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Three Important Matrix Recovery Problems:

• Matrix Completion (MC):

Recover low-rank matrix X from AWGN-corrupted incomplete

observations Y = PΩ

(
X +W

)
.

• Robust Principle Components Analysis (RPCA):

Recover low-rank matrix X and sparse matrix S from

AWGN-corrupted observations Y = X + S +W .

• Dictionary Learning (DL):

Recover overcomplete dictionary A and sparse matrix S from

AWGN-corrupted observations Y = AS +W .

The following extensions may also be of interest:

• RPCA and DL with incomplete observations and/or structured sparsity.

• Any of the above with a non-additive noise model (e.g., quantized Y ).

2



Phil Schniter The Ohio State University'

&

$

%

Our contribution:

• We propose a novel unified approach to these matrix-recovery problems that

leverages the recent framework of approximate message passing (AMP).

• While previous AMP algorithms have been proposed for the linear model:

– Infer s ∼
∏

n pS(sn) from y = Φs+w

with AWGN w and known Φ [Donoho/Maleki/Montanari’10]

or the generalized linear model:

– Infer s ∼
∏

n pS(sn) from y ∼
∏

m pY |X(ym|xm)

with hidden x = Φs and known Φ [Rangan’10]

our new algorithm is formulated for the generalized bilinear model:

– Infer A ∼
∏

m,r pA(amr) and B ∼
∏

r,n pB(brn) from

Y ∼
∏

m,n pY |X(ymn|xmn) with hidden X = AB [Schniter/Cevher’11]

• Although our work is still in-progress, the preliminary results look very

encouraging!
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Outline:

1. Brief review of popular approaches to

matrix-completion and robust PCA:

• Convex

• Greedy

• Bayesian

2. Bilinear Generalized AMP (BiG-AMP).

• What is it?

• What are AMP’s approximations?

• How to apply to MC, RPCA, DL?

3. Preliminary results:

• Phase transition curves

• NMSE and runtime

• Practical example: video surveillance
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Convex-Optimization for Matrix-Completion & Robust PCA:

• Consider the combined MC-and-RPCA problem:

Recover low-rank X and sparse S from AWGN-corrupted incomplete

observations Y = PΩ(X + S +W ).

• Optimization approach:

min
X,S

{
rank(X) + γ‖S‖0

}
s.t. ‖PΩ(X + S)− Y ‖F ≤ η . . . intractable

min
X,S

{
‖X‖∗ + γ‖S‖1

}
s.t. ‖PΩ(X + S)− Y ‖F ≤ η . . . convex!

• Convex relaxation yields perfect noiseless & stable noisy recovery when:

– rank(X) is sufficiently small,

– singular vectors of X are not too cross-correlated nor too spiky,

– support of S is random and sufficiently sparse,

– observation set Ω is random and sufficiently large.

Details given in, e.g., [Candés/Recht’08], [Candés/Plan’09], [Candés/Li/Ma/Wright’09],

[Zhou/Wright/Li/Candés/Ma’10], and [Chen/Jalali/Sanghavi/Caramanis’11].
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Fast Algorithms for Convex Matrix-Completion & Robust PCA:

• A comparison of convex RPCA algorithms is given at Yi Ma’s webpage:

http://perception.csl.uiuc.edu/matrix-rank/sample code.html

Algorithm Error Time (sec)

Singular Value Thresholding 3.4e-4 877
[Cai/Candes/Shen’08]

Dual Method 1.6e-5 177
[Lin/Ganesh/Wright/Wu/Chen/Ma’09]

Accelerated Proximal Gradient (partial SVD) 1.8e-5 8
[Lin/Ganesh/Wright/Wu/Chen/Ma’09]

Alternating Direction Methods 2.2e-5 5
[Yuan/Yang’09]

Exact Augmented Lagrange Method 7.6e-8 4
[Lin/Chen/Wu/Ma’09]

Inexact Augmented Lagrange Method 4.3e-8 2
[Lin/Chen/Wu/Ma’09]

for the recovery of 400×400 rank-20 matrix X corrupted by 5%-sparse S

with amplitudes uniform in [−50, 50].

• Evidently a lot of progress has been made! Can one do better?
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Greedy Approaches to Matrix-Completion & Robust PCA:

• First consider matrix completion, where we want to recover low-rank X

from AWGN-corrupted incomplete observations Y = PΩ(X +W ).

• If we suppose that . . .

X ∈ R
M×N is square or tall (i.e., M ≥ N) with rank(X) = R,

then the difficult part of the MC problem is finding the column space of X,

leading to squared-error minimization on the Grassmanian manifold GM,R:

min
A∈GM,R

min
B

‖PΩ(AB)− Y ‖2F
• Example algorithms:

– Optspace [Keshavan/Montanari/Oh’09]: Grad-descent minimizing (A,B).

– SET [Dai/Milenkovic’09]: Solves for B, then takes gradient w.r.t A.

– GROUSE [Balzano/Nowak/Recht’10]: Grad-descent one column at a time.

• This greedy approach can also be extended to RPCA:

– GRASTA [He/Balzano/Lui’11].
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Bayesian Approaches to Matrix-Completion & Robust PCA:

• First consider matrix completion, where we want to recover low-rank X

from AWGN-corrupted incomplete observations Y = PΩ(X +W ).

• The basic Bayesian approach decomposes X = AB and assumes priors

A ∼ N (0, σ2
AI) and B ∼ N (0, I). The log posterior then becomes

ln p(A,B|Y ) = 1

2σ2

W

‖PΩ(AB)− Y ‖2F + 1

2σ2

A

‖A‖2F + 1

2
‖B‖2F + C.

To infer (A,B), various schemes have been proposed, e.g.,

– EM (“Probabilistic PCA”) [Tipping/Bishop’99]

– SDP (“Maximum-Margin Matrix Factorization”) [Srebro/Rennie/Jaakkola’04]

– VB (“Variational Bayes”) [Lim/Teh’07]

– MCMC (“Probabilistic Matrix Factorization”) [Salakhutdinov/Mnih’08]

Each has their own way of estimating the hyperparameters {σ2
W , σ2

A}.

• This approach can be extended to RPCA by changing the noise model to a

heavy-tailed one (e.g., [Luttinen/Ilin/Karhunen’09], [Ding/He/Carin’11]).
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Bilinear Generalized AMP (BiG-AMP):

• BiG-AMP is a Bayesian approach that uses approximate message passing

(AMP) strategies to infer (A,B,S).

Compressive Sensing (CS):

x1

x2

x3

s1

s2

s3

s4

pS

pS

pS

pS

MC/RPCA/DL:
amr xmn brn

pA pB

r

m

r

n

• In AMP, beliefs are propagated on a loopy factor graph using approximations

that exploit the blessings of dimensionality:

1. Gaussian message approximation (motivated by CLT),

2. Taylor-series approximation of message differences.

• A rigorous large-system analysis of AMP for CS (with i.i.d Gaussian Φ) has

established a number of optimalities [Bayati/Montanari’10],[Rangan’10].
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BiG-AMP Approximations (sum-product version): b1

b2

bR

a1

a2

aR

pA
1←1

(a1) pB
1→1

(b1)

pB
1←R(bR)

...
...

1. Message from ith node of X to jth node of B:

pBi→j(bj) ∝

∫

{ar}Rr=1
,{br}r 6=j

pY |X
(
yi
∣
∣

xi|bj ≈ N via CLT!
︷ ︸︸ ︷∑

r arbr
)(∏

r p
B
i←r(br)

)(
∏

r 6=j p
A
i←r(ar)

)

≈

∫

xi

pY |X(yi|xi)N
(
xi; x̂i(bj), ν

x
i (bj)

)
≈ N (exact for AWGN!)

The means and variances of pBi←r, p
A
i←r suffice to compute x̂i(bj), ν

x
i (bj), thus

Gaussian message passing! (Same thing happens with X→A messages.)

2. Although Gaussian, we still have 4MNR mes-

sages to compute (too many!). Exploiting similar-

ity among the messages {pBi←j}
M
i=1

, AMP employs

a Taylor-series approximation whose error vanishes

as M → ∞. (Same for {pAi←j}
N
i=1

.) In the end,

AMP only needs to compute O(MN) messages!
pB(bR)

bR

pY |X(y1|x1)

pY |X(y2|x2)

pY |X(yM |xM )

pB
1→1

(b1)

pBM←R(xR)

...
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BiG-AMP for MC, RPCA, and DL:

BiG-AMP can be applied to a wide variety of matrix recovery problems:

• Matrix Completion (MC):

Recover low-rank AB from Y = PΩ(AB +W ).

. . . set A ∼ N (0, σ2
AI) and B ∼ N (0, I).

• Robust PCA (RPCA):

Recover low-rank AB and sparse S from Y = AB + S +W .

. . . set A ∼ N (0, σ2
AI), B ∼ N (0, I), and S ∼ Bern(λ)-N (0, σ2

SI).

• Dictionary Learning (DL):

Recover overcomplete A and sparse S from Y = AS +W .

. . . set A ∼ N (0, σ2
AI) and S ∼ Bern(λ)-N (0, σ2

SI).

Moreover:

• Non-Gaussian (e.g., quantized) observations can be incorporated via pY |X .

• Structured sparsity can be incorporated via “turbo-AMP.” [Schniter’10]

• Hyperparameters can be learned via EM. [Ziniel/Schniter’10],[Vila/Schniter’11]
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BiG-AMP in Context:

Advantages:

• A unified approach to a wide range of problems, e.g., MC, RPCA, DL, . . .

• Competitive with best algorithms for each application.

– Very fast and scaleable: no SVDs, easily parallelizable.

. . . will see from runtime curves.

– Accurate: in part due to flexibility of choice of priors.

. . . will see from phase transition and NMSE curves.

Relation to other message-passing algorithms for matrix completion:

• [Kim/Yedla/Pfister’10]

– All quantities are discrete.

• [Keshavan/Montanari’11] (1 page poster only!)

– Variable nodes are vector-valued; updates involve matrix inversion?
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BiG-AMP is a Work-In-Progress:

• Implementation not yet optimized.

– IALM uses ProPack

– GRASTA uses Mex (5x speedup!)

• Adaptation of stepsize not yet implemented.

– Current stepsize is conservative/slow.

• EM hyperparameter learning not implemented.

– For now, statistics assumed known.

• Many extensions to pursue:

– quantized outputs (e.g., Netflix ratings)

– non-negativity constraints (e.g., pmf)

– structure (e.g., tree-structured dictionaries)

– linear (not missing) observations

– etc, etc, etc. . .

• Theoretical analysis/guarantees?
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Matrix Completion — Phase Transitions:

For M×N = 512×512 matrices in the absence of noise, median over 10 trials:
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where

• DoF , # degrees-of-freedom in SVD (i.e., MR+RN −R2).

• |Ω| , # of observed entries (|Ω| ≤ MN).

Observations:

• BiG-AMP has a better phase transition than Inexact ALM and GROUSE.

• We are working on understanding its strange behavior near |Ω|/MN ≈ 1.
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Matrix Completion — NMSE and Runtime (to -50 dB):

(vertical slices of phase plane)
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BiG-AMP is more accurate than Inexact ALM and GROUSE, and

its complexity scales better with rank!
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Robust PCA — Phase Transitions:

For M×N = 500×500 matrices in the absence of noise, median over 10 trials:
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where

• R = rank.

• ‖S‖0 = # of corrupted entries.

• |Ω|=MN ; all entries observed (although BiG-AMP & GRASTA support |Ω|<MN)

Observations:

• BiG-AMP has a better phase transition than Inexact ALM and GRASTA.
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Robust PCA — NMSE and Runtime (to -20 dB):

(vertical slices of phase plane)
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BiG-AMP is more accurate than Inexact ALM and GRASTA, and

its complexity scales better with rank.
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Robust PCA — Video Surveillance (over 200 frames):
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Conclusions:

BiG-AMP is . . .

• Approximate message passing (AMP) for the generalized bilinear model.

• A unified approach to many matrix-recovery problems (MC, RPCA, DL. . . )

• Competitive with the best algorithms for each application.

– Better phase transitions than IALM and GROUSE/GRASTA.

– Faster on “difficult” problems (e.g., high-rank MC).

• Still a work in progress . . . stay tuned!
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