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Introduction

Bilinear Recovery

Goal: Recover signal X and parameters 6 4 from noisy measurements
Y = A(04)X + W with affine linear map A(-).

Applications:
m Self calibration!
m Compressed sensing with matrix uncertainty?
m Blind deconvolution®
m Dictionary learning®

m Joint channel estimation and symbol detection

1Ling,Strohmer'lS 2Zhu,Leus,Giannakis'11 3Ahmed,Recht,Romberg'12 4 Aharon,Elad,Bruckstein’'06

Schniter & Sarkar (OSU) Bilinear EM-VAMP ITA'18 2/19



Statistical Model

Measurements: Y = A(64)X + W

Assumptions:

m A(): RY — RMXN measurement operator
m X € RV with 2, & px(;0x) random signal
B W e RMXL with w,, '~ A(0,051) AWGN
m0O=2{04,0x,0, unknown deterministic parameters

Goal: compute. ..
m Oy = arg maxg p(Y; O) maximum likelihood

m Xyvise = EX|Y; (:)ML] “empirical Bayes"
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Related Work: © = {64,0x,6,} Known

Consider the case where ® £ {04,0x,0,,} (and thus A, px, pw) are known.

m The “vector AMP" (VAMP) algorithm® can be applied.

m When A is a large right-rotationally invariant random matrix, the
macroscopic behavior of VAMP is rigorously characterized by a scalar
state-evolution.®

m When the state-evolution has a unique fixed point, it is “good” in the sense
that VAMP's MSE agrees with the replica prediction® of the MMSE.

m VAMP is more robust than AMP7, which requires large i.i.d sub-Gaussian A.

5Rangan,Schniter,Fletcher'lﬁ %Tulino,Caire,Verd,Shamai’'l3  ?Donoho,Maleki,Montanari'10
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Related Work: 84 Known, {0x,0,,} Unknown

Now consider case where 84 (and thus A) is known, but 8 x and 6,, are not.

m The EM-VAMP algorithm® can be applied.

m When A is a large right-rotationally invariant random matrix, the
macroscopic behavior of EM-VAMP is rigorously characterized by a
state-evolution.*

m For certain classes of px (e.g., exponential family), EM-VAMP's parameter
estimates {HX, Hw} are asymptotically consistent. 4

8Fletcher,Rangan,Schniter'17
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Related Work: {64, 0x,60,} Unknown

Finally, consider the case of interest, where 6 4, 8 x and 6,, are unknown.

m Suppose we have Y = A(04)X + W with affine linear map A(:).

m The Parametric Bilinear Generalized AMP (P-BiG-AMP) algorithm®® can be
used to recover 84 and X " p, (- 0x).

m But P-BiG-AMP is based on an i.i.d. Gaussian model for A(-), and it may
not perform well when A(-) deviates from that model!

9Parker,Schniter'16 19Schulke,Schniter,Zdeborova'16
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- omihe]
This Work: {04,0x,0,} Unknown

In the next few slides, we will outline the EM-VAMP methodology:
Inference via Expectation Consistent Approximation (EC)
Algorithmic implementation via VAMP
Learning © via Expectation Maximization (EM)

Joint inference & learning via EM-VAMP
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EM-VAMP

Variational Inference

For the moment, let's suppose that ® = {04,0x,0,} is known.

m Ideally, we would like to compute the exact posterior density

p(X; 9)p(Y|X; ®)
Z(©)

p(X|Y; ) = for 2(@) 2 / p(X; ©)p(Y|X; ©) dX,

but the high-dimensional integral in Z(©) is difficult to compute.

m We can avoid computing Z(®) through variational optimization:
p(X|Y; ®) = arg min D(b(X)Hp(X|Y; ©)) where D(-||-) is KL divergence
b

= arg;ninp(b(X)Hp(x; 0)) + D(b(X)||p(Y|X;©)) + H (b(X))

Gibbs free energy
arbggminD(b(X)Hp(X; 0)) + D(E(X)Hp(Y\X; 0)) + H (¢(X))

st.b=b=gq, £ Jaivbs(b, b, ¢; ©)

but the density constraint keeps the problem difficult.
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EM-VAMP

Expectation Consistent Approximation

m In expectation-consistent approximate inference (EC),'! the density
constraint b = b = q is relaxed to moment-matching constraints:

p(X|Y;©) ~ arg min Jgibbs (b, b, ¢; ©)
b,g,q

ot { E{x;|b} = E{x;|b} = E{Xz|qj i
.t tr(Cov{x|b}) = tr(Cov{x;|b}) = tr(Cov{x;|q}) VI.

m The stationary points of EC are the densities

b(X) o< TTi p(xi; ®)N (15 11, 1/ 1)
B(X) o [T, p(yilxs; ©)N (x5 71, 1/7))
a(X) = [Ti2y N e 1, 1/m)
with parameters {R,v,R,¥,X,n} such that
E{xb} = E{xi[b} = %; VI
+ tr(Cov{xy|b}) = % tr(Cov{xy[b}) = 1/m Vi.

11Opper,Winther'04
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The VAMP Algorithm

An iterative approach to finding {R, v, R, W,X,n}:

Initialize {R,~} and select the estimation functions
g(ri;m) = E{xulb; ri, 1}
g(T;7) = E{xib; 71,7}

Fort=1,2,3,...
X1+ g(ri;m), Vi MMSE estimation
M < N/ tr [0g(ri; i) /0], VI
T (X — ) /(m— ), Vi pseudo-measurement

Vi = m— s Vi

X + g(ti;7,), VI LMMSE estimation
m, + 3, N/ tr [0g(T1;7,)/0T1], VI
v+ (X —3r)/(m —7), VI pseudo-prior

m <_ﬁl _le vl

Note: this specialization of VAMP is equivalent to expectation propagation (EP).
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EM-VAMP

Expectation Maximization

We now return to the case where ® = {6 4,60x,0,,} is unknown.

m The EM algorithm is a well-known iterative approach to maximume-likelihood
estimation of ©.

m The EM algorithm can be written in terms of the Gibbs free energy as'?

~ (t+1)

©" =argmin D, (6(X)[|p(X;©)) + D1, (0 (X)||p(Y]X; ©)) + H (b))

= Jaibs (b, 0,01 ©)
 (t
using the belief b(*) £ p(X|Y; 6 ))

m Thus EM and VAMP can be combined to solve

E{x;|b} = E{x;|b} = E{xi|q} VI

tr[Cov{x;|b}] = tr[Cov{x;|b}] = tr[Cov{x;|q}] VI.

min min Jeipss (b, b, ¢; ©) s.t.
© bbq

12Neal,Hinton'98
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The EM-VAMP Algorithm

Initialize {R,~, ©} and select g(-) & g(-) as before.

Fort=1,2,3,...
%1« g(ri; v, ©), Vi MMSE estimation
m < N/ tr [ag(rl;'yl,(:))/ﬁrl] , Vi
T < (X — i)/ (m — ), VI pseudo-measurement
Wl < m — 7, Vl
O« arg maxg E{lnp(Y|X; ®)|R;7, (:)} EM update
% « g(T;7,,0), VI LMMSE estimation
4 3N/ o [Og(Fi 5, ©) /0] , Wi
r (X — 1)/ — ), VI pseudo-prior
V=T = Y
© + arg maxg E{lnp(X; O) | R;~, C:)} EM update
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EM-VAMP

Variance Auto-Tuning

m Problem: The precisions {+,7} of the pseudo-{measurement,prior} are
imperfect when © is imperfect.

m Thus, at each iteration, we estimate these precisions jointly with the
unknown parameters ®. For example, with the prior parameters 0 x:

(3,0x) « argmaxp(R; v, 0x)
¥,0x
under r; =x; + N(0,1/7), x ~px(;0x), Vi

m In practice, inner iterations of EM can be used to solve the above, e.g.,

(3.0x) = argmaxE | np(X, Ri 7. 0x) | R: 7, 8x .
v,0x

m This “variance auto-tuning” procedure!? leads to asymptot. consistent 6 x.

13Fletcher,Rangan,Schniter'17
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State-Evolution and Consistency
Suppose that

Y =A04)X+N0,I/6,) e RM*L X' p(0y)
mA0)=Ap+ Zqul 0,A, with right-rotationally invariant A, € RM*N,

Conjecture: the behavior of the proposed EM-VAMP algorithm is rigorously
characterized by a state-evolution with M = O(N), N — oo, and either

fixed @ and L =1 (CS with matrix uncertainty)
Q = O(N) and L fixed (self-calibration)
Q= O(N?)and L =0O(NlogN) (dictionary learning)

Technical conditions include:
m all vectors converge empirically with second-order moments to random variables

m singular values of A, converge empirically with second-order moments to a bounded positive
random variable

m Lipschitz g(-) and ¢’(-).
m exponential-family px

m etc...
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Compressed Sensing with Matrix Uncertainty

Problem: Recover 10-sparse x € RN from y = (A( + 211111 0,A,)x +w € RM,
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EM-VAMP performs similarly to P-BiG-AMP and much better than WSS-TLS.1#

Details: N = 256, Ag ~ i.i.d. N'(0,10), Ags1 ~ i.i.d. A(0,1), SNR=40dB, 10 trials.

14Zhu,Leus,Giannakis'll
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How many snapshots L are needed?

Problem: Recover A € RV*Y and sparse X € RV*L from Y = AX + W with
A ~iid N(0,1) (dictionary learning)
A= Z;V:1 04A 4 with known A, ~ i.i.d. N(0,1) (self-calibration)

NMSE (dB) versus N and L:

dictionary learning

self-calibration

-
=)

L
- NDW RO N®O

40 60 80 100 120 140 40 60 80 100 120 140

N N
Details: i.i.d. Bernoulli-Gaussian X, K = [0.2N], SNR= 40 dB.
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Dictionary Learning: Sparsity vs Size

Problem: Recover i.i.d. Gaussian A € RV*N and Bernoulli-Gaussian X € RV*L
with K-sparse columns from Y = AX.

NMSE (in dB) over 10 realizations for L = 5N log N:
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EM-VAMP has slightly worse phase-transition than BiG-AMP, but better than
K-SVD'® and SPAMS!6.

15 Aharon, Elad,Bruckstein’06 16 Mairal,Bach,Ponce,Sapiro’10
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Dictionary Learning: Robustness to Condition Number

Same problem, but now with geometrically spaced singular values in A.

NMSE(A) 0 NMSE(X)
—4— EM-VAMP —A— EM-VAMP
—&—EM-BiG-AMP —s&— EM-BiG-AMP
= = -oracle - - -oracle
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-50

-60 -50
50 100 150 50 100 150
condition number x(A) condition number x(A)

EM-VAMP is more robust than EM-BiG-AMP to condition number x(A).

Details: N x N dictionary, N = 64, K = 13-sparse x;, L = 5N log N, SNR=40dB,
median NMSE over 100 realizations.
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Conclusions

m We propose a bilinear recovery algorithm, with applications in self-calibration,
CS with matrix uncertainty, blind deconvolution, dictionary learning, and joint
channel-estimation and symbol detection.

m Broadly speaking, our approach is empirical-Bayesian and uses a combination
of EC and EM.

m More specifically, our approach builds on the recently proposed EM-VAMP
algorithm, by extending the set of unknown parameters to those that describe
the measurement matrix A.

m Numerical results suggest performance that is similar to P-BiG-AMP but
more robust to non-iid matrices.

m We are currently working on proving the state-evolution conjectures.
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