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The main objective in sparse reconstruction or com-
pressive sensing is to estimate a signal x ∈ R

N from
M noisy linear observations y ∈ R

M ,

y = Ax+ e, (1)

In (1), x ∈ R
N has only K non-zero coefficients,

A ∈ R
M×N is a known measurement matrix, and

e ∈ R
M is additive noise, often modeled as white and

Gaussian, i.e., e ∼ N (0, σ2

eI). In many problems of
interest, the linear measurement system (1) is under-
determined i.e., M < N . Even so, when K ≤ M and
the columns of the measurement matrixA are incoher-
ent, it is possible to reliably recover x from these small
number of observations y (see, e.g., the references in
(Baraniuk et al., 2010)).

Three major classes of algorithms have been pro-
posed for compressive sensing with provable per-
formance guarantees: convex optimization, greedy
search and iterative thresholding (Baraniuk et al.,
2010). The iterative thresholding approach requires
only two matrix-vector multiplications per iteration
and a few vector operations; hence it is very fast.
Moreover, these matrix multiplies can often be im-
plemented using a fast transform like fast Fourier
transform (FFT). A version of iterative thresholding,
known as approximate message passing (AMP), has
overcome (Donoho et al., 2009) the performance defi-
ciencies (Maleki & Donoho, 2010) of earlier algorithms
and achieves the same sparsity-undersampling trade-

off (Donoho & Tanner, 2009) that characterizes the
much more expensive convex-optimization algorithms.
The AMP algorithm can be understood as a simpli-
fied version of Bayesian message passing (MP) on a
dense loopy factor graph that exploits the central limit
theorem to approximate messages as Gaussian. Re-
markably, in the large system limit (i.e., M,N → ∞
with M/N → δ and δ ∈ (0, 1]), the analysis in

(Bayati & Montanari, 2011) suggests that AMP infer-
ence generates exact posteriors

The MP formulation not only gives very efficient com-
pressive sensing algorithms, but also gives a frame-
work to incorporate prior knowledge of signal struc-
ture beyond simple sparsity. One such possibility is
structure in signal support. For example, natural im-
ages are not only sparse in the wavelet domain, but
also exhibit persistence across scales (Crouse et al.,
1998), which makes certain support patterns much
more likely. Likewise, in radar images, spatial pixel
supports show clustering perpendicular to the look di-
rection (Jakowatz, Jr. et al., 1996). Exploitation of
signal structure beyond simple sparsity helps to re-
duce the number of observations needed for reliable
reconstruction (Baraniuk et al., 2010; Schniter, 2010).

In this work we address the reconstruction of sparse
signals with support structure showing spatial clus-
tering. We adopt the turbo reconstruction approach
(Schniter, 2010) which exploits the support structure
of sparse signals in a probabilistic framework. It can be
interpreted as an extension of the AMP principle from
(Donoho et al., 2010) to the expanded factor graph de-
picted in Fig. 1(a). The MP on this extended factor
graph is done in an iterative fashion. Beliefs on spar-
sity pattern (i.e., support elements) are exchanged be-
tween two soft inference blocks – one exploiting the
linear observation model and the other exploiting the
hidden Markov structure of the support. At every it-
eration the belief propagation within the observation
block is done using the AMP framework. Support
structures in the form of Markov chain (Schniter, 2010)
and Markov tree (Som et al., 2010) have been studied
earlier. Since the graphical models for these priors do
not have any loops, a single pass of forward-backward
algorithm computes exact belief on them. In this work
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(a) Factor graph for the structured sparse signal recon-
struction problem. The function nodes are shown by filled
rectangles and variable nodes are shown by empty circles.
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(b) Factor graph representation of h(s) ,
p(s) modeled as an Ising MRF.

Figure 1. Factor graph representation.

we consider a Markov random fields (MRF) (Li, 2009)
prior which models spatial clustering and whose graph-
ical model has loops. Hence computing exact belief
is intractable. However we use loopy belief propa-
gation on its factor graph and demonstrate that we
can get significant performance gain in terms of phase
transition behavior by exploiting the support struc-
ture. We also propose a method to learn the model
parameters from the data. After every turo iteration,
model parameters are learnt and updated. The signal
and noise variances are learnt using maximum likeli-
hood method. But maximizing the likelihood function
for the Ising model is impractical. Instead, we max-
imize the pseudo-likelihood (Besag, 1977; 1986) func-
tion which approximates the likelihood function as a
product of conditional probability terms.

Now we give the signal model in detail. We model
the support elements of the signal coefficients using
hidden binary indicators {s}Nn=1

, where sn ∈ {−1, 1}.
Here, sn = 1 indicates xn 6= 0 w.p. 1 while sn = −1
indicates xn = 0 w.p. 1. For the binary vector s =
[s1, s2, . . . , sN ]T ∈ {−1, 1}N , we impose an Ising prior
which models interaction between coefficients of the
vector s and also controls the sparsity of the signal.
The Ising prior is given by

p(s) =
1

Z
exp





∑

n

sn





1

2

∑

sm∈Sc

n

βmnsm − αn







 , (2)

where Sc
n is the set of all neighboring variables sm

of the node sn. Here βmn, αn are parameters of the
distribution and Z is the normalization factor (func-
tion of βmn, αn) known as partition function. This
probability model is depicted by the factor graph pre-
sented in Fig. 1(b) for 2D planar grid with 4-connected
neighborhood structure. There are two types of func-
tion nodes: nodes connecting two neighboring vari-
able nodes characterized by the interaction parameter
β and function nodes connected to a single variable
node characterized by the bias parameter α. Higher
magnitude of β means stronger spatial coherence and
higher value of α enforces sparser signal activity.

Conditioned on s, the signal coefficients are indepen-
dent and follow the Bernoulli-Gaussian prior of the
form

pn(xn|sn) = δ(sn − 1)N (xn; 0, σ
2

n) + δ(sn + 1)δ(xn), (3)

where δ(.) denotes the Dirac delta and N (.) is a Gaus-
sian pdf; σ2

n is the variance of the coefficient xn given
sn = +1. The factor graph for this signal model is
shown in Fig. 1(a).

We now present preliminary results of a numerical
experiment studying the performance of the algo-
rithm for various values of undersampling (δ = M/N)
and sparsity (ρ = K/M), where K is the number
of active coefficients in the signal x. Fig. 2 shows
a number of empirically calculated phase transition
curves on the (δ, ρ) plane for numerical simulations
with 30dB SNR. Each curve partitions the sparsity-
undersampling plane into “success” and “failure” re-
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(a) For any point (δ, ρ) above the phase transition curve
the average NMSE is more than -20dB and for any point
below it the average NMSE is less than -20dB. The dotted
lines correspond to the case when the true parameters of
the model were all known. The solid lines are for the case
when they were learnt from the data.
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(b) For any point (δ, ρ) above the phase transition curve the
average degradation of NMSE over support-aware NMSE is
more than 2dB and for any point below it the degradation
is less than 2dB. The dotted lines correspond to the case
when the true parameters of the model were all known. The
solid lines are for the case when they were learnt from the
data.

Figure 2. Empirical phase transition curves for robust turbo reconstruction algorithm for different values of β which are
shown as labels on the curves. The

gions, defined as follows. In Fig. 2(a), for any (δ, ρ)
that lies below the curve, the average normalized re-
construction MSE (NMSE) from 200 trials was less
than -20dB and for points above the curve, it was more
than -20dB. Similarly in Fig. 2(b), the average NMSE
degradation over support-aware NMSE was less than
2dB below the curve and more than 2 dB above the
curve. Each curve in Fig. 2 is labelled with the value
of the Ising model’s β that was used to generate the
signal. We assumed α and β to be uniform through-
out the 2D-planar grid with 4-connected neighborhood
structure. A higher value of β means more clustering,
i.e., more signal structure. Note that, when β = 0, the
sn’s are independent, i.e., the signal is simply sparse.
We can see from Fig. 2 that, as β increases, “success-
ful” sparse reconstruction is achieved over a larger por-
tion of the sparsity-undersampling plane. We also note
that at higher β regime, the gain achieved by exploit-
ing the MRF structure of the support is significantly
more than the performance drop due to not knowing
the true model parameters shown by the difference be-
tween the solid and dotted lines.

Acknowledgments

This work was supported in part by NSF
grant CCF-1018368 and DARPA/ONR grant
N66001-10-1-4090.

References

Baraniuk, R. G., Cevher, V., Duarte, M. F., and
Hegde, C. Model-based compressive sensing. IEEE
Trans. Inform. Theory, 56(4):1982–2001, Apr. 2010.

Bayati, M. and Montanari, A. The dynamics of mes-
sage passing on dense graphs, with applications to
compressed sensing. IEEE Trans. Information The-

ory, 2011.

Besag, J. Efficiency of pseudolikelihood estimation for
simple Gaussian fields. Biometrica, 64(3):616–618,
1977.

Besag, J. On the statistical analysis of dirty pictures.
Journal of the Royal Statistical Society B, 48(3):
259–302, 1986.

Crouse, Matthew S., Nowak, Robert D., and Baraniuk,
Richard G. Wavelet-based statistical signal process-
ing using hidden Markov models. IEEE Trans. on

Signal Processing, 46(4):886–902, 1998.

Donoho, D. L. and Tanner, J. Observed universal-
ity of phase transitions in high-dimensional geome-
try, with implications for modern data analysis and
signal processing. Phil. Trans. Royal Soc. A, 367
(1906):4273–4293, 2009.

Donoho, D. L., Maleki, A., and Montanari, A. Mes-
sage passing algorithms for compressed sensing.



Approximate Message Passing for Sparse Signals with MRF Support Structure

Proc. National Academy of Sciences, 106(45):18914–
18919, Nov. 2009.

Donoho, D. L., Maleki, A., and Montanari, A. Message
passing algorithms for compressed sensing: I. Moti-
vation and construction. In Proc. Inform. Theory

Workshop, Cairo, Egypt, Jan. 2010.

Jakowatz, Jr., C. V., Wahl, D. E., Eichel, P. H.,
Ghiglia, D. C., and Thompson, P. A. Spotlightmode

Synthetic Aperture Radar: A Signal Processing Ap-

proach. Springer, New York, 1996.

Li, S. Z. Markov Random Field Modeling in Image

Analysis. Springer, London, 3rd edition, 2009.

Maleki, A. and Donoho, D. L. Optimally tuned itera-
tive reconstruction algorithms for compressed sens-
ing. IEEE J. Sel. Topics Signal Process., 4(2):330–
341, Apr. 2010.

Schniter, P. Turbo reconstruction of structured sparse
signals. In Proc. Conf. Inform. Science & Syst.,
Princeton, NJ, Mar. 2010.

Som, S., Potter, L. C., and Schniter, P. Compressive
imaging using approximate message passing and a
Markov-tree prior. In Proc. Asilomar Conf. Signals

Syst. Comput., Pacific Grove, CA, Nov. 2010.


