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KI'he Sparse Reconstruction Problem:

From the M-length observation
y = Ax + e,
where

A is known and
e is AWGN,

we desire to estimate the N-length signal x, which is
1. underdetermined: x has N > M coefficients, and

2. sparse: x has K < M non-zero coefficients (K unknown).

.
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KI'he Variable Selection Problem: \

If we knew the active-coefficient indices S, we could write
y = Asxgs + e,
in which case estimation of the nonzero coefficients xg becomes trivial, e.g.,

Tiss = (AgAs) 'Agy
Tumsels = (AgAg+o01) ' Agy

This motivates the problem of Variable Selection:

From y = Ax + e, estimate the active-coefficient indices S.

Variable Selection is the “difficult” part of sparse reconstruction and a
long-standing problem in statistics!

[1] Hocking, “The analysis and selection of variables in linear regression,” Biometrics, 1976.
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/Bayesian Variable Selection: \

The MAP model estimate is

Smap = al"gmgxp(s\y)
= argmax p(y|S)p(S)

— argmx [ p(y]S,2) plalS)d - p(S)
x
N
which then depends entirely on the assumed priors p(x|S) and p(.5).

[1] Lempers, Posterior probabilities of alternative linear models, Rotterdam: Rotterdam Univ. Press, 1971
[2] Mitchell & Beauchamp, “Bayesian variable selection in linear regression,” J. Amer. Statist. Assoc., 1988.
[3] George & McCulloch, “Variable selection via Gibbs sampling,” J. Amer. Statist. Assoc., 1993.

[4] Smith & Kohn, “Nonparametric regression using Bayesian variable selection,” J. Econometrics, 1996.

[5] George & McCulloch, “Approaches for Bayesian variable selection,” Statist. Sinica, 1997.

\\[6] George, “The variable selection problem,” J. Amer. Statist. Assoc., 2000. /
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KI'ypical Priors in BVS: \

e iid Bernoulli coefficient-activity:

p(S) = M@ = N)WV=I5D where X < 0.5 induces sparsity,
e Gaussian xg:

p(xs|S) ~ N(ulg), Rs)

{ Rs =015, peR “iid”
for
Rs=02(ALAS)™, p=0 “Zellner

where the hyperparameters {u, 02, X\, 02} could be treated as. ..
1. random: assign non-informative conjugate priors & integrate out unknowns.

2. deterministic: use the EM-algorithm to estimate hyperparameters.

\\[1] Cui & George, “Empirical Bayes vs. fully Bayes variable selection,” J. Statist. Planning Infer., 2008. /

5



Phil Schniter The Ohio State University

/BVS Posteriors: \

Fixing {p, 0%, X\, 0%}, we get the model posterior

2 _
np(Sly) = —3/ly — nAsljs|[5.1 — 3 Indet(Pg) - |5 In(+52) + C,
where ® ¢ denotes the observation covariance matrix conditioned on model S,

By — O‘:%AsA%: -+ O‘?I|S| (iid)
02Ag(ALAg) 1AL + o2Is) (Zellner)

We also get the S-conditional coefficient posterior
p(xsly, S) ~ N(Zmmses, Es)

where

Evmmses = pljs + RsAG®S (y — pAglig)
s = Rg — RSqu)glASRS.
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/Connection to AIC/BIC/RIC: \

Under the Zellner prior, it can be shown that

Smap = arg min {%Hy — Agsiysislly + 1S In (1+ %)(%)2)#}-

xr

Thus there are strong connections between BVS and “information theoretic”

model selection methods, e.g.,

SAIC = argmin{ y—AsﬁZL5|S §-|— S -2}

S

SBIC = argmin{ y—ASaAZLS|S ;—l— S -lnM}

S

Q Q Q
o o onM

Sric = argmin{ Yy — Asis|s 3‘|‘ S -21nN}.

S

\\[1] George & Foster, “Calibration and empirical Bayes variable selection,” Biometrika, 2000. /
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/Bayesian Model Averaging: \
e Previously we motivated Bayesian variable selection, e.g.,
SMAP = arg mse}xp(S]y)
for subsequent use in a conditional estimation strategy, e.g.,

CACMMSE|S*MAP = E{z|y, Smapr}

e But having access to the “soft information” {p(S|y)} allows more
sophisticated unconditional estimates, e.g.,

TMMSE = Z«’fBMMSEm p(Sly)
S

that are well approximated by summing over the few most probable S.

This approach is known as Bayesian Model Averaging.

[1] Leamer, Specification Searches, New York: Wiley 1978.

[2] Raftery, Madigan, & Hoeting, “Bayesian model averaging for linear regression models,” J. Amer.
Statist. Assoc., 1997.

\\[3] Clyde and George, “Model Uncertainty,” Statist. Sci., 2004. /
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/BMA Implementation: \

e The statistical literature focuses on random search based on Gibbs Sampling
or Markov Chain Monte Carlo.

e We instead proposed a fast O(NN M) update/downdate which can be used in
a (non-exhaustive) tree search:

— iid Gaussian xg: “Fast Bayesian Matching Pursuit” [1]
— Zellner Gaussian zg: “Optimized OMP” [2] plus penalty term |S| ln(%)
with a total complexity of O(MNK).

e The 4 hyperparameters {1, 02,02, A} can be determined using the EM
algorithm, or a simplification thereof [3].

[1] Schniter, Potter, and Ziniel, “Fast Bayesian matching pursuit,” ITA, 2008.
[2] Rebollo-Neira and Lowe, “Optimized orthogonal matching pursuit,” IEEE Sig. Proc. Letters, 2002.

[3] Schniter, Potter, and Ziniel, “Fast Bayesian matching pursuit: Model uncertainty and parameter

\\estimation for sparse linear models,” Preprint, 2008. /
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KI'ipping’s Relevance Vector Machine (RVM): \

The RVM is another approach to Bayesian sparse reconstruction:

e For coefficient activity, RVM uses continuous “precisions” o € (RT):

x|a ~ independent A(0,a, ') and «a ~iid I'(0,0)
eld ~ N(0,57'T) and 3~ T(0,0)

e The RVM's gamma hyperpriors lead to the convenient posterior
= pxA'y

plaly o) = Nw®) for {27 PEH

and thus xymse = .

e The EM algorithm can be used to estimate {a, 3} jointly with {u, 3}
Can implement with an O(NK?) recursion after an O(N?M) initialization.

[1] Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Machine Learning Res., 2001.

[2] Tipping & Faul, “Fast likelihood marginal maximization for sparse Bayesian models,” IWAIS, 2003.

\\[3] Wipf and Rao, “Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Processing, 2004. /
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/BMA versus RVM: \

e Both are Bayesian approaches to sparse parameter estimation.

e For coefficient activity, RVM uses the continuous parameterization «, while
BMA uses the discrete parameterization S.

e Implementations require roughly the same complexity.

e Upon termination, the RVM posterior is Gaussian

p(xly) ~ N(p, %)

whereas the BMA posterior is a Gaussian mixture:

w’y ZN MMSE|S7 A) (S|y)

Thus, the BMA posterior can be more informative.
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/Numerical Experiments — “Compressible” Signal: \
Setup: N = 512
M = 128
A : iid N(0,1) with columns scaled to unit norm
x : sorted x, = e P" for decay rate p € (0,1)
SNR = 15dB
Algorithms: OMP — Tropp & Gilbert

StOMP — Donoho, Tsaig, Drori & Starck
GPSR-Basic — Figueiredo, Nowak & Wright (ming, ||y — Ax||5 + 7||z/1)
SparseBayes — Wipf & Rao (RVM)
BCS — Ji & Carin (RVM)
FBMP — Schniter, Potter & Ziniel (BMA)

|2 — |3

Performance: NMSE = Avg{ } over 2500 random trials.

I3
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/NMSE versus decay rate p: \

N=512,M =128, SNR=15dB,D__ =5E__ =20, T=2000
-8 T \
+FBMPmmse (w/ EM update)
-10 ~—FBMP__(w/EM update) | |
—v— SparseBayes
~12 ——OMP .
StOMP
——GPSR
—14r . BCS i
_ ‘ ——VB-BCS
8 -16- -
L v A4 v —
(n S 4
= -18F .
Z
_207 -
_227 -
_247 -
_28.1 0‘.2 013 0.‘4 0p5 O.‘6 0‘.7 018 0.9
FBMP outperformed GPSR and OMP by 2 dB and others by much more.
Note: The signal priors favor GPSR.

. /
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/Sparsity of estimate versus decay rate p: \
N =512, M =128, SNR = 15 dB, Dm =5 Emax =20, T =2000

—e—FBMPmmse (w/ EM update)

+FBMPmap (w/ EM update)

ax
60

50 —¥— SparseBayes N
—— OMP
StOMP
——GPSR
40 BCS B

v

w
of

recovery| I0

|Ix

N
o

10

The estimates returned by FBMP are among the sparsest.

. /
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/Performance Guarantees for MAP Variable Selection: \

Assuming that A that satisfies a Restricted Isometry Property (RIP), we've
recently shown that the following properties hold with high probability for
reasonably small constants K1, Ko, K3, K4:

1. The energy of the missed signal coefficients is upper bounded by KiMo?.
2. No active coefficients are missed when |u| > 4071 + Ko/ Mo?2.

3. No coefficients are falsely detected when |u| > K3vV Moy + K4/ Mo?.
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/Pair—Wise Error Probability Analysis: \

e We've recently shown that the probability of BVS-MAP incorrectly choosing
S over correct S, i.e.,

Pgg = Pr{p(Sly) > p(Sly) | S}
has the following upper bound (in the Zellner case):
0'2 0'2
P§|S < Pr {J%—fanga — J—é(l—e)Zm > 7'}
where A o2\ (11—
r = (15— 18)) mn((1+2) (132)°)

e = RIP constant

Te ~ V2o
fa X‘Sfalse alarm‘
Zm ~ X°

X‘gmiss‘

e A Chernoff bound or saddle-point approximation can then be applied to
characterize error probability.

. /
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/Conclusion: \

e Bayesian variable selection (BVS) and Bayesian model averaging (BMA) are
well established statistical methods for sparse reconstruction, typically

implemented via Gibbs sampling or MCMC.
e There are close connections between BVS and AIC/BIC/RIC.
e There are similarities & differences between BMA and Tipping's RVM.

e We proposed novel BVS/BMA implementations based on tree-search that
lead to fast “matching pursuit”-like algorithms.

e Numerical experiments suggest that BMA vyields excellent NMSE relative to
other state-of-the-art algorithms.

e We presented preliminary results on BVS performance guarantees and error
rate analyses based on the restricted isometry property (RIP).
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