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BiG-AMP Motivation

Dictionary Learning

Problem objective:

Recover (possibly overcomplete) dictionary A ∈ R
M×N and sparse matrix

X ∈ R
N×L from (possibly noise-corrupted) observations Y = AX +W .

Possible generalizations:

non-additive corruption (e.g., one-bit or phaseless Y )
incomplete/missing observations
structured sparsity
non-negative A and X, or simplex-constrained
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BiG-AMP Contributions

Contributions

We propose a unified approach to these dictionary-learning problems that
leverages the recent framework of approximate message passing (AMP).

While previous AMP algorithms have been proposed for the linear model:

Infer x ∼
∏

n
px(xn) from y = Φx + w

with AWGN w and known Φ. [Donoho/Maleki/Montanari’10]

or the generalized linear model:

Infer x ∼
∏

n
px(xn) from y ∼

∏

m
py|z(ym|zm)

with hidden z = Φx and known Φ. [Rangan’10]

our work tackles the generalized bilinear model:

Infer A ∼
∏

m,n
pa(amn) and X ∼

∏

n,l
px(xnl) from Y ∼

∏

m,l
py|z(yml|zml)

with hidden Z = AX . [Schniter/Cevher’11]

In addition, we propose methods to select the rank of Z , to estimate the
parameters of pa, px, py|z, and to handle non-separable priors on A,X ,Y |Z .
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BiG-AMP Description

Bilinear Generalized AMP (BiG-AMP)

Generalized Linear:

py|z(y1|·)

py|z(y2|·)

py|z(yM |·)

x1

x2

x3

x4

px

px

px

px

Generalized Bilinear:

l

k

m
n

xnl py|z(yml|·)amk
px pa

In AMP, beliefs are propagated on a loopy factor graph using approximations
that exploit certain blessings of dimensionality:

1 Gaussian message approximation (motivated by central limit theorem),
2 Taylor-series approximation of message differences.

Rigorous analyses of GAMP for CS (with large iid sub-Gaussian Φ) reveal a
state evolution whose fixed points are optimal when unique. [Javanmard/Montanari’12]
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BiG-AMP Practicalities

Adaptive Damping

The heuristics used to derive BiG-AMP hold in the large system limit:
M,N,L → ∞ with M

N
→ δ and M

L
→ γ for constants δ, γ ∈ (0, 1).

In practice, M,N,L are finite and the rank N is often very small!

To prevent divergence, we damp the updates using an adjustable parameter
β ∈ (0, 1].

Moreover, we adapt β by monitoring (an approximation to) the cost function
minimized by BiG-AMP and adjusting β as needed to ensure decreasing cost.

Ĵ(t) =
∑

n,l

D
(

p̂xnl|Y

(

·
∣

∣Y
)

∥

∥

∥
pxnl

(·)
)

← KL divergence between posterior & prior

+
∑

m,n

D
(

p̂amn|Y

(

·
∣

∣Y
)

∥

∥

∥
pamn(·)

)

−
∑

m,l

EN (zml;p̄ml(t);ν
p

ml
(t))

{

log pyml|zml
(yml | zml)

}

.
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BiG-AMP Practicalities

Parameter Tuning via EM

AMP methods assume px, pa, py|z are known, which is rarely true in practice.

We assume families for these priors (e.g., Gaussian mixture) and estimate the
associated parameters θ using expectation-maximization (EM), as done for
GAMP in [Vila/Schniter’13].

Taking X , A, and Z to be the hidden variables, the EM recursion becomes

θ̂
k+1

= argmax
θ

E
{

log pX ,A,Z ,Y (X ,A,Z ,Y ;θ)
∣

∣

∣
Y ; θ̂

k
}

= argmax
θ

{

∑

n,l

E
{

log pxnl
(xnl;θ)

∣

∣

∣
Y ; θ̂

k
}

+
∑

m,n

E
{

log pamn
(amn;θ)

∣

∣

∣
Y ; θ̂

k
}

+
∑

m,l

E
{

log pyml|zml
(yml | zml;θ)

∣

∣

∣
Y ; θ̂

k
}

}

For tractability, the θ-maximization is performed one variable at a time.
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BiG-AMP Dictionary Learning

Numerical Results for Dictionary Learning

We compared against several state-of-the-art techniques

K-SVD [Aharon/Elad/Bruckstein’06]

– the standard; a generalization of K-means clustering

SPAMS [Mairal/Bach/Ponce/Sapiro’10]

– a highly optimized online approach

ER-SpUD [Spielman/Wang/Wright’12]

– the recent breakthrough on provable square-dictionary recovery

to our proposed technique:

EM-BiG-AMP

– BiG-AMP under AWGN, BG signal, and EM-adjusted λ, µx, vx, vw.

Phil Schniter (OSU) BiG-AMP for Dictionary Learning ITA — February 2014 7 / 17



BiG-AMP Dictionary Learning

Square Dictionary Recovery: Phase Transitions

Mean NMSE over 10 realizations for recovery of an N×N dictionary from
L=5N logN examples with sparsity K:
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Noiseless case: EM-BiG-AMP’s phase transition curve is much better than
that of K-SVD and SPAMS and almost as good as ER-SpUD(proj)’s.

Noisy case: EM-BiG-AMP is robust to noise, while ER-SpUD(proj) is not.
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BiG-AMP Dictionary Learning

Square Dictionary Recovery: Runtime to NMSE=-60 dB
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EM-BiG-AMP runs within a factor-of-5 from the fastest approach (SPAMS).

EM-BiG-AMP runs orders-of-magnitude faster than ER-SpUD(proj).
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BiG-AMP Dictionary Learning

Overcomplete Dictionary Recovery: Phase Transitions

Mean NMSE over 10 realizations for recovery of an M×(2M) dictionary from
L=5N logN examples with sparsity K:
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Noiseless case: EM-BiG-AMP’s phase transition curve is much better than
that of K-SVD and SPAMS. Note: ER-SpUD not applicable when M 6= N .

Noisy case: EM-BiG-AMP is again robust to noise.
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BiG-AMP Hyperspectral Unmixing

Application: Hyperspectral Unmixing

In Hyperspectral unmixing, a sensor captures M wavelengths per pixel, over a scene
of L pixels comprised of N materials.

The received HSI data Y is modeled as

Y = AX +W ∈ R
M×L
+ ,

where the nth column of A ∈ R
M×N
+ is the spectrum

of the nth material, the lth column of X ∈ R
N×L
+

describes the abundance of materials at the lth pixel
(and thus must sum to one), and W is additive noise.

spectrum at one pixel
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The goal is to jointly estimate A and X.

– Standard NMF-based unmixing algs (e.g., VCA [Nascimento’05], FSNMF
[Gillis’12]) assume pure-pixels, which may not occur in practice.

– Furthermore, they do not exploit spectral coherence, spatial coherence, and
sparsity, which do occur in practice.

– Recent Bayesian approaches to unmixing (e.g., SCU [Mittelman’12]) exploit
spatial coherence using Dirichlet processes, albeit at very high complexity.
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BiG-AMP Hyperspectral Unmixing

EM-BiG-AMP for HSI Unmixing

To enforce non-negativity we place non-negative Gaussian Mixture (NNGM)
prior on amn, and to encourage sparsity a Bernoulli-NNGM prior on xnl.

– We then use EM to learn the (B)NNGM parameters.

To enforce the sum-to-one constraint on each column of X , we augment both
Y and A with a row of random variables with mean one and variance zero.

To exploit spectral coherence we employ a hidden Gauss-Markov chain across
each column in A, and to exploit spatial coherence we employ an Ising model
to capture the support across each row in X .

– We use EM to learn the Gauss-Markov and Ising parameters.

NNGM prior
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BiG-AMP Hyperspectral Unmixing

EM-BiG-AMP for HSI Unmixing

amn
py|z(yml|·) xkl

smn

dkl

pa|s px|d

Spectral coherence Augmented bilinear model Spatial coherence

n

m

k

l

Inference on the bilinear sub-graph is tackled using the BiG-AMP algorithm.

Inference on the Gauss-Markov and Ising subgraphs are tackled using standard
soft-input/soft-output belief propagation methods.

Messages are exchanged between the three sub-graphs according to the sum-product
algorithm, akin to “turbo” decoding in modern communication receivers [Schniter’10].
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BiG-AMP Hyperspectral Unmixing

Numerical Results: Pure-Pixel Synthetic Data

Pure pixel abundance maps X of size L = 50×50
were generated with N = 5 materials residing in
equal-sized spatial strips.

Endmember spectra A were taken from a
reflectance library.

AWGN observations with SNR = 30 dB.

RGB view of data in 2D

Averaging performance over 10 realizations . . .
Runtime NMSES NMSEA

EM-BiG-AMP 5.57 sec -57.4 dB -108.6 dB

VCA + FCLS 4.13 sec -39.6 dB -30.5 dB
FSNMF + FCLS 3.97 sec -25.3 dB -12.5 dB

SCU 2808 sec -30.6 dB -20.5 dB

EM-BiG-AMP gives significantly better NMSE than competing algorithms.

EM-BiG-AMP’s gives runtime comparable to the fastest algorithms and 3
orders-of-magnitude faster than SCU.
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BiG-AMP Hyperspectral Unmixing

Results: SHARE 2012 dataset

RGB image from the SHARE 2012 dataset.

Experiment constructed to provide pure pixels.

EM-BiG-AMP yields the purest abundances
(right).

EM-BiG-AMP yields the best spectral angles
(below).

EM-BiG-AMP’s runtime is on par with the fastest
algorithm, FSNMF+FCLS.

(a) EM-BiG-AMP (runtime = 2.26 sec):
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(b) VCA+FCLS (runtime = 2.60 sec):
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(b) FSNMF+FCLS (runtime = 1.76 sec):
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(c) SCU (runtime = 1885 sec):
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N = 4 material abundance maps.

grass dry sand white TyVek black felt
EM-BiG–AMP 0.999 0.999 1.000 0.998

VCA + FCLS 0.999 0.999 0.999 0.981
FSNMF + FCLS 0.999 0.997 1.000 0.977

SCU 0.999 0.999 0.999 0.859

Spectral Angle Distance (SAD) between recovered and ground truth endmembers.
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BiG-AMP Conclusion

Conclusion

BiG-AMP = approximate message passing for the generalized bilinear model.

A novel approach to matrix completion, robust PCA, dictionary learning, etc.

Includes mechanisms for adaptive damping, parameter tuning, non-separable
priors, and model-order selection.

Competitive with state-of-the-art algorithms for each application.

Best phase transitions for MC, RPCA, overcomplete DL.
Runtimes not far from the fastest algorithms.

Currently working on generalizations of BiG-AMP to parametric models (e.g.,
Toeplitz matrices), as well as various applications.
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