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Motivation:

• At large communication bandwidths, communication channels are not only

frequency selective but sparse.

• For example, consider channel taps x = [x0, . . . , xL−1], where

– xn = x(nT ) for bandwidth T−1 = 256 MHz,

– x(t) = h(t) ∗ pRC(t), and

– h(t) is generated randomly according to the 802.15.4a method.
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Simplified Channel Model:

Consider a discrete-time channel that is

• block-fading with block size N ,

• frequency-selective with L taps (where L < N),

• sparse with S non-zero complex-Gaussian taps (where 0 < S ≤ L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:

1. What is the capacity of this channel?

2. How can we build a practical comm system that operates near this capacity?

3



Phil Schniter The Ohio State University'

&

$

%

Noncoherent Capacity of the Sparse Channel:

For the unknown N -block-fading, L-length, S-sparse channel described earlier,

Pachai-Kannu & Schniter [1] established that

1. In the high-SNR regime, the ergodic capacity obeys

Csparse(SNR) =
N − S

N
log(SNR) +O(1).

2. To achieve the prelog factor Rsparse =
N−S
N

, it suffices to use

• pilot-aided OFDM (with N subcarriers, of which S are pilots)

• with (necessarily) joint channel estimation and data decoding.

Key points:

• The effect of unknown channel support manifests only in the O(1) offset.

• While [1] uses constructive proofs, the scheme proposed there is impractical.

[1] A. Pachai-Kannu and P. Schniter, “On communication over unknown sparse frequency

selective block-fading channels,” arXiv 1006.1548, June 2010.
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Practical Communication over the unknown Sparse Channel:

We now propose a communication scheme that. . .

• is practical, with complexity of only O(N log2N +N |S|) per block,

• (empirically) achieves the optimal prelog factor Rsparse =
N−S
N

,

• significantly outperforms LASSO-based “compressed channel sensing” (CCS).

Our scheme uses. . .

• a conventional transmitter: pilot-aided BICM OFDM,

• a novel receiver: based on loopy belief propagation (BP)

– key enabler: “generalized AMP” algorithm [Rangan 10]

building on [Guo/Wang 07, Donoho/Maleki/Montanari 09, Bayati/Montanari 10]
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Factor Graph for pilot-aided BICM-OFDM:
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using carefully chosen message approximations in each dashed box.

[2] P. Schniter, “Belief-propagation-based joint channel estimation and decoding for spectrally

efficient communication over unknown sparse channels,” arXiv:1012.4519, Dec 2010.
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Numerical Results — Perfectly Sparse Channel:

Transmitter:

• LDPC codewords with length ∼ 10000 bits.

• 2M -QAM with 2M ∈ {4, 16, 64, 256} and multi-level Gray mapping.

• OFDM with N = 1024 subcarriers.

• P “pilot subcarriers” and T “training MSBs.”

Channel:

• Length L = 256 = N/4.

• Sparsity S = 64 = L/4.

Reference Schemes:

• Pilot-aided LASSO was implemented using SPGL1 with genie-aided tuning.

• Pilot-aided LMMSE, support-aware MMSE, and bit+support-aware MMSE

channel estimates were also tested.
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NMSE & BER versus pilot/sparsity ratio (at SNR=20dB, T =0):
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implementable schemes reference schemes
LMMSE= LMMSE-based CCS SG= support-aware genie
LASSO= LASSO-based CCS BSG= bit- and support-aware genie
BP-n=BP after n turbo iterations

Observations:

• For pilot-based methods, channel estimation MSE improves monotonically with P .

• As P grows very large, BER suffers due to decrease in code-rate (since bpcu is fixed).

• For CCS, P =4S=L gives best tradeoff. (Note P = L is the Nyquist pilot rate!)
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Outage Rate versus SNR (with P =4S=L pilots and T =0 training):
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Key points:

• Belief propagation outperforms both LASSO and the support genie (SG).

• Belief propagation performs nearly as well as the bit+support-aware genie (BSG).

• With P = L, all approaches yield prelog factor R = N−L

N
= 3

4
, which falls short of

the optimal Rsparse =
N−S

N
= 15

16
.
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Bit-Rate versus SNR (with P =0 pilots & T =SM training MSBs):
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Key points:

• BP favors P =0 pilot subcarriers and T =SM training MSBs.

• BP achieves the sparse-channel’s capacity-prelog factor Rsparse =
N−S

N
.
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BER versus SNR (with P =4S=L pilots and T =0 training):
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implementable schemes reference schemes
LMMSE= LMMSE-based CCS SG= support-aware genie
LASSO= LASSO-based CCS BSG= bit- and support-aware genie
BP-n=BP after n turbo iterations

Key points:

• Sparsity can be exploited even at very low SNR.

• BP is only about 1dB worse than oracle bound, and 2dB better than LASSO.
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Conclusions:

• Channel sparsity manifests at larger communication bandwidths, as seen by

802.15.4a channel models.

• This motivates analysis of the (idealized) N -block, L-length, S-sparse

channel, for which we derived the high-SNR ergodic noncoherent capacity

Csparse(SNR) =
N − S

N
log(SNR) +O(1).

• We then proposed a factor-graph receiver with

– outage rate matching the capacity prelog factor N−S
N

,

– BER performance within 1dB of oracle bound and 2dB beyond LASSO,

– very low complexity: O(N log2N +N2M ) per N -block.

• Our approach leverages recent work on “generalized approximate message

passing” proposed in the context of compressed sensing.

• With 802.15.4a channels (not shown here), BER performance remains within

1dB of perfect-CSI bound and 4dB better than LASSO.
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Thanks!
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Performance limits of LASSO-based compressed channel sensing:

In the large system limit (i.e., L, S, P → ∞) with i.i.d F p, the Donoho/Tanner

phase transition curve (PTC) predicts where noiseless LASSO will fail:
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The PTC translates directly to a minimum required P/L for CCS (as SNR→∞).

[5] D. L. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional geometry,

with implications for modern data analysis and signal processing,” Phil. Trans. Royal Soc. A, 2009.
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