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Sparse Reconstruction

Goal:

Recover x, € RY from measurements y = Az, + w € RM

Assumptions:

m x, is sparse

m A is known and high dimensional
m often M <« N

mw~ N(0,7,I)
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Regularized loss minimization

Popular approach:
& = argmin 3|y — Az|? + A f(x)
where

m f(x) is a regularizer, e.g., ||z||; in LASSO or BPDN
m )\ > 0 is a tuning parameter
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I
The iterative soft thresholding algorithm (ISTA)

ISTA:
initialize 2° =0
fort=0,1,2,...
vl =y — A residual error
= g(@' + ATv?)  thresholding
where

g(r) = argmin gl|r — @[3 + Af(x) = prox,(r)
|A||3 < 1 ensures convergence! with convex f(-).

When f(x) = ||x||1 we get “soft thresholding”
[g(r)]; = sgn(r;) max{0, |rj| — A}

1 Daubechies,Defrise, DeMol-CPAM'04
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I
Approximate Message Passing (AMP)

Donoho, Maleki, and Montanari2 proposed:

initialize 2°=0, v =0
fort=0,1,2,...

vt =y — Az + Dot g3 4 ATH' 1)) corrected residual
ﬁt-i-l :gt(it —|—AT’Ut)

thresholding

where

<9/(7’)> £ % Z;VZI 6%];(;) “divergence.”
Note:

m “Onsager correction” aims to decouple the errors across iterations.
m The thresholding g'(-) can vary with iteration ¢.

Donoho,Maleki,Montanari-PNAS’09
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I
AMP vs ISTA (and FISTA)

Example: LASSO problem with i.i.d. Gaussian A:
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3Beck Teboulle-JIS'09
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M =250, N =500
Pr{z, # 0} =0.1
SNR= 40dB

Convergence to —35dB:

e |STA: 2407 iterations
e FISTA:3174 iterations
e AMP: 25 iterations
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.
AMP’s state evolution

Define £ := L E {||Z" — @[} as the iteration-t MSE.

For large i.i.d. sub-Gaussian A and separable Lipschitz g'(-), AMP has the
following scalar state evolution (SE):*

fort=0,1,2,...
Tk :Tw+%5t
EF = L E{||lg" (@0 + N(0,7/1)) —:cOH2}
| S ——

=7l

But for generic A, AMP is not well justified and may fail catastrophically.

4Bayati,MontanarifTransIT’ll
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PR
Vector AMP (VAMP) S
The vector AMP algorithm for linear regression is
fort=0,1,2,...
T = Q(Tﬁ' ) thresholding
al = x Z] ngzr( ) divergence
rh = ﬁ(mfi afrl) Onsager correction
7= %1 o precision of 5
@b = (ATA/7y +%I) " (ATy /7 + 4rt) LMMSE
o = 'YW% Tr [(ATA/7y + yéI)fl] divergence
rith = L ; (2% — abrh) Onsager correction
AL =8 1a°‘2 precision of {1

Note similarities with standard AMP.
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. . . o -
VAMP without matrix inverses <
Can avoid matrix inverses by pre-computing an SVD, A =USV -
fort=0,1,2,...
z' = g(rt; fyf) thresholding
ol = NZ] o L (pl:At) divergence
Th =< 1@ (mt —afrh) Onsager
t_ tl ..
Y5 = precision
ob = N Zj 72/(532./?“] + 75) divergence
ritt = V(S2 + ?w’yéI)_IS(UTy —~ SVTr) 2 mat-vec
fyf“ =% la% precision

And can tune noise precision 7, using EM.
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Why call this “Vector AMP" ?

1) Can be derived using an approximation of message passing on a factor
graph, now with vector-valued variable nodes.

2) Performance characterized by a rigorous state-evolution® under certain
large random A:

SVDA=USV"T

m U is deterministic
m S is deterministic

m V is uniformly distributed on the group of orthogonal matrices

“A is right rotationally invariant”

5 Rangan,Fletcher,Schniter-16
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-]
Message-passing derivation of VAMP

m Write joint density as p(z,y) = p(x)p(y|z) = p(x)N (y; Az, 7, I)
p(z) B—OF BN (y; Az, 7, 1)

m Variable splitting: p(x1,x2,y) = p(x1)d(x1 — 22)N (y; Az, 7o 1)
p(z1) H

Eal T2

WV (y; Azz, 7, )
(5(:1:1 — 1‘2)
m Perform message-passing with messages approximated as AN (u, 0%1).

m An instance of expectation-propagation® (EP).
m Also derivable through expectation-consistent approximation’ (EC).

6Minka—Dissertation'Ol
7Opper,WintherfN|PS'04, Fletcher,Rangan,Schniter-ISIT'16
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.
VAMP state evolution

Assuming empirical convergence of {s;} =S and {(r{ ;,z,;)} = (R}, X,) and

Lipschitz continuity of g and ¢’, the SE under 7, = 7, is as follows:

fort=0,1,2,...
=B{[9(X, + N0, 7 7) — X’} MSE
= E{¢ (X, +N(0 ,7'1t)§7t1)} divergence
72_73131, A= klel - @] precison
= B{[s%/r +74] '} MSE
63 = B {[5/7 _,_71‘2]—1} divergence
= A = g[8 - (@)*]  precision

More complicated expressions for £ and @, apply when 7, # 7.
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Deep learning for sparse reconstruction

m Until now we've focused on designing algorithms to recover x, € X
from measurements y = Ax, + w.

Y — algorithm —= 2

model X', A

m What about training deep networks to predict x, from y?
Can we increase accuracy and/or decrease computation?
/

deep ~

Y= network [~ %

training data {(za,yq)}2,

m Are there connections between these approaches?
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-]
Unrolling ISTA

First, rewrite ISTA as

vl =y — Az

SET—-ATA
~t+1 ~t .
51— g(a + ATot) & |2 = g(Sx" 4+ By) with

B2 AT

Then “unroll” into a network:
O SP mfyiﬂﬂﬁiﬂagiiﬁ}iﬂéﬁ
vp

Note cascade of linear “S,"” bias “By," & separable non-linearity “g(-)."

ISTA algorithm < deep neural network
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I
Learned ISTA (LISTA)

Gregor and LeCun® proposed to learn (via backpropagation) the linear
transform S and soft thresholds {\'}]_; that minimize training MSE

D
. - 2
argménZHa:(yd;@)—wdH :
= d=1
W
(9]
=N ] The resulting “LISTA” beats
%_25, e ISTA ., ] LASSO-AMP in convergence
S Co FioTA ey speed and asymptotic MSE!
801 | —LisTA Cee,
—*— LISTA untied
e ! Further improvement when S

é 16 15 20 FT = AVA
is “untied” to {S*};_;.
layers / iterations { }t—l

8Glregor,LeCun—ICML'lO
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I
Learned AMP (LAMP)

tth LISTA layer:

ZtH

,vt—i-l

Yy

to exploit low-rank BYA! in linear stage S = I — B'A'.

tth LAMP layer:

7 —aPT T
v B (R, a9 v
Y M
&
Yy Yy

Onsager correction now aims to decouple errors across layers.
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-]
LAMP performance under soft thresholding

LAMP beats LISTA in both convergence speed and asymptotic MSE.

average NMSE [dB]
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LAMP with more sophisticated denoisers

So far, we used soft-thresholding to isolate effects of Onsager correction.

What happens with more sophisticated (learned) denoisers?

10l —>—LISTA ] Here we learned the parameters
—8— LAMP-I1 . e L
& [AMP-bg of these denoiser families:
@ A5y —v— LAMP-expo 1 .
= ol —&—LAMP-pwiin | | m scaled soft-thresholding
% —+— LAMP-spline
support oracle . .
s 25| ] m Bernoulli-Gaussian MMSE
[
& % m Exponential kernel®
[
& 3 . L g
m Piecewise Linear
40 + 1l
010
45 ‘ ‘ ‘ ‘ m Spline
2 4 6 8 10 12 14 - |
layers Big improvement!

9Guo,Davies—TSP'lS
Kamilov,Mansour-SPL'16
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LAMP &= versus VAMP &>

How does our best Learned AMP compare to (unlearned) VAMP?

—0— LAMP-pwlin
—A— VAMP-bg

average NMSE [dB]

support oracle| |

2 4 6 8 10 12 14
layers / iterations

So what about “learned VAMP” ?
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-]
Local optimality of VAMP

m Suppose we unroll VAMP and learn (via backprop) the parameters
{S*, g'}L | that minimize the training MSE.

"ao+ N(0,74) o+ N(0,7{I)

L ol

"x,+ N(0,74) o+ N(0,7{I)

0} L m
2 st S Lgf(»
L

r
Onsage

st =

m Remarkably, backpropagation does not improve matched VAMP!
VAMP is locally optimal

m Essentially, Onsager correction decouples the design of {S*, g*(-)}L;:
Layer-wise optimal S*,g*(-) = Network optimal {S*,g*(-)}_,
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Conclusions

m For sparse reconstruction, AMP has some nice properties:

m low cost-per-iteration
m fast convergence,
m rigorous state evolution,

but only under large i.i.d. Gaussian A.

m We proposed a Vector AMP, where the same nice properties hold under
large rotationally invariant A.

m “Learned ISTA" results from unrolling ISTA and fitting its parameters
to training data. We proposed learned AMP & learned VAMP.

m Remarkably, the original VAMP is locally optimal.
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