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Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is a non-invasive diagnostic tool that
provides excellent soft-tissue contrast without using ionizing radiation.

The measurements y are in the spatial Fourier domain, called k-space:

y = Ax0 +w, with A = MF .

Above, x0 is the image, F ∈ C
N×N is the 2D DFT matrix, M ∈ C

M×N

is a sampling mask and w ∼ N (0, γ−1
w I) is AWGN.

The primary drawback of MRI time needed to collect the measurements.

To accelerate MRI, one collects only a few k-space samples: M ≪ N .

Goal: Recover the unknown image x0 ∈ C
N from y ∈ C

M .

Approach: Plug-and-Play recovery using Damped Denoising Vector-AMP.

Plug-and-Play (PnP) Image Recovery

The classical approach to image recovery is optimization:

argmin
x

{γw
2
‖y −Ax‖2 + φ(x)

}
, (1)

where the regularizer φ(·) penalizes x that are atypical for images.

ADMM is a popular algorithm to solve this optimization problem:

xt+1 = argminx
γw
2 ‖y −Ax‖2 + γ

2‖x− vt + ut‖2

vt+1 = proxγ−1φ(x
t+1 + ut)

ut+1 = ut + (xt+1 − vt+1),
(2)

where proxρ(r) , argminx{ρ(x) +
1
2‖x− r‖2}.

The prox operation (2) can be interpreted as MAP denoising of the
AWGN-corrupted image r = x +N (0, I/γ) under prior x ∼ 1

Ze
−φ(x).

To improve performance, PnP-ADMM 1 replaces the prox operator with
a sophisticated image denoiser f (·) like BM3D or DnCNN.

PnP can be generalized to other algorithms like FISTA, PDS, etc.

Approximate Message Passing (AMP)

AMP 2 is a computationally efficient iterative algorithm for solving (1)
that yields optimal recovery under large random A.
When A is large, i.i.d., and sub-Gaussian, . . .

AMP’s macroscopic behavior is rigorously characterized by state-evolution (SE) 3 .
AMP converges very quickly, e.g., 10-20 iterations.
When f is the MMSE denoiser and the SE has a unique fixed-point, AMP provably
converges to the MMSE x̂ 3 .

When used with an image denoiser f like BM3D or DnCNN, AMP is
called “denoising-AMP” (D-AMP) 4 .

vt+1 = β ·
(
y −Axt + 1

Mvt tr{∇f (xt−1 +AHvt; 1/τ t)}
)

τ t+1 = 1
M‖vt+1‖2

xt+1 = f (xt +AHvt+1; 1/τ t+1)

where β = N/‖A‖2F . The quantity tr{∇f (·; 1/τ )}/N is known as the

divergence, and is approximated using Monte Carlo 4 in practice.

AMP for MRI
In MRI, the measurement matrix A is not i.i.d., and so AMP tends to
perform poorly or even diverge.
Several MRI-specific variations of AMP have been proposed:

BM3D-AMP-MRI 5 : uses β = 1 in D-AMP, which stabilizes the algorithm but
degrades the fixed points.
Variable-density AMP (VD-AMP) 6 is a wavelet-denoiser-based AMP/VAMP hybrid.
It works well with the point-sampling mask, but fails for other masks like Cartesian.
De-biased D-AMP (DD-AMP) 7 uses a diagonal-matrix β in D-AMP, and works well
(empirically) with a wide range of masks, e.g., Cartesian.

Vector Approximate Message Passing (VAMP)

Vector AMP (VAMP) 8 has similar properties to AMP but holds for the
larger class of right-orthogonally invariant (ROI) random matrices.
When A is ROI, i.e., has SVD USV H with large random unitary V , . . .

VAMP’s macroscopic behavior is rigorously characterized by state-evolution (SE) 8 .
VAMP converges very quickly, e.g., 5-15 iterations.
With MMSE f and unique SE fixed-point, VAMP yields MMSE x̂ 8 , 9 .

When used with an image denoiser f like BM3D or DnCNN, VAMP is
called “denoising-VAMP” (D-VAMP) 10.

Damped Denoising VAMP (DD-VAMP)

In MRI, the measurement matrix A is not ROI, and so VAMP tends to
perform poorly or even diverge.
We propose carefully chosen damping to alleviate these issues:

We propose to damp α1 to reduce its approximation error due to Monte Carlo
We propose to transform the variance α1 and the precision γ2 to amplitudes for
damping, and then transform them back.

Note that DD-VAMP reduces to D-VAMP when θ = 1 = ζ.

initialize: r02, γ02, θ, ζ ∈ (0, 1], q ∼ N (0, I)

for t = 0, 1, 2, . . .
xt
2 = g(rt2; γ

t
2) linear estimation

αt
2 = tr{∇g(rt2; γ

t
2)}/N divergence

rt1 = (xt
2 − αt

2r
t
2)/(1− αt

2), γt1 = γt2(1− αt
2)/α

t
2 Onsager correction

xt
1 = f (rt1; γ

t
1) denoising

αt
1 = ǫ−1qH [f (rt1 + ǫq; γt1)− f (rt1; γ

t
1)] Monte-Carlo divrgnce

αt
1 =

[
θ(αt

1)
1

2 + (1− θ)(αt−1
1 )

1

2

]2
damping

rt+12 = (xt
1 − αt

1r
t
1)/(1− αt

1), γt+12 = γt1(1− αt
1)/α

t
1 Onsager correction

rt+12 = ζrt+12 + (1− ζ)rt2 damping

γt+12 =
[
ζ(γt+12 )−

1

2 + (1− ζ)(γt2)
−1

2

]−2
damping

Above, g(·; γ) is the linear MMSE estimator under prior signal precision γ:

g(r; γ) , argmin
x

{γw
2
‖y −Ax‖2 +

γ

2
‖x− r‖2

}

= F H(γwM
TM + γI)−1(γFr + γwM

Ty)

and tr{∇g(r; γ)}/N = ((1−M/N)γw + γ) /(γw + γ).

DD-VAMP++

Empirically, the fixed points of DD-VAMP are similar or better than those
of PnP-ADMM. However, damping slows DD-VAMP’s convergence.

Importantly, VAMP reduces to the Peaceman-Rachford variant of ADMM
(ADMM-PR) when the precisions are fixed, i.e., γt1 = γt2 = γ, ∀t.
We propose to initialize DD-VAMP using ADMM-PR:

First run PnP-ADMM-PR for Tswi iterations at precision γ, then switch to DD-VAMP.
Tune the parameters Tswi and γ using training data.

We call this method “DD-VAMP++.”
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Image Recovery in MRI

Experiment Setup

Cartesian sampling mask M with acceleration R = N/M = 4.

128× 128 mid-slice, non-fat-suppressed fastMRI knee images 11.

DnCNN denoiser 12 used unless otherwise noted.

Training

The dataset was randomly split into 30 training and 19 testing images.

We tuned all algorithmic parameters to minimize NMSE averaged over
iterations t = 30...150 and medianed over the training images.
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original ADMM: -24.443, 0.928 ADMM-PR: -24.694, 0.927

BM3D-AMP-MRI: -19.263, 0.857 DD-VAMP: -25.097, 0.936 DD-VAMP++: -25.475, 0.939

Captions: NMSE (dB) and SSIM of example recovery after 150 iterations
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