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Abstract—A low-complexity recursive procedure is presented recent results by several authors [13]-[15] have demadestra
for minimum mean squared error (MMSE) estimation in linear  sufficient conditions omA, v, and sparsity ofe such that the

regression models. A Gaussian mixture is chosen as the prior convex problem in (3) fop = 1 provides the uniaue solution
on the unknown parameter vector. The algorithm returns both P (3) fop P q
to the non-convex task

an approximate MMSE estimate of the parameter vector and a
set of high posterior probability mixing parameters. Emphasis
is given to the case of a sparse parameter vector. Numerical
simulations demonstrate estimation performance and illustrate
the distinctions between MMSE estimation and MAP model

selection. The set of high probability mixing parameters not only These proofs have validated the widespread use of (2)-(3),
provides MAP bas_ls selec_tlor_\, b_ut also yields relative probabilities providing a deeper understanding, spurring a resurgesrist,
that reveal potential ambiguity in the sparse modef . - . « . .
and promoting the interpretation as “compressive serising.
. INTRODUCTION The large class of methods adopting (2) may be interpreted
as implicitly seeking the Bayesian MAP estimatezofinder
a sparsity inducing prior

min ||z]lo st |[Az —yl|3 < e (4)

Sparse linear regression is a topic of long standing inter
in statistics and signal processing. The linear regressiodel
is

xp{ — 2 Pl
y = Az +v, 1) p(@) o exp{ = gllz}} (5)

with unknown parameter vectar, unit norm columns in the  The method of sparse Bayesian learning [16], [17] expficit|
regressor matrix4, and additive noisez. We provide a brief, adopts a Bayesian framework with independent, zero-mean,
and necessarily incomplete, survey of existing approachesaussian with unknown varianeg. The unknown variances
with an emphasis on themes relevant to the proposed estimaéqae given the Gamma Conjugate prior’ and an expectation_
Algorithmic approaches have been proposed over segaximization (EM) iteration computes a MAP estimatezof
eral decades, providing greedy heuristic solutions. Exam-|, e jiterature, primary focus is placed on the detectibn o
ples include CLEAN [1], iteratively re-weighted least-sai@s i ey significant entries of the sparse-a task alternatively
[2], and orthogonal matched pursuit (OMP) [3]. Tropp anglyown as model selection or basis selection. In contrast, we
Gilbert [4], for example, provide sufficient conditions dmet adopt a minimum mean-squared error (MMSE) estimation
sparsity ofz and correlation among columns ef such that o yjation and focus on accurately inferring from the
the gre_e_dy_OMP prpvides correct model selection with hi%isy observationsy. The MMSE estimation approach was
probability in the noiseless measurement case. likewise adopted in a crisp exposition by Larsson anceel
In addition to greedy approaches, penalized least-squajeg). as they noted, the Bayesian formulation requaesiori
solutions forz .have likewise been presented in the pas_t fo‘érssumptions that are explicitly stated and admit unambiguo
decades. In this class of approaches, parameters are f@Inderpretation. (We specifically identify similarities fa8] in

the optimization Section V.)
& = argmin || Az —yll3 + Az}, (2)  As a byproduct of approximating the proposed MMSE
_ * estimation algorithm, we also provide exact ratios of piste
or, equivalently for some > 0 probabilities for a set of high probability solutions to the
& = argmin ||z|, st |Az— 2 <e 3) detect|_on proplem. These relatl_ve probabilities servesteal
x potential ambiguity among multiple models, due to low slgna

R|dge regression [5] (Tikhonov regu|arizati0n) adopt& 2, to-noise ratio and/or Significant correlation among colarm

while basis pursuit [6] and Lasso [7] uge= 1. Equation (2) the regressor matrixA.

has been widely adopted, for example in radar imaging [8], im The remainder of the paper is organized as follows. In

age reconstruction [9], [10], and elsewhere [11], [12].dalet Section Il, we state the signal model and explicitly identif
the assumed priors. In Section I, we describe our proposed

1This work was supported by the National Science FoundatimeuGrant technique, and in Section IV we investigate its performance
0237037, the Office of Naval Research grant NO0014-07-B0& Wright icallv. In Secti v di findi di
Brothers Institute grant GRT00009715, and AFOSR underwag550-06- Numerically. In Section V, we discuss our findings, and in

1-0324. Section VI we conclude.



1. SIGNAL MODEL can be quite small and therefore practical to compute. Wigrki
Consider observing € R, a noisy linear combination of I" the log domain, we find

the parameters ix: € RY: u(s) = Inp(y|s)p(s) (11)
N—-1
y = Az +v, (6)
= Inp(yls)+ > _ Inp(sn) (12)
where the noisev is assumed to be white Gaussian with n=0
variances?, i.e.,v ~ N(0,02I,;), and the columns oA are = Inp(y[s) + [|slloInp1 + (N — [s]lo) In(1 — p1) (13)
taken to be unit-norm. Our focus is on the under-determined  — 1 p(y|s) + ||s[oIn 2| Nin(l—p) (14)
case (i.e.,N > M) with a suitablysparseparameter vector Y 1 n 1T .
z (e |z]o < N). = —5 In27 — 5 Indet(®(s)) — 59" (s)"'y
To model sparsity, we assume that the parameters are + [[sllon 55— + NIn(1 — p1). (15)
generated from a Gaussian mixture density: We will refer to ;u(s) as thebasis selection metric
z|s ~ N(0, R(s)), (") B. MMSE Parameter Estimation
where the covariancR(s) is determined by a discrete random For applications in which the identification of the most prob
vector s = [sg,...,sy_1)7 of mixture parameters. For sim-able basis is the primary objective, the sparse coefficients

plicity, we take R(s) to be diagonal withR(s)],,, = o2 , can be regarded as nuisance parameters. In other appigatio
implying that {z,|s,}"-) are independent with:,|s, ~ however, estimation of is the primary goal.

n=0

N(0,02 ). Also for simplicity, we assume that the mixture The MMSE estimate of from y is

parametergs,, } " are Bernoulli(p;). To model sparsex, . . _

we ChOOSGJ’g — 0 andp1 < 1. Lmmse ‘= E{CI]‘|y} - Zp(8|y) E{$|y, S} (16)

From the model assumptions it can be seen that s€s

2

where from (8) it is straightforward (e.g., [19, p. 155]) to

s~ N (0, [RZ()S;;T A};?Sq) ’ (8) obtain

E{zly,s} = R(s)AT®(s)"'y. 17
where
Although exact evaluation of (16) involves a summation over

®(s) := AR(s)A" + 0’1 . (9) 2V terms, which may be computationally infeasible, the
MMSE estimate can be closely approximated using only the

) . o dominant posteriors:
In this section, we propose an efficient search procedure

to find the most probable basis configurations along wittr thei Tammse 1= Z p(sly) E{z|y, s}. (18)
respective posterior probabilities. These posteriorstiban be sE€S,

used to compute an MMSE estimate of the sparse parametgi@&wise, the covariance of the corresponding estimatioore
x. can be closely approximated as

A. Basis Selection Metric Cov{z|y} ~ Z p(sly) [Cov {z|y, s} + (Zammse —

As a consequence of the model described in Section II, the SES.
nonzero locations irs specify which of the basis elements E{z|y, s})(Zammse — E{a:|y,s})T] (29)
(i-e., columns ofA) are “active.” Thus, basis selection reduces coy(z|y, s} = R(s) — R(s)A”®(s) ' AR(s). (20)
to estimation ofs. Because we have adopted a probabilistic
model for {s,y}, we can not only computevhich of the Note that, in evaluating (18)-(20), the primary challenge
basis configurations are most likely, but atsow likelythese becomes that of obtaining s|y) and®(s)~' for eachs < ..
bases are. The latter is accomplished through the estimatit the sequel, we propose a fast algorithm to search for the

I11. ESTIMATION OF BASIS AND PARAMETERS

of dominant posteriorg(s|y). dominant basis configurationS, that, as a byproduct, also
The posterior can be written, via Bayes rule, as generateg(sly) and ®(s)~" for each of thes returned by
(w)p(s) the search.
-~ p(yls)p(s
p(sly) = S wes Pwls)p(s)) 10 ¢, Bayesian Matching Pursuit

We now describe an efficient means of determintfgthe
set of mixture parameters yielding the dominant values of
p(s|y), or, equivalently, the dominant values pfs). First
we present a prosaic description of the search heuristé; th
detailed algorithm will be specified in Section IlI-E.

2|n other words s, is binary withPr{s, = 1} = p; andPr{s, = 0} = The search starts with= 0 and first “turns on” one mixture
1—p1. parameter at a time, yielding a set@fbinary vectorss which

whereS = {0, 1}, which shows that estimating(s|y)}scs
reduces to estimatingp(y|s)p(s)}scs. The size ofS makes
it impractical to computdp(s|y)} or {p(y|s)p(s)} forall s €
S. However, the sef, responsible for thdominantposteriors



we refer to asS("). The metricsu(s) for the N vectors in  which, combined with (15), yield

S are then computed, and the elementsSéP with the ) 02 T ,

D largest metrics are collected i), For each candidate p(sn) = p(s) + 3By + FBu(y” by)” + In 72— (32)

in SV, all locations of a second active mixture parameter are An(s)

then considered, yieldingV —1)+ (N —2)+---+(N—D) = "

ND — w unique binary vectors to store i§®. The [N sunjmary,ATl(s) in (32) quantifies the change in our basis
metrics u(s) for all vectors inS®) are then computed, andselection metriqu(-) due to the activation of the" tap of s.
the elements of(?) with the D largest metrics are collected INE. Fast Bayesian Matching Pursuit

S Then, for each candidate vector &, all possibilities

. . N71 - _
of a third active mixture parameter are considered, andethas Notice ghat the cost of cqmput|qg[5_n n=o Vid (24)-(25)
. _ (3) 15 O(NM?) if standard matrix multiplication is used. As we
with the D largest metrics are stored ifi,”’. The process

, So(P) now describe, the complexity of this operation can be made
continues untilS," 7 is compu_ted, where® can be cho(spe;’n linear in M by exploiting the structure o (s)~".
to makePr(||sflo > P) sufficiently smalf? Note thatS. Say thatt = [t1,,...,1,]T contains the indices of active
constitutes the algorithm’s final estimate &f. Henceforth elements ins. Then, from (23),

we denote this final estimate h& D (T
®(s) ' = Ly —o? X, B0, (33)

D. Fast Metric Update

(%) i
For use with the aforementioned Bayesian matching purstifféré®"” and A denote the values db and 3 generated
(BMP) algorithm, we propose a fast metric update whicWh'_Ie activating |r.1de>_<ti.|n the mixture parameter vector
computes the change ja(-) that results from the activation d€fined by the active indicesy, ..., t;-.]. From (24), we are
of a single mixture parameter. More precisely, if we denof€duired to compute

by s,, the vector identical tas except for then!” coefficient, b, = La, -a?¥", BOHD pIT g, (34)
which is active ins,, but inactive ins (i.e., [s,], = 1 and —
[s]. = 0), then we seek an efficient method of computing = Cgf)

An(s) := p(sn) — u(s). Note that the metric at the root Node hen activating then' tap in s. The key observation is

(ie., s =0)is that the coefficientgcl’}¥-! need only be computed once,
1(0) = =& 2w — Lno? - JL:(y|3 i.e., when index; is activated. Furthermorgcy’ 1= only
+ Nln(l—p) (21) need to be computed fasurviving indice_s t;. Thes_e tricks _
form the foundation of the Fast Bayesian Matching Pursuit
via (15) and the fact tha®(0) = o1 ,;. (FBMP) algorithm outlined in Table I. From the table, it is
To derive the fast metric update, we start with the propergtraightforward to verify that the number of multiplicat®
that, for anyn ands, required by the algorithm i©(NMPD).
®(s,) = ®(s) +o?aal, (22) V. NUMERICAL EXPERIMENTS
from which the matrix inversion lemma implies A. FBMP Behavior
Numerical experiments were conducted to investigate the
-1 _ -1 2 T
B(sn)” = B(s) X — 01Pnbnby, (23)  performance of FBMP from Table | for various values of
b, == ®(s) an (24)  model and algorithmic parameters, and the results aretegpor
B = (1+gfagbn)*1, (25) in Figs. 1-5. Unless otherwise noted, the experiments used
_ _ N = 256, M = 64, SNR = 15 dB, p; = 0.04, and
Equations (22)-(25) then imply P = [erfc—l(gpo), /2Npi(1 —p1) + Npi| where Py =
yT®(s,) ly = yT(®(s)7! - U%ﬁnbnb£>y (26) 9.0200?_ is :Ir:ecta:_?et value o;,f]gé.;!o o'>fp5\/'} as sugtgesttzd
— yTB(s) Ly — 028, (yTb,)? @7) in Section IlI-C. Here we us = ZL55, as motivate

5 - by the unit-norm assumption on the columnsAf The plots
Indet(®(sy)) = Indet (®(s) + oiasa,) (28) represent an average 860 independent model realizations.
In {(1 + U%GZL“(I)(S)—lan) det (i’(s))} For each realization ofA, an i.i.d. r?ormal matrix was drawn
and then scaled to make each of its columns unit-norm. Note

= Indet(®(s)) — In 5y (29)  that the average number of active coefficiefts|z|o} =

[snlloln 2= = ([Isllo + 1) In 72 (30) p.N is approximately equal td0 when p; = 0.04 and
= ||sljoln {22~ + In {2, (31) N = 256. When referring to the “normalized mean-squared

& & error’ (NMSE) of an estimate, we mearE{||z—z||2/| |3}

30ne could also determine the stopping paramétexdaptively. In Fig. 1, we plot NMSE versus observation length for

“Notice that||s||o is BinomiaN,p1) distribution. WhenNp; > 5, it FBMP under several values of the search paramBterecall
is common to use the appfof'mat'cﬂm\\t; NNN (Np1, Npi(1=p1)),in  that D effects a tradeoff between search accuracy and search
which casePr(||s[lo > P) = 3 erfc (7%) complexity (the latter of which is expected to grow linearly



po1 = —H 2w — & ino? — Ly |lyll2 + NIn(1 - p1); when p;vf’ > 0.16, increasingD from 1 to 10 can yield an
forn=1:N, NMSE improvement of3 dB. When 22X < 0.16, however,

bl,n =0 “an,

- - D =1 appears to suffice.
/Bl,n = (1 +U%a£bl,n) 1; pp

In Fig. 4, we plot NMSE versuSNR for FBMP under

~ o2 = -
= 101 + 3108 Brn + FBin(yTbin)? + log T2 several values of search paramefer(where { M, p,} corre-
f;rdq -1.D spond to the aforementioned breakpoints in the NMSB4s-
e =n coryresponding g™ largestiy ; and NMSE-vsp; N curves). Figure 4 shows a satisfying linear
Hiq =10, ) relationship between NMSE arf8NR (in dB). As expected,
bf; =bin,; 0513 = ATbgl_g: ﬁﬂ = Bin,; t<11; =Ny, the effect of increasind from 1 to 10 is negligible because
fonrd . p % = 0.16; a more significant effect would be expected if
ford—1:D, 21N had been larger.
forn=1:N, L ) , In Fig. 5, we plot NMSE versusSNR for two FBMP-
ban =0 2an — Y 07, bélil,d B [l derived estimates: the (approximate) MMSE estimiat@mse
Ban = (1+0%alby,) from (18) and the quasi-MAP estimaigmap from (36):
) 1 ) q p
~ o2 = -
fid,n = Hp—1,d + 3108 Ban + G- Ban (¥ ban)? +log 24— . ) R
; x = E{xl|y, s . 36
it ne{tl”, 377 thenjig,, = —oo; amap {z|y, Smap} (36)
enfj”d Whereaszammse is the averageof the conditional MMSE
forg=1:D, estimatesE{xz|y, s} over s € S,, the estimateZamap IS
{d«,n+} = {d,n} corresponding tq" largestjig .. MMSE conditioned on (FBMP’s estimate of) the MAP basis-
M(pz;;z = fdeny; ) ). o) = » configurationsmap. IN terms of average NMSE, Fig. 5 demon-
%»r,% = 117r{*,niilcp,q =A"by g Bpg =Bdn. lpg =N strates thatZammse are aboutl dB better than@map at
b(i;:.bfi) " Q) o g () ) ) SNR < 10 dB and abouf.5 dB better atSNR > 10 dB. The
end | PThen TP Temhar PRA T EpmLar e e Lal - improvement reflects the advantage of allowingdocertainty
end in the estimated basis.
end

Finally, in Fig. 6, we plot average FBMP runtime versus
TABLE | search parameteD. As expected from the algorithmic de-
EaST BAYESIAN MATCHING PURSUIT scription in Table I, the runtime scales linearly in

B. Comparison To Other Algorithms

In Figs. 7-8 we compare FBMP to several other popular
arse estimation algorithms, including SparseBayes, [16]
MP [4], StOMP [20], GPSR-Basic [21], and BCS [22].
Unless otherwise noted, the model parameters were set at
N = 512, M = 128, p; = 0.04, ando? = 0.001 (which
corresponds t&NR = 19 dB at the nominal values oV, M,
and p;). Our plots represent an average 16f0 independent
model realizations.
For FBMP, we usedhon-optimized MATLAB code (which
Jwe plan to optimize in the near future), and unless otherwise
noted usedD = 5 and the samé’ specified in Section IV-A.
For the other algorithms, we used the publicly available
Smap := argmaxp(sly). (35) implementations that were found at the web-sites listed in
SE€S, our bibliography. The algorithmic parameters were chosen
In particular, the traces in Fig. 2 show number-of-missdargely in accordance with suggested values provided by the
versus observation lengf for FBMP under several values ofauthors of the software, or in accordance with values used in
search parametdd. Because the number-of-misses in Fig. 2xamples that accompanied the algorithms. The SparseBayes
closely parallel the NMSEs in Fig. 1, we conjecture that thalgorithm was tested with the initial hyper-parameter ®et t
sub-optimality of FBMP’s greedy search is to blame for the = 1. StOMP was tested using the “False Alarm Control”
relatively large NMSE values that occur whéii < 64 (i.e., thresholding strategy, with the thresholding parametértce
when 22X > 0.16). ]\%(1 — +lzllo), where the default number of iterations,
In Fig. 3, we plot NMSE versug; N, the expected number @ = 10, was used. The-penalty in the GPSR algorithm
of active coefficients, for FBMP under several values of earwas chosen as = 0.1]|A”y||., and the MSE kept for
parameterD. There we see that NMSE performance quicklgomparison purposes was the smaller of the MSEs of the
degrades a®; N increases abovey N = 10 (i.e., above un-debiased and debiased estimates. The BCS algorithm was

”}\j\' = 0.16), mirroring the results in Figs. 1-2. As in Fig. 1,tested with the “Adaptive CS” option turned off.

in D). There we see that NMSE performance improvedas
gets larger, i.e., as the average number of unknown paresne
per measuremelﬁ;TN decreases. Fap =1 (i.e., the simplest
possible search), Fig. 1 shows a “knee” in the curvéiat
64 (i.e., p}MN = 0.16) below which NMSE degrades quickly.
By increasing search complexitip, the knee shifts so that
the FBMP is robust to a wider range éf (e.g., M = 48
or 2 = 0.21 when D = 5). The benefits of increased
diminish quickly for D > 5, however.

In Fig. 2, we plot the number of active basis elements mi
ing from FBMP’s estimate of the MAP basis configuration:
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In Fig. 7 we plot NMSE versus observation length (at N:512 pLi0.04 D:5 sig2: 0.0010 trials: 100
% = 0.001) for the various sparse estimation algorithms. ‘ ‘ ‘ ‘ ‘ ‘
There we see that FBMP achieved significantly lower NMSE
than the other algorithms over the examined rangé/ofin
particular, it outperformed BCS by approximatedydB, it
outperformed OMP by dB at small)A/ and 10 dB at large
M, and it outperformed the other algorithms by even more. In
Fig. 8 we plot NMSE versuSNR (at M = 128) for the vari-
ous sparse estimation algorithms. Again, the NMSEs actlieve
by FBMP were significantly lower than those achieved by the
other algorithms. AGNR = 22 dB, FBMP outperformed BCS
by approximately3 dB and the other algorithms by 9 dB;
at SNR = 15 dB, FBMP outperformed all other algorithms
by > 6 dB; and, atSNR = 3 dB, FBMP outperformed GPSR ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
by approximatelyl dB and the other algorithms by 5 dB. Ve

Finally, in Fig. 9, we plot average runtime versus observa- _ _ _
tion length)M/ for the various sparse estimation algorithms. F(@g- 7-h Norm"’;]"z.eld 'IY'SE versus observation lenihfor several algorithms.
FBMP, we used> = 1. Figure 9 shows that FBMP is about an ee the graph tile for configuration.)
order of magnitude faster than SparseBayes, on the same orde
of complexity as BCS, and about an order of magnitude slower N:512 M:128 D:5 pL: 0,04 trias: 100
than OMP, StOMP, and GPSR. We anticipate that optimized ~ T

—&— FBMP
—— SparseBayes
—— OMP
—%— StOMP
—4%— GPSR

BCS

Normalized MSE [dB]
| )
&
/
%
+

%k\%4%4}4%fyﬂ

FBMP code will yield improved runtimes. L N T oreesayes
LB —— OMP
V. DISCUSSION e, RN e
- - ] Q@,G\A V\CL\\>\ - BCS
The Bayesian framework provides a report on the confi- T TN

dence of estimates of both the coefficieatsand the basis
configurations. In particular, the basis selection metyi€s)
provides a posterior confidence label for a candidate basis
configurations, in addition to providing the MMSE estimate
Zmmse through (16). Specifically, from (10), we can write the
posterior probability of basis configuratianas

|

e

1)
T

Normalized MSE [dB]
|

AN
@
T

—20F

explu(s)l epfuls)} aq
s'eS eXp{,u(Sl)} ZS’ES* eXp{,LL(S’)} ’ p s s 10 12 1 15 18 2 2

SNR [dB]

p(sly) = 5

where the approximation in (37) includes only the basis
configurationsS, C S that account for the dominant valueg,/9- 8- Normalized MSE versuSNR for several algorithms. (See the graph
. . . . title for configuration.)
of exp{u(s)}. Likewise, (19) provides an approximate error
covariance for the MMSE estimatenmse. These posterior
confidence values reflect the ambiguity inherently present i N:512 D: 1 pL: 0.04 sig2w: 00010 tials: 100
the sparse inference problem—an ambiguity especially avide T
when the SNR is low and/or the correlation among the
columns ofA is high. |
Standard errors for estimatetl are largely absent in the 8
compressive sensing literature. Exceptions are found Jn [7
[22] which give the error covariance for the simple linear
problem conditioned operfect knowledge of the active basis
elements As noted by Tibshirani [7], such a measure of .
posterior uncertainty has dubious value, because “a difficu }V%7'fi::::ﬁ;;?s::ifﬁgiﬁ, S I,
with this formula is that it gives an estimated variance(0of w0 — e
for predictors with”s; = 0. In this light, we expect certain L IR
advantages for algorithms that consider the active basis as S oeam
implicitly uncertain. I e
A Gaussian mixture model similar to that in Section Il A R
was likewise adopted by Larsson and ée[18], who also
constructed the MMSE estimate in the manner of (18) but wi%%‘

an S, that contains exactly one sequenctr each Hamming

— " ——V V¥

———o—o—9°
oo
_ e—o—9

/e/e/

Mean runtime (s)
e
S

9. Average runtime versus observation lenithfor several algorithms.
e the graph title for configuration.)



weight 0 to N. They proposed to find these via greedy imaging [23], where micro-liter particulate probes areeited

deflation, i.e., starting with an all-active basis configiom

into a tumor and fill less than 0.25% volume in the field of

and recursively deactivating one element at a time. Thues, thiew. The fabrication of the paramagnetic signal probesltes
D = 1 version of the BMP heuristic from Section 1lI-Cin variable shape, size and electron spin density, givieg ri
recalls the heuristic of [18], but in reverse. Note, howevelo a non-zero-mean and nearly Gaussian distribution ofasign
that thefast D = 1 BMP presented in Section llI-E has astrength in a very few active voxels.

complexity of only O(N M P), in comparison taO(N3M?)
for the technique in [18]. Given the typically large valuds o
N encountered in practice, the complexity of FBMP can be
several orders of magnitude lower than that of [18]. 1]
As a caveat, we should emphasize that our greedy FBMP
search returns onlys,, an estimateof the dominant subset 2]
S,, along with the values of(s) for s € S,. Thus, while the
valuesp(s) returned by FBMP can be used to compute exact
ratios between the posterior probabilities of the configuration%]
in S,, the absolute posteriors of these configurations (as
approximated by (37) withS, in place of S,) will only
be accurate whers, indeed containsS,. For example, if n
FBMP somehow missed the MAP configuratidmap (i.e.,
Smap ¢ S,), then we would expect a large discrepancy between

Yees, exp{u(s)} and s exp{u(s’)} which would in 5]
turn corrupt the FBMP estimates ofs|y) and Cov{x|y}.
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