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Deep Neural Networks

Typical setup:

Many layers, consisting of (affine) linear stages and scalar nonlinearities.

non-linear

LINLINLIN . . .

Linear stages often constrained (e.g., small convolution kernels).

Parameters learned by minimizing training error using backprop.

Open questions:

1 How should we interpret the learned parameters?

2 Can we speed up training?

3 Can we design a better network structure?
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Focus of this talk: Standard Linear Regression

Consider recovering a vector x from noisy linear observations

y = Ax+w,

where x is drawn from an iid prior (e.g., sparse1)

For this application, we propose a deep network that is
1) asymptotically optimal for a large class of A,
2) interpretable, and
3) easy to train.
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1Gregor/LeCun, Sprechmann/Bronstein/Sapiro, Kamilov/Mansour, Wang/Ling/Huang,
Mousavi/Baraniuk, Borgerding/Schniter, etc.
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Understanding Deep Networks via Algorithms

Many algorithms have been proposed for high-dimensional inference.

Often, such algorithms are iterative, where each iteration consists of a
linear operation followed by scalar nonlinearities.

By “unfolding” such algorithms, we get deep networks.2
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Can such algorithms help us design/interpret/train deep nets?

2Gregor/LeCun, ICML 10.
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Algorithmic Approaches to Standard Linear Regression

Recall goal: recovering/fitting x from noisy linear observations

y = Ax+w.

A popular approach is regularized loss minimization:

argmin
x

1
2‖y −Ax‖2 + λf(x),

where, e.g., f(x) = ‖x‖1 for the lasso.

Can also be interpreted as MAP estimation of x under priors

x ∼ exp(−f(x)) & w ∼ N (0, λI).

But often the goal is minimizing MSE or inferring marginal posteriors.
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High-dimensional MMSE Inference

High dimensional MMSE inference is difficult in general.

To simplify things, suppose that 1) x is iid
2) A is large and random.

The case of iid Gaussian A is well studied, but very restrictive.

Instead, consider right-rotationally invariant A:

A = USV T with V ∼Haar and indep of x.

For this case, the replica prediction of the MMSE is3

E(γ) = var{x|r}, r = x+N (0, 1/γ), γ = RATA/σ2(−E(γ))

3Tulino/Caire/Verdu/Shamai, IEEE-TIT, 2013.
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Achieving MMSE in standard linear regression

Recently a “vector approximate message passing” (VAMP) algorithm
has been proposed that iterates linear vector estimation with nonlinear
scalar denoising.

Under large right-rotationally invariant A and Lipschitz scalar denoisers,
VAMP is rigorously characterized by a scalar state-evolution.4

Under MMSE scalar denoising, VAMP’s state-evolution fixed-points
agree with the replica prediction!

Operating regimes:
easy: VAMP has a unique fixed point ⇒ attains MMSE
hard: VAMP has multiple fixed points ⇒ suboptimal

(but so are all other known polynomial-time methods)

4Rangan/Schniter/Fletcher, arXiv:1610.03082, 2016.
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VAMP for linear regression

initialize r1, γ1

for t = 0, 1, 2, . . .

x̂1 ←
(
ATA/σ2 + γ1I

)
−1(

ATy/σ2 + γ1r1
)

LMMSE

α1 ←
γ1
N Tr

[(
ATA/σ2 + γ1I

)
−1

]
divergence

r2 ←
1

1−α1

(
x̂1 − α1r1

)
Onsager correction

γ2 ← γ1
1−α1

α1
precision of r2

x̂2 ← g(r2; γ2) (scalar) denoising

α2 ←
1
N Tr

[
∂g
∂r (r2; γ2)

]
divergence

r1 ←
1

1−α2

(
x̂2 − α2r2

)
Onsager correction

γ1 ← γ2
1−α2

α2
precision of r1

end

Phil Schniter (Ohio State & Duke iiD) AMP-inspired Deep Networks ITA’17 8 / 17



MMSE-VAMP interpreted

initialize r1, γ1

for t = 0,1, 2, . . .

x̂1 ←MMSE estimate of x under

pseudo-prior N (r1, I/γ1) & measurement y = Ax+N (0, σ2I)

r2 ←linear cancellation of r1 from x̂1

x̂2 ←MMSE estimate of x under

prior p(x) and pseudo-measurement r2 = x+N (0, I/γ2)

r1 ←linear cancellation of r2 from x̂2

end

Linear cancellation “decouples” the iterations, so that global MMSE
problem can be tackled by solving simpler local MMSE problems.
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Unfolding VAMP

Unfolding the VAMP algorithm gives the network5
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Notice the two decoupling stages in each layer.

5Borgerding/Schniter’16
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Learning the network parameters

After unfolding an algorithm, one can use backpropagation (or similar) to
“learn” the optimal network parameters.6

Linear stage: x̂1 = Br1 +Cy

→ learn (B,C) for each layer.

Nonlinear stage: x̂2j = g(r2j) ∀j
→ learn a scalar function g(·) for each layer.

e.g., spline, piecewise linear, etc.

6Gregor/LeCun, ICML 10.
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Result of learning

Suppose that the training data {y(d),x(d)}Dd=1 were constructed using

1) iid x
(d)
j ∼ p(x)

2) y(d) = Ax(d) +N (0, σ2I)
3) right-rotationally invariant A.

Backpropagation recovers the parameter settings (B,C, f) originally
prescribed by the VAMP algorithm!

The learned linear stages are MMSE under
pseudo-prior x ∼ N (r1, I/γ1) & measurement y = Ax+N (0, σ2I)

The learned scalar nonlinearities are MMSE under
prior p(xj) and pseudo-measurements r2j = xj +N (0, 1/γ2)

❀ This deep network is interpretable!
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Implications for training

Due to the decoupling stages...

each linear stage should be locally MSE optimal, so

❀ the linear params (B,C) can be learned locally in each layer!

each non-linear stage should be locally MSE optimal, so

❀ the nonlinear function g(·) can be learned locally in each layer!

This deep network is easy to train!
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Example with iid Gaussian A
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Example with non-iid Gaussian A
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Deep nets vs algorithms
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Conclusions

Our goal is to understand the design and interpretation of deep nets.

For this talk, we restricted our focus to the problem of (e.g., sparse)
linear regression.

We proposed a deep net that is
1) asymptotically MSE-optimal (for iid x and RRI A)
2) interpretable: . . . LMMSE/decoupling/NL-MMSE/decoupling . . .

3) locally trainable.

The proposed network is obtained by “unfolding” the VAMP algorithm
and learning its parameters.

In ongoing work, we are extending these ideas beyond linear regression.
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