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The Compressive Sensing Problem

Linear observation of a sparse signal:

y=Ax +w.

A € RMXN 3 known dense measurement matrix.
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Sparse: & has K < M non-zero coefficients.
Underdetermined when M < N.
w € RM is AWGN ~ N(0,02Ty).
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Our aim is to recover the signal @ from observation y.



Markov Random Field Structure for Sparsity Pattern

» Indicator vector s € {0, 1}N denotes sparsity pattern.

» Signal coefficients x,, are distributed independently given
sparsity variable s,,:

P(@n|sn) = 5N (20:0,02) + (1 — 5,,)0(zy,).

» The indicator variables are modeled as Markov random
field (MRF) p(s).

» A simple MRF model is Ising model:

p(s) = %exp (Z S, (% Z BmnSm — an)) .
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Factor Graph of 2D Ising Model

» Factor graph with loops.



Reconstruction w/ Probabilistically Structured Sparsity

» Markov-chain Monte Carlo (MCMC):

» Markov random field [Wolfe, Godsill, Ng 2004]

» Markov tree [He, Carin 2009]
Drawbacks: slow convergence and difficulty in detecting
convergence.

» Methods that iterate matching pursuit or ¢;-optimization
with MAP sparsity-pattern detection:

» Markov tree [Duarte, Wakin, Baraniuk 2008]
» MRF [Cevher, Duarte, Hedge, Baraniuk 2008]
Drawback: slow and ad hoc.
» Variational Bayes:
» Markov tree [He, Chen, Carin 2010]
Drawback: performance not always satisfactory
» Turbo reconstruction based on AMP:

» Markov chain [Schniter 2010]
» Markov tree [Som, Potter, Schniter 2010]



Factor Graph Representation




Turbo Reconstruction

Inference problem can be tackled by splitting it into two
sub-problems and iterating between them

» Reminiscent of noncoherent turbo equalization.

» The sparsity pattern equalization (SPE) block solves the
inference problem using the observation structure (linear
observation model).

» The sparsity pattern decoding (SPD) block solves the
inference problem using the support structure (Markov
model).

[Schniter 2010]



Message Passing between SPE and SPD

» Message passing within SPE is done via Approximate
Message Passing (AMP). [Donoho, Maleki, Montanari 2009]

» SPD is done on MRF using loopy belief propagation
algorithm.

» Beliefs on the indicator variables s, are exchanged between
these two blocks.

extrinsic beliefs on s,

SPE SPD

extrinsic beliefs on s,




Gaussian Messages from g¢,, to z,,
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Gaussian Approximated Messages from z,, to g,

» Qutgoing messages are product of incoming messages.

» The (exact) sum-product algorithm would pass
non-Gaussian messages, but AMP approximates them as
Gaussian

» Computation of means and variances suffice.



Message Update Complexity

» Message update complexity: M N updates of O(N) or
O(M) corresponding to M N edges.
» Use two approximations:
» Apply uniform variance approximations, e.g., ¢, & Cmn.
» Taylor series is used to approximate the deviations of
messages across outgoing edges from the average message.
» These approximations reduce the algorithm complexity to
O(MN) per iteration and the number of iterations is small
and independent of M, V.

» For subsampled DFT measurement matrix the complexity
is O(N log N).



Learning Model Parameters

» After every turbo iterations, model parameters are learnt
and updated.

» Signal variance 02 = 02 and noise variance o2, are learnt

using maximum likelihood.

» The Ising model parameters «,,, By are learnt by
maximizing pseudo-likelihood function. [Besag 1977, 1986]



Empirical Phase Transition Curves

NMSE=-20dB

- - - param known
—— param learnt




Empirical Phase Transition Curves

NMSE 2 dB above support-aware NMSE
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Conclusions

» Goal: Recover a sparse signal with a Markov-field structure
on the support

» Proposed method: Merge the AMP algorithm with loopy
MRF belief propagation using the turbo messaging
schedule.

» We propose to learn the model parameters from the
measured data.

» We see from the numerical results that signal recovery
performance is near the support-oracle bound even when
the MRF parameters are apriori unknown.



