
Generalized Approximate Message Passing (GAMP)

for Binary Classification and Feature Selection

Phil Schniter and Justin Ziniel

Supported in part by NSF grant CCF-1018368, NSF grant CCF-1218754 and DARPA/ONR
grant N66001-10-1-4090.

ITA (San Diego) — Feb ’13

Binary Linear Classification

Observe m training examples {(yi,ai)}
m
i=1

, each comprised of a
binary label yi ∈ {−1, 1} and a feature vector ai ∈ R

n.

Assume that data follows a generalized linear model

Pr{yi = 1 |ai;xtrue} = pY |Z(1 | a
T
i xtrue

︸ ︷︷ ︸

, zi,true

)

for some true weight vector xtrue ∈ R
p and some activation function

(or likelihood) pY |Z(1, ·) : R → [0, 1].

Goal 1: estimate x̂train ≈ xtrue from training data, so to be able to
predict the unknown label ytest associated with a test vector atest:

compute Pr{ytest = 1 |atest; x̂train} = pY |Z(1 |a
T
testx̂train)

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 2 / 18

Binary Linear Classification & Feature Selection

Operating regimes:

m ≫ n: Plenty of training examples: feasible to learn x̂train ≈ xtrue.
m ≪ n: Training-starved: feasible only if xtrue is sufficiently sparse!

The training-starved case motivates. . .

Goal 2: Identify salient features (i.e., recover support of xtrue).

Example: From fMRI, learn which parts of the brain are responsible for
discriminating two classes of object (e.g., cats vs. houses):

n = 31398 ↔ fMRI voxels
m = 216 ↔ 2 classes × 9 examples × 12 subjects

Can interpret as support recovery in noisy one-bit compressed sensing:

y = sgn(Axtrue+w) with i.i.d noise w.

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 3 / 18

Bring out the GAMP

Zed: Bring out the Gimp.

Maynard: Gimp’s sleeping.

Zed: Well, I guess you’re gonna have to go wake him up now, won’t you?

—Pulp Fiction, 1994.

We propose a new approach to binary linear classification and feature
selection via generalized approximate message passing (GAMP).

Advantages of GAMP include

flexibility in choosing likelihood pY |Z & input prior pX .

excellent accuracy & runtime.

state-evolution governing behavior in some cases.

can learn & exploit structured sparsity (via turbo extension [S. ’10]),

can tune without cross-validation (via EM extension [Vila & S. ’11]),

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 4 / 18

Generalized Approximate Message Passing (GAMP)

The evolution of GAMP:

The original AMP [Donoho, Maleki, Montanari ’09] solves the LASSO
problem argmin

x
‖y −Ax‖2

2
+ λ‖x‖1 assuming i.i.d sub-Gaussian A.

The Bayesian AMP [Donoho, Maleki, Montanari ’10] extends to
MMSE inference in AWGN for any factorizable signal prior

∏

j pX(xj).

The generalized AMP [Rangan ’10] framework extends to MAP or
MMSE inference under any factorizable signal prior & likelihood.

GAMP is a sophisticated form of iterative thresholding, requiring only
two applications of A per iteration and few iterations. Very fast!

Rigorous large-system analyses (under i.i.d sub-Gaussian A) have
established that GAMP follows a state-evolution trajectory with
various nice properties [Rangan ’10], [Javanmard, Montanari ’12]

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 5 / 18

GAMP Heuristics (Sum-Product)
pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1|[Ax]1)

pY |Z(y2|[Ax]2)

pY |Z(ym|[Ax]m)

...
...

...

1 Message from yi node to xj node:

pi→j(xj) ∝

∫

{xr}r 6=j

pY |Z
(
yi;

≈ N via CLT
︷ ︸︸ ︷∑

r
airxr

)∏

r 6=j
pi←r(xr)

≈

∫

zi

pY |Z(yi; zi)N
(
zi; ẑi(xj), ν

z
i (xj)

)
≈N

To compute ẑi(xj), ν
z
i (xj), the means and variances of {pi←r}r 6=j suffice,

thus Gaussian message passing!

Remaining problem: we have 2mn messages to compute (too many!).

2 Exploiting similarity among the messages
{pi←j}

m
i=1

, GAMP employs a Taylor-series
approximation of their difference, whose
error vanishes as m→∞ for dense A

(and similar for {pi→j}nj=1
as n→∞).

Finally, need to compute only O(m+n)
messages!

pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1; [Ax]1)

pY |Z(y2; [Ax]2)

pY |Z(ym; [Ax]m)

...
...

...

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 6 / 18

The GAMP Algorithm

Require: Matrix A, sum-prod ∈ {true,false}, initializations x̂0, ν0
x

t = 0, ŝ−1 = 0, ∀ij : Sij = |Aij |
2

repeat

νt
p = Sνt

x, p̂t = Ax̂t − ŝt−1.νt
p (gradient step)

if sum-prod then

∀i : νt
zi

= var(Z|P ; p̂ti, ν
t
pi
), ẑti = E(Z|P ; p̂ti, ν

t
pi
),

else

∀i : νt
zi

= νt
pi
prox′−νt

pi
log pY |Z(yi,.)

(p̂ti) ẑti = prox−νt
pi

log pY |Z(yi,.)
(p̂ti),

end if

νt
s = (1− νt

z./ν
t
p)./ν

t
p, ŝt = (ẑt − p̂t)./νt

p (dual update)
νt
r = 1./(STνt

s), r̂t = x̂t + νt
r.A

T ŝt (gradient step)
if sum-prod then

∀j : νt+1
xj

= var(X|R; r̂tj , ν
t
rj
), x̂t+1

j = E(X|R; r̂tj , ν
t
rj
),

else

∀j : νt+1
xj

= νt
rj
prox′−νt

rj
log pX (.)(r̂

t
j) x̂t+1

j = prox−νt
rj

log pX (.)(r̂
t
j),

end if

t← t+1
until Terminated

Note connections to Arrow-Hurwicz, primal-dual, ADMM, proximal FB splitting,. . .
Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 7 / 18

Making GAMP Practical: EM & turbo Extensions

The basic GAMP algorithm requires
1 separable priors p(y|z) =

∏

i pYi|Zi
(yi|zi) and p(x) =

∏

j pXj
(xj)

2 that are perfectly known.

The EM-turbo-GAMP framework circumvents these limitations by
learning possibly non-separable priors:

GAMP

EM

turbo

it
er
at
io
n
s

local {pYi|Zi
(yi|zi)}∀i

local {pXj
(xj)}∀j

linear transform A

global p(y|z;θY |Z)

global p(x;θX)

parameters θY |Z

parameters θX

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 8 / 18

GAMP for Binary Classification and Feature Selection

How to use GAMP for binary classification & feature selection?
Mix’n Match a likelihood pY |Z , prior pX , and linear transform A.

Our current GAMP implementation includes (among others)

likelihood pY |Z
sum-
prod

max-
prod

logit NI RF
probit CF RF
hinge CF RF

robust-* CF CF

prior pX
sum-
prod

max-
prod

Gaussian CF CF
Laplace CF CF

Elastic Net CF CF

Bernoulli-* CF –

where CF=closed-form, NI=numerical integration, RF=root-finding.

For linear classification, the rows of GAMP’s linear transform A are
the feature vectors {aT

i }∀i. Nonlinear classification is also supported
by constructing [A]i,j = K(ai,aj) using an appropriate kernel K(·, ·).

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 9 / 18

Test Error-Rate via GAMP State Evolution

Recall that, with i.i.d sub-Gaussian A in the large-system limit,
GAMP obeys a state evolution that characterizes the accuracy of
x̂train at each iteration t.

For classification, we can
use this SE to predict
the test error rate.

In this example we used
A ∼ i.i.d N (0, 1),
pX Bernoulli-Gaussian,

pY |Z probit.

Notice close agreement
between SE (solid) and
empirical (dashed). 0.125 0.125 0.1250.15

0.15
0.15

0.175
0.175

0.175
0.2

0.2

0.2

0.225

0.225

0.225

0.25

0.25

0.25

0.2
5

0.
27

5

0.275

0.275

0.275

0.
3

0.3

0.3

0.
32

5

0.
32

5

0.3
25

0.
35

0.
35

0.
37

5

0.
37

5
0.

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Empirical (dashed)
State Evolution (solid)

k
/m

(n
or
m
al
iz
ed

sp
ar
si
ty
)

m/n (undersampling ratio)

Pr{sgn(ẑtest) 6= ytest}

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 10 / 18

Runtime Comparison: GAMP vs TFOCS∗

Both algorithms solved
the L1-LR problem to
tolerance 1× 10−8,
achieving identical train
& testing error rates, but
GAMP was an order of
magnitude faster.

Details:
A ∈ R

m×n ∼ i.i.d N ,
x ∼ k-sparse BG,
m
n
= 1

3
and k

m
= 1

20
10

3
10

4

10
0

10
1

10
2

L1−LR GAMP

L1−LR TFOCS

R
u
n
ti
m
e
(s
ec
)

of features n

∗Becker, Candès, Grant, “Templates for convex cone problems with applications to sparse signal recovery,” MPC 2011.

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 11 / 18

Robust Classification

Some training sets contain corrupted labels (e.g., randomly flipped).

For this, GAMP can “robustify” any given likelihood pY |Z using

p̃Y |Z(y|z) = (1− ε)pY |Z(y|z) + ε pY |Z(1− y|z),

where ε ∈ [0, 1] models the flip probability.

Here’s an example of robust (solid)
and non-robust (dashed) GAMP
classification performance:

Details:
A ∈ R

300×1000 ∼ non-i.i.d N with
30-sparse BG xtrue and
randomly flipped probit pY |Z . 0.07

0.07

0.12

0.12

0.12

0.17

0.17

0.17

0.22

0.22

0.22

0.27

0.27

0.27

0.32

0.32

0.32

0.37

0.37

0.07

0.12

0.12

0.17

0.17

0.17

0.22

0.22

0.22

0.27

0.27

0.27

0.27

0.32

0.32

0.32

0.32

0.37

0.37

0.37

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Robust Probit (solid)
Standard Probit (dashed)

B
ay
es

er
ro
r
ra
te

flip probability ε

test error rate labeled on contours

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 12 / 18

20Newsgroups Example

20 different newsgroups were partitioned into two classes (sci.*,
comp.*, misc.forsale versus rec.*, talk.*, alt.*, soc.*). Goal
is to predict the class of a test document from its bag-of-words.

Data was m =20k examples of n =1.3M features, where feature
matrix was 0.0003 sparse. . . far from i.i.d sub-Gaussian!

Test error rate evaluated by 10-fold leave-one-out cross-validation:

algorithm setup error rate runtime

EM-GAMP sum-prod probit/B-Gauss 3.4% 260 sec
GAMP (cross val) max-prod logistic/Lap 3.0% 1236 sec
TFOCS (cross val) logistic/ℓ1 3.0% 7780 sec

All algorithms terminated based on tol=1× 10−4.

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 13 / 18

Haxby Example

We now return to the problem of learning, from
fMRI measurements, which parts of the brain
are responsible for discriminating two classes of
object.

Note that the main problem here is feature
selection, not classification. The observed
classification error rate is used only to judge
the validity of the support estimate.

For this we use the famous Haxby data, with

n = 31398 ↔ fMRI voxels

m = 216 ↔ 2 classes × 9 examples × 12 subjects

Haxby et al., “Distributed and Overlapping Representations of Faces and Objects in Ventral

Temporal Cortex” Science, 2001.

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 14 / 18

Haxby: Cats vs. Houses

algorithm setup error rate runtime

EM-GAMP sum-prod probit/B-Gauss 1.4% 9 sec
EM-GAMP sum-prod probit/B-Laplace 1.9% 13 sec

EM-turbo-GAMP sum-prod probit/B-Laplace 3D-MRF 1.9% 14 sec

without 3D MRF with 3D MRF

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 15 / 18

Conclusions

We presented preliminary results on the application of GAMP to
binary linear classification and feature selection.

Some nice properties of classification GAMP include

flexibility in choice of input and output priors
runtime (e.g., 5− 10× faster than TFOCS)
state-evolution can be used to predict test error-rate
can handle corrupted labels (via robust prior)
can exploit and learn structured sparsity (via turbo extension)
can tune without cross-validation (via EM extension), at the expense of
a small performance hit.

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 16 / 18

All these methods are integrated into GAMPmatlab:
http://sourceforge.net/projects/gampmatlab/

Thanks!

Phil Schniter and Justin Ziniel (OSU) Classification GAMP ITA (San Diego) — Feb ’13 17 / 18

http://sourceforge.net/projects/gampmatlab/

