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Plug-and-Play (PnP) Image Recovery

m Goal: Recover N-pixel image xy from M << N noisy linear
measurements
X . true iImage

y = Axy+ w, with ¢ A : linear measurement operator

w : AWGN with precision .

m Although deep nets can be trained to predict &y from y, they

m require a huge number of (xy, y) pairs for training
m may not generalize well to a different A operators

m Plug-and-play (PnP) algorithms iteratively call a deep-net
iImage denoiser, which can be trained ...

m from very few images, using patches
m independently of A, facilitating generalization to any A

m Challenge: In PnP, the denoiser input-error statistics are
iteration-dependent and difficult to characterize. For example,
they are generally non-white and non-Gaussian

m [hus, it's not clear how to train the denoiser for optimal
performance in PnP!

m Typically the denoiser is trained with AWGN
m Gilton et al. recently proposed to train the denoiser at the PnP
equilibrium point, but it's A-dependent and thus may not generalize

Approximate Message Passing (AMP) Algorithms

m AMP is a family of PnP algorithms that have remarkable
properties for large random A:

m | he denoiser input-error is white and Gaussian with

predictable variance
s When used with an MMSE denoiser, AMP algs converge to
the MMSE estimate of ax; from y

m Challenge: In most image recovery problems, A does not
satisfy AMP’s randomness assumptions

AMP for Fourier-Structured Matrix A = M F’

m ldea: Recover the wavelet coefficients ¢y, not pixels x
s Why? The resulting model becomes y = Bejy + w, where
the masked Fourier-wavelet B = M F®¥' is approximately
block-diagonal with sufficiently randomizing blocks

m With appropriate algorithm design, the denoiser input-error will
be white and Gaussian in each wavelet subband

m Prior work includes Whitened VAMP [PS et al. '17],
Variable-Density (VD)-AMP [Millard et al. '20], based on
wavelet thresholding, & Denoising-VD-AMP [Metzler et al. '21]

m Note: These algorithms provide well-characterized errors, but a
non-standard denoiser is required to exploit them!
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Proposed Algorithm: Denoising GEC (D-GEC)

Our approach builds on the Generalized Expectation Consistent
(GEC) algorithm from Fletcher et al. "16:
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New Results: MRI Image Recovery Experiments

m We consider single coil measurements y = M Faxy+ w

m Experimental setup:

o < fore, ¥o)

require: fi(-), fo(-), and gdiag(-) =

1, <— Diag(gdiag(V fa(r2,%2))) '

M is a variable density mask

initialize: ., v, m w is AWGN giving pre-mask SNR = 40 dB
T m W is 2D Haar wavelet transform with D = 4 levels = 13 subbands

fort=0,1,2,... m PnP-PDS uses bias-free white-noise DnCNN and careful tuning

x < filry,v) linear estimation m D-VDAMP uses the modified DnCNN denoiser from that paper

m < Diag(gdiag(V fi(r1, 71)))—171 m D-GEC uses bias-free corr4-corr DnCNN

Ny T — m training data: 62000 48x48 patches from 70 training images of the

. 1/ ~ . Stanford 2D FSE dataset
o < Diag(v2) " (Diag(m;)x; — Diag(y1)r1) Onsager m 5 copies DnCNN-c+c were trained using sub-band noise SDs uniformly

distributed in the ranges 0-10, 10-20, 20-50, 50-120, and 120-500

denoising
m Avg performance on 10 Stanford 2D FSE 352x 352 test images:

Vi — Ty — o C'=1coil M/N=1/4M/N =1/8

r1 < Diag(v1) *(Diag(m2)Zs — Diag(~2)r2) Onsager method PSNR SSIM PSNR SSIM

| | | | PnP-PDS 45.97 0.978 41.28 0.957

m GEC is essentially I.Deaceman—Rachford ADMM with adaptive D-VDAMP 44 61 0974 3843 0.901
vector-valued stepsizes 7y, and 7, D-GEC 47.64 0.982 42.42 0.959

m [he GEC linear estimation stage is preconditioned LS:

. ~1 .
fi(r,7) = (v.B"B + Diag(y))  (,B"y + Diag(y)r)
which can be implemented using the conjugate gradient method

m V f; denotes the Jacobian, and gdiag(-) averages its diagonal
across different wavelet subbands. D-GEC approximates the
Jacobian using a Monte-Carlo approach [Ramani et al. ‘08|

m Example single-coil recoveries and error maps at M /N = 1/4

PNP-PDS

D-VDAMP

PSNR: 43.85 dB PSNR: 41.48 dB PSNR: 42.07 dB
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New Update-Proposed Denoiser: corr+corr

m In the wavelet domain, the denoiser input-error is white and
Gaussian in each subband, but with subband-dependent

inverse-variances <y that change with the iterations

m [ hus, in the pixel-domain, the error is correlated Gaussian

with known covariance matrix W Diag(~) W'
= How should we inform the denoiser about (¥, ~)?

m We propose to add an extra input channel to an arbitrary
denoiser (e.g., DNCNN) and feed it with an independent

realization of N (0, ¥ Diag(~v)~'1W¥)
= [he denoiser learns to extract the statistics (¥, ~) from e
and use them productively for denoising

g We call it “corr+corr”

m Example PSNRs for depth-1 2D wavelet transform:

m Standard deviation of D-GEC denoiser-input error vs iteration:
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at iteration 10:

m Example wavelet-error QQ plots
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