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/I\/Iotivation: \

e At large communication bandwidths, communication channels are not only

frequency selective but sparse.

e For example, consider channel taps = [xg,...,xr_1], where
— x, = x(nT) for bandwidth T—! = 256 MHz,
— xz(t) = h(t) * pre(t), and
— h(t) is generated randomly according to the 802.15.4a method.
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/Simplified Channel Model: \

Consider a discrete-time channel that is
e block-fading with block size N,
e frequency-selective with L taps (where L < N),
e sparse with S non-zero complex-Gaussian taps (where 0 < S < L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:
1. What is the capacity of this channel?

2. How can we build a practical comm system that operates near this capacity?
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/Noncoherent Capacity of the Sparse Channel: \

For the unknown NN-block-fading, L-length, S-sparse channel described earlier,
Pachai-Kannu & Schniter [1] established that

1. In the high-SNR regime, the ergodic capacity obeys

N - S
Coparse (SNR) = log(SNR) + O(1).
2. To achieve the prelog factor R,.... = NT_S It suffices to use

e pilot-aided OFDM (with N subcarriers, of which S are pilots)

e with (necessarily) joint channel estimation and data decoding.
Key points:
e The effect of unknown channel support manifests only in the O(1) offset.

e While [1] uses constructive proofs, the scheme proposed there is impractical.

[1] A. Pachai-Kannu and P. Schniter, “On communication over unknown sparse frequency

\\selective block-fading channels,” arXiv 1006.1548, June 2010. /
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/Practical Communication over the unknown Sparse Channel:

We now propose a communication scheme that. ..

e is practical, with complexity of only O(N logs N + N|S|) per block,
e (empirically) achieves the optimal prelog factor Ri,... = NT_S

e significantly outperforms LASSO-based “compressed channel sensing” (CCS).

Our scheme uses. . .

e a conventional transmitter: pilot-aided BICM OFDM,

e a novel receiver: based on loopy belief propagation (BP)
— key enabler: “generalized AMP" algorithm [Rangan 10]
building on [Guo/Wang 07, Donoho/Maleki/Montanari 09, Bayati/Montanari 10]

. /




Phil Schniter The Ohio State University

/Factor Graph for pilot-aided BICM-OFDM: \
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using carefully chosen message approximations in each dashed box.

[2] P. Schniter, “Belief-propagation-based joint channel estimation and decoding for spectrally

\\eﬂcficient communication over unknown sparse channels,” arXiv:1012.4519, Dec 2010. /
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/Numerical Results — Perfectly Sparse Channel: \
Transmitter:

e LDPC codewords with length ~ 10000 bits.

o 2M_QAM with 2M € {4,16, 64,256} and multi-level Gray mapping.

e OFDM with N = 1024 subcarriers.

e P “pilot subcarriers” and T “training MSBs."

Channel:
o Length L = 256 = N/4.
e Sparsity S =64 = L/4.

Reference Schemes:
e Pilot-aided LASSO was implemented using SPGL1 with genie-aided tuning.
e Pilot-aided , support-aware MMSE, and bit+support-aware MMSE

\\ channel estimates were also tested. /
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/I\IMSE & BER versus pilot/sparsity ratio (at SNR=20dB, 7'=0): \

64-QAM, 3 bpcu, 20dB SNR

64-QAM, 3 bpcu, 20dB SNR

BER

LMMSE ||

LASSO ||
—-SG
-6-BP-1
o BP-2 ||
-6-BP-co |

implementable schemes

reference schemes

LMMSE = LMMSE-based CCS
LASSO = LASSO-based CCS
BP-n = BP after n turbo iterations

SG = support-aware genie
BSG = bit- and support-aware genie

e For pilot-based methods, channel estimation MSE improves monotonically with P.
e As P grows very large, BER suffers due to decrease in code-rate (since bpcu is fixed).

\\ e For CCS, P=4S5=1L gives best tradeoff. (Note P = L is the Nyquist pilot rate!) /
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/Outage Rate versus SNR (with P=45=L pilots and T=0 training):\
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e Belief propagation outperforms both LASSO and the support genie (SG).

e Belief propagation performs nearly as well as the bit+support-aware genie (BSG).

e With P = L, all approaches yield prelog factor R = % = %, which falls short of
the optimal Rgaee = % = %.
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/Bit—Rate versus SNR (with P=0 pilots & T'=5M training MSBs): \
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Key points:
e BP favors P=0 pilot subcarriers and T'=S5M training MSBs.

N-S

e BP achieves the sparse-channel’s capacity-prelog factor Ry.se = —F

. /
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/BER versus SNR (with P=45=L pilots and 7'=0 training):
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implementable schemes

reference schemes

LMMSE = LMMSE-based CCS
LASSO = LASSO-based CCS

BP-n = BP after n turbo iterations

SG = support-aware genie
BSG = bit- and support-aware genie

e Sparsity can be exploited even at very low SNR.

e BP is only about 1dB worse than oracle bound, and 2dB better than LASSO.

N
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/Conclusions: \

e Channel sparsity manifests at larger communication bandwidths, as seen by
802.15.4a channel models.

e This motivates analysis of the (idealized) N-block, L-length, S-sparse

channel, for which we derived the high-SNR ergodic noncoherent capacity

N-S

Coparse(SNR) = log(SNR) + O(1).

e We then proposed a factor-graph receiver with

- - N-S
— outage rate matching the capacity prelog factor =%=,

— BER performance within 1dB of oracle bound and 2dB beyond LASSO,
— very low complexity: O(N log, N + NQM) per N-block.

e Our approach leverages recent work on ‘“generalized approximate message

passing” proposed in the context of compressed sensing.

e With 802.15.4a channels (not shown here), BER performance remains within
1dB of perfect-CSl bound and 4dB better than LASSO. /
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/Performance limits of LASSO-based compressed channel sensing: \

In the large system limit (i.e., L, S, P — oo) with i.i.d F',, the Donoho/Tanner

phase transition curve (PTC) predicts where noiseless LASSO will fail:

minimum P/L

FAILURE

SUCCESS

FAILURE

——compressed channel sensing
——optimum demodulation

0.2

The PTC translates directly to a minimum required P/L for CCS (as SNR— 00).

[5] D. L. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional geometry,
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\\with implications for modern data analysis and signal processing,” Phil. Trans. Royal Soc. A, 2009. /
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