Phil Schniter The Ohio State University

4 N

Communications over Sparse Channels:

Fundamental limits and practical design

Phil Schniter

THE OHIO STATE UNIVERSITY

(With support from NSF grant CCF-1018368, NSF grant CCF-1218754,
and DARPA/ONR grant N66001-10-1-4090)

Intl. Zurich Seminar on Communications, Feb. 2014

. /




Phil Schniter

The Ohio State University

/Sparse Channels:

— x(t) = h(t) * pre(t), and
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e At large communication bandwidths, channel impulse responses are sparse.

— h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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/Simplified Channel Model: \

First, let's simplify things to talk concretely about sparse channels. . .

Consider a discrete-time channel that is
e block-fading with block size IV,
e frequency-selective with impulse response length L (where L < N),
e sparse with S non-zero complex-Gaussian taps (where 0 < .S < L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:
1. What is the capacity of this channel?

2. How can we build a practical comm system that operates near this capacity?
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/Noncoherent Capacity of the Sparse Channel: \

For the unknown N-block-fading, L-length, S-sparse channel described earlier, we
established [1] that

1. In the high-SNR regime, the ergodic capacity obeys

N - S
Coparse (SNR) = log(SNR) + O(1).
2. To achieve the prelog factor R,,... = NT_S It suffices to use

e pilot-aided OFDM (with N subcarriers, of which S are pilots)

e with joint channel estimation and data decoding.
Key points:
e The effect of unknown channel support manifests only in the O(1) offset.
e Standard non-sparse-channel methods would use L pilots.

e “‘Compressed channel sensing” would use S polylog N pilots.

[1] A. Pachai-Kannu and P. Schniter, “On communication over unknown sparse frequency selective

\\block—fading channels,” IEEE Trans. Info. Thy., Oct. 2011. /
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/Practical Communication over the unknown Sparse Channel:

We now propose a communication scheme that. ..
e is practical, with decode complexity O(N logs N + N|S|) per N-block,
e delivers outage rates matching the optimal prelog factor R,... = NT_S

e significantly outperforms “compressed channel sensing” (CCS) schemes.

Our scheme uses. . .

e a conventional transmitter: pilot-aided BICM OFDM,

e a novel receiver: based on belief propagation with the generalized approximate
message passing (GAMP) algorithm [3] used in a “turbo” configuration [2].

[2] P. Schniter, “*Turbo reconstruction of structured sparse signals,” CISS 2010.

[3] S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,"”

\\arXiv.'1010.5141, 2010. /
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/Factor Graph for pilot-aided BICM-OFDM:
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using AMP approximations in the GAMP sub-graph.
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/Numerical Results — Perfectly Sparse Channel: \
Transmitter:

e LDPC codewords with length ~ 10000 bits.

o 2M_QAM with 2M € {4,16, 64,256} and multi-level Gray mapping.

e OFDM with N = 1024 subcarriers.

e P pilot subcarriers and/or T training MSBs.

Channel:
o Length L = 256 = N/4.
e Sparsity S =64 = N/16.

Reference Schemes:
e Pilot-aided LASSO (i.e., compressed channel sensing) with oracle tuning.

° , support-aware MMSE, and info-bit+support-aware
\\ MMSE channel estimates were also tested. /
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/BER & Outage vs SNR (with P=L pilots & T'=0 training MSBs): \
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Key points:
e GAMP outperforms both LASSO and the support genie (SG).

e GAMP performs nearly as well as the info-bit+support-aware genie (BSG).

e With P = L, all approaches yield prelog factor R = % = %, which falls short of
the optimal R = NT_S = 1—2.

. /




Phil Schniter The Ohio State University

/BER & Outage vs SNR (with P=0 pilots & 7'=SM training MSBs):\

log,0(BER) (256 QAM, 3.75 bpcu, 20dB SNR) BER=0.01 contours (256-QAM)
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Key points:

e GAMP favors P =0 pilot subcarriers and T'=S5M training MSBs.

— Precisely the necc/suff redundancy of the capacity-maximizing system!

e GAMP achieves the sparse-channel’s capacity-prelog factor, R,ase = NT_S
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/In practice, channel taps are not perfectly sparse, nor i.i.d: \
e For example, consider channel taps = [xg,...,xr_1], where
— x, = x(nT) for bandwidth T—! = 256 MHz,
— x(t) = h(t) * pre(t), and
— h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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e The tap distribution varies as the lag increases, becoming more heavy-tailed.

e The big taps are clustered together in lag, as are the small ones.

. /
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/Proposed channel model: \

e Saleh-Valenzuela (e.g., 802.15.4a) models are accurate but difficult to exploit

in receiver design.

e \We propose a structured-sparse channel model based on a 2-state Gaussian

Mixture model with discrete-Markov-chain structure on the state:
CN(CE‘j; O,,u?) if dj=0 “small"
CN(z4;0,p5) ifdj=1 "big"
Pr{d;;1 =1} = p}o Pr{d; =0} + (1 —p?l) Pr{d; =1}

p(zj|dj) =

e Our model is parameterized by the lag-dependent quantities:
{u;} : big-state power-delay profile
{u} : small-state power-delay profile
{p9'} : big-to-small transition probabilities

{pjl-0 : small-to-big transition probabilities

e Can learn these statistical params from observed realizations via the EM alg.

. /
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/Factor graph for pilot-aided BICM-OFDM: \
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using AMP approximations in the GAMP sub-graph.
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/Numerical results: \

Transmitter:

e OFDM with N = 1024 subcarriers.
o 16-QAM with multi-level Gray mapping

e LDPC codewords with length ~ 10000 yielding spectral efficiency of 2 bpcu.

e P pilot subcarriers and 1" training MSB:s.

Channel:

e 802.15.4a outdoor-NLOS (not our Gaussian-mixture model!)

e Length L =256 = N/4.

Reference Channel Estimation / Equalization Schemes:

e soft-input soft-output (SISO) versions of LMMSE and LASSO.

\\ e perfect-CSl| genie. /
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/BER versus F;, /N, for P = 224 pilots and 7" = 0 training MSBs: \
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Note 4dB improvement over (turbo) LASSO.
\Only 0.5dB from perfect-CSI genie! /
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/BER versus F;, /N, for P = 0 pilots and T" = 448 training MSBs: \
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/Communications over Underwater Channels: \
e SPACE-08 Underwater Experiment 2920156F038_C0_S6

e Time-varying channel response estimated using WHOI M-sequence:

165
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time

e The channel is nearly over-spread: f;T5L = 20 X 10000 x 400 = 0.8 !

e Can't afford to ignore structure of temporal variations!

. /
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/BICM—OFDM Factor Graph with Temporal Channel Structure: \
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e Channel taps are modeled as independent Bernoulli-Gaussian processes:
— each tap's amplitude follows a temporal Gauss-Markov chain

— each tap’s on/off state follows a temporal discrete-Markov chain

[4] P. Schniter and D. Meng, “A Message-Passing Receiver for BICM-OFDM over Unknown Time-Varying

\\Sparse Channels,” Allerton 2011. /
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/Performance versus SNR: \
Settings: 10° :
e experimentally measured f | temporal

t |
underwater channel —e— no tempora

o 16-QAM I
e 1024 total tones : ' |
e O pilot tones

e 256 training MSBs
e LDPC length 10k
e LDPC rate 0.5

BER

107k

10*3 !
10 11 12

I I
14 15 16

SNR (dB)

Exploiting the persistence in channel support and channel amplitudes was critical
in this difficult underwater application.

. /
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/Communications in Impulsive Noise: \

e In many wireless and power-line communication systems, the (time-domain)

noise is not Gaussian but impulsive.
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/Factor Graph for pilot-aided BICM-OFDM: \
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[5] M. Nassar, P. Schniter, and B. Evans, “A Factor-Graph Approach to Joint OFDM Channel Estimation
and Decoding in Impulsive Noise Environments,” IEEE Trans. Signal Process., 2014. /
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/Numerical Results — Uncoded Case: \
Settings: 10°
e 5 channel taps
e GM noise o'l
e 256 total tones
e 15 pilot tones
r
e 30 null tones o 10T
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10_3_ —A—PP ‘ ‘ o , i
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--- MFB
0™ ' ' ' ' '
-15 -10 -5 0 5 10 15

SNR [dB]

Proposed “joint channel /impulsive-noise /symbol” estimation (JCIS) scheme gives

~15 dB gain over previous state-of-the-art and performs within 1 dB of MFB!

. /
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/Numerical Results — Coded Case: \
Settings: 10°
e 10 channel taps ‘ oo |
: P e
e GM noise VVVV
e 1024 total tones v
e 150 pilot tones 4
e 0 null tones _ \<\7
e 16-QAM - —v— -DFT O
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e Rate 0.5 p— jg:i?f M
e Length 60k n o RS
2 4 6 8 10
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Proposed “joint channel /impulsive-noise/symbol /bit” estimation (JCISB) scheme
gives ~15 dB gain over traditional DF T-based receiver!
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/Conclusions: \

e At wide bandwidths, channel impulse responses are approximately sparse.

— Sparsity increases the pre-log factor of high-SNR noncoherent ergodic
capacity.
— AMP-based joint channel-estimation/decoding delivers outage rates that

empirically match the capacity pre-log factor.

— Channels impulses are in fact structured-sparse, and exploiting this

structure leads to additional performance gains.

— Sparsity can also be exploited in time-varying channels.

e Impulsive noise is another source of sparsity in communications.

— AMP-based joint channel-estimation /impulse-estimation /decoding delivers

error-rates that approach the matched-filter bound.
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