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I
Binary Linear Classification

@ Observe m training examples {(y;, a;)}",, each comprised of a
binary label y; € {—1,1} and a feature vector a; € R".

@ Assume that data follows a generalized linear model
T
Pr{yi =1 | Qag;; mtrue} = pY|Z(1 | a; mtrue)
——
A
= Zij,true

for some true weight vector xyue € RP and some activation function
(or likelihood) pyz(1,-) : R — [0, 1].

@ Goal 1: estimate @yrain & Tirue from training data, so to be able to
predict the unknown label yiest associated with a test vector @iest:

compute Pr{ytest =1 | Qtest; i’train} = pY|Z(1 ’ a';[asti'train)

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb '13 2 /18



I ——
Binary Linear Classification & Feature Selection

@ Operating regimes:
o m > n: Plenty of training examples: feasible to learn &iain ~ Tirue-
@ m < n: Training-starved: feasible only if @ is sufficiently sparse!

@ The training-starved case motivates. ..

Goal 2: Identify salient features (i.e., recover support of @irye).

@ Example: From fMRI, learn which parts of the brain are responsible for
discriminating two classes of object (e.g., cats vs. houses):

n =31398 <« fMRI voxels
m =216 < 2 classes x 9 examples x 12 subjects

@ Can interpret as support recovery in noisy one-bit compressed sensing:

y = sgn(Axyue+w) with i.i.d noise w.
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Bring out the GAMP

Zed: Bring out the Gimp.

Maynard: Gimp's sleeping.

Zed: Well, | guess you're gonna have to go wake him up now, won't you?
—~Pulp Fiction, 1994.

We propose a new approach to binary linear classification and feature
selection via generalized approximate message passing (GAMP).

Advantages of GAMP include

o flexibility in choosing likelihood py |7 & input prior px.

@ excellent accuracy & runtime.

@ state-evolution governing behavior in some cases.

@ can learn & exploit structured sparsity (via turbo extension [S. '10]),
@ can tune without cross-validation (via EM extension [Vila & S. '11]),
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I
Generalized Approximate Message Passing (GAMP)

@ The evolution of GAMP:

@ The original AMP [Donoho, Maleki, Montanari '09] solves the LASSO
problem arg min,, ||y — Az||3 + A||z||; assuming i.i.d sub-Gaussian A.

@ The Bayesian AMP [Donoho, Maleki, Montanari '10] extends to
MMSE inference in AWGN for any factorizable signal prior Hj px ().

@ The generalized AMP [Rangan '10] framework extends to MAP or
MMSE inference under any factorizable signal prior & likelihood.

@ GAMP is a sophisticated form of iterative thresholding, requiring only
two applications of A per iteration and few iterations. Very fast!

@ Rigorous large-system analyses (under i.i.d sub-Gaussian A) have
established that GAMP follows a state-evolution trajectory with
various nice properties [Rangan '10], [Javanmard, Montanari '12]
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GAMP Heuristics (Sum-Product)

pyz(y|[Az]1) px(z1)
© Message from y; node to x; node:
py|z(y2|[Az]2) px(22)
~ N via CLT
—
pios @) [ vz (S, a0 ) T i)
{zr}rz; py|z(Ym|[AZ]n) px(zn)

Pmen(@n)
%/ py 1z (Yis 20) N (245 2i(x5), vi (25)) = N
To compute Z;(z;), v7(x;), the means and variances of {p;,}r»; suffice,
thus Gaussian message passing!

Remaining problem: we have 2mn messages to compute (too many!).

@ Exploiting similarity among the messages
{pi;};, GAMP employs a Taylor-series  #viz(:[4al)
approximation of their difference, whose
error vanishes as m — oo for dense A
(and similar for {p;_,;}"_; as n—00).
Finally, need to compute only O(m+n) 4, (44],.) g—
messages! Pre-n(an)

proa(xy)

—1(T1
AN

px (1)

py|z(y2: [Az]2) px(a2)

px(2n)
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The GAMP Algorithm

0

Require: Matrix A, sum-prod € {truefalse}, initializations &°, v/

t=0,8""=0,Vij: S =|Ai|?
repeat
vl =8vl, p'=Az" 5" (gradient step)
if sum-prod then
Vi:vl =var(Z|P;pi,v.), % = E(Z|P;pi,vy,),
else
Vi vl P"OXﬂ,l ., logpy | z (i, )(pz) = ProX_pt log py‘Z(yi,.)(ﬁ:{)7
end if
vi= (vl ) vl &= (2" —p"). /vl (dual update)
vi=1./(8Tvt), #' =a"+0v.. A5 (gradient step)
if sum-prod then
Vj: Vf;l = var(X|R; f‘_?]'-.,uf._]), Atﬂ = E(X|R; T], T’ ),

else
. AL P
Vi sl = vl prox bgm‘)(r;) T = PO o (73,
end if
t<+—t+1

until Terminated

Note connections to Arrow-Hurwicz, primal-dual, ADMM, proximal FB splitting,. ..
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Making GAMP Practical: EM & turbo Extensions

@ The basic GAMP algorithm requires

Q separable priors p(y|z) = [[, py; |z (vilz:) and p(z) = []; px, (z;)
@ that are perfectly known.

@ The EM-turbo-GAMP framework circumvents these limitations by
learning possibly non-separable priors:

EM
turbo
GAMP

local {pyl‘Zi (y¢|zi)}v,-)—(global p(y|z;0y|2))—(parameters 0y|Z]

linear transform A]

local {px;(z;)}vj )—( global p(x;0x) )—( parameters 6 x )
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I
GAMP for Binary Classification and Feature Selection

@ How to use GAMP for binary classification & feature selection?

Mix'n Match a likelihood py |z, prior px, and linear transform A.

@ Our current GAMP implementation includes (among others)

likelihood py|~ f)”rgg r;%’g
logit NI RF
probit CF RF
hinge CF RF
robust-* CF CF

where CF=closed-form, Nl=numerical integration, RF=root-finding.

prior x| 804 | e
Gaussian CF CF
Laplace CF CF
Elastic Net CF CF
Bernoulli-* CF -

@ For linear classification, the rows of GAMP's linear transform A are
the feature vectors {aiT}\ﬁ. Nonlinear classification is also supported
by constructing [A]; ; = K(a;, a;) using an appropriate kernel (-, -).
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.
Test Error-Rate via GAMP State Evolution

@ Recall that, with i.i.d sub-Gaussian A in the large-system limit,
GAMP obeys a state evolution that characterizes the accuracy of

Ztrain at each iteration ¢. Pr{sgn(Giest) £ Yrest)
@ For classification, we can ) g /’{ & )
use this SE to predict =l Tl d s
2 St 3 <
the test error rate. a NP0 S| |
el )/
. 7] ) } I
@ In this example we used wodi [/ )i ¢ ]
.. &) )
A~ iid N(0,1), = % . o of
. . o
px Bernoulli-Gaussian, £
. o ’
pY\Z prObIt' = o N 0%
g F s 0225
. 03] 25 B
@ Notice close agreement = | ° S S
. 02—
between SE (solid) and

empirical (dashed).

m/n (undersampling ratio)
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Runtime Comparison: GAMP vs TFOCS*

@ Both algorithms solved
the L1-LR problem to
tolerance 1 x 1078,
achieving identical train
& testing error rates, but
GAMP was an order of
magnitude faster.

—— L1-LR GAMP
—e—L1-LR TFOCS

Runtime (sec)

@ Details: )
AcR™" ~iid N,
x ~ k-sparse BG,

m 1 & ; ; ;
W =3 and o= 5 i L
1 4 of features n 10

1

*Becker, Candes, Grant, “Templates for convex cone problems with applications to sparse signal recovery,” MPC 2011.
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e
Robust Classification

@ Some training sets contain corrupted labels (e.g., randomly flipped).

For this, GAMP can “robustify” any given likelihood py|z using

Py|z(ylz) = (1 = €)py|z(yl2) + epy|z(1 — yl2),
where ¢ € [0, 1] models the flip probability.

Here's an example of robust (solid)

and non-robust (dashed) GAMP

classification performance:

Details:
A € R300x1000  non-j.j.d
30-sparse BG @y and

Bayes error rate

N with

randomly flipped probit py 7.
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20Newsgroups Example

@ 20 different newsgroups were partitioned into two classes (sci.*,

comp.*, misc.forsale versus rec.*, talk.*, alt.x*, soc.*). Goal

is to predict the class of a test document from its bag-of-words.

@ Data was m =20k examples of n =1.3M features, where feature
matrix was 0.0003 sparse. . . far from i.i.d sub-Gaussian!

@ Test error rate evaluated by 10-fold leave-one-out cross-validation:

algorithm setup error rate | runtime
EM-GAMP sum-prod probit/B-Gauss 3.4% 260 sec
GAMP (cross val) max-prod logistic/Lap 3.0% 1236 sec
TFOCS (cross val) logistic/¢1 3.0% 7780 sec

All algorithms terminated based on tol=1 x 10™%.
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Haxby Example

@ We now return to the problem of learning, from @ (fij "’g fQ 5y
fMRI measurements, which parts of the brain - -

. . p. y izﬁm.’fm
are responsible for discriminating two classes of = L:Q.“‘

object. "‘»’i% A

@ Note that the main problem here is feature m RS
selection, not classification. The observed ¢
classification error rate is used only to judge &M"‘g@ < J\)
the validity of the support estimate. ‘,A s é [~

@ For this we use the famous Haxby data, with & g @. =

n = 31398 <« fMRI voxels
m =216 < 2 classes x 9 examples x 12 subjects

Haxby et al., “Distributed and Overlapping Representations of Faces and Objects in Ventral
Temporal Cortex" Science, 2001.
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Haxby: Cats vs. Houses

algorithm setup error rate | runtime

EM-GAMP sum-prod probit/B-Gauss 1.4% 9 sec

EM-GAMP sum-prod probit/B-Laplace 1.9% 13 sec
EM-turbo-GAMP | sum-prod probit/B-Laplace 3D-MRF 1.9% 14 sec

without 3D MRF with 3D MRF

Haxby Classification: Housos vs. Cats | GAMP: i.d. Born

lacian + Probit Haxby Classification: Houses vs. Cats | GAMP: 3D MRF + Berouli-Laplacian + Probit
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Conclusions

@ We presented preliminary results on the application of GAMP to
binary linear classification and feature selection.

@ Some nice properties of classification GAMP include

]

¢ & ¢ ¢ ¢

flexibility in choice of input and output priors

runtime (e.g., 5 — 10x faster than TFOCS)

state-evolution can be used to predict test error-rate

can handle corrupted labels (via robust prior)

can exploit and learn structured sparsity (via turbo extension)

can tune without cross-validation (via EM extension), at the expense of
a small performance hit.
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All these methods are integrated into GAMPmatlab:
http://sourceforge.net/projects/gampmatlab/

Thanks!

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb '13 17 / 18


http://sourceforge.net/projects/gampmatlab/

