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KI'hree Important Matrix Recovery Problems: \

e Matrix Completion (MC):

Recover low-rank matrix X from AWGN-corrupted incomplete
observations Y = Pq (X + W)

e Robust Principle Components Analysis (RPCA):

Recover low-rank matrix X and sparse matrix S from
AWGN-corrupted observations Y = X + S+ W.

e Dictionary Learning (DL):

Recover overcomplete dictionary A and sparse matrix S from
AWGN-corrupted observations Y = AS + W.

The following extensions may also be of interest:

e RPCA and DL with incomplete observations and/or structured sparsity.

e Any of the above with a non-additive noise model (e.g., quantized Y).
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/Our contribution: \

.

e We propose a novel unified approach to these matrix-recovery problems that

leverages the recent framework of approximate message passing (AMP).

e While previous AMP algorithms have been proposed for the linear model:

— Infer s ~ [[,, ps(sn) from y = s+ w
with AWGN w and known ® [Donoho/Maleki/Montanari'10]

or the generalized linear model:

— Infer s ~ Hn ps(sp) from y ~ HmpY|X("Jm‘$m)
with hidden £ = ®s and known ® [Rangan'10]

our new algorithm is formulated for the generalized bilinear model:

— Infer A ~ [, . pa(ams) and B ~ [, ,, pp(bry) from
Y ~ |1, Pv|x (Ymn|Tmn) with hidden X = AB [Schniter/Cevher'11]

e Although our work is still in-progress, the preliminary results look very

encouraging!
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/Outline:

1. Brief review of popular approaches to

matrix-completion and robust PCA:
e Convex
o Greedy

e Bayesian

2. Bilinear Generalized AMP (BiG-AMP).
e What is it?
e What are AMP’s approximations?
e How to apply to MC, RPCA, DL?

3. Preliminary results:
e Phase transition curves
e NMSE and runtime

e Practical example: video surveillance

.
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/Convex—Optimization for Matrix-Completion & Robust PCA: \
e Consider the combined MC-and-RPCA problem:

Recover low-rank X and sparse S from AWGN-corrupted incomplete
observations Y = Pq(X + S+ W).
e Optimization approach:

I}I{ligl {rank(X) +7||S]lo} st. |Pa(X +S)—-Y|p <n ...intractable

min {| X[ +7]Slh} st [Pa(X+S)=Y|r<n ... convex

e Convex relaxation yields perfect noiseless & stable noisy recovery when:
— rank(X) is sufficiently small,
— singular vectors of X are not too cross-correlated nor too spiky,
— support of S is random and sufficiently sparse,
— observation set {2 is random and sufficiently large.

Details given in, e.g., [Candés/Recht’08], [Candés/Plan’09], [Candés/Li/Ma/Wright'09],
[Zhou/Wright/Li/Candés/Ma’10], and [Chen/Jalali/Sanghavi/Caramanis’'11].
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/Fast Algorithms for Convex Matrix-Completion & Robust PCA: \

e A comparison of convex RPCA algorithms is given at Yi Ma's webpage:

http://perception.csl.uiuc.edu/matrix-rank/sample_code.html

Algorithm Error | Time (sec)
Singular Value Thresholding 3.4e-4 877
[Cai/Candes/Shen’08]
Dual Method 1.6e-5 177
[Lin/Ganesh /Wright/Wu/Chen/Ma’09]
Accelerated Proximal Gradient (partial SVD) | 1.8e-5 8
[Lin/Ganesh /Wright/Wu/Chen/Ma’09]
Alternating Direction Methods 2.2e-5 5
[Yuan/Yang'09]
Exact Augmented Lagrange Method 7.6e-8 4
[Lin/Chen/Wu/Ma'09]
Inexact Augmented Lagrange Method 4.3e-8 2
[Lin/Chen/Wu/Ma'09]

for the recovery of 400 x 400 rank-20 matrix X corrupted by 5%-sparse S
with amplitudes uniform in [—50, 50].

e Evidently a lot of progress has been made! Can one do better?
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/Greedy Approaches to Matrix-Completion & Robust PCA: \

e First consider matrix completion, where we want to recover low-rank X
from AWGN-corrupted incomplete observations Y = Pqo(X + W).

e If we suppose that ...
X € RM*N s square or tall (i.e., M > N) with rank(X) = R,
then the difficult part of the MC problem is finding the column space of X,

leading to squared-error minimization on the Grassmanian manifold G,/ g:

min min |[|[Po(AB) - Y||%

e Example algorithms:  A€9v.r B

— Optspace [Keshavan/Montanari/Oh’09]: Grad-descent minimizing (A, B).
— SET [Dai/Milenkovic’09]: Solves for B, then takes gradient w.r.t A.
— GROUSE [Balzano/Nowak/Recht'10]: Grad-descent one column at a time.

e This greedy approach can also be extended to RPCA:
— GRASTA [He/Balzano/Lui'11].
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/Bayesian Approaches to Matrix-Completion & Robust PCA: \

e First consider matrix completion, where we want to recover low-rank X
from AWGN-corrupted incomplete observations Y = Pqo(X + W).

e The basic Bayesian approach decomposes X = AB and assumes priors
A ~ N(0,0%1) and B ~ N(0,I). The log posterior then becomes

Inp(A, BlY) = 55 |Po(AB) - Y||7 +

2
20’W

All% + 51 Bl% + C.

57 |
To infer (A, B), various schemes have been proposed, e.g.,

— EM (“Probabilistic PCA") [Tipping/Bishop’99]
— SDP (“Maximum-Margin Matrix Factorization”) [Srebro/Rennie/Jaakkola’04]
— VB (“Variational Bayes") [Lim /Teh'07]
— MCMC (“Probabilistic Matrix Factorization™) [Salakhutdinov/Mnih’08]
Each has their own way of estimating the hyperparameters {03, 0% }.

e This approach can be extended to RPCA by changing the noise model to a
heavy-tailed one (e.g., [Luttinen/llin/Karhunen’'09], [Ding/He/Carin'11]).
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/Bilinear Generalized AMP (BiG-AMP): \
e BiG-AMP is a Bayesian approach that uses approximate message passing
(AMP) strategies to infer (A, B, S).
Compressive Sensing (CS): MC/RPCA/DL:

xr
mn brn PB

S1

x1

52

z2
53

z3

S4

e In AMP, beliefs are propagated on a loopy factor graph using approximations

that exploit the blessings of dimensionality:
1. Gaussian message approximation (motivated by CLT),

2. Taylor-series approximation of message differences.

e A rigorous large-system analysis of AMP for CS (with i.i.d Gaussian ®) has

\\ established a number of optimalities [Bayati/Montanari'10],[Rangan’10]. /
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/BiG-AMP Approximations (sum-product version): le a) _ pilab) \

1. Message from it node of X to j* node of B:

z;|bj ~ N via CLT! an Pl g(br)
B f'—/‘\
Pis;(bs) o / Py ix (¥i] 2o arby )(HT pZH(b [T, vt ar
{ar}r 1’{b }7"753

%/ pyix (ilzs) N (53 84(b5), vE (b)) ~ N (exact for AWGNI)

The means and variances of p2_ p#  suffice to compute #;(b;),v%(b;), thus

Gaussian message passing! (Same thing happens with X — A messages.)

2. Although Gaussian, we still have 4M N R mes-
sages to compute (too many!). Exploiting similar-
ity among the messages {p;._;};2;, AMP employs
a laylor-series approximation whose error vanishes
as M — oo. (Same for {pu_‘7 *1.) In the end,

\\ AMP only needs to compute O(M N) messages!
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/BiG-AMP for MC, RPCA, and DL: \

BiG-AMP can be applied to a wide variety of matrix recovery problems:

e Matrix Completion (MC):

Recover low-rank AB fromY = Pq(AB + W).
...set A~ N(0,041I) and B ~ N(0,1I).

e Robust PCA (RPCA):

Recover low-rank AB and sparse S fromY = AB+ S+ W.
...set A~ N(0,0%1), B~ N(0,I), and S ~ Bern(\)-N(0,0%1).

e Dictionary Learning (DL):

Recover overcomplete A and sparse S fromY = AS + W.
...set A~ N(0,0%1I) and S ~ Bern(\)-N(0,0%1).

Moreover:
e Non-Gaussian (e.g., quantized) observations can be incorporated via py|x.

e Structured sparsity can be incorporated via “turbo-AMP." [Schniter'10]

\ e Hyperparameters can be learned via EM. [Ziniel/Schniter’lO],[ViIa/Schniter'll]/
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/BiG-AMP in Context: \

Advantages:

e A unified approach to a wide range of problems, e.g., MC, RPCA, DL, ...

e Competitive with best algorithms for each application.

— Very fast and scaleable: no SVDs, easily parallelizable.

... will see from runtime curves.

— Accurate: in part due to flexibility of choice of priors.

... will see from phase transition and NMSE curves.

Relation to other message-passing algorithms for matrix completion:

e [Kim/Yedla/Pfister'10]
— All quantities are discrete.

e [Keshavan/Montanari'll] (1 page poster only!)

— Variable nodes are vector-valued; updates involve matrix inversion?

. /
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/BiG-AMP is @ Work-In-Progress:

e Implementation not yet optimized.
— |ALM uses ProPack
— GRASTA uses Mex (5x speedup!)

e Adaptation of stepsize not yet implemented.

— Current stepsize is conservative/slow.

e EM hyperparameter learning not implemented.

— For now, statistics assumed known.

e Many extensions to pursue:
— quantized outputs (e.g., Netflix ratings)
— non-negativity constraints (e.g., pmf)
— structure (e.g., tree-structured dictionaries)
— linear (not missing) observations

— etc, etc, etc. ..

e Theoretical analysis/guarantees?

.
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/I\/Iatrix Completion — Phase Transitions: \

For M x N = 512x 512 matrices in the absence of noise, median over 10 trials:

Inexact ALM GROUSE 1 BiG-AMP

1 1
09 09

09 09
08 08

08 08
07 7

07 0 07
06 06 06 06
05 05 05 05
04 04 04 04

03
03 03 03

02 02
02 02

01 01
01 01

0 0

01 02 03 09 09

0
0.4 0.5 0.6 07 08 01 0.2 0.3 04 05 0.6 0.7 0.8 09 01 0.2 03 0.4 0.5 0.6 07 0.8

DoF /||

DoF /||
DoF/|Q2|

where

e DoF £ # degrees-of-freedom in SVD (i.e., MR + RN — R?).
o || £ # of observed entries (|Q2] < MN).

Observations:

e BiG-AMP has a better phase transition than Inexact ALM and GROUSE.

\\ e We are working on understanding its strange behavior near |QQ|/M N ~ 1. /
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/I\/Iatrix Completion — NMSE and Runtime (to -50 dB):

N
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BiG-AMP is more accurate than Inexact ALM and GROUSE, and
its complexity scales better with rank!
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/Robust PCA — Phase Transitions: \

For M x N = 500 x 500 matrices in the absence of noise, median over 10 trials:

Inexact ALM GRASTA BiG-AMP
HSHo/MN ) | H5||0/MN | ||5H0/MN
where
e 1R = rank.

e ||S|lo = # of corrupted entries.

e |(Q]=DMN; all entries observed (although BiG-AMP & GRASTA support |Q|< M N)

Observations:

\\ e BiG-AMP has a better phase transition than Inexact ALM and GRASTA./
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/Robust PCA — NMSE and Runtime (to -20 dB): \
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BiG-AMP is more accurate than Inexact ALM and GRASTA, and

\\ its complexity scales better with rank. /
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/Robust PCA — Video Surveillance (over 200 frames):
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/Conclusions: \

BiG-AMP is ...
e Approximate message passing (AMP) for the generalized bilinear model.
e A unified approach to many matrix-recovery problems (MC, RPCA, DL...)

e Competitive with the best algorithms for each application.
— Better phase transitions than IALM and GROUSE/GRASTA.
— Faster on “difficult” problems (e.g., high-rank MC).

e Still a work in progress . ..stay tuned!
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