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ABSTRACT

We consider pilot-aided transmission (PAT) for a generasslof
systems encompassing linear modulation and a linear tamgng
channel. For these systems, and given a pilot energy cantstra

we derive a tight lower bound on the mean squared error (MSE)

of pilot-aided channel estimates as well as necessary diicl et
conditions on PAT to attain this bound. We then apply theselte

to the design of single-antenna PAT for doubly selectivenoeés
and arrive at novel MSE-optimal PAT schemes. In this apfiboa
we assume a block-based cyclic-prefix PAT and a basis exgansi
model for the channel.

1. INTRODUCTION

The wireless communication channel is typically modeletiras
ear transformation and parameterized by a set of time-vgryo-
efficients. Often, the receiver estimates these coeffigimmtsub-
sequent use in data detection, so that high-quality chaestél
mates are desired. In the pilot-aided approach to chantigiaes
tion, a known pilot (or “training”) sequence is embeddedhe t
otherwise unknown transmitted sequence.

Tong, Sadler, and Dong published a recent overview of pilot-
aided transmission (PAT) [1]. They argued that the PAT desig
problem can be separated into two sub-problems: pilot rette-
sign and pilot/data power allocation. In this work we tartet
first subproblem, i.e., pilot pattern design given a fixedtgilower
allocation. Previous work on pilot pattern design (see,, ¢1d)
assumed a specific modulation type and either non-overgppt
lot/data or persistent data with superimposed pilots.

We follow a different approach. First, we consider a general
linear modulation scheme (e.g., single-carrier, multiearcode-
multiplexed) with data and pilot patterns that may or mayowetr-
lap. Second, we consider a general linear time-varying reélan
based on zero-mean random parameters with arbitrary atime!
structure. For this class of systems, and for a constraithempi-
lot power, we derive an expression for the minimum mean+sgla
error (MSE) of pilot-aided channel estimates as well as seary
and sufficient conditions on the pilot/data pattern to attdhis
minimum MSE. Applying these conditions to the single-angen
doubly-selective channel (DSC) using a basis expansionemod
(BEM), we outline a procedure for MSE-optimal PAT designttha
yields novel pilot/data patterns. We also uncover an inttetaal-
ity between time- and frequency-domain PAT systems.

It should be noted that several authors (e.qg., [2—4]) hatabes
lished close connections between the capacity and MSFEiarite
for pilot pattern design. Though these connections applguto
work as well, these issues (as well as pilot/data power atiioa)
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are treated elsewhere for reasons of space. The paper isz#da
as follows. In Section I, we derive the MSE lower bound and
achievability conditions. In Section Ill, we apply thessulks to
the DSC. In Section IV, we conclude.

2. MSE-OPTIMAL PILOT-AIDED TRANSMISSION

In this section, we derive a lower bound on the MSE of pilot-
aided channel estimates assuming linear modulation, arltime-
varying channel, and constrained pilot power. We also #stab
necessary and sufficient conditions to achieve this bound.

2.1. System Model

For linear modulation and a linear time-varying channed tté-
ceived complex-baseband vecipe C can be written
y=Th+wv Q)
whereT € CY*€ contains transmitted symbolbks,e C¢ channel
coefficients, ana@ € CV zero-mean circular white Gaussian noise

(CWGN) with variances2. T is formed by superimposing pilots
S and unknown datX :

T=S+X. 2
We assume zero-mean data, so that £{T'}, and
h =UAX, 3)

whereA € C is zero-mean Gaussian witRy, = E{A\"}
= diag(o3, -+ 03,,_,) > 0andU is fixed withU"U = I.
Finally, we assume that, X, and\ are uncorrelated.

2.2. MSE lower bound

Here we derive an MSE lower bound for estimationhofjiven
knowledge of{y, S}, statistical knowledge ofh, X, v}, and pi-
lot energy constrainfiS||3 < P’. We begin by taking SVDs,
SU = VsE:QF and XU = VZQF, whereXs and 3 are
diagonal and full-rank. Lei( < M denote the rank aEs. Defin-
ing z := V¥y and using (3), we have

z=3QI N+ VIV, ZQI A+ Vi, 4)

~——
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Since projection ontool(V's) does not attenuate the pilot compo-
nent ofy, the pilot-aided MMSE channel estimate giviy, S} is



equal to that giver{z, S}. With R, » := E{zA"} andR, :=
E{zz"}, the MMSE estimate oA given{z, S} is

A=RINR'2, (5)
R. = AsR, + E{A;} Ry + E{nA"}, (6)
N—— N—_——
0 0
R. = AsR\A + 02T + E{AR ALY, (D)

A UxAUH

with diagonalAx > 0 andU Uy = I. Note that the MMSE
estimate ofh is h = U and thate? = E{||h — h|*} =
E{|IA — X||*}. The energy constraint ol implies

tr{(SU)"SU} = tr(Af As) < P, (8)

for some P, where the relationship oP to P’ depends on the
structure ofS andU . Given constraint (8), a tight lower bound on
o2, as well as necessary and sufficient conditions to achidse th
bound, are stated in Theorem 1.

Theorem 1 (MSE Lower Bound).

M-1 1 Ozom —1
2 > m 9
06_7;<—U§m+ =) ©
\ o2 1t
O"rrzL) = |:7 - 0_2 :| ) (10)
Am
where[z]t := max(0, z) andy € R satisfies
M-1 0_2 +
> [y - = ] =P (11)
m=0 Am
Equality in (9) occurs if and only if (12)-(13) hold:
VX, (SUPXU = o. (12)
(SUYTSU = diag(ad?’, ..., %" ). (13)
Proof. For the estimator (5) we have
o? = tr{Ry — RI\R'R. )}
= tr{Ry — RY A (A + UAUT) ARy}
= tr{Ry — RYAZ A7 — AU (A?
+ULATU) U AT AR, Y, (14)
> tr{Ry — RYAZ A" AR, ), (15)

where we used the matrix inversion lemma in (14). The inétyual

(15) follows sinceA > 0 andAx > 0. SinceXs is full rank, As

has full row rank, and so equality in (15) is achieved if antydh
UxAUY =0 < E{AR A} = 0. (16)

SinceR, > 0, (16) is satisfied if and only ifAx = 0, which is
equivalent to (12), sinc&s and X are full rank square matrices.
We proceed further assuming that (12) is satisfied. \Mith= 0,

02 = tr{Rx — RTAY (AsR\As + 021x) ' AsR,},

_ 1 _
= tr{(R' + FAfAS) 1 (17)

using the matrix inversion lemma. Diagorah implies

M-—1 1 a -1

2 m

e 2 Z<02—+02) ) (18)
m=0 Am v

wherea,, = [AF Ag]m.m. Equality in (18) is achieved if and
only if A¥As = (SU)?SU is diagonal. To find the lower
bound on MSE, we minimize the right hand side of (18) with re-
spect to{a., } given the constraints (8) and,, > 0 Vm. The
method of Lagrange multipliers yields the optirdal,,, } given by
(10)-(11). d

The MSE-optimality condition (12) says that pilots and data
should be multiplexed in a way that preserves orthogonatithe
channel output. Condition (13) says that pilot signal sticus
constructed so that the channel modes are independenibgaexc
with energies specified by the water-filling expression (10)

Corollary 1. If Ry = 031, thenay?* = £ Vm and

1 P\
2> M= 19
Ge -_ O'i +O',L2}M b ( )

with equality if and only i{SU)"” SU = %IM and (12) holds.

3. PAT FOR THE DOUBLY SELECTIVE CHANNEL

Using results of Section 2.2, we now outline a procedure ésr d
signing MSE-optimal pilot and data patterns for block traiss
sion over single-antenna doubly-selective channels (D8f@sfit
a basis expansion model (BEM). For these channels, we show an
inherent duality between time- and frequency-domain PAT.

3.1. Cyclic-Prefix Block Transmission Model

We assume that the output sigdal(n)} is related to the transmit
signal{t(n)} via

Ne—1

> h(n, Ot(n — £) +v(n),

£=0

y(n) = (20)

where{v(n)} is o2-variance CWGN andh(n, £)} is the timen
channel response to an impulse applied at time ¢. The time
spread of the channel ;. Furthermore, we assume a length-
N block transmissiodt(n)}"_ prepended with a lengtN; — 1
cyclic prefix (CP). By considering arbitrarily largé, the CP over-
head becomes insignificant. We form the received vegto=
[¥(0),...,y(IN—1)]" by discarding the CP contribution. To fit the
model (1), we setT = [To---T-n,+1] with
T_; = diag(t(—i),...,t(—i + N — 1)), h := [h§---hl, 1]’
with h; := [h(0,4),..., h(N—1,4)]", andv := [v(0),...,v(N—
t

D).

The transmit signaft(¢) } is composed of pilot portios(i) =
E{t(#)} and zero-mean data portiar{i) = ¢(¢) — s(z). We em-
ploy a pilot power constraint of the form

1 N-1
~ 2 s’ <ot
N n=0

With S, = E{TZ},XZ =T,—-5;,8 := [So o Sth+1], and
X :=[Xo -+ X_n,+1], we fit the model (2). In the sequel we
uses := [s(0),...,s(N —1)]* andx := [z(0),...,z(N — 1)]".

(21)



3.2. Doubly-Selective Channel Model

The following BEM (see, e.g., [4]) characterizes the DSQoase
over the block duration:

| (Nymn/2 .

h(n,€) =N"2 > Ak, 0¥, (22)
k=—(Np—1)/2

wheren € {0,...,N —1} and¢ € {0,..., N, — 1}. In (22),

A(k, £)'s are zero-mean uncorrelated Gaussian with variq@f@é%.

This model approximates wide-sense stationary uncoecstat-
tering (WSSUS) with uniform PSD

w7 |f| < deS7

0, 1> faT, (23)

Snn(f) = {

where f4Ts is the one-sided Doppler spread normalized to the

symbol rate and wher&/’; := |2f4TsN|. We refer toN; as

the frequency spread of the channel, and assumed it to bedan od

integer. Also, we assumefyTs N; < 1, so that the channel is
underspread.

Denoting theN-point unitary DFT matrix byF' 7, we rewrite

(22) ash, = FA, with F := Fi(;, —N%l ) Ry =
—1

[h(0,2),. (N L0 and, := [AM(—=5—,0),. ..

Notice thatF F= In,. If we define
U =

INt ®F
h = [h6 hNt 1]

= [)\6 o )\Nt 1]

thenh = UXwith U"U = In;n, andRx = w75 Ingn,
which is compatible with the channel model in Section 2.1.

The transmitted pilot-power constraint (21) yields linttsthe
received pilot-power asin (8). SIn&J = [SoF --- S_n,+1F],
S7.8_, is diagonal, and all diagonal elements B equal
= we find

2

(24)

N¢—1 oy
= > w{FF"s"s ;}
1=0
tr {S S,i} = NthO'S.

=0

we sét = Ny N;o2.

tr{(SU)" SU}

Thus, to match (8),

3.3. MSE-Optimal Cyclic-prefix PAT for the DSC

We now state the MSE-optimality requirements on pilot/qet
tern for the block-transmission model in Section 3.1 anddBE€
model in Section 3.2. We will use the index séfs := {—N; +
1,..., N — 1} and./\/f = {—Nf +1,.., Ny — 1}.

Lemma 1. For N-block CP transmission over the doubly selec-
tive channel (22), the necessary and sufficient condition8SE-
optimal PAT can be written as followgk € N;, Ym € N,

N-1
% S s(@)s* (i — K)e TR ™ = g26(k)0(m)  (25)
N 2
z(i)s*(i—k)e I N™ =0 (26)

DRI

Proof. According to Corollary 1, we require
(SUYSU = UEINth (27)

and (12). Notice thatSTU )" SU is composed oN; x N; blocks

gkg,kl = FHSEIQkalF for k1, ko € {0, .. A,Nt — 1}. For

thesek,, k2 and form,,m2 € {0,..., Ny — 1}, (27) becomes
[Sk2vk1]7”1v7”2 - 056(k1 - k2)5( (28)

The definitions off" and.S _

mz).

i imply

NZ Z—kl

Settingk := ko — k1 andm := my
m € Ny, (29) becomes

3 3F (m1—ma)i

(i =ka)e (29)

[Skzyh my,my =

— mo, so thatk € N; and

1 N—1—ky
[Skz,kl]m1,m2 = N z S(q)S*(q - k)67] N m(q+k1)
q=—k1
e—]Nmkl N-1 2w
= s(q)s" (g — k)e ' v ™1
~ ; (0)s"(a — k) (30)
where in (30) we exploited the fact that—q) = s(IN — q) for

1 < ¢ < N;. Combining (28) and (30), we obtain (25). The
equivalence of (12) and (26) can be shown similarly. a

Using the quantities (i) := fzq o 8(@)e’ ¥ and
xy(i) = \/_ Zq o (g )ejo”‘”', Lemma 1 can be easily trans-
lated to the frequency domain.

Corollary 2. For N-block CP transmission over doubly-selective
channel (22), the necessary and sufficient conditions foEMS
optimal PAT can be written as followsgk € N;, Ym € Ay,

N-1

1 sg(i)sy(i— )efj%r’“' = Uf(S(k:)d(m) (31)
=0
N—1 e
zy(i)s5(i —m)e INF = 0. (32)

0

7

3.4. Examples of MSE-Optimal PAT for the DSC

The pilot/data patterns specified by Lemma 1 are not unique. A
PAT design procedure is described in brief below, followgdév-
eral examples including single-carrier cyclic prefix (SGGRd
cyclic-prefix OFDM. For more details, see [5].

The “time-domain Kronecker delta” (TDKD) family of pilot

patterns follows from the choice= b® [10 --- 0], forb € C*
such thatZ := 4~ € Z and
t
No2s( Z b()[Pe 7 E™ Yme Ny, (33)

If L < Ny, no solution to (33) exists. 1iV; < L < 2Ny,
the elements irb must have equal magnitude. Whén> Ny,
however, the design dif is less constrained. (See [5].) Another
family of pilot patterns—the “frequency-domain Kroneckielta”
(FDKD) family—results from setting; = by ® [10 - -- 0]* with



N

by € C* andL’ := X € Z. A third family of MSE-optimal
pilot patterns can be constructed from linear chirp segegnc

Given a pilot pattern, (26) imposes requirements on the MSE-
optimal data pattern. These can be rewritteMag = 0 via

Wy = FN(—Nf +1:Ny— 1,:)5;{.{
W= Wiy, Wh, 1"

In other words, data must be transmitted in the nullspac®of
To do this, we construck Bd, whered contains Ng
dim(null(W)) data symbols and where the columnsi CN*Nd
form an orthonormal basis farull(W'). SCCP follows naturally
from TDKD, whereas CP-OFDM follows naturally from FDKD.

It is possible to boundV, for the DSC (22). Note that the
N; N rows of (SU)* are contained within th N — 1)(2N; —
1) rows of W. In order to satisfy (27), those rows must be orthog-
onal. ThusNyN; < rank(W) < (2N; —1)(2N; — 1), which
impliesN — (2Ny — 1)(2N¢ — 1) < Ng < N — N¢N;.

3.5. Discussion

A few comments are in order. The scheme in Example 1 was
shown to be MSE-optimal in [4]. To our knowledge, the scheme
in Example 2 is novel; the suggestion to cluster pilots inftiee
guency domain was given by Stamoulis et al. [6], though Hetai
were lacking. To our knowledge, the scheme in Example 3 & als
novel; a chirp-based training scheme was suggested inj7figta

and pilots were transmitted in different frames. Note thelgtive

to TDKD or FDKD, chirp systems may have advantages in peak-
to-average power ratio.

Though all three PAT examples above yield MSE-optimal chan-
nel estimates, they differ in the dimension of their dataspalse
N,4. While a capacity analysis is outside the scope of this maipts
(see [5] instead), it should be intuitively clear that lar@é; lead
to higher capacity. Notice that, among the three exampleseab
FDKD vyields the largesiVy when N, > Ny > 1, while TDKD
yields the largesiNg whenN; > N; > 1. Atthe moment it is not

The examples below specify various MSE-optimal PAT schemeslear, though, whether there exists an MSE-optimal PAT mehe

using their(s, B) parameterization.
Example 1 (SCCP with TDKD). Assuming]\% € Z, define the
pilot index setP{” and the guard index se&t":

PO = {i,i+Nﬂf,...7i+W} (34)
= J {-Ne+14k..,No—1+k}. (35)
keP()
An MSE-optimal PAT scheme is given by
RSP LIC) c p®
s(a) = {” v (36)
0 q& P,

and by B constructed from the columns v with indicesnot
in the setG”. Bothi ¢ {O,...,Nif — 1} andé(q) € R, are

arbitrary. Here, Ng = N — N#(2N; — 1).
Example 2 (CP-OFDM with FDKD). Assuming]% € Z, define
the pilot index seP|” and the guard index s€t|":

PO = {iyi+ A, i+ S DNy 37)
G = |J {-Ny+1+k.,Ny—14+k} (38
keP
An MSE-optimal PAT scheme is given by
Os N i6(a) qe pw
sp(q) = { VN 7 (39)
0 qa¢P;

and by B constructed from the columns &fy with indicesnot
in the setg(”. Bothi € {0,...,4- — 1} andd(q) € R, are
arbitrary. Here, Ng = N — N;(2N; — 1).

Example 3 (Superimposed Chirps).Assuming evefV, an MSE-
optimal PAT scheme is given by

2 q2

Ny
2

EN

(40)

= O'Sej

Jl_ejzw"(p+Nth)q6j%"%ﬁq2
N

forq € {0,...,N —1}andp € {0,...,Nq — 1}, whereNy =

N —2NfN; + 1.

; (41)

for the DSC with even higheW,.

4. CONCLUSION

For a general class of systems encompassing linear mamtulati
and a linear time-varying channel, we derived a lower boumd o
the MSE of pilot-based channel estimates assuming a pitrggn
constraint. In addition, we derived necessary and suffiaien-
ditions for PAT schemes to achieve this lower bound. Apmyin
these results to the case of single-antenna block-trasgmisver

a DSC, we gave three examples of MSE-optimal PAT schemes,
two of them novel. Our future work will strive to tighten thiek
between PAT design based on MSE and capacity criteria useng t
framework developed here.
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