Parametric Bilinear Generalized Approximate Message Passing

Phil Schniter and Jason Parker

THE OHIO STATE UNIVERSITY

With support from NSF CCF-1218754 and an AFOSR Lab Task (under Dr. Arje Nachman).

ITA — Feb 6, 2015

Approximate Message Passing (AMP) & Generalizations

Previously, AMP algorithms have been proposed . . .

■ for the linear model:

Infer
$$\mathbf{x} \sim \prod_n p_{\mathbf{x}}(x_n)$$
 from $\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{w}$ with AWGN \mathbf{w} and known $\mathbf{\Phi}$.

[Donoho/Maleki/Montanari'09]

• for the generalized linear model:

Infer
$$\mathbf{x} \sim \prod_n p_{\mathbf{x}}(x_n)$$
 from $\mathbf{y} \sim \prod_m p_{\mathbf{y}|\mathbf{z}}(y_m|z_m)$ with hidden $\mathbf{z} = \mathbf{\Phi}\mathbf{x}$ and known $\mathbf{\Phi}$

[Rangan'10]

and for the generalized bilinear model:

Infer
$$\pmb{A} \sim \prod_{m,n} p_{\mathbf{a}}(a_{mn})$$
 and $\pmb{X} \sim \prod_{n,l} p_{\mathbf{x}}(x_{nl})$ from $\pmb{Y} \sim \prod_{m,l} p_{\mathbf{y}|\mathbf{z}}(y_{ml}|z_{ml})$ with hidden $\pmb{Z} = \pmb{A}\pmb{X}$. [Schniter/Cevher/Parker'11]

In this talk, we describe recent work extending AMP ...

• to the *parametric* generalized bilinear model:

Infer
$$m{b} \sim \prod_i p_{\mathbf{b}}(b_i)$$
 and $m{c} \sim \prod_j p_{\mathbf{c}}(c_j)$ from $m{Y} \sim \prod_{m,l} p_{\mathbf{y}|\mathbf{z}}(y_{ml}|z_{ml})$ with hidden $m{Z} = m{A}(m{b}) m{X}(m{c})$ and known matrix-valued linear $m{A}(\cdot)$, $m{X}(\cdot)$. [Parker/Schniter'14]

Example Applications of BiG-AMP

Matrix Completion:

Recover $\underline{\mathsf{low-rank}}$ matrix AX from noise-corrupted incomplete observations $Y = \mathcal{P}_{\Omega} \big(AX + W \big)$.

2 Robust PCA:

Recover $\underline{\text{low-rank}}$ matrix AX and $\underline{\text{sparse}}$ matrix S from noise-corrupted observations $\overline{Y} = AX + (S+W) = [A\ I]\left[\begin{smallmatrix} X \\ S \end{smallmatrix} \right] + W.$

3 Dictionary Learning:

Recover dictionary A and sparse matrix X from noise-corrupted observations Y = AX + W.

4 Non-negative Matrix Factorization:

Recover non-negative matrices A and X from noise-corrupted observations Y = AX + W.

A detailed numerical comparison against state-of-the-art algorithms suggests

- BiG-AMP gives best-in-class phase transitions,
- BiG-AMP gives competitive runtimes.

¹Parker, Schniter, Cevher, IEEE-TSP'14

Example Applications of Parametric BiG-AMP

Nonlinear Compressed Sensing with Structured Matrix Uncertainty

Observe $y = f((\sum_i b_i \Phi_i) c + w)$ with known Φ_i . Recover sparse vector c.

2 Generalized Matrix Recovery:

Observe $Y = f(\Phi BC + W)$ with known Φ and separable nonlinearity $f(\cdot)$. Recover low-rank matrix BC

3 Array Calibration:

Observe $Y = \text{Diag}(b \otimes 1)\Phi C + W$ with known Φ . Recover calibration parameters b and signal matrix C.

Blind Deconvolution:

Observe $Y = \Phi \mathsf{Conv}(b) \Psi C + W$ with known Φ and dictionary Ψ . Recover filter b and sparse signal coefficients C.

5 Data Fusion:

Observe $Y_i = \Phi_i BC\Omega_i + W_i$ for i = 1, 2, ..., T, with known Φ_i and Ω_i . Estimate tall B and wide/sparse C

6 and many more ...

Parametric BiG-AMP: Derivation

- The functions $A(\cdot)$ and $X(\cdot)$ are treated as random affine transformations.
- lacksquare In particular, if $oldsymbol{b} \in \mathbb{R}^{N_b}$ and $oldsymbol{c} \in \mathbb{R}^{N_c}$, then

$$a_{mn}(\mathbf{b}) = \frac{1}{\sqrt{N_b}} a_{mn}^{(0)} + \sum_{i=1}^{N_b} b_i a_{mn}^{(i)} = \sum_{i=0}^{N_b} b_i a_{mn}^{(i)}$$
$$x_{nl}(\mathbf{c}) = \frac{1}{\sqrt{N_c}} x_{nl}^{(0)} + \sum_{i=1}^{N_c} c_j x_{nl}^{(j)} = \sum_{i=0}^{N_c} c_j x_{nl}^{(j)},$$

where $a_{mn}^{(i)}$ and $x_{nl}^{(j)}$ are realizations of independent zero-mean r.v.s.

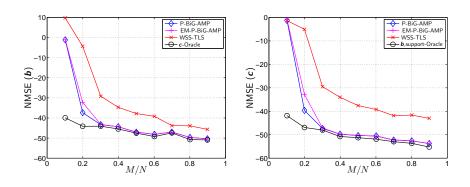
- We then consider the large-system limit where $N, M, L, N_b, N_c \to \infty$ such that M/N, L/N, N_b/N^2 , and N_c/N^2 converge to fixed positive constants.
- The remainder of the derivation follows along the lines of BiG-AMP,² but is more involved/tedious.
- In practice, we also consider smooth, non-linear $A(\cdot)$ and $X(\cdot)$ with partial derivatives $a_{mn}^{(i)}(b)$ and $x_{nl}^{(j)}(c)$, although without rigorous justification.

²Parker, Schniter, Cevher, IEEE-TSP'14

Parametric BiG-AMP: Features & Extensions

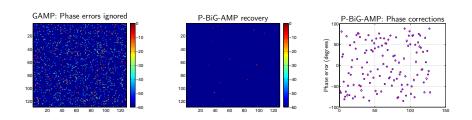
- The P-BiG-AMP algorithm exploits fast implementations of $A(\cdot)$ and $X(\cdot)$ (e.g., FFT-based).
- Although P-BiG-AMP requires knowledge of the priors on \boldsymbol{b} and \boldsymbol{c} and the likelihood function $p_{\boldsymbol{Y}|\boldsymbol{Z}}(\boldsymbol{y}|\cdot)$, the hyper-parameters can be learned from the data using the expectation maximization approach proposed for AMP in [Schniter/Vila'11].
- Although P-BiG-AMP assumes independent $\{b_i\}$, independent $\{c_j\}$, and conditionally independent $\{y_{m,n}|z_{m,n}\}$, more general models can be handled using the turbo-AMP approach proposed in [Schniter'10].

Example 1: CS with Structured Matrix Uncertainty



- lacksquare Measure: $m{y}=\left(m{A}_0+\sum_{i=1}^{N_b}b_im{A}_i
 ight)\!m{c}+m{w}$, (N=256, $N_b=10$, SNR =40dB)
- Unknown (all iid): $\mathbf{w}_m \sim \mathcal{N}(0, \nu^w)$, $\mathbf{b}_i \sim \mathcal{N}(0, 1)$, $\mathbf{c}_j \sim \mathcal{BG}(0.04, 0, 1)$
- Known (drawn iid): $[A_0]_{mn} \sim \mathcal{N}(0, N_b)$, $[A_i]_{mn} \sim \mathcal{N}(0, 1)$
- EM-P-BiG-AMP outperforms oracle-tuned WSS-TLS [Zhu/Leus/Giannakis'11]

Example 2: Random 2D Fourier Measurements of a Sparse Image with Row-Wise Phase Errors



- \blacksquare Randomly sample 10% of the AWGN-corrupted (@40dB SNR) 2D Fourier measurements of a 128×128 image with 30 non-zero pixels
- An unknown random phase (uniformly distributed on $[-90^{\circ}, +90^{\circ}]$) is added to all the measurements from each row of the observations
- ightharpoonup P-BiG-AMP jointly estimates phase errors and sparse image to $-50 \mathrm{dB}$ NMSE.
- Surrogate for simultaneous sparse imaging and autofocus [Önhon/Çetin'12]

Summary

- Presented preliminary work on an algorithm for parametric, bilinear, generalized inference based on AMP principles.
- lacktriangle Assumes unknown independent random vectors $m{b}$ and $m{c}$ are related to observations $m{Y}$ through a conditionally independent likelihood of the form

$$p(\boldsymbol{Y}|\boldsymbol{A}(\boldsymbol{b})\boldsymbol{X}(\boldsymbol{c}))$$
 with known affine $\boldsymbol{A}(\cdot)$ and $\boldsymbol{X}(\cdot).$

- Builds on previous Bilinear Generalized AMP work.
- Can be combined with EM and turbo AMP methods.
- Numerical experiments demonstrate performance near oracle bounds.

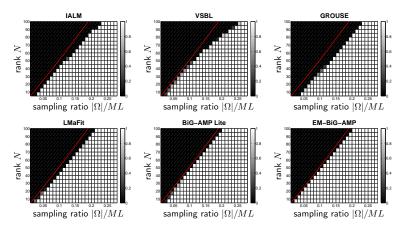
References

- D.L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," PNAS. 2009.
- 2 S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," ISIT, 2011. (See also arXiv:1010.5141).
- 3 P. Schniter and V. Cevher, "Approximate message passing for bilinear models," SPARS, 2011.
- 4 J. T. Parker, P. Schniter, and V. Cevher, "Bilinear Generalized Message Passing—Part 1: Derivation," IEEE Trans. Signal Process., 2014.
- J. T. Parker, P. Schniter, and V. Cevher, "Bilinear Generalized Message Passing—Part 2: Applications," IEEE Trans. Signal Process., 2014.
- J. T. Parker, Approximate Message Passing Algorithms for Generalized Bilinear Inference, Ph.D. Dissertation, Dept. ECE, The Ohio State University, Columbus OH, 2014.
- J. P. Vila and P. Schniter, "Expectation-Maximization Gaussian-Mixture Approximate Message Passing," IEEE Trans. Signal Process., 2013.
- 8 P. Schniter, "Turbo reconstruction of structured sparse signals," Proc. Conf. Inform. Science & Syst., 2010.
- 9 H. Zhu, G. Leus, and G. Giannakis, "Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling," *IEEE Trans. Signal Process.*, 2011.
- M. Önhon and M. Çetin, "A Sparsity-Driven Approach for Joint SAR Imaging and Phase Error Correction," IEEE Trans. Image Process., 2012.

Thanks for listening!

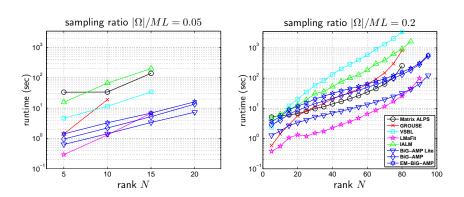
Matrix Completion: Phase Transitions

The following plots show empirical probability that NMSE <-100 dB (over 10 realizations) for noiseless completion of an $M \times L$ matrix with M = L = 1000.



Note that BiG-AMP-Lite and EM-BiG-AMP have the best phase transitions.

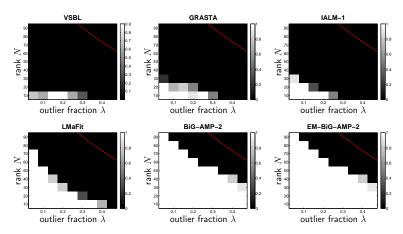
Matrix Completion: Runtime to NMSE=-100 dB



- Although LMaFit is the fastest algorithm at small rank N, BiG-AMP-Lite's superior complexity-scaling-with-N eventually wins out.
- BiG-AMP runs 1 to 2 orders-of-magnitude faster than IALM and VSBL.

Robust PCA: Phase Transitions

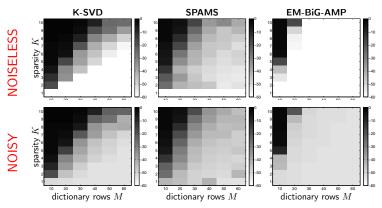
Empirical probability of NMSE < -80 dB over 10 realizations for noiseless recovery of the low-rank component of a 200×200 outlier-corrupted matrix.



As before, the BiG-AMP methods yield the best phase transitions.

Overcomplete Dictionary Recovery: Phase Transitions

Mean NMSE over 50 realizations for recovery of an $M \times (2M)$ dictionary from $L = 10M \log(2M)$ examples with sparsity K:



As before, the BiG-AMP methods yield the best phase transitions.