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Linear Regression with Unknown Prior/Likelihood

Consider the following linear regression problem:

Observations:

y = Ax +w with





x : unknown signal
A : known linear operator in R

M×N

w : white Gaussian noise.
Prior:

p(x;θ1) with deterministic unknown parameters θ1.

Likelihood:

ℓ(x; θ2) = N (y;Ax, θ2I) with deterministic unknown variance θ2.

Goal: jointly infer x and estimate θ , [θ1, θ2].

Approach: combine variational inference with ML estimation.

Variational Inference

For now, let’s suppose that θ is known.

We would like to compute the posterior density

p(x|y) =
p(x;θ1)ℓ(x; θ2)

Z(θ)
for Z(θ) ,

∫
p(x;θ1)ℓ(x; θ2) dx,

but the high-dimensional integral in Z(θ) is difficult to compute.

We can avoid computing Z(θ) through variational optimization:

p(x|y) = argmin
b

D
(
b(x)

∥∥p(x|y)
)
where D(·‖·) is KL divergence

= argmin
b

D
(
b(x)

∥∥p(x;θ1)
)
+D

(
b(x)

∥∥ℓ(x; θ2)
)
+H

(
b(x)

)
︸ ︷︷ ︸

Gibbs free energy

= argmin
b1,b2

max
q

D
(
b1(x)

∥∥p(x;θ1)
)
+D

(
b2(x)

∥∥ℓ(x; θ2)
)
+H

(
q(x)

)
︸ ︷︷ ︸

, J(b1, b2, q;θ)
such that b1 = b2 = q,

but the density constraint keeps the problem difficult.

Expectation consistent approximation (EC) 1 relaxes the density constraint
to moment-matching constraints:

p(x|y) ≈ argmin
b1,b2

max
q

J(b1, b2, q;θ)

such that

{
E{x|b1} = E{x|b2} = E{x|q}
tr[Cov{x|b1}] = tr[Cov{x|b2}] = tr[Cov{x|q}].

The stationary points of EC are

b1(x) ∝ p(x;θ1)N (x; r1, v1I)
b2(x) ∝ ℓ(x; θ2)N (x; r2, v2I)
q(x) = N (x; x̂, v̂I)

s.t.

{
E{x|b1} = E{x|b2} = x̂

tr[Cov{x|b1}] = tr[Cov{x|b2}] = Nv̂.

Vector AMP (VAMP)

There exist several algorithms (e.g., EC, ADATAP 2 , S-AMP 3 ) whose fixed
points coincide with the EC stationary points, but often they don’t converge.

An exception is Vector AMP 4 , which can be derived using a form of
approximation message passing on the vector-valued factor graph

p(x1;θ1)
x1

δ(x1 − x2)

x2 ℓ(x2, θ2)

In particular, VAMP is provably convergent under either
1) strictly log-concave prior p(x;θ1) and arbitrary A (after damping),
2) iid prior p(x;θ1) and large, right-rotationally invariant A.

A = U Diag(s)V T is said to be “right-rotationally invariant” when V is
uniformly distributed on the set of unitary matrices.

The other SVD quantities, U and S, are deterministic and arbitrary.
This model includes mean-perturbed and ill-conditioned A, known to break regular AMP.

With large, right-rotationally invariant A, VAMP has a rigorous state
evolution 4 whose fixed points match the replica prediction of MMSE 5 .

Expectation maximization (EM)

We now return to the problem of estimating θ.

The maximum-likelihood (ML) estimate is

θ̂ = argmax
θ

p(y|θ) = argmin
θ

{− ln p(y|θ)} ,

which is difficult to compute directly.

Let’s instead consider majorization-minimization: Iteratively minimize a tight
upper bound on − ln p(y|θ):

θ̂
k+1

= argmin
θ

{
− ln p(y|θ) +D

(
bk(x)

∥∥p(x|y;θ)
)

︸ ︷︷ ︸
≥ 0

}

with bk(x) = p(x|y; θ̂k)
θk θk+1

The upper bound “Q(θ, bk)” can be rewritten in the form

Q(θ, bk) , − ln p(y|θ) +D
(
bk(x)

∥∥p(x|y;θ)
)

= −E
{
ln p(y,x;θ)

∣∣ bk
}
+ const,

which is the usual way of writing the EM algorithm, but it can also be
written in terms of the Gibbs free energy

Q(θ, bk) = D
(
bk(x)

∥∥p(x;θ1)
)
+D

(
bk(x)

∥∥ℓ(x; θ2)
)
+H

(
bk(x)

)

= J(bk, bk, bk;θ)

which yields a variational interpretation of EM 6 .

The Proposed EM-VAMP Algorithm

Recall that VAMP iteratively computes a posterior approximation bk(x) by
minimizing J(b1, b2, q;θ) (under moment constraints) with known θ.

Likewise, EM iteratively estimates θ by minimizing J(bk, bk, bk;θ) assuming
the posterior approximation bk(x) = p(x|y;θk) is available.

We propose to combine EM and VAMP as follows:

Input g1 and g2, and initialize r1 = 0 and v1 =∞.

For k = 1, 2, 3, . . .

θ̂1← argmaxθ1
E{ln p(x;θ1) | r1, v1, θ̂1} EM update

v̂1← N−1 tr[Cov{x|r1, v1, θ̂1}] posterior variance

x̂1← E{x|r1, v1, θ̂1} denoising

1/v2← 1/v̂1 − 1/v1 variance update

r2← (x̂1/v̂1 − r1/v1)v2 Onsager correction

θ̂2← argmaxθ2 E{ln ℓ(x; θ2) | r2, v2, θ̂2} EM update

v̂2← N−1 tr[Cov{x|r2, v2, θ̂2}] posterior variance

x̂2← E{x|r2, v2, θ̂2} LMMSE estimation

1/v1← 1/v̂2 − 1/v2 variance update

r1← (x̂2/v̂2 − r2/v2)v1 Onsager correction

where

E{f (x) | r1, v1,θ1} ,

∫
f (x)

p(x;θ1)N (x; r1, v1I)∫
p(x′;θ1)N (x′; r1, v1I) dx′

dx

E{f (x) | r2, v2, θ2} ,

∫
f (x)

ℓ(x; θ2)N (x; r2, v2I)∫
ℓ(x′; θ2)N (x′; r2, v2I) dx′

dx

and similar for the covariances.

If the SVD A = U Diag(s)V T is precomputed, then

x̂2← V
(
v2Diag(s)

2 + θ2I
)−1 (

v2Diag(s)U
Hy + θ2V

Hr2
)

v̂2←
1

N

N−1∑

n=0

1

s2n/θ2 + 1/v2
, θ̂2←

1

N

[
‖y −Ar2‖

2 +
∑

n

s2n
s2n/θ2 + 1/v2

]
,

so EM-VAMP requires only two matrix-vector mults per iteration.

Other algorithmic variants result when θ1 and/or θ2 are updated more or less
often than once per VAMP iteration.

Theorem: Fixed Points of EM-VAMP
At any fixed point of EM-VAMP we have

v̂1 = v̂2 =
v1v2

v1 + v2
, v̂

x̂1 = x̂2 =
(r1
v1

+
r2

v2

)
v̂ , x̂.

Also, EM-VAMP’s fixed-points are stationary points of the EM-EC optimization

min
θ

min
b1,b2

max
q

J(b1, b2, q;θ)

such that

{
E{x|b1} = E{x|b2} = E{x|q}
tr[Cov{x|b1}] = tr[Cov{x|b2}] = tr[Cov{x|q}].

Numerical Experiments

Goal recover N=1024-length i.i.d. Bernoulli-Gaussian x

p(xn;θ1) = (1− θ11)δ(xn) + θ11N (xn; θ12, θ13) with θ1 = [0.1, 0, 1]

from M=512 measurements

y = Ax +N (0, θ2I) with θ2 giving SNR=40 dB.

Here, A = U Diag(s)V T with random orthogonal U ,V and sn/sn−1 = φ ∀n,
where φ determines the condition number κ(A).
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EM-VAMP

VAMP

replica

condition number κ(A)

EM-VAMP matches
known-θ-VAMP which
matches the replica
prediction of MMSE for
a wide range of κ(A).

EM-AMP 7 only works
at small κ(A).
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condition number = 32

condition number = 3162

iterations

EM-VAMP and
known-θ-VAMP take
∼ 10 iterations to
converge, whereas
EM-AMP takes ∼ 100.

EM-VAMP and
known-θ-VAMP take
only ∼ 25 iterations to
converge, while
EM-AMP fails.
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