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Deep Neural Networks

Typical setup:

m Many layers, consisting of (affine) linear stages and scalar nonlinearities.
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m Linear stages often constrained (e.g., small convolution kernels).
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m Parameters learned by minimizing training error using backprop.

Open questions:
How should we interpret the learned parameters?
Can we speed up training?

Can we design a better network structure?
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Focus of this talk: Standard Linear Regression

m Consider recovering a vector  from noisy linear observations
y=Ax +w,

where x is drawn from an iid prior (e.g., sparse!)

m For this application, we propose a deep network that is
1) asymptotically optimal for a large class of A,
2) interpretable, and
3) easy to train.
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! Gregor/LeCun, Sprechmann/Bronstein/Sapiro, Kamilov/Mansour, Wang/Ling/Huang,
Mousavi/Baraniuk, Borgerding/Schniter, etc.

Phil Schniter (Ohio State & Duke iiD) AMP-inspired Deep Networks ITA'17 3/17




Understanding Deep Networks via Algorithms

m Many algorithms have been proposed for high-dimensional inference.

m Often, such algorithms are iterative, where each iteration consists of a
linear operation followed by scalar nonlinearities.

m By “unfolding” such algorithms, we get deep networks.?
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m Can such algorithms help us design/interpret/train deep nets?

2Gregor/LeCun, ICML 10.
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-]
Algorithmic Approaches to Standard Linear Regression

m Recall goal: recovering/fitting @ from noisy linear observations

y=Ax + w.

m A popular approach is regularized loss minimization:

arg min 4y — Aw|? + \f(x),
xr

where, e.g., f(x) = ||x||1 for the lasso.

m Can also be interpreted as MAP estimation of & under priors
x ~exp(—f(z)) & w~N(0,\).

m But often the goal is minimizing MSE or inferring marginal posteriors.
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-]
High-dimensional MMSE Inference

m High dimensional MMSE inference is difficult in general.

To simplify things, suppose that 1) x is iid
2) A is large and random.

m The case of iid Gaussian A is well studied, but very restrictive.

Instead, consider right-rotationally invariant A:
A =USVT with V ~Haar and indep of x.

m For this case, the replica prediction of the MMSE is3
E(y) =var{z|r}, r=a+N(0,1/7), 7v=Rur4,,2(=E(7))

3Tulino/Caire/Verdu/Shamai, IEEE-TIT, 2013.
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Achieving MMSE in standard linear regression

m Recently a “vector approximate message passing” (VAMP) algorithm
has been proposed that iterates linear vector estimation with nonlinear
scalar denoising.

m Under large right-rotationally invariant A and Lipschitz scalar denoisers,
VAMP is rigorously characterized by a scalar state-evolution.*

m Under MMSE scalar denoising, VAMP's state-evolution fixed-points
agree with the replica prediction!

m Operating regimes:
easy: VAMP has a unique fixed point = attains MMSE
hard: VAMP has multiple fixed points = suboptimal
(but so are all other known polynomial-time methods)

4Rangan/Schniter/FIetcher, arXiv:1610.03082, 2016.
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VAMP for linear regression

initialize r1, 1

fort=0,1,2,...
T — (ATA/O'2 + 711)71 (ATy/U2 + fylrl)
a1 FTr[(ATA/0? + )|
Ty — ﬁ(ﬁl —aqry)

Yo = i

LMMSE
divergence

Onsager correction

precision of 7o

Xy 9(7’2;72)
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end

(scalar) denoising
divergence

Onsager correction

precision of 7
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MMSE-VAMP interpreted

initialize 71,1
fort =0,1,2,...
Z1 < MMSE estimate of x under
pseudo-prior N'(r1,I/v1) & measurement y = Ax + N (0, 0*1)

79 <linear cancellation of r{ from z;

T <+ MMSE estimate of x under
prior p(x) and pseudo-measurement ro = x + N (0, I /v2)

71 <linear cancellation of r from Z»

end

Linear cancellation “decouples” the iterations, so that global MMSE
problem can be tackled by solving simpler local MMSE problems.
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Unfolding VAMP

Unfolding the VAMP algorithm gives the network®
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Notice the two decoupling stages in each layer.

®Borgerding/Schniter'16
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Learning the network parameters

After unfolding an algorithm, one can use backpropagation (or similar) to
“learn” the optimal network parameters.®

m Linear stage: 1 = Br; + Cy
— learn (B, C) for each layer.

m Nonlinear stage: Zy; = g(r25) Vj
— learn a scalar function g(-) for each layer.
e.g., spline, piecewise linear, etc.

®Gregor/LeCun, ICML 10.
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Result of learning

Suppose that the training data {y(d),cc(d)}c?:1 were constructed using
.,

1) iid x§ ) ~ p(x)

2) y @ = Az 4 N(0,0°1)

3) right-rotationally invariant A.

Backpropagation recovers the parameter settings (B, C, f) originally
prescribed by the VAMP algorithm!

m The learned linear stages are MMSE under

pseudo-prior & ~ N'(r1,I/v;) & measurement y = Ax + N(0,0°1I)
m The learned scalar nonlinearities are MMSE under

prior p(x;) and pseudo-measurements rg; = x; + N(0,1/72)

~» This deep network is interpretable!
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Implications for training

Due to the decoupling stages...

m each linear stage should be locally MSE optimal, so
~» the linear params (B, C') can be learned locally in each layer!

m each non-linear stage should be locally MSE optimal, so

~» the nonlinear function g(-) can be learned locally in each layer!

This deep network is easy to train!
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Example with iid Gaussian A

iid Gaussian
10} ——LISTA
—&— LVAMP-pwlin
15 - — »= matched VAMP
=—=-==replica prediction

NMSE (dB)
B
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AMP-inspired Deep Networks

n = 1024

m/n = 0.5

A ~iid N(0,1)

x ~ Bernoulli-Gaussian
Pr{z #0} =0.1
SNR =40 dB
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Example with non-iid Gaussian A

condition number = 15

NMSE (dB)

—+—LISTA

—©— LVAMP-pwlin

— %= matched VAMP
=—=-==replica prediction
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n = 1024
m/n = 0.5

A=USV'T
U,V ~ Haar
Sn/sn—l =¢ Vn

x ~ Bernoulli-Gaussian
Pr{z # 0} = 0.1

SNR =40 dB
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Deep nets vs algorithms
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n = 1024

m/n = 0.5

A ~iid N(0,1)

x ~ Bernoulli-Gaussian
Pr{z #0} =0.1
SNR =40 dB
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Conclusions

m Our goal is to understand the design and interpretation of deep nets.

m For this talk, we restricted our focus to the problem of (e.g., sparse)
linear regression.

m We proposed a deep net that is
1) asymptotically MSE-optimal (for iid & and RRI A)
2) interpretable: ... LMMSE/decoupling/NL-MMSE /decoupling . ..
3) locally trainable.

m The proposed network is obtained by “unfolding” the VAMP algorithm
and learning its parameters.

m In ongoing work, we are extending these ideas beyond linear regression.
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