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I —
Approximate Message Passing (AMP) & Generalizations

Previously, AMP algorithms have been proposed ...
m for the linear model:

Infer x ~ [, px(2n) fromy = &x+ w
with AWGN w and known ®. [Donoho/Maleki/Montanari'09]

m for the generalized linear model:

Infer x ~ [T, px(2n) from y ~ ] Dyjz(Ym|2m)
with hidden z = ®x and known ®. [Rangan'10]

m and for the generalized bilinear model:

Infer A~ [, ., Pa(@mn) and X ~ [],, ; px(zni) from Y ~ T, Dyjz(Ymi|zm1)
with hidden Z = AX. [Schniter/Cevher/Parker'11]

In this talk, we describe recent work extending AMP . ..

m to the parametric generalized bilinear model:

Infer b ~ [, pu(b:) and € ~ []; pc(c;) from ¥ ~ T pyjz(ymif2mi) with hidden
Z = A(b)X (c) and known matrix-valued linear A(-), X (-). [Parker/Schniter'14]
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|
Example Applications of BiG-AMP

Matrix Completion:

Recover low-rank matrix AX
from noise-corrupted incomplete observations Y = Po(AX + W).

Robust PCA:

Recover low-rank matrix AX and sparse matrix S
from noise-corrupted observations Y = AX + (S+W) =[A I|[X]+ W.

Dictionary Learning:

Recover dictionary A and sparse matrix X
from noise-corrupted observations Y = AX + W.

Non-negative Matrix Factorization:

Recover non-negative matrices A and X

from noise-corrupted observations Y = AX + W.
A detailed numerical comparison® against state-of-the-art algorithms suggests
m BiG-AMP gives best-in-class phase transitions,

m BiG-AMP gives competitive runtimes.

LParker,Schniter,Cevher, IEEE-TSP'14
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|
Example Applications of Parametric BiG-AMP

Nonlinear Compressed Sensing with Structured Matrix Uncertainty
Observe y = f((3°, bi®i)c + w) with known ®;.
Recover sparse vector c.

Generalized Matrix Recovery:
Observe Y = f(®BC + W) with known @ and separable nonlinearity f(-).
Recover low-rank matrix BC.

Array Calibration:
Observe Y = Diag(b® 1)®C + W with known ®.
Recover calibration parameters b and signal matrix C.

Blind Deconvolution:
Observe Y = ®Conv(b)¥C + W with known @ and dictionary W.
Recover filter b and sparse signal coefficients C.

Data Fusion:
Observe Y; = &, BCQ; + W, for i = 1,2,...,T, with known ®; and Q.
Estimate tall B and wide/sparse C

@ and many more . ..
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Parametric BiG-AMP: Derivation

m The functions A(-) and X () are treated as random affine transformations.
m In particular, if b € RM and ¢ € RYe, then

A (b) = ra(mon + Z bial) Z bial)

O O
ch b=,
=0

are realizations of independent zero-mean r.v.s.

rn(c) =

where asy?n and :cgfl)

m We then consider the large-system limit where N, M, L, N, N. — oo such that
M/N, L/N, Ny/N?, and N./N? converge to fixed positive constants.

m The remainder of the derivation follows along the lines of BiG-AMP,? but is
more involved/tedious.

m In practice, we also consider smooth, non-linear A(-) and X (-) with partial
derivatives ') n(b) and z(])( ), although without rigorous justification.

2Parker,Schniter,Cevher, IEEE-TSP'14
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Parametric BiG-AMP: Features & Extensions

m The P-BiG-AMP algorithm exploits fast implementations of A(-) and X (-)
(e.g., FFT-based).

m Although P-BiG-AMP requires knowledge of the priors on b and ¢ and the
likelihood function py|z(y|-), the hyper-parameters can be learned from the
data using the expectation maximization approach proposed for AMP in
[Schniter/Vila'11].

m Although P-BiG-AMP assumes independent {b;}, independent {c;}, and
conditionally independent {y,,, ,,|Zm,»}, more general models can be handled
using the turbo-AMP approach proposed in [Schniter'10].
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Example 1: CS with Structured Matrix Uncertainty
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Measure: y = (Ao + vazbl biAi)c +w, (N =256, N, =10, SNR = 40dB)
Unknown (all iid): wy, ~ N(0,v%), b; ~ N(0,1), ¢; ~ BG(0.04,0,1)
Known (drawn iid): [Aglmn ~ N (0, Np), [Ai]mn ~ N(0,1)

m EM-P-BiG-AMP outperforms oracle-tuned WSS-TLS [Zhu/Leus/Giannakis'11]
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Example 2: Random 2D Fourier Measurements of a Sparse
Image with Row-Wise Phase Errors

GAMP: Phase errors ignored 5 P-BiG-AMP recovery o P-BiG-AMP: Phase corrections
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m Randomly sample 10% of the AWGN-corrupted (©40dB SNR) 2D Fourier
measurements of a 128 x 128 image with 30 non-zero pixels

m An unknown random phase (uniformly distributed on [—90°,+90°]) is added to
all the measurements from each row of the observations

m P-BiG-AMP jointly estimates phase errors and sparse image to —50dB NMSE.

m Surrogate for simultaneous sparse imaging and autofocus [Onhon/Cetin'12]
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Summary

m Presented preliminary work on an algorithm for parametric, bilinear, generalized
inference based on AMP principles.

m Assumes unknown independent random vectors b and ¢ are related to
observations Y through a conditionally independent likelihood of the form

p(Y'|A(b)X (c)) with known affine A(-) and X ().

Builds on previous Bilinear Generalized AMP work.

Can be combined with EM and turbo AMP methods.

m Numerical experiments demonstrate performance near oracle bounds.
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Thanks for listening!
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Matrix Completion: Phase Transitions

The following plots show empirical probability that NMSE < —100 dB (over 10
realizations) for noiseless completion of an M x L matrix with M = L=1000.
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Note that BiG-AMP-Lite and EM-BiG-AMP have the best phase transitions.
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Matrix Completion: Runtime to NMSE=-100 dB
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m Although LMaFit is the fastest algorithm at small rank N, BiG-AMP-Lite's
superior complexity-scaling-with-N eventually wins out.

m BiG-AMP runs 1 to 2 orders-of-magnitude faster than IALM and VSBL.
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Robust PCA: Phase Transitions

Empirical probability of NMSE < —80 dB over 10 realizations for noiseless
recovery of the low-rank component of a 200 x 200 outlier-corrupted matrix.
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As before, the BiG-AMP methods yield the best phase transitions.
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Overcomplete Dictionary Recovery: Phase Transitions

Mean NMSE over 50 realizations for recovery of an M x (2M) dictionary from
L=10M log(2M) examples with sparsity K:
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As before, the BiG-AMP methods yield the best phase transitions.
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