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Linear Regression with Unknown Prior/Likelihood

Consider the following linear regression problem:
m Observations: -

y=Ax+w with

. unknown signal
A : known linear operator in RM*¥

. w : white Gaussian noise.
m Prior:

p(x;601) with deterministic unknown parameters 6.
m Likelihood:
l(x;0)) = N(y; Az, 0-1)

Goal: jointly infer & and estimate 0

with deterministic unknown variance 6-.

= [0y, 6]

Approach: combine variational inference with ML estimation.

Variational Inference

m For now, let's suppose that 6 is known.

m We would like to compute the posterior density

P(az;?zé()w;%) for Z(g)é/p(w;el)é(m;eg) de,

but the high-dimensional integral in Z(0) is difficult to compute.

p(xly) =

m We can avoid computing Z(0) through variational optimization:

p(x|y) = argmin D (b(x)||p(x|y)) where D(:||-) is KL divergence

b
= argmin D (b(x)||p(z; 61)) + D (b(x)||{(x; 62)) + H (b(x))
Gibbs free energy

)||p(2; 61)) + D(bo(a) || l(2;65)) + H(q(z))
= J(by, by, q; 6)

= arg min max D (b;(z
b1,b2 1

such that b; = by = ¢,
but the density constraint keeps the problem difficult.

m Expectation consistent approximation (EC) H relaxes the density constraint

to moment-matching constraints:

p(x|y) ~ argmin max J(by, bs, q; 0)

biby 4
E{x|b} = E{x|b,} = E{x|q}
such that {tr[Cov{w\bl}] = tr[Cov{x|by }| = tr[Cov{x|q}].

m [ he stationary points of EC are

bal@) oc b(@; N (@m0, 00I) st 1oy (i, )] = trlCov{lbs}] =

bi(x) < p(x; 0N (x;r, v 1) { B{xz|b} = B{x|b) =
q(x) = N(z:z,0I)

Vector AMP (VAMP)

m There exist several algorithms (e.g., EC, ADATAP &, S-AMP H) whose fixed
points coincide with the EC stationary points, but often they don't converge.

m An exception is Vector AMP B, which can be derived using a form of
approximation message passing on the vector-valued factor graph

pz; )OO -0 Wz, 00)

5(3’31 — CBQ)
In particular, VAMP is provably convergent under either
1) strictly log-concave prior p(x;6;) and arbitrary A (after damping),
2) iid prior p(a;6,) and large, right-rotationally invariant A.

m A = U Diag(s)V"' is said to be “right-rotationally invariant” when V is
uniformly distributed on the set of unitary matrices.
m [he other SVD quantities, U and S, are deterministic and arbitrary.

m This model includes mean-perturbed and ill-conditioned A, known to break regular AMP.

m With large, right-rotationally invariant A, VAMP has a rigorous state
evolution B whose fixed points match the replica prediction of MMSE BH.

0

Expectation maximization (EM)
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m We now return to the problem of estimating 6.

m The maximum-likelihood (ML) estimate is

0 = argmaxp(yw) — argmin{— 1np(y\9)} ,
0 0

which is difficult to compute directly.

m Let's instead consider majorization-minimization: lteratively minimize a tight
upper bound on — In p(y|0):

—Inp(y|6) +MM}
>0

= p(a|y; 6;) -
m The upper bound “Q(8,b")" can be rewritten in the form

Q(0,0") = —Inp(y|0) + D (v (z)||p(z|y; 0))
= —E { Inp(y, x; 0) ‘ bk} + const,

~k+1 .
0 = argmin {
0

with b"(x)

ék’ ‘9k+1

which is the usual way of writing the EM algorithm, but it can also be
written in terms of the Gibbs free energy

Q(6,b") = D(b" z)||p(z; 01)) + D(b'(z
— J(b" b, b"; 6)

which yields a variational interpretation of EM RE.

The Proposed EM-VAMP Algorithm

m Recall that VAMP iteratively computes a posterior approximation b*(x) by
minimizing J (b1, bo, ¢; @) (under moment constraints) with known 6.

)|[€(2;6)) + H (b"(x))

m Likewise, EM iteratively estimates @ by minimizing J(b", b, b*; @) assuming
the posterior approximation b*(x) = p(x|y; 8") is available.

m We propose to combine EM and VAMP as follows:

Input g, and g-, and initialize 71 = 0 and v; = oc.
For k=1,2,3,...
6, argmaxy E{Inp(x;0,) |r, v1,0,}
_1tr[C0V{a3]r1,vl,§1}]
T+ E{x|r, v, 0}
1/v9 < 1/v7 — 1 /vy

To < (2/13\1/@\1 — 7“1/?}1)?}2

EM update
v < N posterior variance
denoising
variance update

Onsager correction

EM update
posterior variance

LMMSE estimation

variance update

Ay arg maxg, E{In (x; 02) | 72, v, 6,
Uy < N~ tr[Cov{|ry, vo, 65}
T, B{x|r, vy, 05)

/vy < 1/ — 1/v9

T <— (C/B\Q/@\Q — 7“2/’02)1]1

Onsager correction

p(x; 91)/\/(30; ri, v 1)

where
E{f(@)ri 0,61} = /f fp :1: 0N (x';rq, v ) dx’
{(x: HQ)N(a:;rg,ng)

D 0
{f( )‘erva 2} /f j‘g /92
and similar for the covariances.
m If the SVD A = U Diag(s)V' is precomputed, then
To—V (v2 Diag(s)* + 92I)_1 (’02 Diag(s)UHy + HQVHTQ)
1 2
) Ar,|?
ey S B[l an e ]

SO EI\/I—VAMP requires only two matrix-vector mults per iteration.

da

da

(' 1o, VoI ) da’

m Other algorithmic variants result when 8 and/or 6, are updated more or less
often than once per VAMP iteration.
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Theorem: Fixed Points of EM-VAMP
At any fixed point of EM-VAMP we have

V1 — Uy = — v
V1 + U9
L1 — Lo — | UV = &.
v 02

Also, EM-VAMP's fixed-points are stationary points of the EM-EC optimization

min min max J(by, by, q; 0)

0 biby g
E{z|b} = E{z|b,} = E{xz|q}
such that {tr[Cov{:l:|b1}] = tr|Cov{x|bs}| = tr|Cov{x|q}].

Numerical Experiments

Goal recover N =1024-length i.i.d. Bernoulli-Gaussian @
p(x,;01) = (1 —011)0(xy,) + 0N (x,; 6019, 613) with 0 =
from M =512 measurements
y=Ax + N(0,0,I) with 6, giving SNR=40 dB.
Here, A = U Diag(s)V'' with random orthogonal U,V and s,/s,_1 = ¢ Vn,

where ¢ determines the condition number k(A).
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