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Efficient Multicarrier Communication for Highly
Spread Underwater Acoustic Channels

Sung-Jun Hwang and Philip Schniter

Abstract—In this paper we propose a novel method for
communication over underwater acoustic channels that exhibit
simultaneously large delay spread and Doppler spread, such
as those found in the surf zone. In particular, we propose
a coded pulse-shaped multicarrier scheme that converts the
doubly dispersive channel into an inter-carrier interference
(ICI) channel with small ICI spread. The resulting ICI is
mitigated using a soft noncoherent equalizer that leverages
sparsity in the delay-power profile to generate near-optimal
bit estimates with low complexity. The noncoherent equalizer
uses a delay-power-profile estimate (rather than a channel
estimate) which is obtained from pilots. Numerical simulations
with surf-zone-like channels demonstrate performance close to
genie-aided bounds.

Index Terms—Underwater acoustic modems, underwater
acoustic channels, multicarrier modulation, noncoherent decod-
ing, turbo equalization, joint estimation and detection, sparse
channels.

I. INTRODUCTION

THE UNDERWATER acoustic channel (UAC) has been
referred to as “quite possibly nature’s more unforgiv-

ing wireless medium” [1]. The physical characteristics of
the UAC are highly dependent on the distance and relative
movement between the transmitter and receiver; the proximity,
roughness, and motion of the scattering surfaces; and the
presence of ambient interference. However, the factors that
pose the primary challenges for data communication over
the UAC can be summarized as simultaneously large delay-
and Doppler-spreads, limited bandwidth, and limited receiver
complexity. These challenges can be understood as follows.
Large delay-spread implies that single-carrier communica-
tion will be plagued by inter-symbol interference (ISI) that,
for practical signal bandwidths, spans hundreds of symbols.
Large Doppler-spread then implies that this ISI response will
change quickly in time. Since optimal mitigation of this long
and quickly-varying ISI response becomes computationally
infeasible, practitioners have resorted to simple sub-optimal
strategies such as the adaptive decision-feedback equalization
(DFE) [2], [3]. However, these implementable single-carrier
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techniques perform far short of optimal and fail altogether in
very highly spread environments such as the surf zone [4].

As an alternative, multi-carrier modulation (MCM) has been
proposed to increase the symbol interval and thereby decrease
the ISI span. While a number of MCM proposals for the UAC
have been made over the years (see, e.g., the recent work [5]–
[7]), none seem to have been successful enough to displace
single-carrier/DFE as the practical method of choice. The
primary difficulty in applying MCM to the doubly dispersive
UAC is that, as the symbol interval is increased (to reduce ISI
span), the subcarrier spacing must be decreased (to preserve
data rate and transmission bandwidth), making the system
more susceptible to Doppler-spread-induced inter-carrier inter-
ference (ICI). Thus, barring a decrease in spectral efficiency,
ISI reduction comes at the expense of ICI escalation.

A close look at recent MCM proposals helps to illuminate
the challenges in applying MCM to the surf zone UAC.
The works [5] and [6], for example, proposed classical ZP-
OFDM signaling schemes assuming that the Doppler-spread
was small enough to induce negligible ICI. For these schemes,
the universal ICI bound1 in [8] implies that an ICI power of
−25 dB (which we consider to be “negligible”) occurs when
fDTs = 0.03, where fD denotes the single-sided Doppler-
spread and Ts the MCM-symbol duration. Since Ts was
chosen as 7Th (as 3.4Th) in [5] (in [6]), where Th denotes
delay-spread, we deduce that these schemes can handle UACs
with a delay/Doppler-spread product of at most fDTh = 0.004
(fDTh = 0.009). The surf-zone channels2 described in [4],
however, yield fDTh ≈ 0.1, which is 25× (10×) as severe.
As another example, in the non-traditional MCM approach
[7], the symbol length was chosen shorter than that needed
for perfect ISI-suppression, in order to tolerate high Doppler-
spread while keeping ICI negligible. The resulting ISI-span
was short enough to enable the use of sophisticated joint
estimation/detection techniques (i.e., LMS/Viterbi per-survivor
processing [9]), which were shown to significantly outperform
the traditional adaptive DFE. But [7] only demonstrated the
ability to handle fDTh = 0.0035 via simulation and fDTh ≈
0.002 experimentally, which are over 30 times milder than the
surf-zone channels discussed in [4]. Finally, the recent work
[10] makes the ZP-OFDM negligible-ICI assumption after
compensating for Doppler frequency shift due to a moving
platform. However, their scheme failed when the transmitter
passed by the receiver, i.e., when the Doppler frequency
shift changed from positive to negative. There, the platform
motion caused a Doppler frequency spread. Thus, the literature

1The analysis in [8] confirms that this bound is tight for fDTs = 0.03.
2For these channels it was found that fD ≈ 15 Hz and Th ≈ 7 ms.
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appears to fall short of an MCM scheme that is suitable for
communication over highly spread surf-zone UACs.

The general problem of communicating over doubly dis-
persive channels, i.e., those with simultaneously large delay
and Doppler spreads, has received significant attention from
theoreticians over the last two decades. Most of them have
approached this problem through the design of MCM pulse-
shapes which minimize total ISI/ICI power (e.g., [11]–[14]),
with the goal of making ISI/ICI negligible. But, even with
optimized pulses, ISI/ICI remains3 non-negligible for channels
whose delay/Doppler product fDTh is commensurate with that
of the surf-zone—a fundamental consequence of the Balian-
Low theorem from Gabor theory [13]. This fact led the authors
to propose a non-traditional approach in which a small ICI
span (e.g., 1 or 2 subcarriers) is tolerated and MCM pulse
shapes are designed to minimize residual ISI/ICI power [15].
In this case, near-perfect residual-ISI/ICI suppression can be
accomplished without loss of spectral efficiency, and high-
performance dominant-ICI mitigation can be accomplished
with low complexity. In this paper, we discuss how such an
approach can be applied for communication over the UAC.

The aforementioned ISI/ICI mitigation schemes require
(implicitly or explicitly) accurate channel state information
(CSI). Maintaining this CSI is especially difficult when the
channel is doubly dispersive, due to the typically large number
of channel coefficients and their fast rate-of-change. Pilot-
aided transmission (PAT) [16] is a practical means of aiding
data reception in the presence of channel uncertainty. PAT is
often used with decoupled channel-estimation/data-decoding,
where a channel estimate is first obtained via pilots and later
used for coherent data decoding. To minimize the MMSE of
pilot channel estimates, it is necessary to keep the channel
estimates free of interference from unknown data [17] (espe-
cially at high SNR), though doing so with a doubly dispersive
channel requires time/frequency guards have been shown to
sacrifice achievable spectral efficiency [18]. When PAT is used
with joint estimation/decoding (JED), however, there is no
need to separate pilots and data, allowing spectrally efficient
communication over the doubly dispersive channel [18]. These
facts motivate the consideration of PAT with JED for the UAC.

As one would expect, the complexity of optimal JED is
prohibitive. Practical JED requires the use of simplified chan-
nel models and approximations of the optimal maximum a
posteriori (MAP) decoding metric. For example, it is common
to model the channel as first-order Gauss-Markov and to apply
trellis-based decoding methods with either forward-backward
or fixed-lag MAP processing [19]. Still, this framework does
not appear practical for highly dispersive channels like the
UAC, whose impulse response spans hundreds of symbols and
changes quickly. With this in mind, the authors proposed a
novel noncoherent equalizer [20] which uses soft tree-search
and leverages a basis-expansion model (BEM) [21] for the
time-varying channel. The result is near-MAP performance
with a per-symbol complexity that scales as only O(N2

hD2),
where Nh = Th/Tc denotes the delay-spread (in chips)

3The ISI/ICI power is significant unless the MCM subcarrier/symbol
spacing is increased to about twice the Nyquist spacing, thereby incurring
a significant decrease in spectral efficiency which would be very undesirable
for the bandwidth-limited UAC.

and D = $fDTcN% the single-sided Doppler spread (in
subcarriers). Here, Tc denotes the “chip” interval, i.e., the
inverse signal bandwidth. With surf-zone UAC parameters,
however, the complexity remains prohibitive. For example, if
7.5 kHz bandwidth was used to communicate over the surf-
zone UAC in [4], one can expect Nh ≈ 50, for which the N2

h
dependence may be problematic.

The key to the complexity puzzle may lie in the sparse
nature of realistic UAC responses [22], [23]. For example, if
only 1/3 of the channel’s Nh delay taps are significant, then
a reception algorithm whose complexity is quadratic in the
active delay taps (versus total delay taps) will save by a factor
of 9. But designing a receiver capable of leveraging sparsity
in this manner is non-trivial, especially for MCM schemes
like [5]–[7]. In fact, most sparsity-leveraging algorithms are
based on adaptive DFE (e.g., [23]), whose performance is
known to fall far short of optimal. Another challenge to
leveraging sparsity is accurate tracking of the locations of
active taps, which can change quite rapidly (see, e.g., [4]).
While clever order-recursive matching-pursuit algorithms have
been proposed for this purpose (e.g., [23]), their complexity
remains quadratic in the full channel length Nh, which (as we
have seen) can be very large; we want something simpler.

In this paper, we propose a turbo JED receiver, building
on our earlier work [20], [24], that operates in a pulse-shaped
MCM framework and which takes full advantage of sparsity in
the channel delay profile. Our approach uses a sparse Fourier
BEM to model frequency-domain channel variation and a
fast tree-search to compute the soft noncoherent equalizer
outputs. In addition, we propose a simple pilot-aided means
of tracking the channel’s quickly-varying delay-power profile.
The performance of our algorithm is evaluated numerically
using simulated channels whose sparsity and delay/Doppler
spreads mimic those of the surf-zone channels from [4].
The proposed scheme is found to exhibit excellent BER
performance relative to genie-aided bounds, while maintaining
high spectral efficiency and relatively low complexity.

Notation: We use (·)T to denote transpose, (·)∗ conjugate,
and (·)H conjugate transpose, and we use [B]m,n to denote
the element in the mth row and nth column of matrix B,
where row/column indices begin with zero. We also use D(b)
to denote the diagonal matrix created from vector b, IK the
K×K identity matrix, and {δk} the Kronecker delta sequence.
Finally, we use & to denote element-wise multiplication, 〈·〉N
modulo-N operation, and E{·} expectation.

II. SYSTEM MODEL

First we describe a discrete-time complex-baseband model
of our system, which includes coded multicarrier modulation
(MCM) and a sparse doubly dispersive channel.

A. Pulse-Shaped MCM
At the transmitter, information bits are rate-R coded and

mapped to 2Q-ary scalar data symbols. Groups of Ns scalar
data symbols are then combined with scalar pilot/guard sym-
bols to form transmission blocks of length N ≥ Ns. (Pilot
and guard details will be given later.) Using N subcarriers,
the ith MCM-symbol is composed of the scalar symbols
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{c(i)
k }N−1

k=0 corresponding to the coded bits {x(i)
j }NsQ−1

j=0 . In
particular, the jth scalar symbol is mapped from the coded bits
x(i)

j := [x(i)
jQ, . . . , x(i)

jQ+Q−1]
T . The transmitted sequence {tn}

is generated by transforming the ith MCM-symbol sequence
{c(i)

k }N−1
k=0 with an N -point inverse discrete Fourier transform

(DFT), applying an Nα-point modulation pulse {αn}Nα−1
n=0 to

its cyclic extension, and superimposing the result N samples
behind the contribution from the (i − 1)th MCM-symbol:

tn =
∞∑

i=−∞
αn−iN

1√
N

N−1∑

k=0

c(i)
k ej 2π

N kn. (1)

(See [15] for a slightly more general scheme.) A noisy linear
time-varying channel then produces the received samples

rn =
Nh−1∑

l=0

hn,ltn−l + vn, (2)

where {hn,l}Nh−1
l=0 denotes the length-Nh discrete impulse re-

sponse at time n, and where {vn} is zero-mean circular white
Gaussian noise (CWGN) with variance σ2. In relation to the
ith MCM-symbol, we define r(i)

n := riN+n, v(i)
n := viN+n,

and h(i)
n,l := hiN+n,l and rewrite (2) as (3). For demodulation,

the receiver applies the length-Nβ pulse {βn}Nβ−1
n=0 prior to

an N -point DFT, yielding the frequency-domain observations
{y(i)

d }N−1
d=0 :

y(i)
d =

1√
N

Nβ−1∑

n=0

r(i)
n βne−j 2π

N dn. (4)

Putting (1)-(4) together, it is straightforward to show that

y(i)
d =

∞∑

#=−∞

N−1∑

k=0

H(i,#)
d−k,kc(i−#)

k + w(i)
d , (5)

H(i,#)
d,k :=

1
N

Nβ−1∑

n=0

Nh−1∑

l=0

h(i)
n,lβnα#N+n−le

−j 2π
N (dn+kl)

(6)

w(i)
d :=

1√
N

Nβ−1∑

n=0

βnv(i)
n e−j 2π

N dn. (7)

In writing (5), we used the fact that H(i,#)
d,k is N -cyclic in the

indices d and k. Note that H(i,#)
d,k can be interpreted as the re-

sponse, at MCM-symbol i and subcarrier k+d, to a frequency-
domain impulse applied at MCM-symbol i− % and subcarrier
k. Using y(i) := [y(i)

0 , . . . , y(i)
N−1]

T , c(i) := [c(i)
0 , . . . , c(i)

N−1]
T ,

and w(i) := [w(i)
0 , . . . , w(i)

N−1]
T , (5) can be written in vector

form as

y(i) =
∞∑

#=−∞

N−1∑

k=0

Dk(c(i−#))H(i,#)
−k + w(i) (8)

H(i,#)
d := [H(i,#)

d,−d, H
(i,#)
d,−d+1, . . . , H

(i,#)
d,N−1−d]

T ∈ CN ,(9)

where Dk(·) denotes the diagonal matrix created from the
k-place cyclic downward shift of its vector argument, i.e.,
[Dk(c)]d,d = c〈d−k〉N

.
Although from (1) it can be seen that no time-domain guard

is employed by the transmitter, it is possible (see, e.g., [15])
to design pulses {αn} and {βn} that yield both negligible

ISI (i.e., H(i,#)
d,k ≈ 0 for % ,= 0) and negligible ICI beyond

a radius of D := $fDTcN% subcarriers (i.e., H(i,#)
d,k ≈ 0 for

D < d < N −D). With zero ISI and an ICI radius of D, (8)
becomes

y(i) =
D∑

k=−D

Dk(c(i))H(i,0)
−k + w(i). (10)

B. A Sparsity Leveraging Frequency-Domain BEM
We now develop a sparse basis expansion model (BEM) for

the frequency-domain channel coefficient vector H(i,0)
d . From

(6) and (9) it can be seen that

H(i,0)
d = F θ̆

(i)

d (11)

θ̆
(i)

d :=
√

ND(f∗
d)(H(i) & P)T f

d
∈ CN , (12)

where H(i), P ∈ CNβ×N are defined element-wise
as [H(i)]n,l := h(i)

n,l and [P ]n,l := βnαn−l, where
F denotes the unitary N -DFT matrix (i.e., [F ]n,m =

1√
N

e−j 2π
N nm) with dth column fd ∈ CN , and where f

d
:=

[e−j 2π
N d·0, e−j 2π

N d·1, . . . , e−j 2π
N d(Nβ−1)]T denotes the latter’s

Nβ-length (cyclic) extension. Equation (11) can be recognized
as an N th-order BEM for the frequency-domain channel
vector H(i,0)

d ; the columns of F are the basis vectors and

elements of θ̆
(i)

d are the BEM coefficients.
The BEM order can be reduced if the impulse response is

known to be sparse. In particular, if only Na < Nh taps of
the impulse response {h(i)

n,l}
Nh−1
l=0 are non-zero over the time

duration n ∈ {0, . . . , Nβ −1}, then only Na columns of H(i)

will be non-zero, implying that only Na BEM coefficients in
θ̆

(i)

d will be non-zero. More precisely, let us denote the set of
channel taps active during the ith MCM-symbol interval by

L(i) =
{
l : h(i)

n,l ,= 0 for some n ∈ {0, . . . , Nβ − 1}
}
,(13)

where |L(i)| = Na. Constructing B(i) ∈ CN×Na from the
columns of F with indices in L(i), and constructing θ(i)

d ∈
CNa from the corresponding elements of θ̆

(i)

d , (11) can be
restated as

H(i,0)
d = B(i)θ(i)

d . (14)

Using this “compressed” BEM, (10) can be rewritten as (15)
and (16).

Notice that the BEM B(i) changes with the MCM-symbol
index.

C. Modifications for Noncoherent Soft Equalization
In Section III-B, we describe a noncoherent soft equaliza-

tion scheme based on tree search. A frequency-domain guard
pattern that facilitates this tree search will now be described.

From (15), it can be seen that every element in y(i) sees
contributions from 2D + 1 subcarriers. For tree search, we
would like that the first observation contains a contribution
from only one unknown scalar symbol, the second contains
contributions from only two unknown scalar symbols, the third
from only three unknown scalar symbols, and so on. One way
to ensure this is to set {c(i)

〈k〉N
}D−1

k=−D = 0, i.e., to “turn off” the
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r(i)
n =

Nh−1∑

l=0

h(i)
n,l

∞∑

#=−∞
α#N+n−l

N−1∑

k=0

c(i−#)
k

ej 2π
N k(n−l)

√
N

+ v(i)
n .

(3)

y(i) =
[
DD(c(i))B(i), . . . ,D−D(c(i))B(i)

]
θ(i) + w(i) (15)

θ(i) := [θ(i)T
−D , . . . ,θ(i)T

D ]T (16)

first and last D subcarriers—a technique commonly used to
prevent adjacent-channel interference in channelized systems.
Note that the resulting loss in spectral efficiency will be small
when 2D - N .

To proceed further, it is convenient to define the D-shifted
quantities c̄(i)

k = c(i)
〈k+D〉N

and c̄(i) := [c̄(i)
0 , . . . , c̄(i)

N−1]
T ,

noticing that the last 2D elements in c̄(i) constitute a zero-
valued guard interval. Since Dk(c̄(i)) = Dk−D(c(i)) for any
k, we can rewrite (15) as

y(i) = A(i)θ(i) + w(i) (17)

A(i) :=
[
D2D(c̄(i))B(i), . . . ,D0(c̄(i))B(i)

]
(18)

and see that, for each k ∈ {0, . . . , N − 1}, the observations
{y(i)

d }k
d=0 depend only on {c̄(i)

d }k
d=0. The now “causal” ICI

channel allows us to write the partial observation y(i)
k :=

[y(i)
0 , . . . , y(i)

k ]T as

y(i)
k = A(i)

k θ(i) + w(i)
k , (19)

where w(i)
k := [w(i)

0 , . . . w(i)
k ]T and where A(i)

k appends a new
row a(i)H

k ∈ C(2D+1)Na with each k:

A(i)
k =




a(i)H

0...
a(i)H

k



 (20)

a(i)H
k = [c̄(i)

k−2Db(i)H
k , . . . , c̄(i)

k b(i)H
k ]. (21)

In (21), b(i)H
k denotes the kth row of B(i). Note that the

full-block quantities y(i)
N−1, A(i)

N−1, c̄(i)
N−1, and w(i)

N−1 are
identical to the previously defined y(i), A(i), c̄(i), and w(i),
respectively.

Finally, we investigate the cross-covariance matrix
R(i)

θd,θk
:= E{θ(i)

d θ(i)H
k } for later use in tree-search. We

assume that the channel obeys the wide-sense stationary
uncorrelated scattering (WSSUS) assumption over the
duration of one MCM-symbol, i.e.,

E{h(i)
n,lh

(i)∗
n−m,l′} = ρ(i)

m σ(i)2
l δl−l′ for 0 ≤ n < Nβ,(22)

where {σ(i)2
l }Nh−1

l=0 is the delay-power profile (DPP) and
{ρ(i)

m } is the normalized (i.e., ρ(i)
0 = 1) tap autocorrelation

sequence during the ith MCM-symbol interval. Furthermore,
we assume that {ρ(i)

m } is invariant to i and thus suppress the
superscript notation.

Using the definition of θ̆
(i)

d in (12) and the fact that θ(i)
d is

constructed from the Na active taps in θ̆
(i)

d , the νth element
of θ(i)

d can be written as

[
θ(i)

d

]

ν
=

1√
N

Nβ−1∑

n=0

βnαn−l
(i)
ν

h(i)

n,l(i)ν

e−j 2π
N d(n−l(i)ν ),(23)

where l(i)ν denotes the index of the νth active tap (i.e.,
L(i) = {l(i)0 , l(i)1 , . . . , l(i)Na−1}). The (ν, ν′)th element of the
cross-covariance matrix R(i)

θd,θk
can then be written as

[
R(i)

θd,θk

]

ν,ν′
=

1
N

E

{ Nβ−1∑

p=0

βpαp−l(i)ν
h(i)

p,l
(i)
ν

e−j 2π
N d(p−l(i)ν )

×
Nβ−1∑

q=0

β∗
qα

∗
q−l

(i)
ν′

h(i)∗
q,l

(i)
ν′

ej 2π
N d(q−l

(i)
ν′ )

}
.(24)

The WSSUS assumption (22) specifies that E{h(i)

p,l(i)ν

h(i)∗
q,l(i)

ν′
} =

0 when ν′ ,= ν, implying that R(i)
θd,θk

is diagonal. Further-

more, since E{h(i)

p,l
(i)
ν

h(i)∗
q,l

(i)
ν

} = σ(i)2

l
(i)
ν

ρp−q , we find

[
R(i)

θd,θk

]

ν,ν
= σ(i)2

l(i)ν

1
N

Nβ−1∑

p=0

βpαp−l
(i)
ν

e−j 2π
N d(p−l(i)ν )

×
Nβ−1∑

q=0

ρp−qβ
∗
qα

∗
q−l(i)ν

ej 2π
N d(q−l(i)ν ).(25)

When k = d, equation (25) simplifies to

[
R(i)

θd,θd

]

ν,ν
= σ(i)2

l(i)ν

Nβ−1∑

m=−Nβ+1

ρme−j 2π
N dm

× 1
N

Nβ−1∑

p=0

βpβ
∗
p−mα

p−l
(i)
ν

α∗
p−m−l(i)ν

.(26)

The values {[R(i)
θd,θd

]ν,ν}D
d=−D can be recognized as samples

of the pulse-shaped Doppler spectrum of the νth active
tap. The pulses {αp} and {βp}, designed to suppress ICI
beyond a radius of D subcarriers, act via the second sum-
mation in (26) to squeeze the un-shaped Doppler spectrum
{σ(i)2

l(i)ν

∑
m ρme−j 2π

N dm}N−1
d=0 into the (truncated) pulse-shaped

Doppler spectrum {[R(i)
θd,θd

]ν,ν}D
d=−D.

Thus, we use pulse shaping to restrict the degrees of tem-
poral channel variation (per MCM symbol) from N to 2D+1,
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+

Fig. 1. Receiver structure.

and we use a BEM to restrict the degrees of spectral channel
variation from N to Na. The resulting channel representation
θ(i) ∈ C(2D+1)Na has an autocorrelation matrix R(i)

θ that will
be full rank under properly designed pulses (e.g., [15]).

III. NONCOHERENT SOFT EQUALIZATION

As illustrated in Fig. 1, the receiver consists of a soft
noncoherent equalizer and a soft decoder, connected in a
“turbo” configuration, as well as a delay-power profile (DPP)
estimator. The DPP estimator uses the observations and pilots
to estimate the active-tap indices L(i), as will be described
in Section IV. The equalizer uses the observations y(i), as
well as any a priori information provided by the decoder,
to generate soft information on the coded bits x(i) :=
[x(i)T

0 , . . . ,x(i)T
Ns−1]

T , leveraging its knowledge of the pilot
symbols and statistical channel structure, including L(i). The
decoder then uses the soft equalizer outputs (from possibly
many MCM-symbols) to refine the soft information on the
coded bits, leveraging its knowledge of the code structure.
After a sufficient number of turbo iterations, the decoder
outputs a hard estimate of the information bits.

In this section, we describe the proposed noncoherent soft
equalizer, where the soft information takes the form of log-
likelihood ratios (LLRs) on coded bits. Given the observation
y(i) and the a priori LLRs (which may have been refined by
the decoder), the soft equalizer generates LLRs for each of
the coded bits in x(i). The equalizer is “noncoherent” in that
it treats the channel realization θ(i) as unknown. However, it
is assumed to know the distributions of θ(i) and w(i), which
are taken to be4 CN (0, R(i)

θ ) and CN (0, σ2I), respectively.
In deriving our algorithm, we assume a perfect estimate of
the active-tap locations L(i). In addition, we make the mild
assumption that the autocovariance matrix R(i)

θ (whose form
can be inferred from (16) and (25)) is full rank. Because the
equalizer processing is invariant to the MCM-symbol index
i, we suppress the superscript notation in the remainder of
Section III.

A. LLR Approximation
The LLR of coded bit xj given y, defined as follows for

j ∈ {0, . . . , NsQ − 1}:

L(xj |y) := ln
P [xj = 1|y]
P [xj = 0|y]

, (27)

4Since the noise w(i) is circular white Gaussian under a rectangular
demodulation pulse (i.e., βn = 1 for n ∈ {0, . . . , N − 1} and βn = 0
otherwise), we assume a rectangular pulse in the sequel.

can be written in the form [25]

L(xj |y) = ln

∑
x:xj=1 p(y|x) exp lT x

∑
x:xj=0 p(y|x) exp lT x

, (28)

for l := [La(x0), . . . , La(xNsQ−1)]T , where La(xj) :=
lnP [xj = 1]/P [xj = 0] denotes the a priori LLR of xj .
The use of the metric

µ(x) := ln p(y|x) + lT x (29)

allows the “extrinsic” LLR Le(xj |y) := L(xj |y)−La(xj) to
be written as

Le(xj |y) = ln

∑
x:xj=1 exp µ(x)

∑
x:xj=0 exp µ(x)

− La(xj). (30)

Computing Le(xj |y) via (30) is impractical because it requires
2NsQ evaluations of µ(x). However, as suggested in [25], the
extrinsic LLR Le(xj |y) can be approximated as

Le(xj |y) ≈ max
x∈X∩{x:xj=1}

µ(x) − max
x∈X∩{x:xj=0}

µ(x) − La(xj),(31)

using the “max-log” approximation ln
∑

x:xj=1 exp µ(x) ≈
maxx:xj=1 µ(x) and subsequently restricting the maximiza-
tion search space to the “most important” bit sequences X .

The model (17), in conjunction with our Rayleigh fading
assumption, yields y|x ∼ CN (0, ARθAH + σ2IN ), where
from (18) we recall that A depends on the coded bits
x through the (D-shifted) scalar symbols c̄. With Φ :=
ARθAH + σ2IN we find ln p(y|x) = −yHΦ−1y −
ln(πN detΦ), allowing the metric to be written as

µ(x) = −yHΦ−1y − ln(πN detΦ) + lT x. (32)

B. LLR Evaluation via Tree Search
Because direct evaluation of (32) requires O(N3

s ) opera-
tions and there are 2NsQ candidate bit sequences to evaluate,
the computation of {µ(x)}x∈X remains computationally chal-
lenging. In the practical approach of [26], the partial metric

µk(xk) := ln p(yk|xk) + lTk xk (33)

is evaluated sequentially (i.e., in the order
µ0(x0), µ1(x1), . . . , µNs−1(xNs−1)) using M possibilities
of each partial bit vector xk, where here lk := [lT0 , . . . , lTk ]T
and li := [L(xiQ), . . . , L(xiQ+Q−1)]T . To choose the M
possibilities of xk, all one-symbol extensions of the M
“most important” partial bit vectors xk−1 are examined, and
only the M extensions yielding the largest partial metrics
µk(xk) are retained. In other words, the M-algorithm5 [27],
a breadth-first suboptimal tree-search algorithm, is applied to
compute {µ(x)}x∈X ′ for X ′ ≈ X . Since X ′ ∩ {x : xk = 1}
or X ′ ∩ {x : xk = 0} can be empty for some k, the LLRs
must be clipped to prevent them from being infinite. The
choice of clipping threshold is discussed in [26].

As we have shown in [20], the metric µk([xk−1; xk])
can be computed from µk−1(xk−1) using only O(D2N2

a )
operations, so that {µ(x)}x∈X ′ can be evaluated using only

5Other types of tree search could also be applied. However, the M-algorithm
is convenient because its complexity is invariant to both channel realization
and SNR.
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TABLE I
FAST COMPUTATION OF µ(x).

set {µ−1(x−1), Σ−1
−1, θ̂−1} :=

{
ln σ−2, σ−2Rθ , 0

}
;

for k = 0, 1, 2, . . . , N − 1,
ak = [c̄kbH

k , · · · , c̄k−Na+1bH
k ]H ;

dk = Σ−1
k−1ak;

αk = (1 + aH
k dk)−1;

Σ−1
k = Σ−1

k−1 − αkdkdH
k ;

ek = rk − aH
k θ̂k−1;

µk(xk) = µk−1(xk−1) − αk
σ2 |ek|2 − ln(παk) + lTk xk;

θ̂k = θ̂k−1 + αkekdk;
end

O(NM2QD2N2
a ) operations. In particular, by writing the

partial metric (33) in the form of (32), we find

µk(xk) = −yH
k Φ−1

k yk − ln(πk+1 detΦk) + lTk xk,(34)

where Φk := AkRθAH
k + σ2Ik+1. Table I outlines a fast

sequential algorithm for the computation of µ(x) which can
be seen to require Ns((2D + 1)2N2

a + 3(2D + 1)Na + 7)
multiplications. The quantity θ̂k in Table I denotes the MMSE
estimate of θ ∈ C(2D+1)Na conditioned on xk and not an
estimate of the quantity θd ∈ CNa from (14). The complexity
of our soft equalizer is thus linear in the block length N and
quadratic in the number of active channel parameters DNa.

C. Incorporating Pilot Symbols

Due to the quadratic nature of the metric µ(x), the pre-
viously described noncoherent equalizer inherits a gain/phase
ambiguity which can be resolved through the use of a sin-
gle pilot symbol (e.g., [28]). The judicious use of several
pilots, however, can dramatically improve the performance of
suboptimal tree-search. In our case, this would allow the M-
algorithm to be used with relatively small M . Intuitively, with
more pilots, the M-algorithm can compute a better estimate
of θ before it is forced to prune paths.

Note that the following simple modification of the M-
algorithm suffices to handle the presence of pilot/guard sym-
bols within c̄: When the M-algorithm encounters a known
symbol, each surviving path is given a single (rather than 2Q-
ary) extension with a zero-valued LLR. If symbols outside
of c̄ are known (e.g., pilot subcarriers in neighboring MCM-
symbols), we suggest using them to compute an MMSE
estimate θ̂−1 ,= 0 to use in Table I. After the first turbo
iteration, soft or hard decoder outputs can also be used to
calculate θ̂−1.

IV. TRACKING SPARSITY

In this section, we present an efficient means of learning the
active-tap locations L(i) and compensating for the fact that,
in practice, “inactive” taps are non-zero (but small).

A. Active-Tap Identification

To estimate the locations of active taps, we com-
pute a pilot-based minimum mean-squared error (MMSE)
estimate of the non-compressed BEM coefficient vector

fre
q

time

......

data
pilot
guard

Fig. 2. Illustration of pilot pattern with N = 32, P = 4, K = 2, Np = 8,
and D = 1. The columns represent c̄(i−P+2), . . . , c̄(i+2P−3) , respectively.

θ̆
(i)

:= [θ̆
(i)T

−D , . . . , θ̆
(i)T

D ]T and from that estimate the DPP
{σ(i)2

l }Nh−1
l=0 as follows.

σ̂(i)2
l =

D∑

d=−D

∣∣∣[θ̆
(i)

d ]l
∣∣∣
2
. (35)

Note that this approach permits accurate DPP estimation even
when the channel gain h(i)

n,l varies significantly over the MCM-
symbol interval. Once the DPP has been estimated, we set6

L(i) as the largest Na indices of the DPP. Note that the ability
to assign L(i) directly from the DPP is a consequence of our
BEM’s orthogonality (i.e., F ). Without BEM orthogonality,
estimating L(i) becomes much more complicated (e.g., [23]).

As illustrated in Fig. 2, our pilot pattern employs Np =
N/P pilot/guard subcarriers per MCM-symbol and repeats
after every P MCM-symbols. Each MCM-symbol contains
K ≥ 1 pilot clusters, where each cluster is comprised of
Np/K − 2D non-zero pilots with D zero-valued guards on
either edge. The cluster locations are staggered so that each
subcarrier is used in a cluster exactly once every P MCM-
symbols. Note that, on average, P−1

P subcarriers are used for
data. We experiment with different choices of K in Section V.

The pilots play a twofold7 role. First, as discussed in
Section III-C, they have the potential to significantly improve
the complex/performance tradeoff of suboptimal tree-search.
Second, they facilitate the tracking of active taps L(i). Recall
that DPP sparsity can lead to significant reductions in equal-
ization complexity since the latter is quadratic in the number
of modeled taps (i.e., Na = |L(i)|). The guards also play a
twofold role. First, as described in Section II-C, they facilitate
tree-search by making the ICI channel (17) appear causal.
Second, they ensure that Np − 2KD subcarriers in y(i) will
be free of interference from unknown data, thereby improving
the quality of pilot-based estimates of L(i).

6Note that this approach yields a fixed complexity; if a fixed performance
was more important, one could set L(i) to be the indices of DPP values that
lie above a threshold.

7Note that pilots could also be used for adjustment of large timing clock
offsets and carrier frequency offsets. For example, the receiver’s sampling
and carrier frequencies could be adjusted so that the support of the measured
delay/Doppler profile stays close to the origin. There is no need to compensate
for small timing/carrier offsets, though, since they are subsumed by the doubly
dispersive channel.
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We now detail our pilot-based DPP estimation procedure,
assuming power-of-two P . At even symbol indices i, we use
the pilot-only subcarriers in {y(i), . . . ,y(i+P−1)} to jointly

estimate the channel vectors {θ̆
(i+P/4)

, . . . , θ̆
(i+3P/4−1)

}.
Here, estimates for the P/4 left and right “edge” vectors
are not attempted because we anticipate that they would be
unreliable. However, since estimation is performed at every
even symbol index i, all channel vectors will eventually be
estimated. (See Fig. 2 for a P = 4 example.) Notice that a
total of P (Np−2KD) = N −2PKD scalar observations are
used to estimate P

2 (2D+1)Nh scalar BEM coefficients during
every other MCM-symbol index. Since MMSE estimation
is implemented by multiplication with a (fixed and known)
P
2 (2D + 1)Nh × (N − 2PDK) matrix, the cost of DPP
estimation is only P

4 (2D+1)Nh(N−2PDK) multiplications
per MCM-symbol. Recalling Section III-B, this cost is small
relative to that of iterative noncoherent soft equalization.

The MMSE estimator matrix can be designed as fol-
lows. Say that we collect the pilot-only observations from
{y(i), . . . ,y(i+P−1)} into the vector y(i) ∈ CN−2PKD and
the corresponding noise samples {wk} into the vector w(i).

Then, considering (17) with non-compressed coefficients θ̆
(i)

,
we can write

y(i) = Aθ̆
(i)

+ w(i), (36)

where A is a block-diagonal pilot matrix (with P blocks) and
θ̆

(i)
:= [θ̆

(i)T
, . . . , θ̆

(i+P−1)T
]T . The MMSE estimate of θ̆

(i)

from y(i) is then

θ̂
(i)

= Rθ̆AH(ARθ̆AH + σ2I)−1y(i), (37)

where Rθ̆ denotes the autocovariance matrix for θ̆
(i)

, which
can be constructed from the WSSUS model (25) under
an a priori uniform DPP, i.e., σ(i)2

l
(i)
ν

= N−1
h for ν ∈

{0, . . . , Nh − 1} and l(i)ν = ν. Finally, DPP estimates of
{σ(i+P/4)2

l , . . . , σ(i+3P/4−1)2
l }Nh−1

l=0 are computed via (35).

B. Residual Tap Compensation
Because non-active channel taps are ignored by the nonco-

herent equalizer, they have the effect of contributing additional
noise. Since the size and number of non-active channel taps
can vary, so can the power of the additional noise. Thus, it
should be tracked for use by the equalizer. Fortunately, doing
so is relatively easy. For example, after the noncoherent se-
quence detection algorithm has estimated A(i) and θ(i) in (17),
the energy of the residual interference ŵ(i) := y(i)− Â

(i)
θ̂

(i)

can be used as an estimate of the effective noise power
σ(i)2. This estimate could then be employed for noncoherent
equalization of the (i + 1)th MCM-symbol, since the sparsity
is not expected to change significantly from one MCM-symbol
to the next.

V. NUMERICAL RESULTS

Numerical tests of the proposed multicarrier system were
conducted using MATLAB, using active channel coefficients
with Rayleigh-fading gains and time-varying delays.

A. Setup

Two types of channel were considered, a “perfectly sparse”
channel and a “sparse” channel; the latter aims to be realistic
while the former is useful as a reference. The impulse response
of the “perfectly sparse” channel had Nc = 5 nonzero
fading coefficients spread over Nh = 50 chip intervals. The
temporal trajectories of each of the Nc coefficients were
independently generated from a zero-mean circular8 Gaussian
random processes with a Gaussian-shaped power spectrum,
where fDTc = 0.002 was chosen for the single-sided nor-
malized Doppler spread. The delay power profile (DPP) was
exponential, i.e., the energy of the Gaussian process at chip
delay l was σ2

l = C exp(− ln 4
Nh

l), where C was chosen to make
the channel energy-preserving. Our choice of {fDTc, Nh}
corresponds to, for example, Doppler spread 30 Hz and delay
spread 7 ms if the transmission bandwidth was 1

Tc
= 7.5 kHz,

which match the surf-zone channel from [4]. To generate the
more realistic “sparse” channel model, 2% of the active-tap
energy was leaked into the inactive taps. This was accom-
plished by convolving the “perfectly sparse” impulse response
{hn,l}Nh−1

l=0 , at each time n, with the truncated sinc sequence
[−0.0721, 0.0739, 0.9893, 0.0739,−0.0721].

To model a time-varying DPP, the discrete delays of the
active taps were varied in time as follows. While the delays of
the first and second taps were fixed at 2 and 9 chips, the delay
of the third changed from 14 to 18 chips with a period of 225
MCM-symbol intervals. Furthermore, the delay of the fourth
changed from 21 to 26 chips, and then back, with a period of
60 MCM-symbol intervals, and the delay of the fifth changed
from 32 to 47 chips, and then back, with a period of 60 MCM-
symbol intervals. Thus, it can be seen that the delay spread
of the “sparse” channel was Nh = 50. As a consequence of
the time-varying tap delays, the effective Doppler spread is
actually larger than fDTc = 0.002.

At the transmitter, information bits were coded via rate-
R = 1

2 irregular low density parity check (LDPC) codes with
average column-weight 3, generated via the publicly available
software [29]. The coded bits were then mapped to BPSK
symbols (i.e., Q = 1) and partitioned into data blocks of
length Ns = N − Np, each of which was merged with
Np = 32 pilot/guard symbols to form an MCM-symbol of
length N = 128. We used random BPSK pilots arranged
as in Fig. 2 with P = 4, D = 1, and K = 1 (unless
otherwise noted). So that each codeword spanned exactly
J = 128 MCM-symbol intervals, (JQNs, RJQNs)-LDPC
codes were employed. For the MCM pulses {αn} and {βn},
we used the “transmitter optimized max-SINR” design from
[15], which specifies a smooth modulation pulse of length
Nα = 1.5N and a rectangular demodulation pulse of length
Nβ = N . Since we employed no MCM guard interval, our
modulation efficiency (taking the pilots/guards into account)
was 0.75 symbols/sec/Hz.

The receiver employed an ICI radius of D = $fDTcN% = 1
and used Na = 10 active taps in its BEM. For noncoherent soft
equalization, the LLR clipping threshold was set at 3.0 and the
M-algorithm used a search breadth of M = 32. A maximum

8Here, and throughout the paper, we refer to the complex-baseband equiv-
alent model of the channel.
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Fig. 3. BER versus number of pilot clusters for the “sparse” channel at
Eb/No= 11.5 dB.

of 60 sum-product decoding iterations were allowed, while
a maximum of 8 turbo (i.e., equalization/decoding) iterations
were allowed. Note, however, that decoder and turbo iterations
are terminated as soon as the LDPC decoder senses that the
bits have been decoded without error (which usually happens
very quickly).

B. BER versus Number of Pilot Clusters K

We first investigated the bit error rate (BER) versus the
number of pilot clusters K for fixed N and P . Intuitively, there
are two competing notions for the choice of K . On one hand,
since each cluster includes 2D zero-valued guards (to prevent
interference from the unknown data subcarriers) in addition
to Np/K − 2D non-zero pilots, the total number of non-zero
pilots per MCM symbol is Np − 2KD, which increases as
K decreases, suggesting better channel estimates. But, on the
other hand, as K decreases, the pilot subcarriers are located
farther from the subcarrier locations at which the channel
must be estimated, suggesting worse channel estimates. The
theoretically optimum choice of K (e.g., [17], [30]) is only
known for simplified (e.g., non-sparse) channel models and
MSE-minimization (rather than coded-BER minimization) and
thus falls short of being accurate here.

In Fig. 3, we plot the BER versus K ∈ {1, 2, 4, 8}. Since we
fix Np = 32, these values of K correspond to cluster sizes of
{32, 16, 8, 4}, respectively. Figure 3 shows that, here, K = 1
yields minimum BER, i.e., that one large cluster outperforms
many smaller clusters.

C. BER versus SNR
Next we investigated BER versus Eb/No, i.e., the ratio

of energy-per-information-bit to noise power-spectral-density.
(Note that pilot/guards to not contribute to the information-
bit energy.) In addition to simulating the BER of the pro-
posed soft noncoherent receiver, we also simulated the BER
of several genie-aided reference receivers. In one reference
receiver, we replace our soft noncoherent equalizer with the
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NC known!L
Coh Genie!! est!L
Coh Genie!! known!L
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Fig. 4. BER versus SNR for the “perfectly sparse” channel, where non-
significant taps have zero energy. The noncoherent soft equalizer is compared
to coherent soft equalizer with genie-estimated θ(i) for both true and
estimated L(i).
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Fig. 5. BER versus SNR for the “sparse” channel, where non-significant taps
have small but non-zero energy. The noncoherent soft equalizer is compared to
coherent soft equalizer with genie-estimated θ(i) for both true and estimated
L(i).

soft coherent equalizer from [26] that uses an MMSE estimate
of θ(i) computed under the assumption that, in addition to the
pilot/guards, all data subcarriers are known for the purpose
of estimating θ(i). Notice that this “genie-aided-θ̂ coherent
reference” upper bounds the performance of any noncoherent
equalizer with a bound tighter than that of coherent equal-
ization under perfect channel knowledge. Since, however,
both the noncoherent and genie-aided-θ̂ equalizers still need
to track the active coefficients L(i), we consider these two
schemes with perfectly known L(i) as additional references.

Fig. 4 shows BER versus Eb/No for the “perfectly sparse”
channel. The performance of the proposed soft noncoherent
receiver shows about 0.25 dB SNR loss (at 10−2.5 BER)
relative to the genie-aided-θ̂ coherent receiver that estimates
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Fig. 6. BER versus true fDTc for matched and mismatched noncoherent
equalizers using the “sparse” channel at Eb/No= 11.5 dB.

L(i) and about 2 dB relative to the genie-aided-θ̂ coherent
receiver with known L(i). Thus, most of the loss is due
to imperfect estimation of L(i). Not surprisingly, the L(i)-
estimates can be shown to improve with the number of pilots.

Fig. 5 shows BER versus Eb/No for the “sparse” channel.
Here again, the proposed noncoherent receiver performs about
0.3 dB worse (at 10−2.5 BER) than the genie-aided-θ refer-
ence that estimates L(i) and about 2 dB worse than the genie-
aided-θ reference that knows L(i) perfectly.

D. Robustness to Assumed Doppler Statistics

Finally we investigate the effect of a mismatch between
the true and assumed Doppler statistics {ρm}. In particular,
we plot BER performance versus Doppler spread fDTc for a
receiver which knows fDTc and the Doppler spectrum, and for
two mismatched receivers: one which assumes fDTc = 0.001
and the correct (i.e., Gaussian) spectrum, and the other which
assumes fDTc = 0.001 and Jakes spectrum [31]. Figure 6
shows that mismatch in fDTc and Doppler spectrum is handled
quite well; only a small BER increase above the matched
receiver is evident.

The behavior of the matched receiver in Fig. 6 can be
understood as follows. As fDTc increases, the BER-versus-
SNR curves get steeper as a result of increased Doppler
diversity, but shift to the right as a result of the fact that the
channel is more difficult to estimate. So, as fDTc increases
up to 0.001, BER at Eb/No = 11.5 dB improves because
the effects of steepness dominate those of shift. But, as fDTc

increases beyond 0.001, BER at Eb/No = 11.5 dB degrades
because the effects of shift dominate those of steepness. By
raising Eb/No, better BER would be seen at high fDTc.

VI. CONCLUSION

In this paper we presented a novel multicarrier strategy for
communication over UACs with simultaneously large delay
and Doppler spreads. A multicarrier scheme employing a

smooth transmission pulse was chosen to transform a time-
varying ISI span of fifty taps to an ICI span of three taps. Care-
ful design of the pulse eliminated the need for a bandwidth-
wasting cyclic (or zero) prefix. A turbo receiver, which passes
soft bit information between a noncoherent equalizer and an
off-the-shelf decoder, was then described. The complexity of
the noncoherent equalizer, which assumes knowledge of the
channel’s statistics but not its realizations, is relatively low
due to the use of suboptimal tree search and the leveraging
of sparsity in the channel’s delay-power profile. Although the
noncoherent equalizer can function with only a single pilot
subcarrier, a more extensive pilot pattern is proposed to track
the (time-varying) sparsity profile as well as to reduce the
complexity of near-optimal tree search. Because the metric
used for noncoherent equalization has a fast recursive update,
equalization requires only ≈ M |S|(2D + 1)2N2

a multiplica-
tions per subcarrier, where M is the tree-search parameter
(e.g., M = 32 for our simulations), |S| is the subcarrier
alphabet size, (2D+1) is the ICI span, and Na is the number
of active delays. Simulations with highly spread channels (e.g.,
fDTh = 0.1) showed that the performance of the proposed
noncoherent algorithm was about 2 dB away from coherent
detection using a genie-estimated channel. Simulations also
showed that the proposed technique is relatively insensitive to
mismatch of the assumed Doppler spectrum.
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