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The Sparse Reconstruction Problem:

From the M -length observation

y = Ax + e,

where

A is known and

e is AWGN,

we desire to estimate the N -length signal x, which is

1. underdetermined : x has N > M coefficients, and

2. sparse: x has K < M non-zero coefficients (K unknown).
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The Variable Selection Problem:

If we knew the active-coefficient indices S, we could write

y = ASxS + e,

in which case estimation of the nonzero coefficients xS becomes trivial, e.g.,

x̂LS|S = (AT
SAS)−1AT

Sy

x̂MMSE|S = (AT
SAS + σ2

eI)−1AT
Sy

This motivates the problem of Variable Selection:

From y = Ax + e, estimate the active-coefficient indices S.

Variable Selection is the “difficult” part of sparse reconstruction and a

long-standing problem in statistics!

[1] Hocking, “The analysis and selection of variables in linear regression,” Biometrics, 1976.
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Bayesian Variable Selection:

The MAP model estimate is

ŜMAP = arg max
S

p(S|y)

= arg max
S

p(y|S)p(S)

= arg max
S

∫

x

p(y|S, x)
︸ ︷︷ ︸

N
p(x|S)dx · p(S)

which then depends entirely on the assumed priors p(x|S) and p(S).

[1] Lempers, Posterior probabilities of alternative linear models, Rotterdam: Rotterdam Univ. Press, 1971

[2] Mitchell & Beauchamp,“Bayesian variable selection in linear regression,”J. Amer. Statist. Assoc., 1988.

[3] George & McCulloch, “Variable selection via Gibbs sampling,” J. Amer. Statist. Assoc., 1993.

[4] Smith & Kohn, “Nonparametric regression using Bayesian variable selection,” J. Econometrics, 1996.

[5] George & McCulloch, “Approaches for Bayesian variable selection,” Statist. Sinica, 1997.

[6] George, “The variable selection problem,” J. Amer. Statist. Assoc., 2000.
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Typical Priors in BVS:

• iid Bernoulli coefficient-activity:

p(S) = λ|S|(1 − λ)(N−|S|) where λ < 0.5 induces sparsity,

• Gaussian xS :

p(xS |S) ∼ N (µ1|S|,RS)

for

{
RS = σ2

xI |S|, µ ∈ R “iid”

RS = σ2
x(AT

SAS)−1, µ = 0 “Zellner”

where the hyperparameters {µ, σ2
x, λ, σ2

e} could be treated as. . .

1. random: assign non-informative conjugate priors & integrate out unknowns.

2. deterministic : use the EM-algorithm to estimate hyperparameters.

[1] Cui & George, “Empirical Bayes vs. fully Bayes variable selection,” J. Statist. Planning Infer., 2008.
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BVS Posteriors:

Fixing {µ, σ2
x, λ, σ2

e}, we get the model posterior

ln p(S|y) = −1
2

∥
∥y − µAS1|S|

∥
∥2

Φ
−1

S

− 1
2 ln det(ΦS) − |S| ln(1−λ

λ
) + C,

where ΦS denotes the observation covariance matrix conditioned on model S,

ΦS =

{

σ2
xASAT

S + σ2
eI |S| (iid)

σ2
xAS(AT

SAS)−1AT
S + σ2

eI |S| (Zellner)
.

We also get the S-conditional coefficient posterior

p(xS |y, S) ∼ N
(
x̂MMSE|S ,ΣS

)

where

x̂MMSE|S = µ1|S| + RSAT
SΦ

−1
S (y − µAS1|S|)

ΣS = RS − RSAT
SΦ

−1
S ASRS .
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Connection to AIC/BIC/RIC:

Under the Zellner prior, it can be shown that

ŜMAP = arg min
S

{
1
σ2

e

∥
∥y − ASx̂LS|S

∥
∥2

2
+ |S| · ln

(
(1 + σ2

x

σ2
e

)(1−λ
λ

)2
)σ2

x+σ2
e

σ2
x

}

.

Thus there are strong connections between BVS and “information theoretic”

model selection methods, e.g.,

ŜAIC = arg min
S

{
1
σ2

e

∥
∥y − ASx̂LS|S

∥
∥2

2
+ |S| · 2

}

ŜBIC = arg min
S

{
1
σ2

e

∥
∥y − ASx̂LS|S

∥
∥2

2
+ |S| · lnM

}

ŜRIC = arg min
S

{
1
σ2

e

∥
∥y − ASx̂LS|S

∥
∥2

2
+ |S| · 2 lnN

}

.

[1] George & Foster, “Calibration and empirical Bayes variable selection,” Biometrika, 2000.
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Bayesian Model Averaging:

• Previously we motivated Bayesian variable selection, e.g.,

ŜMAP = arg max
S

p(S|y)

for subsequent use in a conditional estimation strategy, e.g.,

x̂MMSE|ŜMAP
= E{x|y, ŜMAP}.

• But having access to the “soft information” {p(S|y)} allows more

sophisticated unconditional estimates, e.g.,

x̂MMSE =
∑

Ŝ

x̂MMSE|Ŝ p(Ŝ|y)

that are well approximated by summing over the few most probable Ŝ.

This approach is known as Bayesian Model Averaging.

[1] Leamer, Specification Searches, New York: Wiley 1978.

[2] Raftery, Madigan, & Hoeting, “Bayesian model averaging for linear regression models,” J. Amer.

Statist. Assoc., 1997.

[3] Clyde and George, “Model Uncertainty,” Statist. Sci., 2004.
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BMA Implementation:

• The statistical literature focuses on random search based on Gibbs Sampling

or Markov Chain Monte Carlo.

• We instead proposed a fast O(NM) update/downdate which can be used in

a (non-exhaustive) tree search:

– iid Gaussian xS : “Fast Bayesian Matching Pursuit” [1]

– Zellner Gaussian xS : “Optimized OMP” [2] plus penalty term |Ŝ| ln(1−λ
λ

)

with a total complexity of O(MNK).

• The 4 hyperparameters {µ, σ2
x, σ2

e , λ} can be determined using the EM

algorithm, or a simplification thereof [3].

[1] Schniter, Potter, and Ziniel, “Fast Bayesian matching pursuit,” ITA, 2008.

[2] Rebollo-Neira and Lowe, “Optimized orthogonal matching pursuit,” IEEE Sig. Proc. Letters, 2002.

[3] Schniter, Potter, and Ziniel, “Fast Bayesian matching pursuit: Model uncertainty and parameter

estimation for sparse linear models,” Preprint, 2008.
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Tipping’s Relevance Vector Machine (RVM):

The RVM is another approach to Bayesian sparse reconstruction:

• For coefficient activity, RVM uses continuous “precisions” α ∈ (R+)N :

x|α ∼ independent N (0, α−1
n ) and α ∼ iid Γ(0, 0)

e|β ∼ N (0, β−1I) and β ∼ Γ(0, 0)

• The RVM’s gamma hyperpriors lead to the convenient posterior

p(x|y,α, β) ∼ N (µ,Σ) for

{
µ = βΣAT y

Σ =
(
βAT A + D(α)

)−1

and thus x̂MMSE = µ.

• The EM algorithm can be used to estimate {α, β} jointly with {µ,Σ}.
Can implement with an O(NK2) recursion after an O(N2M) initialization.

[1] Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Machine Learning Res., 2001.

[2] Tipping & Faul, “Fast likelihood marginal maximization for sparse Bayesian models,” IWAIS, 2003.

[3] Wipf and Rao, “Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Processing, 2004.
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BMA versus RVM:

• Both are Bayesian approaches to sparse parameter estimation.

• For coefficient activity, RVM uses the continuous parameterization α, while

BMA uses the discrete parameterization S.

• Implementations require roughly the same complexity.

• Upon termination, the RVM posterior is Gaussian

p(x|y) ∼ N (µ,Σ)

whereas the BMA posterior is a Gaussian mixture:

p(x|y) ∼
∑

Ŝ

N
(
x̂MMSE|Ŝ ,Σ

Ŝ

)
p(Ŝ|y).

Thus, the BMA posterior can be more informative.
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Numerical Experiments — “Compressible” Signal:

Setup: N = 512

M = 128

A : i.i.d. N (0, 1) with columns scaled to unit norm

x : sorted xn = e−ρn for decay rate ρ ∈ (0, 1)

SNR = 15dB

Algorithms: OMP – Tropp & Gilbert

StOMP – Donoho, Tsaig, Drori & Starck

GPSR-Basic – Figueiredo, Nowak & Wright (minx ‖y − Ax‖2

2
+ τ‖x‖1)

SparseBayes – Wipf & Rao (RVM)

BCS – Ji & Carin (RVM)

FBMP – Schniter, Potter & Ziniel (BMA)

Performance: NMSE , Avg

{‖x̂ − x‖2
2

‖x‖2
2

}

over 2500 random trials.
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NMSE versus decay rate ρ:
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FBMP outperformed GPSR and OMP by 2 dB and others by much more.

Note: The signal priors favor GPSR.
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Sparsity of estimate versus decay rate ρ:
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The estimates returned by FBMP are among the sparsest.
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Performance Guarantees for MAP Variable Selection:

Assuming that A that satisfies a Restricted Isometry Property (RIP), we’ve

recently shown that the following properties hold with high probability for

reasonably small constants K1, K2, K3, K4:

1. The energy of the missed signal coefficients is upper bounded by K1Mσ2
e .

2. No active coefficients are missed when |µ| > 4σ1 + K2

√
Mσ2

e .

3. No coefficients are falsely detected when |µ| > K3

√
Mσ1 + K4

√
Mσ2

e .
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Pair-Wise Error Probability Analysis:

• We’ve recently shown that the probability of BVS-MAP incorrectly choosing

Ŝ over correct S, i.e.,

P
Ŝ|S = Pr

{
p(Ŝ|y) > p(S|y)

∣
∣ S

}

has the following upper bound (in the Zellner case):

P
Ŝ|S ≤ Pr

{
σ2

x

σ2
x+σ2

e

Zfa − σ2
x

σ2
e

(1−ǫ)Zm > τ
}

where
τ =

(
|Ŝ| − |S|

)
ln((1+ σ2

x

σ2
e

)
(

1−λ
λ

)2
)

ǫ = RIP constant

Zfa ∼ χ2
|Ŝfalse alarm|

Zm ∼ χ2
|Ŝmiss|

• A Chernoff bound or saddle-point approximation can then be applied to

characterize error probability.
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Conclusion:

• Bayesian variable selection (BVS) and Bayesian model averaging (BMA) are

well established statistical methods for sparse reconstruction, typically

implemented via Gibbs sampling or MCMC.

• There are close connections between BVS and AIC/BIC/RIC.

• There are similarities & differences between BMA and Tipping’s RVM.

• We proposed novel BVS/BMA implementations based on tree-search that

lead to fast “matching pursuit”-like algorithms.

• Numerical experiments suggest that BMA yields excellent NMSE relative to

other state-of-the-art algorithms.

• We presented preliminary results on BVS performance guarantees and error

rate analyses based on the restricted isometry property (RIP).
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