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ABSTRACT

Adaptive blind equalization has gained widespread usenmao-
nication systems that operate without training signalspdrticu-
lar, the Constant Modulus Algorithm (CMA) has become a faeor
of practitioners due to its LMS-like complexity and desieao-
bustness properties. The desire for further reduction mpe
tational complexity has motivated signed-error versioh€MA,
which have been found to lack the robustness properties ACM
This paper presents a simple modification of signed error CMA
based on the judicious use of dither, that results in an dkgor
with robustness properties closely resembling those of CRiA
approximation to the steady-state mean-squared errarrpeathce
of the new algorithm is derived for comparison to that of CMA.

1. INTRODUCTION

The Constant Modulus Algorithm (CMA) [1, 2] has gained wide-
spread practical use as a blind adaptive equalization igigofor
digital communications systems operating over inter-syinif-
terference channels. Under perfect blind equalizabilityditions
(A1)-(A5) listed in §2.2, CMA has been shown to converge in
mean to an equalizer setting capable of perfect symbol eggov

Though assumptions of ideality are convenient for the theo-
retical analysis of blind equalization schemes, they aeondi-
tionally violated in physical implementations of commuation
systems. This fact suggests that thbustnesf a given blind
equalization strategy to violations in perfect conditianay sig-
nificantly impact its practical worth. In this spirit, it hbgen rea-
soned that the widespread practical use of CMA bears tegtame
to its superior robustness properties. A sizeable body exfrit-
ical analysis exists to support this claim (see [3] and efees
therein).

Though noted for its LMS-like complexity, CMA may be fur-
ther simplified by transforming the bulk of its update mdltip-
tions into sign operations [2]. A recent study suggestsstratght-
forward implementations of signed-error CMA (SE-CMA) da no
inherit the desirable robustness properties of CMA [4].§3nwe
present a simple modification of SE-CMA, based on the judiio
use of dither, that results in an algorithm with robustnesspp
erties closely resembling the standard (unsigned) CMA. e
ticipated consequence of dithering is a degradation irdgtstate
mean-square error (MSE) performance. §thwe derive an ap-
proximation to the excess MSE of dithered SE-CMA which aiow
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comparison to a similar expression derived for CMA. Impiicas
on convergence rate comparisons are then discus$gd in

2. FRACTIONALLY-SPACED CMA

2.1. TheFractionally-Spaced System M odel

In this paper we consider a noiseless communication syspem o
ating at baud intervdl'. The baseband channel is approximated as
linear and FIR, and itd"/2-spaced impulse response coefficients
are collected into the lengths, vectorh. The baseband receiver
model is reduced to &' /2-spaced linear equalizer described by
the Ny coefficients inf. Figure 1 shows the block diagram re-
lating transmitted symbols,, (indexed byn) to the baud-spaced
system outputgy,.

Defining the fractionally-spaced (FS) convolution malix=

h1 ho
h_3 h_2 hl hO
: : hs ho ha ho
hn,-1 hn,—2 : : h3 ha
hn,-1  hn,—2 : :
hn,-1 hn,-2

allows us to describe the baud-spaced system (mappirg y».)
by its length&V, impulse response vectef = Hf. l.e.,y, =
q’s(n) for s(n) = (sn,Sn-1,-- -, Sn—n,+1)". The structure of
H implies thatN, = |(Ns + Ny — 1)/2]. We defineperfect
symbol recoveryPSR) to meany,, = s,,—s for some fixed system
delay0 < § < N, — 1. In such a caseg = es; wheree;s denotes
a vector with 1 in thé/*® position and zeros elsewhere.

Sn

h

= yn,

b2 V2

Figure 1:T'/2-spaced baseband communication system model.

2.2. The Constant Modulus Algorithm

The constant modulus (CM) criterion can be expressed bydsie ¢
function Jom = 2 E{(|ly=|> — 7)?} wherey is a positive constant
known as theGodard radius[1]. The equalizer update algorithm
leading to a stochastic gradient descent/gf is known as the
Constant Modulus Algorithm (CMA) and is specified by [2]

f(n+1) £(n) + pr* (n) yn (v — |ynl?) 1)
é@b(yn)



wherey is a step-size and(n) is the equalizer input vector at
time indexn. The asterisk denotes conjugation. The functgr)
identified in (1) is referred to as tH&MA error function

The following perfect blind equalizabilitf PBE) conditions
are known (e.g. [3]) to be sufficient to guarantee that egasdi
minimizing Jem achieve perfect symbol recovery.

(A1) Sufficient equalizer length: ForB/2-spaced FSEN; >
2[Np/2] —2.

(A2) Subchannel disparity: The polynomials formed from the
even and odd coefficients hfmust share no common roots.

(A3) No additive channel noise.

(A4) Sub-Gaussian source: The source kurtegis= %ﬂ"“;}}z

must be less than that of a Gaussian process.

(A5) White source: The source symbols must be temporally un-
correlated (and when complex-valud@{s;,} = 0).

Note that(A4)-(A5) pertain to blind equalization via the CM cri-
terion, while(A1)-(A3) are requiretito guarantee perfect symbol
recovery for a given channel-equalizer combination.

3. COMPUTATIONALLY EFFICIENT CMA

Straightforward implementations of LMS-like adaptivea@ithms
(such as CMA) require a multiply the between the error fuorcti
and every regressor element (see (1)). Many practicalcgifgins
benefit from eliminating thes&; regressor multiplies.Signed-
error (SE) algorithms present one method for doing so, whereby
only the sign of the error function is retained [5]. When a &a
rithm is combined with a power-of-two step-size, it is pbssito
construct multiply-free fixed-point implementations oétaqual-
izer update algorithm. The sections below discuss two orssof
SE-CMA. For the remainder of the paper, we restrict our fdous
the case where all quantities are real-valued.

3.1. Signed-Error CMA
The real-valued SE-CMA algorithm is specified by [2]

f(n+1) = (2)

= £(n) + pr(n) sgn(yn (v — v2))
N————

Lo (yn)

wheresgn(-) is the standard (real-valued) signum function. Fig-

ure 2 compares signed and unsigned versions of the CMA error

function: o ande, respectively.

A recent investigation into SE-CMA has shown that, while
satisfaction of the PBE conditions and correct selectioty eh-
sures convergence to a PSR setting, violatiofAdf severely hin-
ders SE-CMA convergence behavior [4]. Specifically, thetiste
vast yet highly suboptimal regions in equalizer space foictvh
the average update in (2) is zero. Thus, while computatipeéi-
cient, SE-CMA does not inherit the desirable robustnespgaties
of CMA. This motivates the search for computationally eéiti
blind algorithms whichdo inherit these robustness properties. The
following section describes one such algorithm.

1We acknowledge the existence of peculiar violationgAdf)-(A2) al-
lowing the possibility of perfect symbol recovery for a reged range of
4 [3], but dismiss them on account of their academic nature.
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Figure 2: CMA, SE-CMA, and DSE-CMA error functions.

3.2. Dithered Signed-Error CMA

In this section we describe a simple modification to SE-CMét th
results in an algorithm whose average behavior closely meatc
that of (unsigned) CMA.

The one-bit quantization inherent to signed-error adaptat
algorithms motivates the application of dither [7]. Ditimey tech-
nigues attempt to preserve information lost in the quatitinaro-
cess by making the quantization noise white, zero-meaninaied
pendent of the signal being quantized. Intuitively, a srsi@p-size
adaptive algorithm can then “average out” the quantizatioise,
yielding mean behavior nearly identical to the unsigned@igm.
See [6] for an example of adding controlled noise to SE-LMS fo
echo cancellation.

We define real-valuedithered SE-CMADSE-CMA) as:

£(n) + pr(n) asgn(y(n) + ada)  (3)

—
=pa(yn,dn)

f(n+1)

whered,, are samples of the dither processjs a real positive
constant, an@)(n) is the CMA error function defined in (1).

For this application{d, } is required to be an i.i.d. random
process whose characteristic function has zeros at aliptedtof
7 except the origin [7]. In other wordB{ei™'én} = 0 VI # 0.
With these properties, the theorems in [7] imply that theeexgd
DSE-CMA error function is a “hard-limited” version of the GM
error function:

A (¢4 Yn 2 P(Yn) >,
Pa(yn) = E{Soa(ynadn)lyn} =SYWn) Yn: YY) < o,
—a Yn : P(yn) < —a.

See Figure 2 for a plot op, (-) for various values ofx. Note
thata > 2(7y/3)%/? prevents the two “humps” of the CMA error
function from being clipped. Thus, whem = 2(v/3)%2, we
expect the average update behavior of DSE-CMA to be iddntica
to that of CMA for all equalizers satisfying the output caongit
lyn| < 24/7/3, since|y(y)| < a for theseys.

The relationship between the DSE-CMA and CMA error func-
tions for any particulaer > 2(~/3)3/2 implies that the respective
cost functions have identical shape within the convex jpqlgtof
equalizers satisfying a particular output amplitude caist (see
Fig. 3). This constraint was stated earlier for= 2(v/3)%'?; for
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Figure 3: Trajectories of DSE-CMA (rough) overlaid on
those of CMA (smooth) for BPSK, noiseless chaniel =
(0.1,0.3,1,-0.1,0.5,0.2)%, p = 5 x 107%, @ = 1, and uni-
form {d,}. Solid lines areJcm contours, and dashed lines bound
the convex output-amplitude-constraint polytope withimet the
CMA and DSE-CMA cost functions are identically shaped.

arbitraryar > 2(y/3)*/2, the bound or{y,| is given by the the
largest root of the polynomial(y — y?) — a.

Figure 3 shows two examples of DSE-CMA trajectories over-
laid on CMA trajectories initialized at the same locationdote
that the DSE-CMA trajectories exhibit much more parameser v
ation than the CMA trajectories. The effect of this parametei-
ation on steady-state performance is quantifie$fi/3.

It is worth mentioning that, of all dither processes, a umifo
distribution on(—1, 1] leads to the lowest quantization noise power
[7] and hence the lowest parameter variance.

3.3. Selection of the Godard Radius: The General Case

This section outlines a procedure which can be used to chhese
Godard radiugy given an arbitrary error function such @s. We
follow the method of Godard in [1], wherebyis selected to force
the mean equalizer update to zero when perfect equalizhtisn

been achieved. Taking DSE-CMA as our example, the mean up-

date term isur(n)paq (y») from (3). From§2.1, we know that
r(n) = H's(n) and that, at perfect symbol recovegy, = s, 5.
Assuming an i.i.d. source process, (s»—s) is independent of all
but one element is(n), namelys,,_s. Hence, for a zero update,
we only require that the value gfin ¢, be chosen so that

E{Saa (sn)sn} 4)

For the CMA algorithm of (1), it is well know that this proce-
dure yieldsy = E{s*}/E{s?}. In[4], the authors give an expres-
sion for+ in the case of\/-PAM (real-valued) SE-CMA. Closed
form expressions foy in the case off-PAM DSE-CMA with ar-
bitrary  are difficult if not impossible to derive. Fortunately, for
finite-alphabet sources; satisfying (4) can easily be determined
numerically.

= 0

4. STEADY-STATE BEHAVIOR OF DSE-CMA

As noticed earlier, the principle disadvantage of DSE-CMA-c
cerns its steady-state behavior: the addition of ditheddda an

increase irexcess mean-squared eri@@MSE). We define EMSE
as the steady-state MSE above that achieved by the (localy)
timal fixed parameter setting. In the ensuing analysis warass
that the PBE conditions are satisfied, in which case the nimim
achievable MSE is zero.

The subsections below attempt to quantify the excess MSE of
DSE-CMA when the PBE conditions are satisfied. The approach
taken is the following: in the vicinity of a minima, the CMA sb
function is well approximated by a quadratic error surfacgly-
ing that the steady-state behavior of CMA can be linked to the
steady-state behavior of LMS. Existing results on the asgtigp
parameter distribution of fixed step-size SE-LMS are theplieg
to describe the steady-state parameter distribution of-DSB,
from which an approximation of the EMSE is derived. Specifi-
cally, these results imply that the DSE-CMA parameters gsym
totically approach i.i.d. Gaussian random variables [8].

4.1. Local Approximation of CM Cost

Assume, w.l.0.g., a unit variance sourd8{s?} = 1. Then the
CM cost in terms of the system parametqris [3]

Ng—1
K

Ks—3 3 K
23+ Sl - Sl + 5
i=0

Jem(q) = %)

4

wherex, was defined in(A4). The second-order Taylor series
expansion of/cm about the minimumy = es can be obtained by
straightforward vector calculus. (Details will be provitdby the
author upon request.) Defining the optimal equalfzes H les
and the parameter errfr= f — f;, Taylor's theorem suggests that
Jem is well approximated bylem(f) =

“8(“2_1) 3=FRs FHHF 4+ 73(Ks2_l)f'the5ef;Hf‘ (6)

for smallf.

The last term in (6) is a quadratic form involving the non-
Toeplitz matrixH'ese5 H. As we desirefem of the form Jom(F)
= Jmin + F' R £, WhereJmin is a constant anRx x is the auto-
correlation matrix of some stationary ergodic equalizguirpro-
cess{x}, we will further approximate (6).

Using the following facts:tr(A) A for any scalar A,
tr(f*Af) = tr(ff'A) and E{tr(A)} = tr(E{A}) for any ma-
trix A, andE{ff*} = Clx, for some scalar C [8], we claim

E{f‘thegef;Hf'} = C tr(eiHH'es)
C||(h2s—n 42, -

c
Sl

o hasa)|l

~
~

where the approximation is based on the structu éfom §2.1.
Since, by the same techniqués{f'H'Hf} = C tr(HH') =
%1 |Ih)|3, we can approximatdem by

Ks(ks—

Jom = i 1) + %(3—;.;3 +3(ks—1)/Ny)F'H'HE  (7)

4.2. Asymptotic Parameter Distribution

Linking the locally approximated CM cost to an LMS updatel wil
allow us to use existing results on the steady-state paeardit-
tribution of SE-LMS to approximate that of DSE-CMA.



Applying LMS to the equalization problem of Fig. 1 yields
f(n+1) ®)

wheree, = s,_s — yn iS an error signal driven to zero when
f = 0, andu,, is a non-vanishing “noise” process [5]. The LMS
algorithm is known to stochastically minimize

f(n) + pr(n) (en + un)

Jms = Jmin + %?th,rf = Jmin + %?thH?

ComparingJins to Jem, We conclude that CMA is well approxi-
mated by the LMS-like recurrence

f(n+1) = f(n)+ pr(n) (Ken + un) 9
for smallf, where the gain
K = 3—ks+3(ks—1)/Ny (10)

accounts for a slope calibration betweds and Jem, and where
u,, accounts for the minimum achievable CM cdst, = ks(ks —
1)/4. Comparing (1) withy,, = s,—5 to (9) withf = 0, it is
evident that{u,, } must take on the valudg)(s»)} normalized so
thato? = ks (ks — 1)/4. In short,u,, represents the noisy effect
that a non-CM source has on the CMA update (see [9, 3]).

Extending (9) to its dithered signed-error version (andtfiing
the argument of thegn(-) operation by the positive constaht)
gives a local approximation to DSE-CMA for sméll

f(n+1) = f(n) + par(n)sgn(en + (un+ad,)/K) (11)

Adaptation algorithms of the form (11) have been shown (un-
der certain conditions) to have parameter distributiongciwiare
asymptotically Gaussian with covariance matrix [8]

po
4Kpu+ad(0)

wherep,+.4(0) is the probability density function of the random
process{u, + ad,} evaluated at the point 0.

One important condition on (12) is that 1 .4 Must be smooth
and bounded withp,+,4(0) > 0 [8]. This condition imposes a
{un }-dependent lower bound am for which (12) remains valid
and prevents this analysis from directly applying to (néheated)
SE-CMA, sincepy,)(0) = 0 for a finite-alphabet source.

Another condition on (12) is thafu, } must be statistically
independent of(n). This is certainly not true fot, = ¥ (s,—s)
sincer(n) = H's(n). Thus, we restrict our calculation of EMSE
in §4.3 to a constant modulus source (i.e. BPSK), sodhat 0.

In, (12)

4.3. Excess M SE (Under PBE Conditions)

Given the steady-state parameter covariance matrix ({i8)pos-
sible to calculate the mean-squared etfgfe = E{(yn—5ns)°}

= E{f*H'Hf}. It was shown ir§4.1 that, wherE {ff*} = CT,
E{FH'HF} = <2 |/h||3. Restricting focus to BPSK, equations
(10) and (12) withss = 1 specifyC, thus giving

Jmse & paNy|[hl|3/16paq(0) (13)

When {d,. } is uniformly distributed on(—1, 1], we know that
Pad(0) = pa(0)/a = 2/a, and so (13) becomes

Jmse = H042Nf||h||%/8 (14)

Table 1: Approximate scale factor to apply to (14) fdr-PAM.

M 2| 4 8
factor || 1 | 1.3 | 1.7

16
3.4

32
3.5

As discussed ir§3.2, higher values of enlarge the convex
polytope within which the shape of CMA and DSE-CMA cost
functions is identical (see Fig. 3). As evident from (14)wewer,

a has a squared effect on EMSE. Hence, the selectiam isfa
design tradeoff between CMA-like robustness and EMSE.

Given that there exists a formula for the EMSE of CMA [9]:

uNslIB ( E(st)
o (s =) Ay 09

it is unfortunate that our preliminary results on DSE-CMAyon
pertain to BPSK. (A general expression fbf-PAM case is be-
ing derived.) SPIB-baseth(t p: // spi b. ri ce. edu/ ) micro-
wave channel simulations seem to indicate, however, thaiGid
sources scale the EMSE of (14) proportionally. Table 1 et
this scale factor for varioud?-PAM constellations when, = 1.

Jmse

5. CONCLUSIONS

With hardware cost in mind, CMA implementations often ugdat
the equalizer coefficients only once pF equalizer input sam-
ples, allowing one multiplier to time-share th& regressor multi-
plies. Assuming this scheme decreases convergence rataby a
tor of Ny, the results 0§4.3 indicate that DSE-CMA constitutes a
worthwhile improvement over “one-multiplier CMA” for reas-
able equalizer length®s. A more detailed study will follow.
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