loops, SPA-BP yields
exact posteriors after two rounds of message passing (i.e.,
forward and backward), but, in the presence of loops, conver-
gence to the exact posteriors is not guaranteed [25]. That said,
there exist many problems to which loopy BP [37] has been
successfully applied, including inference on Markov random
fields [38], LDPC decoding [14], and compressed sensing [13],
[15], [32], [39]–[41]. Our work not only leverages these past
successes, but unites them.

B. Background on GAMP

An important sub-problem within our larger bit-inference
problem is the estimation of a vector of independent pos-
sibly-non-Gaussian variables that are linearly mixed via

to form , and sub-
sequently observed as noisy measurements through the
possibly non-Gaussian pdfs . In our case, (6)
specifies a GM2 prior on and (4)—given the finite-alphabet
uncertainty in —yields the non-Gaussian measurement pdf

. This “linear mixing” sub-problem is described by the
factor graph shown within the middle dashed box in Fig. 4,
where each node “ ” represents the measurement pdf
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TABLE I
GAMP ALGORITHM

and the node rightward of each node “ ” represents the GM2
prior on .

Building on recent work on multiuser detection by Guo and
Wang [42], as well as recent work on message passing algo-
rithms for compressed sensing by Donoho, Maleki, Montanari,
and Bayati [40], [41], Rangan proposed a so-called general-
ized approximate message passing (GAMP) scheme that, for
the sub-problem described above, admits rigorous analysis3 as

[13]. The main ideas behind GAMP are the fol-
lowing. First, although the beliefs flowing leftward from the
nodes are clearly non-Gaussian, the corresponding be-
lief about can be accurately approximated
as Gaussian, when is large, using the central limit theorem.
Moreover, to calculate the parameters of this distribution (i.e.,
its mean and variance), only the mean and variance of each

are needed. Thus, it suffices to pass only means and vari-
ances leftward from each node. It is similarly desirable to
pass only means and variances rightward from each measure-
ment node. Although the exact rightward flowing beliefs would
be non-Gaussian (due to the non-Gaussian assumption on the
measurement channels ), GAMP approximates them as
Gaussian using a second-order Taylor series, and passes only
the resulting means and variances. A further simplification em-
ployed by GAMP is to approximate the differences among the
outgoing means/variances of each left node, and the incoming
means/variances of each right node, using Taylor series. The
GAMP algorithm4 is summarized in Table I.

3Since it is difficult to give a concise yet accurate account of GAMP’s tech-
nical properties, we refer the interested reader to [13].

4To be precise, the GAMP algorithm in Table I is an extension of that pro-
posed in [13]. Table I handles circular complex-valued distributions and non-
identically distributed signals and measurements.

C. Joint Estimation and Decoding Using GAMP

We now detail our application of GAMP to joint channel-es-
timation and decoding (JCED) under the GM2-HMM tap prior,
frequently referring to the factor graph in Fig. 4.

Because our factor graph is loopy, there exists considerable
freedom in the message passing schedule. Roughly speaking,
we choose to pass messages from the left to the right of Fig. 4
and back again, several times, stopping as soon as the mes-
sages converge. Each of these full cycles of message passing
will be referred to as a “turbo iteration.” However, during a
single turbo iteration, there may be multiple iterations of mes-
sage passing between the GAMP and MC sub-graphs, which
will be referred to as “equalizer” iterations. Furthermore, during
a single equalizer iteration, there may be multiple iterations of
message passing within the GAMP sub-graph, while there is at
most one forward–backward iteration within the MC sub-graph.
Finally, the SISO decoding block may itself be implemented
using message passing, in which case it may also use several
internal iterations. The message passing details are discussed
below.

At the start of the first turbo iteration, there is total uncertainty
about the information bits, so that .
Thus, the initial bit beliefs flowing rightward out of the coding/
interleaving block are uniformly distributed. Meanwhile, the
pilot/training bits are known with certainty.

Coded-bit beliefs are then propagated rightward into the
symbol mapping nodes. Since the symbol mapping is de-
terministic, the corresponding pdf factors take the form

. The SPA dictates that the message passed
rightward from symbol mapping node “ ” takes the form

(18)

(19)

which is then copied forward as the message passed rightward
from node (i.e., ).

Recall, from Section III-B, that the symbol-belief passed
rightward into the measurement node “ ” determines the
pdf used in GAMP. Writing this symbol belief as

for , (4) implies
the measurement pdf

(20)

From (20), it is shown in Appendix A that the quantities in
(D2)–(D3) of Table I become

(21)

(22)
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for

(23)

(24)

(25)

(26)

(27)

where characterizes the posterior pmf
on under the channel model . Likewise, from
(6), it is shown in Appendix B that the quantities (D5)–(D6) take
the form

(28)

(29)

for and and

(30)

Above, is the a priori likelihood ratio
on the hidden state,

is GAMP’s extrinsic likelihood ratio, and
is the corresponding posterior probability that .

Using (21)–(30), the GAMP algorithm in Table I is iterated
until it converges.5 In doing so, GAMP generates (a close ap-
proximation to) both the conditional means and variances

given the observations , the soft symbol
priors and the sparsity prior . Conve-
niently, GAMP also returns (close approximations to) both the
conditional means and variances of the subchannel gains

, as well as posteriors on the symbols .
Before continuing, we discuss some GAMP details that are

specific to our OFDM-JCED application. First, we notice that,
to guarantee that the variance in (R5) is positive, we
must have in (22). Since this is not necessarily the case
during the first few GAMP iterations, we clip at the value

, where 0.99 was chosen heuristically. Second, due to
unit-modulus property of the DFT elements , step (R2) in
Table I simplifies to and (R6) simplifies

5More precisely, GAMP is iterated until the mean-square tap-estimate differ-
ence ��� ��� � �� �� � ��� �� falls below a threshold or a maximum
number of GAMP iterations has elapsed.

to . With these simplifications, the
complexity of GAMP is dominated by either the matrix-vector
products in (R1) and in (R7), which
can be implemented using a -multiply FFT when

is a power-of-two, or by the calculation of in
(26)–(27), which requires multiplies. Thus, GAMP
requires only multiplies per iteration.

After the messages within the GAMP sub-graph have con-
verged, tap-state beliefs are passed rightward to the MC sub-
graph. In particular, the SPA dictates that GAMP passes tap-
state likelihoods or, equivalently, the extrinsic likelihood ratios

. Since the MC sub-graph is non-loopy, only one iteration of
forward–backward message passing is performed,6 after which
the resulting tap-state likelihoods are passed leftward back to
GAMP, where they are treated as tap-state priors in the next
equalizer iteration. This interaction between the GAMP and MC
sub-blocks can be recognized as an incarnation of the struc-
tured-sparse reconstruction scheme recently proposed by the au-
thors in [15].

When the tap-state likelihoods passed between GAMP and
MC have converged,7 the equalizer iterations are terminated and
messages are passed leftward from the GAMP block. For this,
SPA dictates that a symbol-belief propagates leftward from the

node with the form

(31)

(32)

where play the role of soft channel estimates. The SPA
then implies that .

Next, beliefs are passed leftward from each symbol-mapping
node to the corresponding bit nodes . From the SPA,
they take the form

(33)

(34)

for pairs that do not correspond to pilot/training bits.
(Since the pilot/training bits are known with certainty, there is
no need to update their pmfs.)

Finally, messages are passed leftward into the coding/inter-
leaving block. Doing so is equivalent to feeding extrinsic soft

6Message passing on the MC factor graph is a standard procedure. For details,
we refer the reader to [14], [34].

7More precisely, the equalizer iterations are terminated when the mean-square
difference in tap-state log-likelihoods falls below a threshold or a maximum
number of equalizer iterations has elapsed.
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bit estimates to a soft-input/soft-output (SISO) decoder/deinter-
leaver, which treats them as priors. Since SISO decoding is a
well-studied topic [14], [43] and high-performance implemen-
tations are readily available (e.g., [44]), we will not elaborate
on the details here. It suffices to say that, once the extrinsic out-
puts of the SISO decoder have been computed, they are re-inter-
leaved and passed rightward from the coding/interleaving block
to begin another turbo iteration. These turbo iterations continue
until either the decoder detects no bit errors, the soft bit esti-
mates have converged, or a maximum number of iterations has
elapsed.

IV. NUMERICAL RESULTS

In this section, we present numerical results8 that compare
JCED using our GAMP-based scheme to that using soft-input
soft-output (SISO) equalizers based on linear MMSE (LMMSE)
and LASSO [9], as well as to performance bounds based on
perfect channel state information (CSI).

A. Setup

For all results, we used irregular LDPC codes with code-
word length and average column weight 3, generated
(and decoded) using the publicly available software [44], with
random interleaving. We focus on the case of sub-
carrier OFDM with 16-QAM (i.e., ) operating at a spec-
tral efficiency of bpcu. For bit-to-symbol mapping, we
used multilevel Gray-mapping [45], noting recent work [46]
that conjectures the optimality of Gray-mapping when BICM is
used with a strong code. In some simulations, we used
pilot-only subcarriers and interspersed training bits,
whereas in others we used and . When ,
the pilot subcarriers were placed randomly and modulated with
(known) QAM symbols chosen uniformly at random. When

, the training bits were placed at the most significant
bits (MSBs) of uniformly spaced data-subcarriers and modu-
lated with the bit value 1.

Realizations of the tap vector were generated from IEEE
802.15.4a outdoor-NLOS impulse responses and SRRC pulses,
as described in Section II-C, and not from the GM2-HMM
model. The tap vectors generated for our simulations are thus
as realistic as one can hope to obtain in software. All reported
results are averaged over 5000 channel realizations (i.e.,
info bits).

The GM2-HMM parameters were fit from
10 000 realizations of the tap-vector using the procedure de-
scribed in Section II-C. In doing so, we implicitly assumed9

that the receiver is designed for the outdoor scenario, and we
leverage the prior information made available by the extensive
measurement campaign conducted for the IEEE 802.15.4a stan-
dard [16]. In all cases, we used a maximum of 10 turbo iterations,

8Matlab code is available at http://www.ece.osu.edu/~schniter/turboGAM-
Pdecoding.

9If, instead, we knew that the receiver would be used in a different operating
scenario, then we could generate representative realizations of ��� for that sce-
nario and fit the GM2-HMM parameters accordingly. Furthermore, one could
optimize the receiver for any desired balance between “typical” and “worst case”
operating conditions by simply choosing appropriate training realizations ���.

5 equalizer iterations, 15 GAMP iterations, and 25 LDPC de-
coder iterations, although in most cases the iterations converged
early (as described in Section III-C).

B. Comparison With Other Schemes

The proposed GAMP-based equalizer was compared with
soft-input soft-output (SISO) equalizers based on LMMSE and
LASSO [9], whose constructions are now detailed.

All SISO equalizers are provided with the soft inputs and
, i.e., the means and variances, respectively, of the symbols

. (Note that, if certain elements in are known
perfectly as pilots, then the corresponding elements in will
be zero-valued.) Then, writing , where
an unknown zero-mean deviation, the subcarrier observations

can be written as

(35)

where is a zero-mean noise.
Treating the elements within as uncorrelated and doing the
same with , and leveraging the fact that is a truncated DFT
matrix, it is straightforward to show that
with , where denotes the channel’s
PDP. Without loss of generality, (35) can then be converted to
the equivalent white-noise model

(36)

where and is a known
matrix. In summary, (36) provides a mechanism to handle soft
inputs for both LASSO and LMMSE.

For LMMSE equalization, we first used (36) to compute

(37)

from which we obtain the subcarrier gain estimate
. The covariance matrix of is [2]

whose diagonal elements are variances on the gain es-
timates . Finally, we obtain soft symbol estimates from
the soft gain estimates via (32).

For LASSO,10 we first computed the tap estimate
from (36) using the celebrated SPGL1 algorithm [47]. In doing
so, we needed to specify the target residual variance, i.e.,

. Because ,
we expect the optimal value of to be near 1 and, after
extensive experimentation, we found that the value
works well at high SNR and that the value works
well at low SNR. Thus, for each , we computed SPGL1
estimates using each of these two11 targets, and kept the one that
minimized the squared error ,
which we assume a genie is able to provide. For the soft
outputs, we set and take to
be the diagonal elements of . Assuming

10The criterion employed by LASSO [9] is equivalent to the one employed in
“basis pursuit denoising” [10].

11We also tried running SPGL1 for a dense grid of � values, but often it
would get “stuck” at one of them and eventually return an error.
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Fig. 5. versus number of pilot subcarriers � , for � �� � �� dB,
� � � training bits, � � � bpcu, and 16-QAM.

and leveraging the fact that is a
truncated DFT matrix, we find . Finally,
using (32), we obtain soft symbol estimates from the soft gain
estimates . Due to the genie-aided steps, the
performance attained by our LASSO implementation is better
than what could be obtained in practice.

These LMMSE- and LASSO-based SISO equalizers were
then embedded in the overall factor graph in the same manner
as GAMP, with the following exceptions. 1) The LMMSE
and LASSO algorithms could not be connected to the MC
sub-block, since they are not based on a two-state mixture
model. 2) For LASSO, if the genie-aided MSE did
not improve during a given turbo iteration, then the corre-
sponding outputs were not updated. This
rule was employed to prevent turbo-LASSO from occasionally
diverging at low SNR. 3) For LASSO, if and ,
then the LASSO estimates computed during the first turbo
iteration use only pilot subcarriers. This makes the performance
of SISO-LASSO after the first turbo iteration equal to the
performance of the standard pilot-aided LASSO.

C. Versus the Number of Pilot Subcarriers

Fig. 5 shows bit error rate versus the number of pilot
subcarriers at dB and a fixed spectral efficiency
of bpcu. In this and other figures, “ -#” refers to
algorithm with # turbo iterations (and “ ” after
turbo convergence; see Fig. 10) with the MC block disconnected
(i.e., there was no attempt to exploit tap clustering). Meanwhile
“ -# -5” refers to GAMP MC after # turbo iterations,
each containing 5 equalizer iterations. Finally, refers to
MAP equalization under perfect CSI, which yields a bound on
the performance of any equalizer.

The curves in Fig. 5 exhibit a “U” shape because, as in-
creases, the code rate must decrease to maintain the fixed
spectral efficiency bpcu. While an increase in gener-
ally makes channel estimation easier, the reduction in makes
data decoding more difficult. For all schemes under compar-

Fig. 6. versus number of interspersed training bits � , for � �� �

�� dB, � � � pilots subcarriers, � � � bpcu, and 16-QAM.

ison, Fig. 5 suggests that the choice is optimal under
the operating conditions. Overall, we see GAMP significantly
outperforming both LMMSE and LASSO. Moreover, we see a
small but noticeable gain from the MC block.

D. Versus the Number of Interspersed Training Bits

Although pilot subcarriers are required for decou-
pled channel estimation and decoding, JCED can function with

as long as a sufficient number of training bits are
interspersed among the coded bits used to construct each QAM
symbol. To examine this latter case, Fig. 6 shows versus

at dB, a fixed spectral efficiency of
bpcu, and . Again we see the “U” shape, but with GAMP
working very well for a relatively wide range of , and again
we see a small but noticeable BER improvement when the MC
block is used. SISO-LASSO seems to work to some degree with

, but SISO-LASSO does not.

E. Versus

Fig. 7 shows versus using pilot
subcarriers (as suggested by Fig. 5) and training bits.
Relative to the perfect-CSI bound, we see SISO-LASSO per-
forming within 5 dB during the first turbo iteration and within
4.5 dB after convergence. Meanwhile, we see SISO-LMMSE
performing very poorly during the first turbo iteration, but
eventually surpassing SISO-LASSO and coming within 4 dB
from the perfect-CSI bound. Remarkably, we see GAMP MC
performing within 0.6 dB of the perfect-CSI bound (and within
1 dB after only 2 turbo iterations). This excellent performance
confirms that the proposed GM2-HMM channel model and
equalizer design together do an excellent job of capturing and
exploiting the lag-dependent clustered-sparse characteristics of
the 802.15.4a channel taps. Comparing the GAMP traces to the
GAMP MC traces, we see that the MC block yields a small
but noticeable benefit.

Fig. 8 shows versus using inter-
spersed training bits (as suggested by Fig. 6) and pilot
subcarriers. There we see that SISO-LASSO does not perform
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Fig. 7. versus� �� , for� � ��� pilot subcarriers,� � � training
bits, � � � bpcu, and 16-QAM.

Fig. 8. versus� �� , for� � � pilot subcarriers,� � ��� training
bits, � � � bpcu, and 16-QAM.

well at all. SISO-LMMSE works to some degree after several
turbo iterations, although not as well as in the case.
Meanwhile, we see GAMP+MC performing within 1 dB of the
perfect-CSI case, and GAMP alone performing within 1.5 dB.
Comparing Fig. 8 to Fig. 7, we see GAMP with training bits
performing about 1 dB better than GAMP with dedicated pilot
subcarriers. The perfect-CSI bound likewise improves because,
with 16-QAM, training bits constitutes half the over-
head of pilot subcarriers, allowing Fig. 8 the use of a
stronger code at bpcu.

F. Channel-Tap Versus

Fig. 9 shows the channel estimates’ normalized mean-
squared error versus

, at the point that the turbo iterations were terminated,
using pilot subcarriers and training bits.
(For comparison, Fig. 7 shows for this configuration.) We
also show the attained by the “bit and support genie”

Fig. 9. Channel tap versus � �� , for � � ��� pilot subcarriers,
� � � training bits, � � � bpcu, and 16-QAM.

Fig. 10. Average time per turbo iteration (top), average number of turbo itera-
tions (middle), and average total time (bottom), versus � �� , for � � ���

pilot subcarriers, � � � training bits, � � � bpcu, and 16-QAM.

(BSG), which calculates MMSE channel estimates using per-
fect knowledge of both the coded bits and the hidden channel
states , and which provides a lower bound for any channel
estimator. In the figure, we see that the s of LMMSE
and LASSO channel estimates are within 8–12 dB of the BSG,
whereas those of GAMP are within 2–4 dB. Meanwhile, we
see that GAMP MC has a small but noticeable advantage
over GAMP alone. We reason that the LMMSE estimates are
worse than the GAMP estimates because they do not exploit
the non-Gaussianity of the channel taps , and the LASSO
estimates are worse than the GAMP estimates because they
do not exploit the known priors on the channel taps (i.e., the
lag-dependent sparsity and PDP ).

G. Computational Complexity Versus

Fig. 10 shows the average time per turbo iteration (in Matlab
seconds on a 2.6 GHz CPU), the average number of turbo
iterations, and the average total time (to turbo convergence),
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as a function of , using pilot subcarriers and
training bits. (For comparison, Fig. 7 shows for

this configuration and Fig. 9 shows .) Regarding the
average time per turbo iteration, we see GAMP MC taking

s at low and s at high . GAMP MC
takes only slightly longer than GAMP alone due to the effi-
ciency of the message computations within the MC block, and
the fact that both the GAMP iterations and equalizer iterations
are terminated as soon as the messages converge. In com-
parison, SISO-LMMSE takes s per turbo iteration, and
SISO-LASSO takes between 1 and 7 s, depending on .
Regarding the number of average number of turbo iterations
until convergence, we see that—at low —GAMP MC
takes about 5 turbo iterations, GAMP alone takes about 7,
SISO-LMMSE takes about 5, and SISO-LASSO takes about
3, while—at high —all algorithms converge after only
1 turbo iteration. Regarding the total time for equalization,
GAMP MC and GAMP are about the same at low ,
whereas GAMP alone takes about 30% less time at high .
Meanwhile, SISO-LASSO and SISO-LMMSE are uniformly
slower than GAMP and GAMP MC over the entire
range, in some cases by a factor of 10.

V. CONCLUSION

In this paper, we presented a factor-graph approach to joint
channel-estimation and decoding (JCED) for BICM-OFDM
that merges recent advances in approximate message passing
algorithms [13] with those in structured-sparse signal recon-
struction [15] and SISO decoding [14]. Different from existing
factor-graph approaches to JCED, ours is able to exploit not
only sparse channel taps, but also clustered sparsity patterns
that typify large-bandwidth communication channels, such as
those that result from pulse-shaped communication over IEEE
802.15.4a modeled channels. For this purpose, we proposed
the use of a two-state Gaussian mixture prior with a Markov
model on the hidden tap states. The implementation complexity
of our JCED scheme is dominated by
multiplies per GAMP iteration, facilitating the application
to systems with many subcarriers and many channel taps

. Experiments with IEEE 802.15.4a modeled channels
showed performance within 1 dB of the known-channel
bound, and 3–4 dB better than LMMSE- and LASSO-based
soft equalizers. These experiments also suggested that, with
our proposed approach, the use of interspersed training bits is
more efficient than the use of dedicated pilot subcarriers. For
very large constellations (e.g., in 1024-QAM, ),
the algorithm becomes impractical; therefore, a topic of future
research is how to further reduce the complexity.

APPENDIX A
DERIVATION OF GAMP FUNCTIONS AND

In this Appendix, we derive the GAMP quantities
and given in (21)–(26).

From (D1), we have that

(38)

where . From (20), we
rewrite as

(39)

so that

(40)

(41)

Using the property that

(42)

we can rewrite

(43)

(44)

(45)

and, using the same procedure, we get

(46)

With defined in (23), (38) and (45) and (46) com-
bine to give

(47)
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Finally, from (47) and the definition of in (D2),
(21) follows immediately.

From (D1), we have that

(48)

Similar to (43), we can write

(49)

Then, using the change-of-variable ,
and absorbing the terms as done in (45), we get

(50)

(51)

Using defined in (23) and defined in
(24), (46) and (48) and (51) combine to give

(52)

which is rewritten as
in (27). Finally, plugging into the definition of

in (D3), we immediately obtain (22).

APPENDIX B
DERIVATION OF GAMP FUNCTIONS AND

In this Appendix, we derive the GAMP quantities
and given in (28)–(30).

From (D4)–(D6), we note that and
are the mean and variance, respectively, of the pdf

(53)

where . Using (42) together with
the definition of from (6), we find

(54)

(55)

for and .
This implies that

(56)

Thus, the mean obeys

(57)

(58)

yielding (28), where a straightforward manipulation relates the
expression for above with its definition in (30).

Since, for the pdf in (53), is the mean and is the
variance, we can write

(59)

(60)

which can be simplified to yield (29).
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