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ABSTRACT

We consider the design of max-SINR pulse-shaped (PS) fregue
domain modulation (FDM), where signal to interferencesphoise
ratio (SINR) is defined in accordance with inter-symbol amtei-
carrier interference (ISI/ICI) shaping rather than cortgISI/ICI
suppression. Because the transmitter is assumed to knakiine
nel scattering function but not the channel realizatioa résulting
max-SINR pulses are non-(bi)orthogonal. For this case,amidm
cal results suggest that max-SINR systems designed fdCISI/
shaping achieve higher outage capacity than those desfgned
ISI/ICI-suppression. An outage capacity analysis is alseduo
obtain rough design guidelines for max-SINR non-(bi)ogthaal
PS-FDM, since the design paradigm differs from that of (tho-
gonal PS-FDM.

1. INTRODUCTION

The design of pulse-shaped (PS) frequency-domain modalati
(FDM) systems for doubly-selective channels has been densi

target pattern is chosen so that the residual I1SI/ICI carebelved
by a high-performance, yet low-complexity, soft interfece can-
cellation (IC) algorithm. Pulse prototypes are then desigto
minimize out-of-target ISI/ICI given knowledge of the cimah
fading statistics (i.e., the scattering function [12]).e@ly, this
system is non-(bi)orthogonal. Thus, [11] advocates |SI4@p-

ing rather than ISI/ICI suppression.

When ISV/ICl is permitted, many of the standard OFDM sys-
tem design rules must be reconsidered. For example, it isngel
the case that the cyclic prefix length must be greater thanngha
delay spread. Similarly, the FDM symbol duration does n&dhe
to be less than the channel coherence time. In addition, nes-q
tions arise. What is the optimal target ISI/ICI pattern? 8to
we design for unit spectral efficiency? In an attempt to amswe
these questions, we examine the outage capacity [13] ofdhe n
(bi)orthogonal PS-FDM system [11] for various design chsic

Notation: We use(-)* to denote transpos€;)* conjugate,
and (-)* conjugate transposedl denotes the identity matrix, and
[B]m.» denotes the element in the'” row andn'™ column of
B, where row/column indices begin with zer@> denotes the

ered by many authors (e.g., [1-8]). These works assume a lin-pagamard produck{-} expectations,, the Kronecker delta, and

ear modulation/demodulation structure in that finite-alpét sym-

bols {sx,;} are modulated onto time-frequency translated pulses

Z the set of integers.

{ax,:(t)} and demodulated using inner products between the (noisy,

spread) received signal and the time-frequency transjatésks
{br.(t)}. Orthogonal systems havi ;(t) = ax,(t) and
(ak,i1(t), amn(t)) = dk—mdi—n, While biorthogonal systems have
(ak,i1(t),bm,n(t)) = Ok—mdi—n. (Bi)orthogonal systems have
the elegant property that inter-symbol interference () inter-
carrier interference (ICI) are absent in non-dispersiwérenments,
though they suffer from ISI/ICI when used in dispersive eoni
ments. While some authors have assumed that this intecieren
is negligible (e.g., [5]), appealing to the existence of apgroxi-
mate” eigen-basis for underspread channels [9], others inses-
tigated the design of pulse prototypeso(t) and bo,o(t) which
minimize the interference energy for a given delay/Doppjeead
under (bi)orthogonality constraints (e.g., [4, 6, 7]). J@thogonal
PS-FDM systems are, however, capable of significant iremfz
suppression only when designed with spectral efficienaigs |
than 0.8. (See, e.g., the discussion in [7].)

The PS-FDM system proposed by the author in [11] is a sig-

nificant departure from the previously cited literature hattthe
pulses are designed &blow ISI/ICI within a target pattern. The
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1A different technique, OFDM-OQAM, is said to yield good Il
suppression with unit spectral efficiency [10]. The impletation com-
plexity of these systems is substantially greater thanahBS-FDM, how-
ever, and rises in proportional to their ISI/ICI suppreastapabilities.

2. SYSTEM MODEL

At eachi € Z, a set ofN coded QAM symbol{s\”} is collected
to form a FDM symbols® = [s’,...,s% ,]*. These symbols
are used to modulate pulsed carriers as follows:
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In (1), {ax»} is the transmit pulse sequends; is the FDM sym-
bol interval, andN, € {0,..., N — 1} delays the carrier origin
relative to the pulse origin. The multipath channel is diésct by
its time-variant discrete impulse resporisgn, (), defined as the
time-n response to an impulse applied at time- [. We assume a
causal impulse response of length . The observed signal is then

Np—1

Tn = Un+ Z ha(n, [)tn—
1=0

)

wherev,, denotes samples of additive white circular Gaussian noise
(AWGN) with variances?. Definingr{) = rin.1n, v =



ViNg+n, andhy’ (n,1) := hy(iNs + n, 1), we find
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To estimate the FDM symba”), the receiver employs the pulse
{b,} as follows:

xd _ zr;)b e —j ZFd(n—N,)

Here againV, delays the carrier origin relative to the pulse origin.
Note that this system reduces to CP-OFDM wikh = Ns — N,
{an}egt =1, and{b,} =} = 1 (elsea, = b, = 0). Note
also thatV, := Ny, — N is analogous to CP-OFDM guard interval
length, though in PS-FDM we allow, < 0.

Plugging (3) into (4), we find

(4)
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Np—1
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Equation (5) indicates thdi{” (d, k) can be interpreted as the
response, at timé and subcarriek + d, to a frequency-domain
impulse applied at timé — ¢ and subcarriek. In practice we
implement finite-duration causal pulsés, } and {b,} of length
N, and N, respectively, implying thak{“ (d, k) is non-zero
only for £ € {—Lgre, ..., Lpst} Where Lye = —|%:=] and
Lpst = | Metin=2 | (See [11] for details.)

With the definitionsz® = [z7,...,2{ ]}, w® =
[ws”, ..., w@ ]t and (K9] = h$?(d — k, k), (5) im-
plies the linear time-varying (LTV) multiple-input muliig-output
(MIMO) system

Lpst
x(l) _ ’U)(l)—|— Z H(%Z)S(lff).

t=—Lpre

(8)

In the sequel we assume wide-sense stationary uncorrelated;n

scattenng (WSSUS) [12] so thBf hu(n, D) hg (n — ¢,1 —m)} =
r(q)o?d,, with m(q) denoting normalized autocorrelation (i.e.,
m(0) = 1) ando? the variance of thé"" lag. We also assume
zero-mean symbols such tHafs s =97} = 14,.

3. PULSE DESIGN

The choice of{a,} and {b,} affect the ISI/ICI patterns of the
MIMO system (8). For example, it is well known that the CP-
OFDM choices yield a system for which ISI and ICI vanigh

the channel is LTI with delay spreal, < Ny + 1. The ab-
sence of ISI/ICI greatly simplifies detection; this is thesdi-
cal motivation for CP-OFDM and, more generally, (bi)ortbogl
PS-FDM. When the channel is LTV or it is impractical to en-
force N, < N — N + 1, however, no choice ofa,} and{b.}

is capable of completely suppressing both ISI and ICI. We ad-
vocate the design of pulses which impart a particular strect
on the effective channel respons&*“. A good target ISI/ICI
pattern should allow high-performance/low-complexitytedtion
while being nearly attainable for some choice of {a, } and {b, };
when the channel is significantly dispersive, a target wisigh-
presses all ISI/ICI (e.g., [4,7, 8]) may not be attainable.

The lowpass nature of Doppler spectra typically encoudtere
in wireless communication implies that ICI will be strong&sm
neighboring carriers. In other words, for smooth (or regtdar)
pulse shapes, the “cursor” coefficigtit™* will have large entries
near the main diagonal and smaller entries elsewhere. (Sige [
for an ICI analysis with CP-OFDM pulses.) With well designed
pulses, the ISI coefficientsH " “ } .o can be made small relative
to the ICI response when the delay spread is’lésan the FDM
symbol length [11]. These observations motivate an ICliaEjet
in which {H“"} 4.0 equal zero and{** has the banded struc-
ture illustrated by Fig. 1 for some integér. The choice ofD is
discussed in the sequel.
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Fig. 1. Desired structure of MIMO cursor coefficiett?.

In [11] we proposed pulse designs which maximized SENR
Es/Eni, Where signal energy, and noise-plus-interference en-
ergy &,; are defined relative to the target. If we defifig; to
be the energy contributed by}’ to =, and if we defineyiq
to be the energy contributed td,” by additive noisew|’, non-
cursor symbols{s“)}#z, and non-neighboring co-cursor symbols
{si 3z U sy by thenés = 3 Esa and &y =
Zd Sn. 4. Note that the energy contributed 4’ by neighboring
co-cursor symbolgs;” }¢ =}, U {s’}{ED, | is considered nei-
ther signal nor interference, but rather a “don’t care” ditgnin
choosinga := [ao, . . .,an,—1]°, we impose the average transmit-
ted power constrainta||> = N,. Since the norm of the receive
ulseb := [bo,...,bn,—1]" is inconsequential (i.e., signal, noise,
d interference scale together), we can chddgé = N with-
out loss of generality.

3.1. Max-SINR Pulses

It was shown in [11] that alternating the pair (9)-(10) jonopti-
mizes SINR with respect t@ andd under the constraintsa ||? =

2|f the delay spread is long compared to the FDM symbol inferva
block decision feedback detection may be applied, in whadedhe pulses
should be designed to allow arbitrary post-cursor ISI. Fedails see [11].



|6]|> = Ns. We usev, (M, N) to denote the principle general-
ized eigenvector of the matrix paitg, IV).

bia = VN v, (Ry © As,
U2I+Rb®Cb®At—Rb®Db®As)
ayp = \/E~v*(Ra®Bs,
0’ I+R,®Co®Bi— R, ®D,®Bs) (10)

The matrices in (9) aréV, x N, and defined element-wise as
[Ro],,,, = r(n —m), [As],, = X ofanap .,
[Cb]m,n =0({n—m)y), [Db]m,n =i sin(f (2D +1)(n —
m))/sin(%(n — m)), and [Ad,, . : Pl N =1 52

9)

N
N = 2it——Lpe 2a=0 Il
A¢N,+n—10N, +m—1- The matrices in (10) ar&/, x N, and de-
. . Np—1
fined element-wise ddt.|,, . := ri(¢—p), [Bs], , == > ;2

by+ibpir [Dal, , = %

N
L Np—1 2
pst h *
[Bt]p,q t=—Lpre 241=0 Ol bg+1—eNsbpyi—en,, and

[Cal, , = d({g — p) ). We note that (9)-(10) must be alternated
becauseds and A; are functions o and Bs and B; are functions

of b. In the case of Rayleigh fading, we note that the pulses de-
signs depend only on maximum Doppler frequency, power gxofil
and noise variance.

While (9)-(10) is only guaranteed to converge to a local SINR
maximum, our experience leads us to believe that the globat m
imum is obtained from a properly chosen initialization (ethe
Gaussian pulses discussed below). In practice, (9)-(1@ddze
carried out in advance for particular fading scenarios edré-
sulting pulses stored at the terminals.

2
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sin( £ (2D+1)(g—p))/sin(F (¢—p)),

3.2. SINR-Maximizing Gaussian Pulses

Itis well known that the Gaussian pulse has the best timgufracy
localization among all pulses. Thus, several authors hawusid-
ered its use for PS-FDM (e.g., [8, 15, 16]). Adapting the Gars
pulse to our system, we employ the SINR-maximizing pararsete
{tta, 0a, v, op } in the finite-length pulses (11)-(12) via numerical
optimization of (13) (which was derived in [11]).

,(n*ua)z
an = \/Ns(zmi)*%e e, ne{0..N,—1} (11)
_ (n—py)?
by = VN.(2102) de 7 ne{0.Ny—1}  (12)
b (R, ® As)b
SINR = (B © 4s) (13)

b (02l + R, ©C, ® At — Ry © D, © As)b
Note that (11)-(12) satisfy the constrajjt||* = ||b]|*> = N.

4. OUTAGE ANALYSIS

To predict PS-FDM performance with a practical coding sohem
(i.e., finite decoding delay), we examine outage capaditig ds-
sumed that bits are coded across a blockfoFDM symbols and,
for simplicity, that the entries is” are circular Gaussian. As an
example, considel! = 2, Lpre = 1, andLpst = 2. Equation (8)
implies the block system model (14) at block index 0:
pRey) HEO DT T4 w®
: |+ (2]

] = |:H(o,71) H(o,o) (14)

HAL-D DD o s
+ 01 402 | 877
0 H ! H ’ 3(72)

Note that the last two terms in (14) constitute noise andpp/
cursor interference, respectively. More generally, wengeff’) :=
[w(h1j+1x4—1)t7 o w(A{j)t]t ands® .= [S(A4j+hl—1)t7 o s(}&{j)t]t’
and we construct the matrix‘?’ with M block rows andV/ block
columns, where thék, 1) block equalgH MM —1==1=F Fj.
nally, we collect the noise and pre/post-cursor contrimgiinto
the Gaussian vectar” ¢ CM” yielding the block system model
29 = HDsO 1 @ We denoteR, := E{p Vv @],

The mutual information betweea™ and ', in bits per
channel use, conditioned @i, is given by

1

T =

log, det(IMN + H(j)HRITlH(j)),

(15)

Since’ Y is random, so isZ{}. The P,-outage capacity’,
is defined through the relationship, = Pr{Z{} < C,}. Our
experiments indicate that} is well modeled by the normal r.v.
N (p, o%), in which case it is straightforward to show that
Co = p+oerfinv(2P, — 1). (16)

To computeC, for the plots in Sec. 5, we use (16) wifu, o}
estimated from 1000 realizations 5f, .

Recall that the pulses in Sec. 3.1 and Sec. 3.2 were designed
for efficient detection—not for maximur@’,. However, outage

analysis can be used to choose the valids D, N,} used in
pulse construction and to predict overall performance.

5. NUMERICAL RESULTSAND DISCUSSION

All experiments employ SNR*-variance circular AWGN v, }, a
WSSUS Rayleigh-fading channel wittf = N, ' (for0 <[ <
N.) and Np, 8, and pulse length&V, = 1.5N; and N, =
N. + [Ny,/2]. Bits are coded across 64 scalar symbpi§’},
so thatM = 64/N, allowing a fair comparison among different
choices of N. “PS-FDM" refers to the power-constrained max-
SINR pulses of Sec. 3.1, while “GP-FDM” refers to the
power/Gaussian-constrained max-SINR pulses of Sec. &@alR
that fy is the Doppler frequency normalized to tti@nnel-use in-
terval rather than the FDM-symbol interval.

Figure 2 shows typical traces @f, versusN f4 for various
D. Here we use GP-FDM with unit spectral efficiency (i®+
N, — N = Ny). Notice thatC,-maximization occurs ab ~
N f4. SinceD = 0 is optimum only for relatively smallV fq4, we
conclude thatfor roughly N fy > 1, target responses allowing ICl
are advantageous from an outage capacity standpoint.

Figure 3 plotsC, versusfy for various SNRs and FFT sizes
N. In all cases the”,-maximizing choice ofD was employed.
PS-FDM performs equivalently to GP-FDM at the shortest FFT
size (N = ). As N increases, the capacity of PS-FDM increases
slightly while the capacity of GP-FDM decreases slightlyd aig-
nificantly atV = 64.). We attribute this to the lack of freedom in
GP-FDM, relative to PS-FDM, pulse design. Note that, wii&n
and N are well chosen, capacity increases wfti(a consequence
of Doppler diversity).

Figure 4 plot<’, versusfy for various values oiV and “equiv-
alent guard interval’N,. Note N, = {—Z%,0, 5} correspond
to spectral efficiencie$s, 1, 2}, respectively;N, < 0 yields an
overloaded system which transmits 1 symbol per channel use
(on average). The results suggest a sriglbain from overload-
ing and a more significant’, loss for spectral efficiencies 1
(irrespective ofN and fy). Clearly, overloading is possible only
with non-(bi)orthogonal signaling.
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Fig. 3. C, versusfy for various SNRs and FFT sizZ¥.

6. CONCLUSIONS

The outage capacity’, of max-SINR PS-FDM was examined,
where SINR was defined according to a target pattern whiolvall

0.0001-outage capacity

Fig.
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(8]

El
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[11]

ICI from 2D adjacent subcarriers. Numerical results suggest that [12]

capacity is maximized foD ~ N fq, implying that ICI/ISI-free
designs (i.e.,.D = 0) are appropriate for small values of fq,

while ICl-tolerating designs (i.e> > 0) are more appropriate
for larger values ofN fq. The choice of FFT size and spectral

efficiency were also examined.
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