336 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Inference With Deep Generative
Priors in High Dimensions

Parthe Pandit

Sundeep Rangan ", Fellow, IEEE, Philip Schniter

Abstract—Deep generative priors offer powerful models for
complex-structured data, such as images, audio, and text. Using
these priors in inverse problems typically requires estimating the
input and/or hidden signals in a multi-layer deep neural network
from observation of its output. While these approaches have been
successful in practice, rigorous performance analysis is compli-
cated by the non-convex nature of the underlying optimization
problems. This paper presents a novel algorithm, Multi-Layer
Vector Approximate Message Passing (ML-VAMP), for inference
in multi-layer stochastic neural networks. ML-VAMP can be
configured to compute maximum a priori (MAP) or approxi-
mate minimum mean-squared error (MMSE) estimates for these
networks. We show that the performance of ML-VAMP can be
exactly predicted in a certain high-dimensional random limit.
Furthermore, under certain conditions, ML-VAMP yields esti-
mates that achieve the minimum (i.e., Bayes-optimal) MSE as
predicted by the replica method. In this way, ML-VAMP provides
a computationally efficient method for multi-layer inference with
an exact performance characterization and testable conditions for
optimality in the large-system limit.

Index Terms—Analyzing deep neural networks, inverse prob-
lems, vector approximate message passing, stochastic neural
networks, state evolution.

Manuscript received October 16, 2019; accepted March 9, 2020. Date
of publication April 8, 2020; date of current version June 8, 2020. The
work of Parthe Pandit, Mojtaba Sahraee-Ardakan, and Alyson K. Fletcher
was supported in part by the National Science Foundation under Grant
1254204 and Grant 1738286, and in part by the Office of Naval Research
under Grant N00014-15-1-2677. The work of Sundeep Rangan was sup-
ported in part by the National Science Foundation under Grant 1116589,
Grant 1302336, and Grant 1547332, and in part by the industrial affili-
ates of NYU WIRELESS. The work of Philip Schniter was supported in
part by the National Science Foundation under Grant 1716388. Portions
of this paper were presented at the IEEE International Symposium on
Information Theory in 2018 [1] and 2019 [2]. (Corresponding author:
Parthe Pandit.)

Parthe Pandit, Mojtaba Sahraee-Ardakan, and Alyson K. Fletcher are
with the Department of Electrical and Computer Engineering, University
of California at Los Angeles, Los Angeles, CA 90095 USA, and
also with the Department of Statistics, University of California at Los
Angeles, Los Angeles, CA 90095 USA (e-mail: parthepandit@ucla.edu;
msahraee @ucla.edu; akfletcher@ucla.edu).

Sundeep Rangan is with the Department of Electrical and Computer
Engineering, New York University, Brooklyn, NY 11201 USA (e-mail:
srangan @nyu.edu).

Philip Schniter is with the Department of Electrical and Computer
Engineering, Ohio State University, Columbus, OH 43210 USA (e-mail:
schniter.1 @osu.edu).

This article has supplementary downloadable material
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/JSAIT.2020.2986321

available at

, Student Member, IEEE, Mojtaba Sahraee-Ardakan
, Fellow, IEEE, and Alyson K. Fletcher

, Student Member, IEEE,
, Member, IEEE

I. INTRODUCTION
A. Inference With Deep Generative Priors

E CONSIDER inference in an L-layer stochastic neural
network of the form

=W +b+&. (=13 ...
B =¢(2_.8) t=24...L

9L_1a (1a)

(1b)

where z8 is the network input, {zg}ﬁ;ll are hidden-layer sig-
nals, and y = zg is the network output. The odd-indexed lay-
ers (la) are (fully connected) affine linear layers with weights
W, biases b, and additive noise vectors &,. The even-indexed
layers (1b) involve separable and possibly nonlinear functions
¢, that are randomized' by the noise vectors &,. By “sep-
arable,” we mean that [¢,(z, §)]; = ¢¢(zi, &) Vi, where ¢y
is some scalar-valued function, such as a sigmoid or ReLU,
and where z; and §&; represent the ith component of z and &.
We assume that the input zg and noise vectors &, are mutu-
ally independent, that each contains i.i.d. entries, and that the
number of layers, L, is even. A block diagram of the network
is shown in the top panel of Fig. 2. The inference problem
is to estimate the input and hidden signals {z@}ﬁ;é from an
observation of the network output y. That is,

. — . 2
Estimate {z¢}Z) given y, {Wa—1, bo1, iJly. ()

For inference, we will assume that network parameters (i.e.,
the weights Wy, biases by, and activation functions ¢,) are all
known, as are the distributions of the input zg and the noise
terms &,. Hence, we do not consider the network learning
problem. The superscript “0” on z? indicates that this is the
“true” value of zy, to be distinguished from the estimates of
z¢ produced during inference denoted by Z;.

The inference problem (2) arises in the following state-
of-the-art approach to inverse problems. In general, solving
an “inverse problem” means recovering some signal x from
a measurement y that depends on x. For example, in com-
pressed sensing (CS) [5], the measurements are often modeled
as y = Ax + & with known A and additive white Gaussian
noise (AWGN) &, and the signal is often modeled as a sparse
linear combination of elements from a known dictionary, i.e.,

IThe role of the noise &g in ¢y is allowed to be generic (e.g., addi-
tive, multiplicative, etc.). The relationship between z?i and zg_]i will

be modeled using the conditional density p(zg ilz(l?—l.i) = [S(Z(g,i -
Ge(@)_y 1 EeDIPEe) de i

2641-8770 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2524-8817
https://orcid.org/0000-0002-3896-429X
https://orcid.org/0000-0002-0925-8169
https://orcid.org/0000-0003-0939-7545
https://orcid.org/0000-0002-3756-6580

PANDIT et al.: INFERENCE WITH DEEP GENERATIVE PRIORS IN HIGH DIMENSIONS

337

Original Occluded Estimate
0 0 0 0 0 Zg =Y ~ ~
Zy 31 Zy 3 =2 %3 =
()
O () Inference —>O

Generative model layers

|

Measurement

layer

Fig. 1. Motivating example: inference for inpainting [3], [4]. An image xY is modeled as the output of a generative model driven by white noise zg, and an
occluded measurement y is generated by one additional layer. Inference is then used to recover the image x from the measurement y.

x = Wz for some sparse coefficient vector z. To recover x,
one usually computes a sparse coefficient estimate Z using a
LASSO-type convex optimization [6] and then uses it to form
a signal estimate X, as in

X=VWZ for Z= argmin %||y—A\Ilz||2+)»||z||1, 3)
z

where A > 0 is a tunable parameter. The CS recovery
approach (3) can be interpreted as a two-layer version of the
inference problem: the first layer implements signal generation
via x = Wz, while the second layer implements the mea-
surement process y = Az + &. Equation (3) then performs
maximum a posteriori inference (see the discussion around
equation (6)) to recover estimates of z and x.

Although CS has met with some success, it has a lim-
ited ability to exploit the complex structure of natural signals,
such as images, audio, and video. This is because the model
“x Wz with sparse z” is overly simplistic; it is a one-
layer generative model. Much more sophisticated modeling
is possible with multi-layer priors, as demonstrated in recent
works on variational autoencoders (VAEs) [7], [8], generative
adversarial networks (GANSs) [9], [10], and deep image priors
(DIP) [11], [12]. These models have had tremendous success
in modeling richly structured data, such as images and text.

A typical application of solving an inverse problem using a
deep generative model is shown in Fig. 1. This figure considers
the classic problem of inpainting [13], for which reconstruc-
tion with DIP has been particularly successful [3], [4]. Here,
a noise-like innovation signal 28 drives a three-layer genera-
tive network to produce an image x°. The generative network
would have been trained on an ensemble of images sim-
ilar to the one being estimated using, e.g., VAE or GAN
techniques. The measurement process, which manifests as
occlusion in the inpainting problem, is modeled using one
additional layer of the network, which produces the measure-
ment y. Inference is then used to recover the image x° (i.e.,
the hidden-layer signal zg) from y. In addition to inpaint-
ing, this deep-reconstruction approach can be applied to other
linear inverse problems (e.g., CS, de-blurring, and super-
resolution) as well as generalized-linear [14] inverse problems
(e.g., classification, phase retrieval, and estimation from quan-
tized outputs). We note that the inference approach provides an
alternative to designing and training a separate reconstruction
network, such as in [15]-[17].

When using deterministic deep generative models, the
unknown signal x° can be modeled as xY = ¢ (zg), where
G is a trained deep neural network and zg is a realization
of an i.i.d. random vector, typically with a Gaussian dis-
tribution. Consequently, to recover x9 from a linear-AWGN
measurement of the form y = Ax®+£, the compressed-sensing
approach in (3) can be extended to a regularized least-squares
problem [18] of the form

¥=0@), % :=argminllly—AG@I|*+rllzl> &
z

In practice, the optimization in (4) is solved using a
gradient-based method. This approach can be straightfor-
wardly implemented with deep-learning software packages
and has been used, with excellent results, in [3], [4], [19]-
[23]. The minimization (4) has also been useful in inter-
preting the semantic meaning of hidden signals in deep
networks [24], [25]. VAEs [7], [8] and certain GANSs [26] can
also produce decoding networks that sample from the posterior
density, and sampling methods such as Markov-chain Monte
Carlo (MCMC) algorithms and Langevin diffusion [27], [28]
can also be employed. We note that while the weight matri-
ces in the motivating example in Fig. 1 are constant, during
analysis we assume that they are instances of random matrices
drawn from a general distribution of random matrices.

B. Analysis via Approximate Message Passing (AMP)

While reconstruction with deep generative priors has seen
tremendous practical success, its performance is not fully
understood. Optimization approaches such as (4) are typically
non-convex and difficult to analyze. As we discuss below, most
results available today only provide bounds, and these bounds
are often be overly conservative (see Section I-D).

Given a network architecture and statistics on the unknown
signals, fundamental information-theoretic questions include:
What are the precise limits on the accuracy of estimating the
hidden signals {zg}é;(l) from the measurements y? How well
do current estimation methods perform relative to these limits?
Is it possible to design computationally efficient yet optimal
methods?

To answer these questions, this paper considers deep
inference via approximate message passing (AMP), a pow-
erful approach for analyzing estimation problems in cer-
tain high-dimensional random settings. Since its origins in

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

338 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

understanding linear inverse problems in compressed sens-
ing [29], [30], AMP has been extended to an impressive
range of estimation and learning tasks, including gener-
alized linear models [31], models with parametric uncer-
tainty [32], structured priors [33], and bilinear problems [34].
For these problems, AMP-based methods have been able
to provide computationally efficient algorithms with precise
high-dimensional analyses. Often, AMP approaches yield opti-
mality guarantees in cases where all other known approaches
do not. See [35] for a detailed discussion on the optimality
of AMP.

C. Main Contributions

In this work, we develop a multi-layer version of AMP
for inference in deep networks. The proposed approach
builds on the recent vector AMP (VAMP) method of [36],
which is itself closely related to expectation propagation
(EP) [37], [38], expectation-consistent approximate inference
(EC) [39], [40], S-AMP [41], and orthogonal AMP [42]. The
proposed method is called multi-layer VAMP, or ML-VAMP.
As will be described in detail below, ML-VAMP estimates
the hidden signals in a deep network by cycling through
a set of relatively simple estimation functions {g}t}%zo. The
information flow in ML-VAMP is shown in the bottom panel
of Fig. 2. The ML-VAMP method is similar to the multi-
layer AMP method of [43] but can handle a more general
class of matrices in the linear layers. In addition, as we will
describe below, the proposed ML-VAMP algorithm can be
configured for either MAP or MMSE estimation. We will call
these approaches MAP-ML-VAMP and MMSE-ML-VAMP.

We establish several key results on the ML-VAMP
algorithm:

o« We show that, for both MAP and MMSE inference, the
fixed points of the ML-VAMP algorithm correspond to
stationary points of variational formulations of these esti-
mators. This allows the interpretation of ML-VAMP as
a Lagrangian algorithm with adaptive step-sizes in both
cases. These findings are given in Theorems 1 and 2
and are similar to previous results for AMP [44], [45].
Section III describes these results.

« We prove that, in a certain large system limit (LSL),
the behavior of ML-VAMP is exactly described by a
deterministic recursion called the state evolution (SE).
This SE analysis is a multi-layer extension of simi-
lar results [36], [46], [47] for AMP and VAMP. The
SE equations enable asymprotically exact predictions of
macroscopic behaviors of the hidden-layer estimates for
each iteration of the ML-VAMP algorithm. This allows
us to obtain error bounds even if the algorithm is run for
a finite number of iterations. The SE analysis, given in
Theorem 3, is the main contribution of the paper, and is
discussed in Section IV.

o Since the original conference versions of this
paper [1], [2], formulae for the minimum mean-
squared error (MMSE) for inference in deep networks
have been conjectured in [48]-[50]. As discussed in
Section IV-C, these formulae are based on heuristic

techniques, such as the replica method from statistical
physics, and have been rigorously proven in special
cases [51], [52]. Remarkably, we show that the mean-
squared-error (MSE) of ML-VAMP exactly matches the
predicted MMSE in certain cases.

« Using numerical simulations, we verify the predictions of
the main result from Theorem 3. In particular, we show
that the SE accurately predicts the MSE even for networks
that are not considered large by today’s standards. We also
perform experiments with the MNIST handwritten digit
dataset. Here we consider the inference problem using
learned networks, for which the weights do not satisfy
the randomness assumptions required in our analysis.

In summary, ML-VAMP provides a computationally
efficient method for inference in deep networks whose
performance can be exactly predicted in certain high-
dimensional random settings. Moreover, in these settings,
the MSE performance of ML-VAMP can match the existing
predictions of the MMSE.

D. Prior Work

There has been growing interest in studying learning and
inference problems in high-dimensional, random settings. One
common model is the so-called wide network, where the
dimensions of the input, hidden layers, and output are assumed
to grow with a fixed linear scaling, and the weight matri-
ces are modeled as realizations of random matrices. This
viewpoint has been taken in [53]-[56], in several works
that explicitly use AMP methods [43], [48], [49], [57],
and in several works that use closely related random-matrix
techniques [58], [59].

The existing work most closely related to ours is that by
Manoel et al. [43], which developed a multi-layer version of
the original AMP algorithm [29]. The work [43] provides a
state-evolution analysis of multi-layer inference in networks
with entrywise i.i.d. Gaussian weight matrices. In contrast, our
results apply to the larger class of rotationally invariant matri-
ces (see Section IV for details), which includes i.i.d. Gaussian
matrices case as a special case.

Several other recent works have also attempted to charac-
terize the performance of reconstruction using deep priors in
random settings. For example, when z8 € RFand A € R™*" is
arealization of an i.i.d. Gaussian matrix with m = Q (kLlogn),
Bora et al. [4] showed that an L-layer network G with
ReLU activations can provide provably good reconstruction of
x¥ € Range(G) from measurements y = Ax"+&. For the same
problem, [19] and [60] show that, for W, € RNexNe-1 gen-
erated entrywise i.i.d. Gaussian and Ny = Q(N¢—1logNy—_1),
one can derive bounds on reconstruction error that hold with
high probability under similar conditions on m. Furthermore,
they also show that the cost function of (4) has stationary
points in only two disjoint regions of the zy space, and both
are closely related to the true solution z8. In [61], the authors
use a layer-wise reconstruction scheme to prove reconstruction
error bounds when Ny = Q(N¢_1), i.e., the network is expan-
sive, but with a constant factor as opposed to the logarithmic
factor in [60].

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

PANDIT et al.: INFERENCE WITH DEEP GENERATIVE PRIORS IN HIGH DIMENSIONS 339

Our results, in comparison, provide an asymptotically exact
characterization of the reconstruction error—not just bounds.
Moreover, our results hold for arbitrary hidden-dimension
ratios N¢/N¢—_1, which can be less than, equal to, or greater
than one. On the other hand, our results hold only in the
large-system limit, whereas the other results above hold in
the finite-dimensional regime. Nevertheless, we think that it
should be possible to derive a finite-dimensional version of our
analysis (in the spirit of [62]) that holds with high probability.
Also, our experimental results suggest that our large-system-
limit analysis is a good approximation of behavior at moderate
dimensions.

Some of the material in this paper appeared in conference
versions [1], [2], Theorems 1 and 3 were stated in [2], whereas
Theorem 4 was stated in [1]. The current paper includes all
the proofs, simulation details, and provides a unified treatment
of both MAP and MMSE estimation. Additionally, Theorem 2
and its proof are new results.

II. MULTI-LAYER VECTOR APPROXIMATE
MESSAGE PASSING

A. Problem Formulation

We consider inference in a probabilistic setting where,
in (1), 18 and {& e}%zl are modeled as random vectors with
known densities. Due to the Markovian structure of {z;}
in (1), the posterior distribution p(z|y), where z = {zo}ﬁ;é,
factorizes as

L
p(aly) o« p(z,y) = p(z, z) = p(zo) | [pCaclze—1), (5)
=1

where the form of p(z¢|z,—;) is determined by W,, by, and
the distribution of &, for odd ¢; and by ¢, and the distribution
of &, for even £. We will assume that z, € RNe, where Ny can
vary across the layers £.

Similar to other graphical-model methods [63], we con-
sider two forms of estimation: MAP estimation and MMSE
estimation. The maximum a priori, or MAP, estimate is
defined as

imap = argmax p(zly). (6)
z

Although we will focus on MAP estimation, most of our

results will apply to general M-estimators [64] of the form,

L
Zm-est i= argmin{fo(zo) + Z ZLi(zg, Ze—l)}
z =1

for loss functions .Zy. The MAP estimator then corresponds
to loss functions £y = —Inp(z¢|z¢—1) and £y = — Inp(zp).

We will also consider the minimum mean-squared error, or
MMSE, estimate, defined as

Zmmse = Elzly] = /Zp(z|y) dz. (7

To compute the MMSE estimate, we first compute the poste-
rior marginals p(z,|y). We will also be interested in estimating
the posterior marginals p(z¢|y). From estimates of the poste-
rior marginals, one can also compute other estimates, such as

Algorithm 1 Multi-Layer Vector Approximate Message
Passing (ML-VAMP)
Require: Estimation functions gar , &, and {gjf}é;ll.

1: Setry, = 0 and initialize Oo¢ fort =0,1,...,L—1.

2: fork=0,1,...,N;y—1do

3: /| Forward Pass

o to— ot
o hp =8 (_’;kO’_ekO) o
50 gy = (08 (reg, 60)/0r)
Doy = @ — o)/ (1 — o)
6 o = (Zyy — opoly)/ %
7. fort=1,...,L—1do
ot t— +
8: Zyy =8 Mg T o—10 Orp)
¥ fagt— o+ T s
% O = <8g[Tee- T o1 ka)/8’e>
10: rf, =@, — o) /(1 — o)
11: end for
12:

13: // Backward Pass
. o~ _ p— + —_
4z =8y Oy)

- — ot —\ ot
155 = <8gL g1 ekL)/ark,L—l>

R _ Car ot Car
16 ry =@ =)/ =)
172 fort=L—-1,...,1do

. o~ _ — p— + —

18: T o1 = 8 iy o T o1 Ore)

) - Y Py + —\ At
19: iy o =08, (rk+1,£”'k,e—17ka)/a’e—1>

: - _ o, o
20: Fito—1 = @y = g Ty o)/ —ag)
21: end for
22: end for

the mininum mean-absolute error (MMAE) estimate, i.e., the
median of the posterior marginal.

B. The ML-VAMP Algorithm

Similar to the generalized EC (GEC) [40] and generalized
VAMP [65] algorithms, the ML-VAMP algorithm attempts
to compute MAP or MMSE estimates using a sequence
of forward-pass and backward-pass updates. The updates of
the algorithm are specified in Algorithm 1. The quantities
updated in the forward pass are denoted by superscript +,
and those updated in the backward pass are denoted by super-
script —. The notation on lines 9 and 19 means (9f (x*)/9x) =
’—1121'-’:1 dfi(x;)/0x; evaluated at x = x*, where x € R” and
f + R" — R" acts componentwise. The update formulae
can be derived similar to those for the GEC algorithm [40],
using expectation-consistent approximations of the Gibbs free
energy inspired by [39].

The ML-VAMP algorithm splits the estimation of z =
{zz}%;é into smaller problems that are solved by the estimation
functions {gf}%;}, gar and g; . (See Figure 2, bottom panel.)
As described below, the form of g}t depends on whether
the goal is MAP or MMSE estimation. During the forward
pass, the estimators gZ are invoked, whereas in the back-
ward pass, g, are invoked. Similarly, the ML-VAMP algorithm
maintains two copies, Z" and Z~, of the estimate of z. For
¢£=1,2,...,L—1, each pair of estimators (gz, g,) takes as
input rj_ , and r, to update the estimates'iz andZ, |, respec-
tively. Similarly, ga' and g; take inputs r, and r'[_l to update

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

340

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

& & & &4
0 0 0 0
Zy Z Z3 Z3 y
O——— Wy,b; P2(+) W3, bs D4(-) O
~—+ + ~+ + ~—+ + ~—+ +
o Tko Zk1 Tk Zr2 _ Tk2 Zrs Tks
A A A O y
o + 4 -
s || |0 [|e0]] &0 |] |@mOF—O0
Tho Zxo T Zpg Tho Zpo Tis Zpg

Fig. 2.
functions gzt(-) and estimation quantities r,:fe and 'i,:(‘z at iteration k.

7" and Z,_,, respectively. The estimation functions also take

+
parameters 6,

C. MAP and MMSE Estimation Functions: {g;z|r }

The ML-VAMP algorithm is an iterative application of esti-
mation functions gf which take as input (r, , rzr_l) and output
(Z/.Z,_,). During the forward pass the outputZ, , is dropped
whereas in the backward pass’z‘? is dropped. These estimation
functions can take arbitrary parametric forms.

The form of the estimation functions {gf}é;é depends
on whether the goal is to perform MAP or MMSE estima-
tion. In either case, we restrict ourselves to the following

parameterization
+ _ .- + _ (,— 7t
O = Yoo e = (sz’ yk,f—l)’

- _ - _ (- +
O =Vicr-1 Ok = (Vk+1,z’ Vk,e—l)’

(®)

where ykjlf and nki[are scalars updated at iteration k > 0 and
all¢=0,1,...,L—1 as follows:

+ + -

Yie = Mee = Ve

+ =+
Mee = Yie/ %o

Vir1,e = Meg1,e — Vit
Met1e = th/akll,p ©)
while the updates of a,i are explicitly given in lines 9 and 19
of Algorithm 1. The parameters y,i? and nkjtZ respectively, rep-
resent estimates for precision (inverse variance) of the input
r,fe and output ’z\,i to the estimation functions gzt. They can
also be interpreted as surrogates for curvature information (or
second-order information) of the loss function. The quantities
ozkie € (0, 1) couple the forward and backward iterations via
the so-called Onsager correction terms in line 10 and 20.
Given these parameters, both the MAP and MMSE esti-
mation functions are defined from the belief function over

(Z¢,Z¢—1):
be(ze, zo—1lry 1y vy vey) & p(zelze—1)

— +
G R B S R IET

for ¢

1,2,...,L — 1. Similarly, bp(zz,z;—1)
+
plzi—1) exp(— Ltz — rf 1P, and bo(z0,2-1)

X

Top panel: Feedfoward neural network mapping an input zg to output y = z;

O in the case of L = 4 layers. Bottom panel: ML-VAMP estimation

p(zo) exp(—%”zo —ry ||2). When performing MMSE infer-
ence, we use

(/i?’/z\[fl)mmse = gimmse(’e_”ﬁl? Ye s Vztl)

= E[(2¢, 2e-1)|be], (11)

where E[-|b;] denotes expectation with respect to the (nor-
malized) distribution b,. Similarly, for MAP inference, we
use

~— _ ot - 4 =+
@’ Zy_)map = gz,map(’z T 13V ’yl—l)

= argmax by(z¢, Z¢—1).
Zo,Z¢—|

(12)

Notice that (12) corresponds to the proximal operator of
—Inp(z¢)|ze—1). We will use “MMSE-ML-VAMP” to refer to
ML-VAMP with the MMSE estimation functions (11), and
“MAP-ML-VAMP” to refer to ML-VAMP with the MAP
estimation functions (12).

D. Computational Complexity

A key feature of the ML-VAMP algorithm is that, for the
neural network (1), the MMSE and MAP estimation func-
tions (11) and (12) are computationally easy to compute. To
see why, first recall that, for the even layers £ = 2,4,...L,
the map ¢, in (I1b) is assumed separable and the noise &,
is assumed i.i.d. As a result, z; is conditionally indepen-
dent given Zo—1, 1.e., p(Z¢|Ze—1) = HiP(Z(Z,i|ZE—1,i)- Thus, for
even £, the belief function b, in (10) also factors into a prod-
uct of the form by (z¢, z¢—1) = [[; be(ze,i, z¢e—1,;), implying that
the MAP and MMSE versions of gzt are both coordinate-wise
separable. In other words, the MAP and MMSE estimation
functions can be computed using N, scalar MAP or MMSE
estimators.

Next consider (la) for £ 1,3,...,L — 1, ie., the
linear layers. Assume that &, N0, Iv, 1) for some
precision (i.e., inverse variance) v, > 0. Then p(z¢|z,—1)
Ylze — Weze—y — be||. In this case, the MMSE and MAP
estimation functions (11) and (12) are identical, and both take
the form of a standard least-squares problem. Similar to the
VAMP algorithm [36], the least-squares solution—which must
be recomputed at each iteration k—is can be efficiently com-
puted using a single singular value decomposition (SVD) that

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

PANDIT et al.: INFERENCE WITH DEEP GENERATIVE PRIORS IN HIGH DIMENSIONS 341

is computed once, before the iterations begin. In particular, we
compute the SVD

W, =V, Diag(s¢) Vi1, (13)
where V, € RV*Ne and V,_; € RNe-1*Ne-1 are orthogonal
and Diag(s¢) € RV*Ne-1 is a diagonal matrix that contains
the singular values of W,. Let bg;zVZbg. Then for odd ¢, the
updates (11) and (12) both correspond to quadratic problems,
which can be simplified by exploiting the rotational invariance
of the £5 norm. Specifically, one can derive that

b ot (— ot -+
Z) =g (rg.ri_ v V)
= VKGZ_(VZ—"Z_y Vﬁ—lrz__]vges Eﬁv Vg_7 y;;]>s (143)
— o -+
Zy =8 (g 1y sV Vi)
:VZ_lGZ(V;rg_vVf—lrz_,l’gfvﬁfa)/g_, V[tl)»
(14b)

where transformed denoising functions GEE(-) are componen-
twise extensions of GE'E(~), defined as

I:Gz_jl _ |: —VySy
Gy Ve+—1 + Wszg

Note that Gz and G, are functions which take inputs
(ug, ue—1, se, by, Ve y;“_) and output the expressions on the
RHS. A detailed derivation of equations (14) and (15) is given
in [66, Appendix B]. Note that the argument 5, in (14a) is N,
dimensional, whereas in (14b) it is Ny_; dimensional, i.e.,
appropriate zero-padding is applied. Keeping this subtlety in
mind, we use §; to keep the notation simple.

From Algorithm 1, we see that each pass of the MAP-ML-
VAMP or MMSE-ML-VAMP algorithm requires solving (a)
scalar MAP or MMSE estimation problems for the non-linear,
separable layers; and (b) least-squares problems for the linear
layers. In particular, no high-dimensional integrals or high-
dimensional optimizations are involved.

Ve + ve} [Ve e + veby B]
—VesSe Vi qtte—1 — vesebe
(15)

III. FIXED POINTS OF ML-VAMP

Our first goal is to characterize the fixed points of
Algorithm 1. To this end, let r,j, rz,’z\g with parameters
er’, a,, y;r, Y, » e be a fixed point of the ML-VAMP algo-
rithm, where we have dropped the iteration subscript k. At a
fixed point, we do not need to distinguish between’z}" and'z?,
nor between ”Z and 7, , since the updates in (9) imply that

nS =ng =y +y. =
— +
of =2, oy =1, and of o, =1 (16)

Applying these relationships to lines 10 and 20 of Algorithm 1
gives

+ A+ — -
YT TV ~
=7, ="+——L =7 (17)
Ve

A. Fixed Points of MAP-ML-VAMP and Connections to
ADMM

Our first results relates the MAP-ML-VAMP updates to an
ADMM-type minimization of the MAP objective (6). For this
we use variable splitting, where we replace each variable z,
with two copies, zZ and z,. Then, we define the objective
function

L1
F(z",z7) = —Inp(z}) — Zlnp(zﬂz[fl) —Inp(ylz;_,)
=1

over the variable groups z = {zz}ﬁ;ll and z= = {zZ}i;;ll.
The optimization (6) is then equivalent to

min F(zt,z7) st z/ =z;, V£=0,...,L—1. (18)

zt,z—

Corresponding to this constrained optimization, we define the
augmented Lagrangian

L(zt,z",s) =F(z*,z7)

L—1
- ne —2

+Z’7€55T(Zz —z;)+ ?“z} —z, ||, (19)

£=0
where s = {s;} is a set of dual parameters,)/,ZjE > 0 are
weights, and n, = yEL + ¥, . Now, for ¢ =1,...,L — 2,

define

LZ(Z(_A’ ZZ; ZZ—l’ Z, .81, Sg) = —lnp(zZ'|zZ71) + UZSZZZ'_

2

’

+ —_
— ne1s)_ 1z + 5|z, -7, H2 + 4|z -,

which represents the terms in the Lagrangian £(-) in (19) that
contain z,_, and zz. Similarly, define Lo(-) and £;_1(-) using
p(z(')|r) and p(y|zz;]), respectively. One can then verify that

L—1
Lzt z7,s) = Zﬁf(ze_—lv Zl 2 .2, s0-1,80).
£=0
Theorem 1 (MAP-ML-VAMP): Consider the iterates of
Algorithm 1 with MAP estimation functions (12) for fixed
yf > (. Suppose lines 9 and 19 are replaced with fixed val-
ues oy = o € (0, 1) from (16). Let s, = oy @, , — T)
and s, == o, (rj, —Z,). Then, for £ = 0,...,L — 1, the
forward pass iterations satisfy

/_’- _ . —_ +.A_~— o~ + —_
— % = argmm EZ(Ze—lv 2o L1 B0 Ske-1 Ske)
-+
Zy_15Zy
(20a)

+ s 4ot 5
Ske = Ske Ty (Zke - Zk—l,l)’ (20b)

whereas the backward pass iterations satisfy

o~ _ . — +'A+ o~ + —_
Z ¢y, _ = argmin Ly (ZZ—I’ Zy 3 Zy o 15 Zygs Sk,é—l’sk+1,€)
-+
(Z@—l’zz>

(21a)

St41,6—1 = Sk,e—1 +°‘e—1(zk,e—1 zk,f—l)' (21b)

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

342 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Further, any fixed point of Algorithm 1 corresponds to a
critical point of the Lagrangian (19).

Proof: See Appendix C. |

Theorem 1 shows that the ﬁxed-{azt} version of ML-VAMP
is an ADMM-type algorithm for solving the optimization
problem (18). In the case that az’ = «, , this algorithm is
known as the Peaceman-Rachford Splitting variant of ADMM
and its convergence has been studied extensively; see [67,
eq. (3)] and [68], and the references therein. Different from
ADMM, the full ML-VAMP algorithm adaptively updates
{aki(} in a way that exploits the local curvature of the objec-
tive in (12). Note that, in (20a) and (21a), the “_” notation
means that we compute the joint minimizers over (z |, z;),
but only use one of them at a time for the update step.

B. Fixed Points of MMSE-ML-VAMP and Connections to
Free-Energy Minimization

Recall that z := {zz}%;é and let 55 denote the set of density
functions b(z) factorizable as fo(zo)f7.(ZL—1)]_[f;ll fe(Ze,20—1).
Notice that the true posterior p(zly) from (5) belongs to this
set. Essentially, this B captures the chain structure of the factor
graph visible in the top panel of Fig. 2. For chain-structured
(and, more generally, tree-structured) graphs, one can express
any b € B as [69] (see also [70, Sec. III-C] for a succinct
description)

_ 1521 fe(ze, 2e—1)

Z% qe(Ze)

b(z) (22)

where {f;(z¢,z¢—1)} and {q¢(z¢)} are marginal density func-
tions of b(z). As marginal densities, they must satisfy the
consistent-marginal equations

b(ze) = / Folzenze-1) dze_y
= q¢(z¢)
= /fe+1(ze+1,lz) dz;y;, Ve€=1...L—1.(23)

Because p(zly) € B, we can express it using variational
optimization as

p(zly) = argmin Dk (b(2)||p(zly)), (24)
beB

where Dy (b(2)|p(zly)) == [b(z)In pﬁgy)) dz is the KL diver-

gence. Plugging b(z) from (22) into (24), we obtain

L
plzly) = arg Igleig{ZDKL(flz(zza z-1)p(zelze—1))
(=1

-1
+> hige (Ze))} subject to (23),
=0
(25)
where h(ge(z¢)) = — [qe(z¢) Inge(z¢) dzg is the differen-

tial entropy of g¢. The cost function in (25) is often called
the Bethe free energy [69]. In summary, because B is tree-
structured, Bethe-free-energy minimization yields the exact
posterior distribution [69].

The constrained minimization (25) is computationally
intractable, because both the optimization variables {f¢, g} and
the pointwise linear constraints (23) are infinite dimensional.
Rather than solving for the exact posterior, we might instead
settle for an approximation obtained by relaxing the marginal
constraints (23) to the following moment-matching conditions,
forall ¢ =0,1,...L—1:

E[zelgc] = E[zelfe]. Ellizellqe] = E[I2¢11fe .

E[zelge] = Efzelfer], Ellzelge) = E[Iz¢|1fe1 |-
6)

This approach is known as expectation-consistent (EC)
approximate inference [39]. Because the constraints on fy
and g, in (26) are finite dimensional, standard Lagrangian-
dual methods can be used to compute the optimal solution.
Thus, the EC relaxation of the Bethe free energy minimization
problem (25), i.e.,

L—-1
min max{ZDKLWu, ze-1)|p(zelze—1))

foae (D
-1

—I—Zh(qg(z@))} subject to (26), (27)
=0

yields a tractable approximation to p(z|y).

We now establish an equivalence between the fixed points of
the MMSE-ML-VAMP algorithm and the first-order stationary
points of (27). The statement of the theorem uses the belief
functions by defined in (10).

Theorem 2 (MMSE-ML-VAMP): Consider a fixed point
(r7), (@), (y") of Algorithm 1 with MMSE estimation

4 Z
functions (11). Then {y;rrzr, %, Yo Ty s }%}, are Lagrange

multipliers for (26) such that KKT conditions are sat-
isfied for the problem (27) at primal solutions ({f;,q;}.
Furthermore, the marginal densities take the form f;(-) o
be(lry r{_y. vy ve s v,~y) and gf = N'@.1/ne), with Z
and n, given in (16)-(17).

Proof: See Appendix C. |

The above result shows that MMSE-ML-VAMP is essen-
tially an algorithm to iteratively solve for the parame-
ters ({rei}, {Z¢}, {ygi}) that characterize the EC fixed points.
Importantly, gj(z¢) and f*(z¢,z¢—1) serve as an approximate
marginal posteriors for z, and (z¢, Z¢—1). This enables us to not
only compute the MMSE estimate (i.e., posterior mean), but
also other estimates like the MMAE estimate (i.e., the posterior
median), or quantiles of the marginal posteriors. Remarkably,
in certain cases, these approximate marginal-posterior statis-
tics become exact. This is one of the main contributions of
the next section.

IV. ANALYSIS IN THE LARGE-SYSTEM LIMIT
A. LSL Model
In the previous section, we established that, for any set
of deterministic matrices {W,}, MAP-ML-VAMP solves the

MAP problem and MMSE-ML-VAMP solves the EC varia-
tional inference problem as the iterations k — oo. In this

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

PANDIT et al.: INFERENCE WITH DEEP GENERATIVE PRIORS IN HIGH DIMENSIONS 343

section, we extend the analysis of [36], [46] to the rigorously
study the behavior of ML-VAMP at any iteration k for classes
of random matrices {W,} in a certain large-system limit (LSL).
The model is described in the following set of assumptions.

System model: We consider a sequence of systems
indexed by N. For each N, let z, = z(l?(N) e RVW) pe
“true” vectors generated by neural network (1) for layers £ =
0,...,L, such that layer widths satisfy limy_,co N¢(N)/N =
Be € (0,00). Also, let the weight matrices W, in (la) each
have an SVD given by (13), where {V,} are drawn uniformly
from the set of orthogonal matrices in RNt and indepen-
dent across £. The distribution on the singular values s, will
be described below.

Similar to the VAMP analysis [36], the assumption here
is that weight matrices W, are rotationally invariant, meaning
that VW, and W,V are distributed identically to W,. Gaussian
i.i.d. Wy as considered in the original ML-AMP work of [43]
satisfy this rotationally invariant assumption, but the rotation-
ally invariant model is more general. In particular, as described
in [36], the model can have arbitrary coniditoning which is
known to be a major failure mechanism of AMP methods.

ML-VAMP algorithm: We assume that we generate esti-
mates 'z\,f:e from the ML-VAMP algorithm, Algorithm 1. Our
analysis will apply to general estimation functions, gg(-),
not necessarily the MAP or MMSE estimators. However,
we require two technical conditions: for the non-linear esti-
mators, i for £ = 2,4,...L — 2, and ga' , g act com-
ponentwrse Further, these estimators and their derivatives
3gz 3gz "go dg
dz, 9z, 0zy oz
techmcal deﬁmtlon of uniformly Lipschitz continuous is given
in Appendix A. For the linear 1ayers ¢ =1,3,...L—1,
we assume we apply estimators g i of the form (14) where
Gi act componentwise. Further, G along with its derivatives
are uniformly Lipschitz contlnuous We also assume that the
activation functions ¢, in equation (1b) are componentwise
separable and Lipschitz continuous. To simplify the analysis,
we will also assume the estimation function parameters 0,?;
converge to fixed limits,

—+
lim 06X (WN) =0,,,
Nm e @) ke

are uniformly Lipschitz continuous. The

(28)

for values 52}. Importantly, in this assumption, we assume
that the limiting parameter values 52} are fixed and not data
dependent. However, data dependent parameters can also be
modeled [36].

Distribution of the components: We follow the frame-
work of Bayati-Montanari and describe the statistics on the
unknown quantities via their empirical convergence — see
Appendlx A.For¢=1,3,. — 1, define b, = V b, and
£, = V &,. We assume that the - sequence of true vectors zg,
smgular values sy, bias vectors b(, and noise realizations &,
empirically converge as

PL(2)
{Zg,n} ng {%‘Z,n

- = PL(2
[t Do Eo)} T2 (S, Be, Bo),

to random variables ZO, B¢, Se, By, E¢. We will also assume
that the singular values are bounded, i.e., s¢, < S¢.max VA.

} PL:(Z) _

Ee, V¢ even, (29a)

V¢ odd, (29b)

Also, the initial vectors Iy, converge as,

{['& B Zg]n} PL(Z) Oy» £=0,2,.

v)] 1 "0, e=1,3,...
{[vi (o —#)] | ™= o5

where (Q,, le,. QL 1.) 1s jointly Gaussian independent
of 73, {E¢}, {Se. Be, Be}.

State evolution: Under the above assumptions, our main
result is to show that the asymptotic distribution of the quan-
tities from ML-VAMP algorithm converge to certain distribu-
tions. The distributions are described by a set of deterministic
parameters {K,':@, rk_@,affg, 722, ﬁf{i}. The evolve according to
a scalar recursion called the state evolution (SE), given in
Algorithm 2 in Appendix B. We assume &,fe € (0, 1) for all
iterations k and £ =0,1,...L — 1.

,L—1, (30)

B. SE Analysis in the LSL

Under these assumptions, we can now state our main
result. Let S¢ denote the space of symmetric positive
definite matrices in RY%¢. The deterministic quantities
{KZ}Z, T Iy &ke, yﬁ, ﬁ,:i }%;é referenced in the theorem below
are defined in an iteration called the State Evolution given in
Algorithm 2 (see Appendix B of Supplementary materials).

Theorem 3: Consider the system under the above assump-
tions. There exist deterministic parameters {K,‘{;, Tip Iy &,i,
Vo, METy with K € S2, 1, > 0, 7, > 0,75, > 0,0k €
(0, 1) such that the following convergence holds. For any com-
ponentwise pseudo-Lipschitz function ¥ of order 2, iteration
index k, and layer index £ =2,4,...L —2,

i (o (#1220
= 5[y (A g (C+ouA B0 B+A T 711),

8/ C+aAB).B+ATLT()] 6D
fm (9 (470)) = B[y (465 (F+ A 7))] 62

N—oo
Nli_)moo<1/f(zg_1,?,;L_1)> = Ey(D,g; (E+D.v/), 33)

where (A, B) ~ N (0, KZZ_I) and C ~ N(0, ;) are mutually
independent and independent of Z¢; (D, E) ~ N (0, KZL—I)
is independent of E7 and F ~ N(0, 7)) is independent of Zg.

Similarly for any layer index £ = 1,3, ..., L — 1, we have

=

. 0 ~ T a.s.
i Vi V)
=E[y(A G, (C+D,B+A S Be. 7. 7i o1),
G; (C+D.B+A 8. B 7. 71,1)) | 34
where (A, B) ~ N (0, K;fe_l) and C ~ N(0, 7,,) are mutually

independent and independent of (S¢, By, E¢), and D = S;A +
By + Ey.

Furthermore ify y P n o> are defined analogous to (9) using
O‘ke’ then for all ¢,

as. (—+ —+ —+
th (O‘kf’ ng, nk£> = (aki’ykf’nkf)

Proof: See Appendix D. |

(35)

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

344

The key value of Theorem 3 is that we can exactly char-
acterize the asymptotic joint distribution of the true vectors
z(z and the ML-VAMP estimates ’z\f@ The asymptotic joint
distribution, can be used to compute various key quantities.
For example, suppose we wish to compute the mean squared
error (MSE). Let ¥ (z°,2) = (2% —%)?, whereby (¥ (z),Z,)) =
%”zg -z, ”2 Observe that i is a pseudo-Lipschitz function
of order 2, whereby we can apply Theorem 3. Using (31),
we get the asymptotic MSE on the k-iteration estimates for
£=2,4,...L-2:

lim

N¢_1—00

- E[(g; (C+eu(A B0 B+A T T,) - A>2}

~ 0
Zpo—1 — 2L

1 2 a.s.
Ne—y

lim
N¢—o00

= E[(s (C+ouh 20 B+ATL T)
— gu(A, B0

2
~+ 01~ a.s.
Ly — % H =

1
Ne

where we used the fact that ¢, is pseudo-Lipschitz of order 2,
and zg = ¢y (1271 , &) from (1b). Similarly, using (34), we get
the kth-iteration MSE for £ =1,3,...L — 1:

: 1 |z 0 2 1 e 0 2
T A M Y
a.s. [—_ =Y — PR 2
28 (G,Z (C—i—D,B—i—A,Sg,Bg,yZZ, yk’H) —A)]
: 1 o+ 0 2 1 T (o+ 0 2
im 5 7t =2 = VT @ - 2)|
“ g (GZ(C+ D,B+A, SZ,EZ,V,Q,?,;,K?I) - D)z],

where D = S¢A + By + E;. Here we used the rotational
invariance of the ¢» norm, and the fact that equation (la)
is equivalent to VZZ? = Diag(szg)Vg_lz%l + by using the
SVD (13) of the weight matrices Wy.

At the heart of the proof lies a key insight: due to
the randomness of the unitary matrices V,, the quanti-
ties (zfé),rk_Z - Z(l?7rl-<’:é—1 - Z(e)—l) are asymptotically jointly
Gaussian for even ¢, with the asymptotic covariance matrix of

0
o |

where Ky € R2*2 and T, is a scalar. After establishing the
asymptotic Gaussianity of (Z?, Fr, — z(g, r,‘:ﬂ_ 1= z?_ 1)> since
Zy and Zy_; are componentwise functions of this triplet, we
have the PL(2) convergence result in (31). Similarly, for odd
£, we can show that (Vg_lz(g_], Vg_lr,tz_l, VZrk_e) is asymp-
totically Gaussian. For these ¢, V/Z—I/Z\k_,z_l and V,;r'iz; are
functions of the triplet, which gives the result in (34).

Due to the asymptotic normality mentioned above, the
inputs (r[,rz_l) to the estimators g}t are the true signals
(zfz)f1 , z?) plus additive white Gaussian noise (AWGN). Hence,
the estimators g}t act as denoisers, and ML-VAMP effectively
reduces the inference problem 2 into a sequence of linear trans-
formations and denoising problems. The denoising problems
are solved by gei for even ¢, and by Gzt for odd £.

+
0 + 0 - 0 : Ky
{(Zl—l,n’ rk,(—l,n - ZZ—l,n’ rkZ,n - Z@,n)} given by |: 0

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

C. MMSE Estimation and Connections to the Replica
Predictions

We next consider the special case of using MMSE estima-
tors corresponding to the true distributions. In this case, the
SE equations simplify considerably using the following MSE
functions: let ’z\[fl s ’27 be the MMSE estimates of 227] and z2
from the variables rzr_ > T, under the joint density (10). Let
EE() be the corresponding mean squared errors,

1 2
= 0 ~+
E (Vi 7e) = ,\,ll)moo]T,]EHZZ —Z
ot ooy e g 0 ~— |?
E (Vi1 7)) = Nli)moo N]EHZZ—I —Zy_ H . (30)
Theorem 4 (MSE of MMSE-ML-VAMP): Consider the

system under the assumptions of Theorem 3, with MMSE
estimation functions g}t, g;)r ,g, from (11) for the belief
estimates in (10) with yk‘z = 7@ from the state-evolution
equations. Then, the state evolution equations reduce to
1
V=7~ T
& (T Tien)

1
& (Fevrer 7o
where 1/ﬁ2’l = 5;(7,&,7;2_1) is the MSE of the esti-
mate 2;(?

Proof: See Appendix D. |

Since the estimation functions in Theorem 4 are the MSE
optimal functions for true densities, we will call this selec-
tion of estimation functions the MMSE matched estimators.
Under the assumption of MMSE matched estimators, the the-
orem shows that the MSE error has a simple set of recursive
expressions.

It is useful to compare the predicted MSE with the pre-
dicted optimal values. The works [48], [49] postulate the
optimal MSE for inference in deep networks under the LSL
model described above using the replica method from statis-
tical physics. Interestingly, it is shown in [48, Th. 2] that the
predicted minimum MSE satisfies equations that exactly agree
with the fixed points of the updates (37). Thus, when the fixed
points of (37) are unique, ML-VAMP with matched MMSE
estimators provably achieves the Bayes optimal MSE predicted
by the replica method. Although the replica method is not rig-
orous, this MSE predictions have been indepedently proven
for the Gaussian case in [48] and certain two layer networks
in [49]. This situation is similar to several other works relat-
ing the MSE of AMP with replica predictions [51], [52], [71].
The consequence is that, if the replica method is correct,
ML-VAMP provides a computationally efficient method for
inference with testable conditions under which it achieves the
Bayes optimal MSE.

Vitle =) — Vi (37)

V. NUMERICAL SIMULATIONS
We now numerically investigate the MAP-ML-VAMP and
MMSE-ML-VAMP algorithms using two sets of experiments,
where in each case the goal was to solve an estimation problem
of the form in (2) using a neural network of the form in (1).

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

PANDIT et al.: INFERENCE WITH DEEP GENERATIVE PRIORS IN HIGH DIMENSIONS 345

We used the Python 3.7 implementation of the ML-VAMP
algorithm available on GitHub.?

The first set of experiments uses random draws of a
synthetic network to validate the claims made about the ML-
VAMP state-evolution (SE) in Theorem 3. In addition, it
compares MAP-ML-VAMP and MMSE-ML-VAMP to the
MAP approach (4) using a standard gradient-based solver,
ADAM [72]. The second set of experiments applies ML-
VAMP to image inpainting, using images of handwritten
digits from the widely used MNIST dataset. Here, MAP-
ML-VAMP and MMSE-ML-VAMP are respectively compared
to the optimization approach (4) using the ADAM solver,
and Stochastic Gradient Langevin Dynamics (SGLD) [28], an
MCMC-based sampling method that approximates E[z|y].

A. Performance on a Synthetic Network

We first considered a 7-layer neural network of the form
in (1). The first six layers, with dimensions Ny = 20,
N1 = N; =100, N3 = Ny = 500, N5 = Ng = 784, formed a
(deterministic) deep generative prior driven by i.i.d. Gaussian
zg. The matrices Wi, W3, W5 and biases bq, b3, bs were
drawn i.i.d. Gaussian, and the activation functions ¢2, ¢4, Pg
were ReLLU. The mean of the bias vectors b, was chosen so
that a fixed fraction, p, of the linear outputs were positive,
so that only the fraction p of the ReLU outputs were non-
zero. Because this generative network is random rather than
trained, we refer to it as “synthetic.” The final layer, which
takes the form y = Az6 + &¢, generates noisy, compressed
measurements of z{. Similar to [73], the matrix A € RM>*Ns
was constructed from the SVD A = U Dlag(s)VT where the
singular-vector matrices U and V were drawn uniformly from
the set of orthogonal matrices, and the singular values were
geometrically spaced (i.e., s;/si—; = « Vi) to achieve a con-
dition number of s1/spy; = 10. It is known that such matrices
cause standard AMP algorithms to fail [73], but not VAMP
algorithms [36]. The number of compressed measurements, M,
was varied from 10 to 300, and the noise vector & was drawn
i.i.d. Gaussian with a variance set to achieve a signal-to-noise
ratio of 101log(E||Az2|*/E|£]|*) = 30 dB.

To quantify the performance of ML-VAMP, we repeated the
following 1000 times. First, we drew a random neural network
as described above. Then we ran the ML-VAMP algorithm for
100 iterations, recording the normalized MSE (in dB) of the
iteration-k estimate of the network input, 'i,%:

—Zy “

Iz31°

Since ML-VAMP computes two estimates of zg at each
iteration, we consider each estimate as corresponding to a “half
iteration.”

a) Validation of SE prediction: For MMSE-ML-VAMP,
the left panel of Fig. 3 shows the NMSE versus half-iteration
for M = 100 compressed measurements. The value shown is
the average over 1000 random realizations. Also shown is the
MSE predicted by the ML-VAMP state evolution. Comparing

NMSE(Z};) = 10log, 26 =2 |

2See https://github.com/GAMPTeam/vampyre.

~— actual 5 ~— actual
== — pred — pred

Normalized MSE (dB)
Normalized MSE (dB)
|
)

20 40 60 80 100 50 100 150 200 250 300
Half iteration Num measurements

Fig. 3. NMSE of MMSE-ML-VAMP and its SE prediction when estimat-
ing the input to a randomly generated 7-layer neural network (see text of
Section V-A). Left panel: Average NMSE versus half-iteration with M = 100
measurements. Right panel: Average NMSE verus measurements M after 50
iterations.

—— actual

& —— actual
=5 —— pred

—— pred

Normalized MSE (dB)
Normalized MSE (dB)

0 20 40 60 80 100 0 50 100 150 200 250 300
Half iteration Num Measurements

Fig. 4. Simulation with randomly generated neural network with MAP
estimators from equation (12). Left panel: Normalized mean squared error
(NMSE) for ML-VAMP and the predicted MSE as a function of the iteration
with M = 100 measurements. Right panel: Final NMSE (50 iterations)
for ML-VAMP and the predicted MSE as a function of the number of
measurements, M. p = 0.9.

g —=— MAP-Adam
_s5 VAMP-MAP (sim)
+— VAMP-MAP (SE)
-10
o
T 15
w
wv
s 20
-25
=~
-30 \’w
0 50 100 150 200 250 300
Num meas

Fig. 5. Simulation with randomly generated neural network with MAP esti-
mators from equation (12). Final NMSE for (a) MAP inference computed
by Adam optimizer; (b) MAP inference from ML-VAMP; (c) State evolution
prediction.

the two traces, we see that the SE predicts the actual behavior
of MMSE-ML-VAMP remarkably well, within approximately
1 dB. The right panel shows the NMSE after k = 50 iterations
(i.e., 100 half-iterations) for several number of measurements
M. Again we see an excellent agreement between the actual
MSE and the SE prediction. In both cases we used the positive
fraction p = 0.4. Analogous results are shown for MAP-ML-
VAMP in Fig. 4. There we see an excellent agreement between
the actual MSE and the SE prediction for iterations k > 15
and all values of M.

b) Comparison to ADAM: We now compare the MSE
of MAP-ML-VAMP and its SE to that of the MAP
approach (4) using the ADAM optimizer [72], as imple-
mented in Tensorflow. As before, the goal was to recover
the input zg to the 7-layer synthetic network from a mea-
surement of its output. Fig. 5 shows the median NMSE over
40 random network realizations for several values of M,
the number of measurements. We see that, for M > 100,

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

346 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

=
=
T
H
3
=

OSANNNEERA0

MSE ML-VAMP MAP

=
3
S
»
<]
£
=

Original Im

5

.
P03 0 Y 8 R G ¢
f

ge

ANENNNEESM
oltjulalalslelolw]w]
DEEANNNEESN
AEANNNSERS0

Fig. 6. MNIST inpainting: Original 28x28 images of handwritten digits
(Col 1), with rows 10-20 are erased (Col 2). Comparison of reconstruc-
tions using MAP estimation with ADAM solver (Col 3), MAP estimation
with ML-VAMP algorithm (Col 4), MMSE estimation with the Metropolis
Adjusted Langevin Algorithm (Col 5), and MMSE estimation with ML-VAMP
algorithm (Col 6).

the performance of MAP-ML-VAMP closely matches its SE
prediction, as well as the performance of the ADAM-based
MAP approach (4). For M < 100, there is a discrepancy
between the MSE performance of MAP-ML-VAMP and its SE
prediction, which is likely due to the relatively small dimen-
sions involved. Also, for small M, MAP-ML-VAMP appears
to achieve slightly better MSE performance than the ADAMP-
based MAP approach (4). Since both are attempting to solve
the same problem, the difference is likely due to ML-VAMP
finding better local minima.

B. Image Inpainting: MNIST Dataset

To demonstrate that ML-VAMP can also work on a real-
world dataset, we perform inpainting on the MNIST dataset.
The MNIST dataset consists of 28 x 28 = 784 pixel images
of handwritten digits, as shown in the first column of Fig. 6.

To start, we trained a 4-layer (deterministic) deep generative
prior model from 50000 digits using a variational autoen-
coder (VAE) [8]. The VAE “decoder” network was designed
to accept 20-dimensional i.i.d. Gaussian random inputs zg
with zero mean and unit variance, and to produce MNIST-like
images X. In particular, this network began with a linear layer
with 400 outputs, followed by a ReLLU activations, followed by
a linear layer with 784 units, followed by sigmoid activations
that forced the final pixel values to between 0 and 1.

Given an image, X, our measurement process produced y by
erasing rows 10-20 of x, as shown in the second column of
Fig. 6. This process is known as “occlusion.” By appending
the occlusion layer onto our deep generative prior, we got a 5-
layer network that generates an occluded MNIST image y from
a random input zg. The “inpainting problem” is to recover the
image x = z4 from the occluded image y.

For this inpainting problem, we compared MAP-ML-VAMP
and MMSE-ML-VAMP to the MAP estimation approach (4)
using the ADAM solver, and to Metropolis-Adjusted Langevin
Algorithm (MALA) [28], [74], an MCMC-based sampling
method that approximates E[z|y] by using discrete Langevin
dynamics to generate proposal samples for Metropolis-
Hastings algorithm [75]. Example image reconstructions are

shown in Fig. 6. There we see that the qualitative performance
of ML-VAMP is comparable to the baseline solvers.

VI. CONCLUSION

Inference using deep generative prior models provides a
powerful tool for complex inverse problems. Rigorous theo-
retical analysis of these methods has been difficult due to the
non-convex nature of the models. The ML-VAMP method-
ology for MMSE as well as MAP estimation provides a
principled and computationally tractable method for perform-
ing the inference whose performance can be rigorously and
precisely characterized in a certain large system limit. The
approach thus offers a new and potentially powerful approach
for understanding and improving deep neural network based
models for inference.

REFERENCES

[11 A. K. Fletcher, S. Rangan, and P. Schniter, “Inference in deep networks
in high dimensions,” in Proc. IEEE Int. Symp. Inf. Theory, 2018,
pp. 1884-1888.

[2] P. Pandit, M. Sahraee, S. Rangan, and A. K. Fletcher, “Asymptotics of
MAP inference in deep networks,” in Proc. IEEE Int. Symp. Inf. Theory,
2019, pp. 842-846.

[3] R. Yeh, C. Chen, T. Y. Lim, M. Hasegawa-Johnson, and M. N. Do,
“Semantic image inpainting with perceptual and contextual losses,”
2016. [Online]. Available: arXiv:1607.07539.

[4] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing
using generative models,” in Proc. Int. Conf. Mach. Learn. (ICML),
2017, pp. 537-546.

[51 Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and
Applications. Cambridge, U.K.: Cambridge Univ. Press, Jun. 2012.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. Royal Stat. Soc. Ser. B, Methodol., vol. 58, no. 1, pp. 267-288, 1996.

[71 D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropa-
gation and approximate inference in deep generative models,” in Proc.
Int. Conf. Mach. Learn. (ICML), 2014, pp. 1278-1286.

[8] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
[Online]. Available: arXiv:1312.6114.

[9]1 A. Radford, L. Metz, and S. Chintala, “Unsupervised representation

learning with deep convolutional generative adversarial networks,” 2015.

[Online]. Available: arXiv:1511.06434.

R. Salakhutdinov, “Learning deep generative models,” Annu. Rev. Stat.

Appl., vol. 2, no. 1, pp. 361-385, 2015.

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9446-9454.

D. V. Veen, A. Jalal, M. Soltanolkotabi, E. Price, S. Vishwanath, and

A. G. Dimakis, “Compressed sensing with deep image prior and learned

regularization,” 2018. [Online]. Available: arXiv:1806.06438.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image

inpainting,” in Proc. ACM Conf. Comput. Graph. Interact. Techn., 2000,

pp. 417-424.

P. McCullagh and J. A. Nelder, Generalized Linear Models, 2nd ed.

Boca Raton, FL, USA: Chapman & Hall, 1989.

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach

to structured signal recovery,” in Proc. Allerton Conf. Commun. Control

Comput., 2015, pp. 1336-1343.

C. A. Metzler, A. Mousavi, and R. Baraniuk, “Learned D-AMP:

Principled neural network based compressive image recovery,” in Proc.

Conf. Neural Inf. Process. Syst. (NIPS), 2017, pp. 1772-1783.

M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep

networks for sparse linear inverse problems,” IEEE Trans. Signal

Process., vol. 65, no. 16, pp. 4293-4308, Aug. 2017.

J. H. R. Chang, C.-L. Li, B. Poczos, B. V. K. V. Kumar, and

A. C. Sankaranarayanan, “One network to solve them all—Solving lin-

ear inverse problems using deep projection models,” in Proc. IEEE Int.

Conf. Comput. Vis., 2017, pp. 5889-5898.

P. Hand and V. Voroninski, “Global guarantees for enforcing deep

generative priors by empirical risk,” 2017. [Online]. Available:

arXiv:1705.07576.

M. Kabkab, P. Samangouei, and R. Chellappa, “Task-aware compressed

sensing with generative adversarial networks,” in Proc. 32nd AAAI Conf.

Artif. Intell., 2018, pp. 2297-2304.

V. Shah and C. Hegde, “Solving linear inverse problems using GAN

priors: An algorithm with provable guarantees,” in Proc. IEEE Int. Conf.

Acoust. Speech Signal Process., 2018, pp. 4609-4613.

[10]
(11]
[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

PANDIT et al.: INFERENCE WITH DEEP GENERATIVE PRIORS IN HIGH DIMENSIONS

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

S. Tripathi, Z. C. Lipton, and T. Q. Nguyen, “Correction by projection:
Denoising images with generative adversarial networks,” 2018. [Online].
Available: arXiv:1803.04477.

D. G. Mixon and S. Villar, “Sunlayer: Stable denoising with generative
networks,” 2018. [Online]. Available: arXiv:1803.09319.

A. Mahendran and A. Vedaldi, “Understanding deep image represen-
tations by inverting them,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 5188-5196.

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,” 2015.
[Online]. Available: arXiv:1506.06579.

V. Dumoulin et al., “Adversarially learned inference,” 2016. [Online].
Available: arXiv:1606.00704.

X. Cheng, N. S. Chatterji, Y. Abbasi-Yadkori, P. L. Bartlett, and
M. L. Jordan, “Sharp convergence rates for Langevin dynamics in the
nonconvex setting,” 2018. [Online]. Available: arXiv:1805.01648.

M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradi-
ent Langevin dynamics,” in Proc. 28th Int. Conf. Mach.Learn., 2011,
pp. 681-688.

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, no. 45,
pp. 1891418919, Nov. 2009.

D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” in Proc. Inf. Theory Workshop, 2010,
pp. 1-5.

S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory, 2011,
pp. 2168-2172.

A. K. Fletcher and P. Schniter, “Learning and free energies for vector
approximate message passing,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2017, pp. 4247-4251.

A. K. Fletcher, P. Pandit, S. Rangan, S. Sarkar, and P. Schniter, “Plug-
in estimation in high-dimensional linear inverse problems: A rigorous
analysis,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 7440-7449.
S. Sarkar, A. K. Fletcher, S. Rangan, and P. Schniter, “Bilinear recov-
ery using adaptive vector-AMP,” IEEE Trans. Signal Process., vol. 67,
no. 13, pp. 3383-3396, Jul. 2019.

J. Barbier, N. Macris, M. Dia, and F. Krzakala, “Mutual information and
optimality of approximate message-passing in random linear estimation,”
2017. [Online]. Available: arXiv:1701.05823.

S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate mes-
sage passing,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6664-6684,
Oct. 2019.

T. P. Minka, “Expectation propagation for approximate Bayesian
inference,” in Proc. Conf. Uncertainty Artif. Intell. (UAI), 2001,
pp. 362-369.

K. Takeuchi, “Rigorous dynamics of expectation-propagation-based sig-
nal recovery from unitarily invariant measurements,” in Proc. IEEE Int.
Symp. Inf. Theory, 2017, pp. 501-505.

M. Opper and O. Winther, “Expectation consistent approximate
inference,” J. Mach. Learn. Res., vol. 6, pp. 2177-2204, Dec. 2005.
A. K. Fletcher, M. Sahraee-Ardakan, S. Rangan, and P. Schniter,
“Expectation consistent approximate inference: Generalizations and
convergence,” in Proc. IEEE Int. Symp. Inf. Theory, 2016, pp. 190-194.
B. Cakmak, O. Winther, and B. H. Fleury, “S-AMP: Approximate mes-
sage passing for general matrix ensembles,” in Proc. IEEE Inf. Theory
Workshop (ITW), 2014, pp. 192-196.

J. Ma and L. Ping, “Orthogonal AMP,” IEEE Access, vol. 5,
pp. 2020-2033, 2017.

A. Manoel, F. Krzakala, M. Mézard, and L. Zdeborovd, “Multi-layer
generalized linear estimation,” in Proc. IEEE Int. Symp. Inf. Theory,
2017, pp. 2098-2102.

F. Krzakala, A. Manoel, E. W. Tramel, and L. Zdeborovd, “Variational
free energies for compressed sensing,” in Proc. IEEE Int. Symp. Inf.
Theory, 2014, pp. 1499-1503.

S. Rangan, P. Schniter, E. Riegler, A. K. Fletcher, and V. Cevher,
“Fixed points of generalized approximate message passing with arbi-
trary matrices,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7464-7474,
Dec. 2016.

M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 764-785, Feb. 2011.

A. Javanmard and A. Montanari, “State evolution for general approxi-
mate message passing algorithms, with applications to spatial coupling,”
Inf. Infer, vol. 2, no. 2, pp. 115-144, 2013.

G. Reeves, “Additivity of information in multilayer networks via additive
Gaussian noise transforms,” in Proc. Allerton Conf. Commun. Control
Comput., 2017, pp. 1064-1070.

M. Gabrié et al., “Entropy and mutual information in models of deep
neural networks,” in Proc. Conf. Neural Inf. Process. Syst. (NIPS), 2018,
pp. 1826-1836.

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

347

J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborova,
“Optimal errors and phase transitions in high-dimensional generalized
linear models,” Proc. Nat. Acad. Sci., vol. 116, no. 12, pp. 5451-5460,
2019.

G. Reeves and H. D. Pfister, “The replica-symmetric prediction for com-
pressed sensing with Gaussian matrices is exact,” in Proc. IEEE Int.
Symp. Inf. Theory, 2016, pp. 665-669.

J. Barbier, M. Dia, N. Macris, and F. Krzakala, “The mutual information
in random linear estimation,” in Proc. 54th Annu. Allerton Conf.
Commun. Control Comput. (Allerton), 2016, pp. 625-632.

R. M. Neal, Bayesian Learning for Neural Networks, vol. 118.
New York, NY, USA: Springer-Verlag, 1996. [Online]. Available:
https://link.springer.com/content/pdf/10.1007%2F978-1-4612-0745-
0.pdf

R. Giryes, G. Sapiro, and A. M. Bronstein, “Deep neural networks with
random Gaussian weights: A universal classification strategy?” IEEE
Trans. Signal Process., vol. 64, no. 13, pp. 3444-3457, Jul. 2016.

B. Hanin and D. Rolnick, “How to start training: The effect of initial-
ization and architecture,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp- 571-581.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Proc. Int. Conf. Artif.
Intell. Stat., 2015, pp. 192-204.

P. Li and P-M. Nguyen, “On random deep weight-tied autoencoders:
Exact asymptotic analysis, phase transitions, and implications to train-
ing,” in Proc. Int. Conf. Learn. Res. (ICLR), 2019. [Online]. Available:
https://openreview.net/forum?id=HJx54i05tX

S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein, “Deep
information propagation,” 2016. [Online]. Available: arXiv:1611.01232.
R. Novak et al., “Bayesian deep convolutional networks with
many channels are Gaussian processes,” 2018. [Online]. Available:
arXiv:1810.05148.

W. Huang, P. Hand, R. Heckel, and V. Voroninski, “A provably conver-
gent scheme for compressive sensing under random generative priors,”
2018. [Online]. Available: arXiv:1812.04176.

Q. Lei, A. Jalal, I. S. Dhillon, and A. G. Dimakis, “Inverting deep
generative models, one layer at a time,” 2019. [Online]. Available:
arXiv:1906.07437.

C. Rush and R. Venkataramanan, “Finite-sample analysis of approximate
message passing algorithms,” IEEE Trans. Inf. Theory, vol. 64, no. 11,
pp. 7264-7286, Nov. 2018.

M. J. Wainwright and M. L. Jordan, “Graphical models, exponential fam-
ilies, and variational inference,” Found. Trends® Mach. Learn., vol. 1,
nos. 1-2, pp. 1-305, 2008.

P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed. Hoboken, NJ,
USA: Wiley, Feb. 2009. [Online]. Available: https://www.wiley.com/en-
us/Robust+Statistics %2C+2nd+Edition-p-9780470129906

P. Schniter, S. Rangan, and A. K. Fletcher, “Vector approximate mes-
sage passing for the generalized linear model,” in Proc. Asilomar Conf.
Signals Syst. Comput., 2016, pp. 1525-1529.

A. K. Fletcher, S. Rangan, and P. Schniter, “Inference in deep networks
in high dimensions,” 2017. [Online]. Available: arXiv:1706.06549.

B. He, H. Liu, J. Lu, and X. Yuan, “Application of the strictly contractive
peaceman-rachford splitting method to multi-block separable convex
programming,” in Splitting Methods in Communication, Imaging,
Science, and Engineering (Scientific Computation), R. Glowinski,
S. Osher, and W. Yin, Eds. Cham, Switzerland: Springer, 2016.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-
319-41589-5_6

B. He, H. Liu, Z. Wang, and X. Yuan, “A strictly contractive Peaceman—
Rachford splitting method for convex programming,” SIAM J. Optim.,
vol. 24, no. 3, pp. 1011-1040, 2014.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Inf. Theory, vol. 51, no. 7, pp. 2282-2312, Jul. 2005.

M. Pereyra et al., “A survey of stochastic simulation and optimization
methods in signal processing,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 2, pp. 224-241, Mar. 2016.

F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L. Zdeborova,
“Statistical-physics-based reconstruction in compressed sensing,” Phys.
Rev. X, vol. 2, no. 2, 2012, Art. no. 021005.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: arXiv:1412.6980.

S. Rangan, P. Schniter, and A. K. Fletcher, “On the convergence of
approximate message passing with arbitrary matrices,” in Proc. IEEE
Int. Symp. Inf. Theory, Jul. 2014, pp. 236-240.

R. M. Neal et al., “MCMC using hamiltonian dynamics,” in Handbook
of Markov Chain Monte Carlo, vol. 2. Boca Raton, FL, USA: CRC
Press, 2011, p. 2.

W. K. Hastings, “Monte Carlo sampling methods using Markov
chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97-109,
Apr. 1970. [Online]. Available: https://academic.oup.com/biomet/article/
57/1/197/284580

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2020 at 13:04:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

