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ABSTRACT

The capacity of wireless communication systems over fading channels is enhanced

by the use of multiple antennas at the transmitter and receiver. Differential space-time

coding technique which does not require channel estimation is proposed for multiple

input and multiple output (MIMO) system to achieve higher capacity. We consider

the problem of blind identification and equalization for MIMO system with frequency-

selective fading channels. We apply the differential unitary space-time (DUST) codes

designed for flat fading channel to the frequency-selective channel and use the blind

sub-space algorithm to reduce the frequency-selective fading channel to an unknown

flat fading channel. We then apply the non-coherent decoder for the DUST codes

and get an initial estimation of the transmitted symbols and channel responses. We

also present two methods to derive better estimation of the channels and symbols

with the aid of the initial estimation. One is the soft iterative least square projection

algorithm and the other is the iterative per-survivor processing algorithm. Both are

generalized to MIMO systems. The iterative per-survivor processing combined with

the blind sub-space algorithm gives us a good estimation of our MIMO system when

the channel memory is short. Constrained CR bound with parameters is derived and

compared with the results of the algorithm proposed to evaluate its performance.
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CHAPTER 1

INTRODUCTION AND MIMO LINEAR SYSTEM
MODEL

1.1 Introduction

The rapid growth in information technology demands higher data rate service

and more reliable data transmission in modern communication systems. But due to

multi-path propagation, the signal sent from a transmit antenna is usually reflected

by various objects in its path. So the received signal is the sum of all these reflections

in addition to the background noise and some other user interference. This fading

phenomena can generate time varying attenuations and delays, which may cause great

difficulties to recover the transmitted information signals.

In order to mitigate fading attenuation effect, different diversity techniques are

proposed. Diversity means providing the receiver with more than one copy of the

transmitted signals. There are several ways to do so. Transmitting the same infor-

mation signals at different time is called time diversity. Transmitting the same signals

over different frequency bands is called frequency diversity. However, they both have

their disadvantages. Time diversity is inapplicable in slow-varying channel case since

the delay required to achieve the diversity becomes large. Frequency diversity requires
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more bandwidth which may not be available. Foschini and Gans [16] show that sys-

tems using multiple input and multiple output antennas (MIMO) can increase data

rate without loss of bandwidth efficiency. To fully exploit the spatial and temporal

diversities in MIMO communication systems, lots of work on space-time coding has

been done. Space-time trellis coding and space-time block coding are proposed for

coherent detection, in which the channel responses are known to the receivers for

detection. Differential space-time coding is proposed for non-coherent detection, in

which the detection does not require channel responses to be known to the receivers.

According to the different fading types of the channel responses, the communi-

cation system can be divided as narrow-band systems and wide-band systems. Flat

fading channel in narrow-band systems means that the the maximum delay spread of

channel is smaller than the transmission interval, so the symbols transmit at different

times do not interfere with each other. While frequency-selective fading channels in

wide-band communication systems means the maximum delay spread of the chan-

nel is larger than the transmission interval, so the symbols transmitted at different

times may interfere with each other and this is called inter-symbol interference (ISI).

Knowledge of the channel coefficients is usually required to mitigate ISI. Sending pi-

lot symbols may be one way of obtaining the channel coefficients. But this kind of

training can be difficulty or costly, especially in fast fading environments. Estimation

of the channel parameters or transmitted symbols using only the channel output is

called blind identification or blind equalization. Our project is on the analysis of

blind identification and equalization for wide-band wireless communication systems

applying the differential unitary space-time (DUST) codes.
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The wide-band differential space-time coded communication system we are study-

ing is a MIMO linear system with frequency-selective channel fading. The input sig-

nals are specially structured in the spatial and temporal dimensions to increase the

diversity and the band-width efficiency. The structure of the transmitted space-time

codes are known to the receiver as a prior knowledge to blindly estimate the channel

response and the transmitted signals. The idea of our scheme is that the DUST codes

proposed by Hochwold [4] are used as the transmit symbols. Then the blind sub-space

algorithm [5], which exploits the over sampled system output, is implemented to give

the initial estimation of the the symbols subject to an unknown ambiguity matrix

multiplication. Since the DUST codes are designed to tolerate this ambiguity, we can

use non-coherent decoding to estimate the transmitted information. After we get the

estimation of the transmit information and also the channel responses, we consider

use of an iterative least square projection (ILSP) algorithm [9] to obtain improved

estimates of the channel and transmit symbols. Since the performance of this pro-

jection algorithm is not as good as hoped, we also consider an iterative per-survivor

processing (PSP) algorithm [11] which gives improved results. To evaluate the per-

formance of the iterative PSP algorithm, we also derived the constrained CR bound

of channel estimation error and compared with the estimation error resulted from our

algorithm. The simulation results show that the iterative PSP algorithm is a good

approach to solve the problem.

This thesis is organized as follows. In the next section in this chapter we give the

system model. In Chapter 2, we introduce the blind sub-space algorithm generalized

for MIMO system. In Chapter 3, we present the differential space-time coding tech-

nique and the non-coherent decoder. In Chapter 4, we describe the iterative least
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square projection and derive the soft ILSP algorithm. In Chapter 5, we derive the

iterative PSP algorithm which is the final solution for our problem. In Chapter 6,

we present the constrained CR bound and some simulation results to illustrate the

performance of our algorithms.

1.2 MIMO Linear System Model

Consider a system with Nt transmit antennas and Nr receive antennas. The input

Nt digital signals at time t = nT are s1[n], s2[n], · · · , sNt [n]. The symbol period is T .

So the input signals at the nth symbol period are:

s[n] =




s1[n]
s2[n]

...
sNt [n]


 ∈ C

Nt×1.

The output signals at time t are x1(t), x2(t), · · · , xNr(t). The signal received consists

of multiple paths, with echoes arriving from different angles with different delays and

attenuations. The impulse response of the channel from the jth transmit antenna to

the ith receive antenna at delay t is denoted hij(t). Assuming the delay spread of

channel impulse is NhT ,

hij(t) = 0, t /∈ [0, NhT ), i = 1, · · ·Nr; j = 1, · · ·Nt.

So at the nth transmit symbol period, only Nh consecutive symbols of transmit signals

play a role in the received signal. Suppose

x(t) =




x1(t)
...

xNr(t)


 H(t) =




h11(t) · · · h1Nt(t)
...

. . .
...

hNr1(t) · · · hNrNt(t)


 w(t) =




w1(t)
...

wNr(t)


 .

wi(t) is the channel additive complex Gaussian noise to the ith receive antenna at

time t. But we usually over-sample the received signal to improve the performance.
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Variable Description
T symbol (baud) interval
Tc coherence time for flat fading channel

Nt, Nr number of transmit antennas, receive antennas
N number of symbol intervals per frame interval
Nc number of block codewords per frame interval
Ns number of symbol intervals per block codeword
Nh channel impulse response duration (in symbol intervals)
No over-sampling rate of the received signal
Nm maximum number of iterations in the iterative PSP algorithm

hi,j[l] channel gain from jth transmit antenna to ith receive antenna at
lag t = lT

H[l] channel impulse response NrNo ×Nt matrix during lag t = lT
H channel impulse response MIMO system model

H̃ normalized channel impulse response

Ĥ(k) channel estimation in the kth iteration in iterative PSP and soft
ILSP

H block-Toeplitz matrix of the channel response
sj[n], s[n] transmitted symbols, Nt × 1 vector across transmit antennas

S[n] transmitted Nt ×Ns block codes
S all transmitted vectors [s[−Nh + 1], · · · , s[N − 1]]

S,SNh
block-Toeplitz matrix of transmitted symbol

V group of DUST block codes transmitted in our system
S` block code from group codes V
U sets of all possible choices of S
L size of group codes V

Ŝ(k) code sequence estimation in the kth iteration in iterative PSP and
soft ILSP

Ŝ(k) estimation of block-Toeplitz matrix constructed using Ŝ(k)

s(k)[n] transmitted signal from the kth transmit antenna at time t = nT
wi[n],w[n],W[n] noise sample, NrNo × 1 vector across receive antennas, NrNo ×Ns

block
W all noise vectors [w[0], · · · ,w[N − 1]]
W block-Toeplitz noise matrix

xi[n],x[n],X[n] received sample, NrNo×1 vector across receive antennas, NrNo×Ns

block
X all received signal vectors [x[0], · · · ,x[N − 1]]
X block-Toeplitz observation matrix

Table 1.1: Parameters and descriptions for the system model
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Suppose we sample the channel impulse response, the received signal and the additive

noise at intervals of T
N0

, where N0 ∈ N is called the over-sampling rate. This means:

hij[m] = hij(m
T

N0

)

xi[m] = xi(m
T

N0

)

wi[m] = wi(m
T

N0

).

So at the nth transmit signal period, we collect the receive samples:

x[n] =




x(nN0
T
N0

)

x((nN0 + 1) T
N0

)
...

x((nN0 + N0 − 1) T
N0

)


 =




x1[nN0]
...

xNr [nN0]
...
...

x1[nN0 + N0 − 1]
...

xNr [nN0 + N0 − 1]




∈ CNoNr×1.

Note that x[n] contains the NoNr spatial and temporal samples during the nth trans-

mit symbol interval. The over-sampled channel impulse response at delay lT is:

H[l] =




H(lN0
T
N0

)

H((lN0 + 1) T
N0

)
...

H((lN0 + N0 − 1) T
N0

)




=




h11[lN0] · · · h1Nt [lN0]
...

. . .
...

hNr1[lN0] · · · hNrNt [lN0]
...

...
...

...
...

...
h11[lN0 + N0 + 1] · · · h1Nt [lN0 + N0 − 1]

...
. . .

...
hNr1[lN0 + N0 − 1] · · · hNrNt [lN0 + N0 − 1]




∈ CNoNr×Nt .
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Similarly we can define the over-sampled additive noise at the nth transmit symbol

period as:

w[n] =




w(nN0
T
N0

)

w((nN0 + 1) T
N0

)
...

w((nN0 + N0 − 1) T
N0

)


 =




w1[nN0]
...

wNr [nN0]
...
...

w1[nN0 + N0 − 1]
...

wNr [nN0 + N0 − 1]




∈ CNoNr×1.

So the system model can be described by the following equation:

x[n] =

Nh−1∑

l=0

H[l]s[n− l] + w[n]. (1.1)

In a frame, we collect samples during N symbol periods. Note, in this thesis

“frame” means a whole observation interval for our estimation while “block” means

the DUST block codeword. A frame usually contains a certain number of block codes.

The received signals for a frame can be written as:

X =
[

x[0] · · · x[N − 1]
] ∈ CNoNr×N .

Since the length of the channel response is Nh, we define the over-sampled channel

response matrix:

H =
[

H[0] · · · H[Nh − 1]
] ∈ CNoNr×NtNh .

The over-sampled additive noise matrix in a frame of N symbol periods is:

W =
[

w[0] · · · w[N − 1]
]
.

Given the input signal s[n] ∈ CNt×1, we define a block-Toeplitz transmit signal matrix

for a frame with N symbol periods as

7



SNh
=




s[0] s[1]
. . . s[N − 1]

. . . . . . . . . s[N − 2]

s[−Nh + 2] s[−Nh + 3]
. . . . . .

s[−Nh + 1] s[−Nh + 2]
. . . s[N −Nh]



∈ CNtNh×N .

The subscript index Nh in SNh
represents how many input Nt × 1 signal vectors are

stacked.

Based on the MIMO linear system model (1.1), we get

X = HSNh
+ W. (1.2)

The above equation is our frequency selective MIMO linear system model. In blind

identification, we estimate the channel coefficients H observing only X. In blind

equalization, we estimate the block vector symbols S = [s[−Nh + 1], · · · , s[N − 1]]

observing only X. Given X, the blind subspace method in the next section will try

to find SNh
such that SNh

is a block-Toeplitz matrix and the transmitted symbols in

SNh
satisfy the differential unitary space-time code properties which we will discuss

later. Table (1.1) lists most of the important notations used in this thesis.
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CHAPTER 2

DETERMINISTIC SUBSPACE METHOD

The deterministic subspace method developed by Liu and Xu [5] and van der Veen

et al. [2] forms the first part of our algorithm.

We typically desire a blind equalization method that performs perfectly in the

absence of noise. So we first consider the noiseless case of system model (1.2):

X = HSNh
. (2.1)

Thus the goal is to recover SNh
knowing X but not H. Clearly, this requires H

to be left invertible, which means there must exist a “filtering matrix” F such that

FX = SNh
. This is equivalent to having an H ∈ CNoNr×NtNh that is of full column

rank, which requires NoNr ≥ NtNh. But this may put undue requirements on the

number of antennas or over-sampling rate. We can ease this condition by making use

of the structure of SNh
and rearranging the structure of (2.1).

We first extend X to a block-Toeplitz matrix by left shifting and stacking k ∈ N

times. The parameter k can be viewed as an equalizer length (in symbol periods). So

we get:

Xk =




x[k − 1] x[k]
. . . x[N − 1]

x[k − 2] x[k − 1]
. . . x[N − 2]

...
. . . . . .

...
x[0] x[1] · · · x[N − k]



∈ CkNrNo×(N−k+1).

9



Extending the data matrix leads to the following system model:

Xk = HkSNh+k−1 (2.2)

=




H[0] · · · H[Nh − 1] 0
. . . . . .

0 H[0] · · · H[Nh − 1]




︸ ︷︷ ︸
Hk




s[k − 1] · · · s[N − 1]
...

. . .
...

s[−Nh + 1] · · · s[N − k −Nh + 1]




︸ ︷︷ ︸
SNh+k−1

,

where Hk ∈ CkNrNo×Nt(Nh+k−1) and SNh+k−1 ∈ CNt(Nh+k−1)×(N−k+1) are both block-

Toeplitz. Note that, for any k ∈ N, the system model (2.2) has the same block-

Toeplitz form. As k increases, the matrices in (2.2) get taller. For simplicity, we

adopt the notation X = Xk, H = Hk, S = SNh+k−1. Given X , we would like to

determine H and S with the block-Toeplitz structures.

A necessary condition for X to have a unique factorization X = HS is that H is

a “tall” matrix and S is a “wide” matrix. Note also that a tall H requires tall H[l].

Thus the following conditions are necessary for unique factorization,

Tall H[l] ∈ CNoNr×Nt ⇒ NoNr > Nt

Tall H ∈ CkNrNo×Nt(Nh+k−1) ⇒ k ≥ Nt(Nh − 1)

NoNr −Nt

(2.3)

Wide S ∈ CNt(Nh+k−1)×(N−k+1) ⇒ N ≥ NtNh + (Nt + 1)(k − 1).

In the above conditions, “tall” H requires that k should be sufficiently large and

“wide” S requires that N is sufficiently large. Assuming k and N can be made

sufficiently large, then the first condition NoNr > Nt is a fundamental identification

restriction. Our two assumptions for the subspace algorithms to work are:

1. Hk has full column rank for some chosen value of k;

2. SNh+k−1 has full row rank for k specified above and some chosen value of N .

10



Given the model X = HS and the above two assumptions, we have the following

property:

H full column rank ⇒ row(X ) = row(S). (2.4)

This indicates that without knowing the input sequences, the row span of the input

matrix S can be obtained from the row span of the observed matrix X .

To factor X into X = HS, we must find S such that:

1. Row span of S is equivalent to row span of X ;

2. S has a block-Toeplitz structure.

Accordingly, the deterministic blind subspace method is described by the following

two steps, each making use of one property above.

Step 1: Obtain the row span of S Suppose as stated above, there is no noise

and H has full column rank. Based on property (2.4), the row span of S can be

obtained from X . We can compute the SVD of X , X = UΣV , where U, V are

unitary matrices, and Σ is a diagonal matrix containing the singular values in non-

increasing order. The rank of X is rX which equals to the number of the non-zero

singular values. Suppose V̂ is the first rX rows of V , so that the rows of V̂ form

an orthonormal basis for the row span of X . For well-conditioned problems, since

S ∈ CNt(Nh+k−1)×(N−k+1) is a “wide” matrix, we expect rX = Nt(Nh + k − 1). And

thus V̂ is of dimension Nt(Nh + k − 1) × (N − k + 1). Let the column of G form

an orthonormal basis for the orthogonal complement of row(V̂ ). Then G has the

dimension (N − k + 1)× (N − k + 1−Nt(Nh + k − 1)). Since V̂ G = 0, XG = 0 and

so SG = 0. If there is noise in the system, then the effective rank r̂X of X would be
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estimated by deciding how many singular values of X are above the noise level. The

estimated row span V̂ would then be given by the first r̂X rows of V .

Step 2. Forcing the Toeplitz structure of S The next step for computing the

structured factorization is to find all possible matrices S which have a block-Toeplitz

structure with k+Nh−1 block rows and which obey row(S) = row(X ). This requires

that each block row of S is in the row span of X :





[
s[k − 1] · · · s[N − 1]

] ∈ row(X )
...[

s[−Nh + 1] · · · s[N − k −Nh + 1]
] ∈ row(X )

Given that columns of G form an orthonormal basis for the orthogonal complement

of row(X ), we have XG = 0 and so SG = 0,





[
s[k − 1] · · · s[N − 1]

]
G = 0

...[
s[−Nh + 1] · · · s[N − k −Nh + 1]

]
G = 0.

If we define the generator of the Toeplitz matrix SNh+k−1 as the block vector:

S = [s[−Nh + 1], · · · , s[N − 1]] ∈ CNt×(N+Nh−1),

then,





[
s[k − 1] · · · s[N − 1]

]
G = 0 ⇒ S

[
0(Nh+k−2)×(N−k+1−Nt(Nh+k−1))

G

]

︸ ︷︷ ︸
G1

= 0

[
s[k − 2] · · · s[N − 2]

]
G = 0 ⇒ S




0(Nh+k−3)×(N−k+1−Nt(Nh+k−1))

G
01×(N−k+1−Nt(Nh+k−1))




︸ ︷︷ ︸
G2

= 0

...
[

s[−Nh + 1] · · · s[N − k −Nh + 1]
]
G = 0 ⇒ S

[
G

0(Nh+k−2)×(N−k+1−Nt(Nh+k−1))

]

︸ ︷︷ ︸
GNh+k−1

= 0.
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To meet the above k + Nh − 1 conditions, the generator block vector S must be

orthogonal to the union of the column spans of G1, G2, · · · , GNh+k−1. Defining G as

G =
[

G1 · · · GNh+k−1

]
,

the above condition becomes:

SG = 0 (2.5)

If Y is a matrix whose rows form a basis for the orthogonal complement of col(G),

then

Y = AS, (2.6)

where A is an arbitrary Nt × Nt invertible “ambiguity matrix”. In other words, the

solution of (2.5) is not unique, and so S can only be determined up to a matrix

ambiguity. Later we make use of DUST codes to tolerate this ambiguity. This is the

result for the noiseless model. If noise is added, the output Y contains also noise from

the sub-space method, the output can be written as:

Y = AS + Z.
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CHAPTER 3

DIFFERENTIAL SPACE-TIME MODULATION

3.1 Space-time coding for Rayleigh flat fading channel

Recently multi-antenna wireless communication has been a research focus because

it can support high data rate with low error probability. Space-time coding has been

proposed for multi-antenna systems, especially with channels that are characterized

as Rayleigh flat fading. The difference between the frequency-selective channel we

discussed earlier and the flat fading channel here is that the flat fading channel is

memoryless while the frequency selective channel has delay spread Nh > 1 symbol

intervals. So in flat fading channel, for the received signal at the nth symbol interval,

only the symbols transmitted at the same time can influence it. Assume that NsT is

small compared with the channel coherence time Tc, so that the channel coefficients

can be considered constant over Ns symbols. Then we use the abbreviation h̃ij to

denote the normalized channel gain from the jth transmit antenna to the ith receive

antenna during the current block. For Rayleigh flat fading channel, the normalized

path gains h̃ij are unit variance independent and identically distributed complex

Gaussian random variables,

p(h̃ij) = (1/π)e(−|h̃ij |2) for h̃ij ∈ C.

14



Consider the nth block of symbols, i.e. symbols transmitted from nNsT to (n +

1)NsT − T :

S[n] =




s1[nNs] s1[nNs + 1] · · · s1[nNs + Ns − 1]
s2[nNs] s2[nNs + 1] · · · s2[nNs + Ns − 1]

...
...

. . .
...

sNt [nNs] sNt [nNs + 1] · · · sNt [nNs + Ns − 1]


 ∈ C

Nt×Ns .

Consider the channel matrix for the same block:

H̃ =




h̃11 h̃12 · · · h̃1Nt

...
...

. . .
...

h̃Nr1 h̃Nr2 · · · h̃NrNt


 ∈ CNr×Nt .

The nth block of received signals is:

X[n] =




x1[nNs] x1[nNs + 1] · · · x1[nNs + Ns − 1]
x2[nNs] x2[nNs + 1] · · · x2[nNs + Ns − 1]

...
...

. . .
...

xNr [nNs] xNr [nNs + 1] · · · xNr [nNs + Ns − 1]


 ∈ C

Nr×Ns .

The nth block of noise matrix is:

W[n] =




w1[nNs] w1[nNs + 1] · · · w1[nNs + Ns − 1]
w2[nNs] w2[nNs + 1] · · · w2[nNs + Ns − 1]

...
...

. . .
...

wNr [nNs] wNr [nNs + 1] · · · wNr [nNs + Ns − 1]


 ∈ C

Nr×Ns .

Assume that the elements in the code matrix are normalized such that the average

power per transmitted antenna equals one: 1
Nt

∑Nt−1
j=0 E|sj[n]|2 = 1. Then the signal

model for Rayleigh flat fading channel is:

X[n] =

√
ρ

Nt

H̃S[n] + W[n]. (3.1)

For simplicity, we assume that W[n] contain zero mean unit variance i.i.d. complex

Gaussian noise, so that ρ is the SNR at each receive antenna.

For space-time coding, the transmitter passes the information bit stream into

words of Nb bits and maps each word to a Nt×Ns matrix S`, where ` ∈ {0, · · · , L−1}

(L = 2Nb). The result is a sequence of code matrices S[n] ∈ {S0,S1, · · · ,SL−1}.
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3.2 Decoding with perfect CSI at the receiver

Most work on space-time coding has assumed perfect channel state information

(CSI) is available, i.e. the block channel matrix H̃ is known at the receiver. The

likelihood of X[n] conditioned on S[n] and H̃ is:

p(X[n]|H̃,S[n]) =
1

πNsNr
exp(−tr(X[n]−

√
ρ

Nt

H̃S[n])(X[n]−
√

ρ

Nt

H̃S[n])H),

where tr(·) means trace and (·)H means complex conjugate transpose. So the ML

detector becomes:

ˆ̀= arg min
`∈{0,1,···L−1}

tr(X[n]−
√

ρ

Nt

H̃S`)(X[n]−
√

ρ

Nt

H̃S`)
H . (3.2)

If we assume that each transmitted codeword is of equal probability, then the

probability of incorrectly ML decoding S[n] = S` as S[n] = S`′ in a code consisting

of only these two matrices is defined as:

p
{
S` → S`

′
}

:= p {S`
′ detected|S`}

= p
{

p(X[n]|H̃,S`′ ) ≥ p(X[n]|H̃,S`)|S[n] = S`

}
.

p{S` → S`′} is called the “pairwise error probability”. Let us define the matrix

difference outer product:

∆S[n] = (S[n]− S`
′ )(S[n]− S`

′ )H ∈ CNt×Ns .

An upper bound of the pairwise error probability was derived in [6] that depends on

∆S[n]:

p{S` → S`
′} ≤ (

Nt∏
j=1

(1 +
λj(`, `

′
)ρ

4
))−Nr

≤ (

r(`,`
′
)∏

j=1

λj(`, `
′
))−Nr(

ρ

4
)−r(`,`

′
)Nr .
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Here, r(`, `
′
) is the rank of ∆S[n] and

∏r(`,`
′
)

j=1 λj(`, `
′
) is the product of its non-zero

eigenvalues. The second expression above approaches the first as ρ increases. The

parameter r(`, `
′
) can be interpreted as the “diversity advantage” of the code pair of

S` and S`′ , and equals the slope of the log BER vs. log SNR plot at high SNR. The

maximum attainable diversity advantage is therefore Nt, since ∆S ∈ CNt×Nt when

Ns ≥ Nt. The quantity ΠNt
j=1λj(`, `

′
) is called the “coding advantage” or “product

distance”, and affects the left/right shift of the BER vs. SNR plot. Error probability

is minimized by maximizing both the diversity advantage and the coding advantage

over all possible symbol difference matrices. Suppose:

r = min
` 6=`′

r(`, `
′
) `, `

′ ∈ {0, 1, · · · , L− 1}.

So r is the minimum diversity advantage over all possible code pairs. Similarly define:

Λ = min
` 6=`′

(

r(`,`
′
)∏

j=1

λj(`, `
′
)) `, `

′ ∈ {0, 1, · · · , L− 1},

and Λ is the minimum coding advantage over all possible code pairs. So for lower

error probability, we want codes with maximum value of r and Λ. At high SNR, the

performance is determined primarily by the minimum diversity r, which attains a

maximum value of Nt when all the difference matrices of the space-time code pairs

are of full rank.

3.3 Unitary space-time modulation without CSI at the re-
ceiver

The above ML detector and performance analysis is based on the case in which

the channel state information is known to the receiver. In that case, training symbols

must be sent to obtain the channel state information. However, the use of training

17



symbols may result in a significant loss of throughput. So we need to derive systems

that work well without the knowledge of channels. Such schemes are referred to as

non-coherent schemes. Hochwald and Marzetta [7] have proved that the capacity

of multiple-antenna communication systems can be approached for large ρ or for

Tc À NtT using so-called “unitary space-time codes”, which have the property that

all code matrices S` contain orthogonal rows and equal energy:

S`S
H
` = NtI, for all ` ∈ {0, 1, · · · , L− 1}.

For comparison with the previous known channel case, we give the probability

of error and ML detector form for unknown channel case from [3]. With the model

equation:

X[n] =

√
ρ

Nt

H̃S[n] + W[n],

when S[n] = S` is transmitted and H̃ is unknown, the received matrix X[n] is Gaus-

sian with conditional pdf [7]:

p(X[n]|S`) =
exp(−tr(X[n]Σ−1

` XH [n]))

|πΣ`|r ,

where Σ` = I +
√

ρ
Nt

SH
` S`. Note that due to the unitary code matrix property, |Σ`|

does not depend on `. Furthermore,

Σ−1
` = I −

√
ρ

Nt

Ns

√
ρ

Nt
+ 1

SH
` S`.

So the ML detector for a unitary code has the form:

ˆ̀ = arg max
`∈{0,1,···,L−1}

p(X[n]|S`)

= arg max
`∈{0,1,···,L−1}

tr(X[n]SH
` S`X

H [n]). (3.3)
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3.4 Differential unitary space-time modulation

Based on the unitary space-time modulation, the differential unitary space-time

modulation (DUST) is proposed by Hughes [3] and Hochwald [4] separately for non-

coherent detection. Consideration of continuous (rather than block) channel variation

motivated differential schemes in which the channel is assumed to be constant only

over the short duration of Tc = 2NtT . DUST can be considered an extension of the

differential phase-shift keying (DPSK) to multiple antennas.

We first review DPSK. Here we send symbol sequence s[n] where s[n] = s[n −

1]φ[n]. Note s[n] is the transmitted symbol while φ[n] is the information symbol and

is in the constellation of PSK. For example, if the rate is R bits/channel use, we need

L = 2R constellation size, giving φ[n] the L-PSK constellation {φ0, φ1, · · · , φL−1}.

The channel coefficient h is assumed to be the same for each pair of two consecutive

symbols, allowing the receiver to detect the information symbol via comparing the

phase difference between successive received symbols. This yields on ML receiver

which has a very simple form:

ˆ̀[n] = arg min
`∈{0,1,···,L−1}

|φ` − s[n]s∗[n− 1]|.

In DUST modulation, it is assumed that the channels are constant over each pair

of consecutive block symbols S[n],S[n − 1]. This scheme uses data at the current

and previous block for encoding and decoding. The block symbol matrices satisfy the

following rule:

S[n] = S[n− 1]V`[n], S[n] ∈ CNt×Nt ,

where V`[n] ∈ CNt×Nt is a unitary matrix and `[n] ∈ {0, 1, · · · , L − 1} is the index of

the unitary constellation matrix at time n. Here the block codeword length Ns of the
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DUST code we use in our system equals Nt. The transmitter sends block symbols S[n],

while V`[n] represents the actual data contained in the block sequence. For example,

if the transmission rate is R bits/channel use for a Nt transmit antenna scheme, the

constellation size will be L = 2RNt and we need L unitary matrix choices for V`[n].

Similar to DPSK above, the receiver estimates V`[n] using the last two received blocks

X[n] and X[n− 1]. Since:

X[n− 1] =

√
ρ

Nt

H̃S[n− 1] + W[n− 1] (3.4)

X[n] =

√
ρ

Nt

H̃S[n] + W[n]. (3.5)

Define:

X[n] = (X[n− 1],X[n])

S[n] = (S[n− 1],S[n− 1]V`[n])

W[n] = (W[n− 1],W[n]).

So we get:

X[n] =

√
ρ

Nt

H̃S[n] + W[n].

With the property of the unitary codes, V`[n]V
H
`[n] = NtI,

S[n]HS[n] =

(
S[n− 1]HS[n− 1] S[n− 1]HS[n− 1]V`[n]

V H
`[n]S[n− 1]HS[n− 1] V H

`[n]S[n− 1]HS[n− 1]V`[n]

)

=

(
NtI NtV`[n]

NtV
H
`[n] NtI

)
,

so the ML detector for the above model from 3.3 is:

ˆ̀[n] = arg max
`∈{0,1,···,L−1}

tr
{
XS

H
SX

H
}

= arg max
`∈{0,1,L−1}

tr

{
(X[n− 1],X[n])

(
NtI NtV`[n]

NtV
H
`[n] NtI

) (
XH [n− 1]

XH [n]

)}

= arg max
`∈{0,1,···,L−1}

Re
(
tr

{
X[n− 1]V`[n]X[n]H

})
,
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where Re(·) means taking the real part.

From (3.4) and (3.5), we get the following expression:

X[n] =

√
ρ

Nt

HS[n− 1]V`[n] + W[n]

= X[n− 1]V`[n] + W[n− 1]V`[n] + W[n]

= X[n− 1]V`[n] +
√

2W
′
[n]. (3.6)

Equation (3.6) is called the “fundamental difference equation” in [4], where W′ has

the same statistics as W. Thus the information block V`[n] goes through an effective

known channel with response X[n − 1] and is corrupted by effective noise W′ with

twice the variance of the channel noise W. This results in a 3dB loss in performance

relative to coherent detection. Note that the restriction to unitary alphabets further

reduces the performance of DUST relative to coherent space-time modulation.

We will describe the property of the DUST code now. As we have stated that

V`[n] is a unitary matrices from L-ary alphabets. Because group constellations can

simplify the differential scheme, both Hughes [3] and Hochwald [4] suggest the group

design method, i.e., let V be an algebraic group of L Nt×Nt unitary matrices. Using

group structure, the transmitters don’t need to explicitly multiply any matrices, since

a group is closed under multiplication.

In this thesis, we use the DUST code construction proposed by Hughes in [3] which

is a general approach to differential modulation and can be applied to any number of

transmit antennas and any target constellation. These unitary group codes have the

property:

S[n] = S[n− 1]V`[n], S[0] = Vk k ∈ {0, 1, · · · , L− 1},
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with S[0] being any matrix in the group. S[0] doesn’t need to be known to the receiver,

because the difference codeword V`[n] contains the real information to be transmitted.

V`[n] is the nth information block and S[n] is the nth transmitted block, which are all

elements of a group of unitary matrices. As we mentioned before, the DUST code we

use has the property Ns = Nt. For example, for Nt = 2, the construction might be:

V =

{
±

[
1 0
0 1

]
,±

[
0 1
−1 0

]
,±

[
j 0
0 −j

]
,±

[
0 j
j 0

]}
S[0] ∈ V .

As suggested by (3.6) and (3.3), the ML decoder has a very simple form:

ˆ̀= arg max
`∈{0,1,···,L−1}

Re(tr(X[n− 1]V`X
H [n− 1])). (3.7)

In this thesis, we assume that the DUST codes, designed for flat fading, are used

in frequency-selective fading as described in Section 1.2. Recall that deterministic

MIMO blind identification and equalization techniques introduced in Chapter 2 can

estimate the symbols up to a Nt×Nt matrix ambiguity, meaning they can effectively

reduce a frequency-selective fading channel to an unknown flat fading channel. Then,

the DUST code property and the soft ILSP or iterative PSP method (which we will

describe later) can yield fully-blind estimation of the symbols in our MIMO frequency-

selective fading model.
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CHAPTER 4

ITERATIVE LEAST SQUARE WITH PROJECTION
ALGORITHM

4.1 Initial blind estimation of the code sequence

After application of the deterministic sub-space method in Chapter 2 to our MIMO

linear system model (1.1) introduced in Section 1.2, we get:

Y = AS + Z. (4.1)

Y is the estimated signal sequence of size Nt×N . A is the “ambiguity matrix” of size

Nt×Nt. Z is the residual noise and estimation error introduced by the deterministic

sub-space algorithm. We need to recover the input sequence S = (s[−Nh+1], · · · s[N−

1]) ∈ CNt×N+Nh−1 from Y . This can be viewed as an equivalent flat fading model

with unknown channel response A. The transmitted DUST block codewords are of

size Nt × Nt. For simplicity, we assume the transmitted signal vectors with minus

index are all 0, i.e., [s[−Nh + 1], · · · , s[−1]] = 0 and they are the “guard” bits between

frames. So we group s[n] in block codewords of length Nt, obtaining:

S[m] =
(

s[mNt] s[mNt + 1] · · · s[(m + 1)Nt − 1]
) ∈ CNt×Nt .
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Assuming Nc = b N
Nt
c, we can get Nc complete DUST block codewords in each frame,

i.e., S = (S[0], · · · ,S[Nc − 1]). We group the estimated sequence Y in the same way,

so Y = (Y [0], · · · , Y [Nc − 1]). Since the transmitted block symbols are differentially

encoded, we can use the decoding scheme (3.7) introduced in the DUST modulation

part to get the initial estimation Ŝ(0) of the transmitted information block codewords.

Recall that the transmitted block codeword S[m] has the property that S[m] =

S[m− 1]V`[m]. Then for m = 1, · · · , Nc − 1,

ˆ̀[m] = arg max
`[m]∈{0,···,L−1}

Re(tr
{
Y [m− 1]V`[m]Y

H [m]
}
).

Given the estimate ˆ̀[m] and supposing the first block codeword is any arbitrary

codeword in the group, i.e., Ŝ(0)[0] = S[0] ∈ V as introduced in Section 3.4, set

Ŝ(0)[m] = Ŝ(0)[m− 1]Vˆ̀[m]. For m = 1, · · · , Nc − 1,

Ŝ(0) =
(
Ŝ(0)[0], · · · , Ŝ(0)[Nc − 1]

)
.

This initial estimation Ŝ(0) is perfect if the system model (1.1) doesn’t contain the

noise part w[n], because the blind sub-space method introduced in Chapter 2 is

perfect in noiseless case, i.e., the output error Z from the blind sub-space algorithm

is 0. But if noise is added to the system model (1.1), the blind sub-space algorithm

introduces great noise in Z part. So errors are introduced in the initial estimates

Ŝ(0). To improve the performance of our blind algorithm, we apply the Iterative

Least Square Projection (ILSP) method and soft ILSP further.
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4.2 ILSP

ILSP is proposed by Talwar, et al. in [9] for separating and estimating the input

digital signals in MIMO systems when the channel coefficients H are unknown and

the digital signals S are of finite alphabet.

Recall our MIMO linear system model (1.1) is:

x[n] =

Nh−1∑

l=0

H[l]s[n− l] + w[n] for n = 0, · · · , N − 1,

N is the number of transmit symbol periods in a frame, w[n] is the white noise. Then

[
x[0] · · · x[N − 1]

]
︸ ︷︷ ︸

X

=
[

H[0] · · · H[Nh − 1]
]

︸ ︷︷ ︸
H




s[0] · · · s[N − 1]
...

. . .
...

s[−Nh + 1]︸ ︷︷ ︸
s[0]

· · · s[N −Nh]︸ ︷︷ ︸
s[N−1]




︸ ︷︷ ︸
SNh

+W

(4.2)

Equation (4.2) can be simplified as:

x[n] = Hs[n] + w[n], (4.3)

since the noise w[n] is spatially white and complex Gaussian, the probability of x[n]

given s[n] as a function of H is:

p(x[n]|s[n];H) = C1 exp(−‖x[n]−Hs[n]‖2

σ2
w

),

where C1 is some constant and σ2
w is the variance of the entries in w[n]. Assuming

the noise is temporally white, then the log likelihood of the observed data over N

symbol periods is:

log p(X|SNh
;H) = C2 − 1

σ2
w

N−1∑
n=0

‖x[n]−Hs[n]‖2,
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where C2 is some constant. So the ML estimator maximizes log p(X|SNh
;H) with

respect to the unknown parameter H and finite-alphabet SNh
. If DUST codes are

used for S, then each block codeword S[n] in S is in the group codes V which is of

finite alphabet. So the transmit signals S is also constrained to a finite alphabet U .

Since SNh
is generated from S, the ML criteria can be written as:

Ŝ = arg min
H,S∈U

‖X−HSNh
‖2

F , (4.4)

Equation (4.4) is a non-linear separable optimization problem with mixed discrete

and non-discrete variables. We can solve this optimization problem in the following

steps [10].

First, since H is unconstrained, we can minimize (4.4) with respect to H, so that

for any S,

Ĥ = XS†Nh
,

where S†Nh
means the pseudo-inverse of SNh

, and S†Nh
= SH

Nh
(SNh

SH
Nh

)−1. Then plug-

ging Ĥ to (4.4), we get:

Ŝ = arg min
S∈U

‖X(I − SH
Nh

(SNh
SH

Nh
)−1SNh

)‖2
F .

The global minimum of the above can be found by enumeration of all possible S ∈ U ,

but the complexity grows exponentially with frame duration N . The ILSP algorithm

below is proposed to save complexity and retain reasonably good estimation of joint

S and H.

Assume the cost function:

d(H,S) = ‖X−HSNh
‖2

F .

Given an initial estimate Ŝ(0) in Section 4.1, the initial estimate of the block-Toeplitz

matrix Ŝ(0)
Nh

can be constructed from Ŝ(0), then the minimization of d(H, Ŝ(0)) with
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respect to H ∈ CNrNo×NtNh is a least square problem, which can be solved via Ĥ(0) =

XŜ(0)
Nh

†.

Given the initial estimate Ĥ(0), the minimization of d(Ĥ(0),S) with respect to

S ∈ CNt×N is also a least-square problem, but since H is not of full column rank, the

least square estimation of S can not be derived from Ŝ(1) = Ĥ(0)†X, instead we need

to transform the MIMO system model (1.1) to the following equivalent form:




x[N − 1]
...

x[0]




︸ ︷︷ ︸
x

=




H[0] · · · H[Nh − 1] 0
. . . . . .

0 H[0] · · · H[Nh − 1]




︸ ︷︷ ︸
H




s[N − 1]
...

s[−Nh + 1]




︸ ︷︷ ︸
s

+




w[N − 1]
...

w[0]




︸ ︷︷ ︸
w

,

(4.5)

where w is the stacked white noise. Given the initial channel estimation Ĥ(0),

we can construct the block-Toeplitz matrix Ĥ(0). So we get the model equation

x = Ĥ(0)s + w(0), where now w(0) captures estimation errors in Ĥ(0). Assuming w(0)

is white and Gaussian, we can get the maximum likelihood estimation of S:

ŜML = arg min
S[m]∈V m=0,···,Nc−1

‖x− Ĥ(0)s‖2. (4.6)

Note the complexity of the above maximum likelihood decoding is exponential in the

number of blocks Nc. To reduce the complexity, we can simplify (4.6) and find the up-

dated estimated code sequence Ŝ(1) = (Ŝ(1)[0], · · · , Ŝ(1)[Nc−1]) by the following steps:

first, find the maximum likelihood estimation of s in the complex field, denoted by

s̃(1); second, arrange the elements of s̃(1) in blocks of size Nt×Nt and form a sequence

(S̃(1)[0], · · · , S̃(1)[Nc−1]); third, project the block codeword in (S̃(1)[0], · · · , S̃(1)[Nc−1])

onto the discrete alphabet V to get (Ŝ(1)[0], · · · , Ŝ(1)[Nc−1]). The codeword projection

process can be expressed as the following:

1. s̃(1) = arg min
s∈C

‖x− Ĥ(0)s‖ = Ĥ(0)†x,
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2. s̃(1) → (S̃(1)[0], · · · , S̃(1)[Nc − 1]),

3. Ŝ(1)[m] = Project(S̃(1)[m]) onto V for m = 0, · · · , Nc − 1.

When doing the projection, we use the following similarity criteria between the code-

word S[m] and the choice V` from the group codes V :

dm,` =
exp(−‖V` − S̃(k)[m]‖2

F )

max
q

exp(−‖Vq − S̃(k)[m]‖2
F )

. (4.7)

Note that the mth block codeword is most likely corresponding to the codeword with

index:

ˆ̀[m] = arg min
`

dm,`.

Then the updated estimate of the code sequence becomes,

Ŝ(1) =
[
Ŝ(1)[0], · · · , Ŝ(1)[Nc − 1]

]
, where Ŝ(1)[m] = Vˆ̀[m].

After we get Ŝ(1), H is re-estimated by minimizing d(H, Ŝ(0)) with respect to H,

yielding Ĥ(1) = XŜ(1)
Nh

†
. Then we can get updated estimation Ŝ(2) from projection

method using Ĥ(1). This iteration is repeated until Ŝ(k) converges. ILSP can be

summarized below:

ILSP

1. Given Ŝ(0) for k = 0.

2. Initial channel estimation: Ĥ(0) = XŜ(0)
Nh

†.

3. k = k + 1

(a) Update estimation Ŝ(k) from projection method using Ĥ(k−1):

i. s̃(k) = Ĥ(k−1)†x,
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ii. s̃(k) → (S̃(k)[0], · · · , S̃(k)[Nc − 1]),

iii. Project S̃(k) to closest discrete values and get Ŝ(k).

(b) Update estimation Ĥ(k) from least square method using Ŝ(k):

Ĥ(k) = XŜ(k)
Nh

†.

(c) If Ŝ(k) 6= Ŝ(k−1), goto 3.

ILSP can be used to separate an instantaneous linear mixture of finite alphabet

signals. It reduces computational complexity because it avoids enumeration all pos-

sibilities of S. However, since it can not guarantee that the cost is minimized at

each iteration due to the projection step, it is suboptimal. It is important to have a

reasonably accurate initial estimate Ŝ(0) so that ILSP has a good chance to converge

to the global minimum of d(H,S). For “typical” matrix dimension and noise level,

ILSP usually converge to a fixed point in less than 5 − 10 iterations [9]. The cost

‖X− Ĥ(k)Ŝ(k)
Nh
‖2

F indicates how close the estimated values are to the true optima.

4.3 Soft ILSP

To improve the performance further, we apply a modified version of ILSP called

“soft ILSP”. The process of soft ILSP can be summarized below starting from an

initial estimate Ŝ(0) from Section 4.1.

Soft ILSP

1. Given Ŝ(0), k = 0.

2. Ĥ(0) = XŜ(0)
Nh

†.

3. for k = 1 to Nm(Maximum number of iterations)
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(a) Update estimation of pseudo-probability p
(k−1)
n,m with projection method

using Ĥ(k−1):

i. s̃(k) = Ĥ(k−1)†x,

ii. Estimation of codeword pseudo-probabilities p
(k−1)
n,m using s̃(k).

(b) Update estimation Ĥ(k) with EM algorithm using codeword pseudo-

probabilities p
(k−1)
n,m .

Soft ILSP is similar to ILSP, they both are iterative process and use the same initial-

izations. The difference between them is that ILSP use projection to get the single

most possible choice for each block codeword S[n] while soft ILSP use projection to

get several possible choices for each column vector in SNh
. The other difference is that

ILSP use least square method to re-estimate the channel response while soft ILSP

use EM-based algorithm to re-estimate the channel response. We will give the details

of the different updating process in soft ILSP below.

Step 3(a). Update estimation of soft codeword pseudo-probabilities p
(k−1)
n,m using

H(k−1).

Consider the MIMO system model (4.2), each column vector s[n] is decided by block

codewords
[
S

[
b n

Nt
c
]
, · · · ,S

[
bn−Nh+1

Nt
c
]]

. Since each codeword S[n] ∈ V is of finite

alphabet, each column vector s[n] in SNh
is also of finite alphabet. Suppose the set

of all choices of column vector s[n] is V n =
{
sn,i

}Ln

i=1
, so the size of V n is Ln. Given

the current estimated codewords s̃(k) in complex field from s̃(k) = Ĥ(k−1)†x, we can

construct the estimated block-Toeplitz matrix S̃(k)
Nh

. Based on this estimation, we can

define the following criteria of distance similar to (4.7). For each choice sn,i in the set
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V n, the distance between the column vector s[n] and the choice sn,i is dn,i,

dn,i =
exp (−‖sn,i − s̃(k)[n]‖2)

max
j

exp (‖sn,j − s̃(k)[n]‖2)
. (4.8)

For each s[n], there are Ln choices, each with similarity coefficient dn,i. To simplify

the algorithm, we only consider the most possible choices for s[n]. Specifically, we

set a threshold Dn. If dn,m ≥ Dn, we consider s[n] as a valid possibility for s[n]. If

dn,m < Dn, we do not consider the possibility sn,m as valid. Suppose for s[n] there

are ln ≤ Ln valid choices. Furthermore assume that the set V n was constructed

so that the first ln elements are these valid choices, i.e., {sn,m}ln
m=1. Now define

vn = {sn,m}ln
m=1 ⊆ V n. The valid element sn,m is assigned “pseudo-probability”

p
(k−1)
n,m , defined as:

p(k−1)
n,m :=

dn,m∑ln
m=1 dn,m

≈ p(s[n] = sn,m|X, Ĥ(k−1)). (4.9)

The threshold of Dn depends on how many choices we can afford to keep for each

n. For example, if we have Dn = min
i

(dn,i), there are Ln choices for each s[n]. This

is the case of enumeration all choices of V n and is of the highest complexity. When

the threshold Dn = max
i

(dn,i), we are doing a “hard” projection similar to ILSP:

each s[n] has just one choice and this case has the lowest complexity. By setting

the threshold Dn, we can adjust the complexity of the algorithm. We call this “soft”

projection, because for each column vector s[n], there might be multiple choices. And

these multiple choices together with their pseudo-probability p
(k−1)
n,m will be used in

the re-estimation of H as described below.

Step 3(b). Using expectation estimation (EM) algorithm to update estimation

Ĥ(k) with the pseudo-probabilities.
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The EM algorithm can produce the maximum-likelihood estimates of parameters

when there is a many-to-one mapping from an underlying distribution to the dis-

tribution governing the observation [8]. With the system model (4.2), given the

observation data sequence X and the estimated soft codewords with corresponding

pseudo-probabilities, we would like to estimate the parameter H.

Since W in (4.2) is white Gaussian noise, the likelihood of X conditioned on the

transmitted symbols SNh
and the channel response H is:

p(X|SNh
,H) = C3 exp(−‖X−HSNh

‖2
F

σ2
w

).

Then the joint probability of X and SNh
conditioned on H is:

p(X,SNh
|H) = p(X|SNh

,H)p(SNh
;H)

= p(X|SNh
,H)p(SNh

)

= C3 exp(−‖X−HSNh
‖2

F

σ2
w

)p(SNh
).

Taking log of the above probability,

log p(X,SNh
|H) = C4 − 1

σ2
w

‖X−HSNh
‖2

F + logp(SNh
).

The basic idea of EM is that we want to minimize the above log-likelihood, but we

don’t have the data H to compute it. So instead, we maximize the expectation of the

log-likelihood given the observed data and our previous estimation Ĥ(k−1). This can

be expressed in two steps [8].

Let Ĥ(k−1) be our previous estimate of parameter H from the (k− 1)th iteration.

For the E-step, we compute:

Q(Ĥ, Ĥ(k−1)) := E(log p(X,SNh
|H = Ĥ)|X,H = Ĥ(k−1))
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=

∫

SNh

log p(X,SNh
|H = Ĥ)p(SNh

|X,H = Ĥ(k−1))dSNh

=

∫

SNh

[
C4 − 1

σ2
w

‖X−HSNh
‖2

F + logp(SNh
)

]
p(SNh

|X,H = Ĥ(k−1))dSNh

= C5 − 1

σ2
w

∫

SNh

‖X− ĤSNh
‖2

F p(SNh
|X,H = Ĥ(k−1))dSNh

.

Since,

‖X− ĤSNh
‖2

F =
N−1∑
n=0

‖x[n]− Ĥs[n]‖2,

where s[n] ∈ vn, the above Q function can be expressed as:

Q(Ĥ, Ĥ(k−1))

= C5 − 1
σ2

w

N−1∑

n=0

∫

v0

∫

v1

· · ·
∫

vN−1

‖x[n]− Ĥs[n]‖2p(s[0], · · · , s[N − 1]|X, Ĥ(k−1))ds[0] · · · ds[N − 1]

= C5 − 1
σ2

w

N−1∑

n=0

∫

vn

‖x[n]− Ĥs[n]‖2

∫
· · ·

∫

vj 6=n

p(s[0], · · · , s[N − 1]|X, Ĥ(k−1))ds[0] · · · ds[N − 1],

where,

∫
· · ·

∫

vj 6=n

p(s[0], · · · , s[N − 1]|X, Ĥ(k−1))ds[0] · · · ds[N − 1] = p(s[n]|X, Ĥ(k−1))ds[n].

The above Q function can be further simplified as:

Q(Ĥ, Ĥ(k−1)) = C5 − 1

σ2
w

N−1∑
n=0

∫

vn

‖x[n]− Ĥs[n]‖2p(s[n]|X, Ĥ(k−1))ds[n]

= C5 − 1

σ2
w

N−1∑
n=0

Ln∑
m=1

‖x[n]− Ĥsn,m‖2p(s[n] = sn,m|X, Ĥ(k−1)).

From (4.9), we make the approximation:

p(k−1)
n,m ≈ p(s[n] = sn,m|X, Ĥ(k−1)).

Then the Q function can be approximated by the following expression:

Q(Ĥ, Ĥ(k−1)) ≈ C5 − 1

σ2
w

N−1∑
n=0

ln∑
m=1

p(k−1)
n,m ‖x[n]− Ĥsn,m‖2,
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since p
(k−1)
n,m = 0 for m > ln. The new estimation Ĥ(k) is Ĥ which maximizes the Q

function above.

Ĥ(k) = arg max
Ĥ

Q(Ĥ, Ĥ(k−1))

= arg min
Ĥ

∑
n,m

pk−1
n,m‖x[n]− Ĥsn,m‖2.

Since a necessary condition for the minimizer is:

∂

∂Ĥ

∑
n,m

p(k−1)
n,m ‖x[n]− Ĥsn,m‖2 = 2

∑
n,m

p(k−1)
n,m x[n]sH

n,m − 2
∑
n,m

p(k−1)
n,m Ĥsn,msH

n,m = 0,

we get:

Ĥ(k) = (
∑
n,m

p(k−1)
n,m x[n]sH

n,m)(
∑
n,m

p(k−1)
n,m sn,msH

n,m)−1.

After we get the new channel estimation Ĥ(k), goto step 3(a) and continue the itera-

tion.
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CHAPTER 5

ITERATIVE PER-SURVIVOR PROCESSING
ALGORITHM

As is well known, Viterbi decoding can be used to implement maximum likely

sequence detection in ISI channels when the channel information is known perfectly

by the receiver [11]. In our system, the channel information is unknown though we

have the initial estimated channel information from the blind sub-space algorithm.

So the Viterbi algorithm is not directly applicable here. An alternative is to use the

generalized per-survivor processing (PSP) receiver [11]. Using PSP, we can update

our estimated channel information at every stage when we search for the most likely

sequence.

5.1 MLSE with perfect CSI

Recall model (1.2) in Section 1.2, repeated below for convenience,

[
x[0] · · · x[N − 1]

]
= H




s[0] · · · s[N − 1]
...

. . .
...

s[−Nh + 1]︸ ︷︷ ︸
s[0]

· · · s[N −Nh]︸ ︷︷ ︸
s[N−1]




︸ ︷︷ ︸
SNh

+W.

Note that we can also write our model as:

x[k] = Hs[k] + w[k] k = 0, · · · , N − 1.
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Given the perfect channel information H, the probability density function of the

received data conditioned on the transmitted block code sequence S is:

p(X|S) =
1

(πδ2
w)N

ΠN−1
k=0 e

− ||x[k]−Hs[k]||2
δ2w .

Taking the logarithm of the probability above, we obtain:

log(p(X|S)) = C6 −
N−1∑

k=0

||x[k]−Hs[k]||2
δ2
w

,

where C6 is a constant. The maximum likelihood detection of the transmitted se-

quence is:

Ŝ = arg min
S∈U

N−1∑

k=0

||x[k]−Hs[k]||2. (5.1)

Since the channel is of length Nh and the block codes are of length Nt, each column

vector s[k] spans up to M = bNh

Nt
c + 1 codewords. If the channel information H is

perfectly known, the optimum receiver is a Viterbi decoder that searches for the path

with minimum metric in the trellis diagram of a finite state machine.

Assume for simplicity as stated before, the transmitted signal vectors with minus

index can be viewed as guard signals which are [s[−Nh + 1], · · · , s[−1]] = 0, so we

can group the signal vectors in a frame S = [s[0], · · · , s[N − 1]] into Nc = b N
Nt
c DUST

codewords, i.e., S = (S[0], · · · ,S[Nc − 1]). Then divide the block-Toeplitz matrix

SNh
to Nc block columns, SNh

= (S[0], · · · ,S[Nc − 1]), each block column having Nt

column vectors. In other words, the n-th block column S[n] contains the column

vectors (s[nNt], · · · , s[(n+1)Nt−1]). Divide the observed data matrix X in the same

way into Nc blocks, X = (X[0], · · · ,X[Nc − 1]) with the n-th block represented as

X[n]. Then the maximum likelihood criteria from (5.1) can be restated as:

Ŝ = arg min
S∈U

Nc−1∑
n=0

||X[n]−HS[n]||2F . (5.2)
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Define the state of trellis diagram as:

µn =
[
Ŝ[n], · · · , Ŝ[n−M + 1]

]
, (5.3)

where M is the channel response duration in terms of code blocks. So there are LM

possibilities for µn. The transition of states can be represented as µn → µn+1. The

transition metric at step n is defined as:

λv(µn → µn+1) = ||X[n + 1]−HŜ[n + 1]||2F , (5.4)

where state µn+1 =
[
Ŝ[n + 1], · · · , Ŝ[n + 2−M ]

]
shares

[
Ŝ[n], · · · , Ŝ[n + 2−M ]

]
in

common with µn. Let Mv(µn) denote the survivor metric as in the standard Viterbi

algorithm. The accumulated metric Mv(µn+1) is determined by performing a mini-

mization over the set of states transitioning to µn+1:

Mv(µn+1) = min
µn

[Mv(µn) + λv(µn → µn+1)]. (5.5)

By choosing the trellis path with the minimized metric, we can achieve the maximum

likelihood sequence detection of (5.2).

5.2 PSP for imperfect CSI

When H is unknown, a per-survivor estimation of H can be implemented. Recall

the state µn at step n from (5.3). Since H is unknown, the branch metric in (5.4) is

modified as:

λp(µn → µn+1) = ||X[n + 1]− ĤŜ[n + 1]||2F , (5.6)

which means λp is also a function of estimate Ĥ. Note that if H is known, (5.6)

reduces to the metric (5.4). The codeword sequence associated with each surviving
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path is used as a training sequence for the per-survivor estimation of H. Define

the codeword sequence associated with the surviving path terminating in state µn as

{Ŝ[k](µn)}n
k=0

SV
. Define the data-aided channel estimator as G[·] and the per-survivor

estimation of H as:

Ĥ(µn)SV = G[{X[k]}n
k=0, {Ŝ[k](µn)}n

k=0

SV
].

The per-survivor estimate Ĥ(µn)SV is then inserted in the computation of the branch

metric (5.6):

λp(µn → µn+1) = ||X[n + 1]− Ĥ(µn)SV Ŝ[n + 1]||2F .

We then find the survivor metric Mp(µn+1) similar to (5.5) which is:

Mp(µn+1) = min
µn

[Mp(µn) + λp(µn → µn+1)], (5.7)

and continue the process until n = Nc − 1.

Note that when a survivor is correct, the corresponding estimate Ĥ is computed

using the correct data sequence. Assuming the data-aided estimator G[·] has the

property that it can perfectly estimate H given the correct codeword sequence in the

absence of noise, then PSP will detect S in the absence of noise. For this reason, PSP

is asymptotically optimal as SNR increases [11]. Adaptive algorithms such as Least

Mean Square (LMS) and Recursive Least Square (RLS) can be used to implement

G[·]. We will discuss LMS and RLS based PSP in detail in the next two subsections.

Table 5.1 lists the notation used for the PSP algorithm.

5.2.1 PSP using LMS

LMS is proposed in [11] to accomplish the channel identification component of

PSP sequence decoding. LMS is a linear adaptive filtering algorithm based on two
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Variable Description
µn+1 one of LM states at step n + 1

µn → µn+1 path transition from µn to µn+1

µSV
n+1 surviving path connected to µn+1

λp(µn → µn+1) branch metric corresponding to transition µn → µn+1

M(µn+1) surviving path metric connected to state µn+1

{Ŝ[k](µn+1)}n+1
k=0 tentative decisions of the DUST codes connected to the

state µn+1

{Ŝ[k](µn+1)}n+1
k=0

SV
surviving path connected to the state µn+1

Ŝ(µn+1) block columns constructed from the tentative decisions
{Ŝ[k](µn+1)}n+1

k=n−M+2

Ŝ(µn+1)
SV block column constructed from the surviving path

{Ŝ[k](µn+1)}n+1
k=0

SV
connected to the state µn+1

E(µn+1) error between the received signal and its estimation
along transition µn → µn+1

E(µn+1)
SV error between the received signal and its estimation

along transition of the surviving path connected to µn+1

K(µn+1)
SV gain of the surviving path connected to the state µn+1

P(µn+1)
SV inverse of the correlation matrix of the surviving path

connected to the state µn+1

Ĥ(µn+1)
SV channel estimation for the surviving path transition con-

nected to the state µn+1

Table 5.1: Parameter and description for PSP algorithm
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steps: first, compute a filtered output and generate the error between the output and

the desired response; second, adjust the filter according to the output error [12]. We

use a single-input single-output (SISO) model to further describe LMS. Let f denote

a vector of FIR channel response coefficients, t[n] as the input, f̂ [n] as the estimate of

f , r̂[n] as the filtered output, r[n] as the desired output and e[n] as the error. Then

briefly, LMS can be written as:

1. Generate output r̂[n] = f̂H [n]t[n] and estimation error e[n] = r[n]− r̂[n],

2. Update the channel estimate f̂ [n + 1] = f̂ [n] + βt[n]eH [n].

β, a positive constant, is the step-size parameter. The iterative procedure starts with

an initial estimate f̂ [0].

In our system, the unknown channel coefficients are contained in H. Suppose the

tentative decision for the code sequence associated with the transition µn → µn+1 is

the codeword sequence {Ŝ[k](µn+1)}n+1
k=0 . Arrange this data sequence into the form of

block column Ŝ(µn+1) having the same structure as S[n+1]. Then the PSP based on

LMS channel identification proceeds in similar way as in step 1 of LMS: for all the

transitions µn → µn+1, calculate the errors,

E(µn+1) = X[n + 1]− Ĥ(µn)SV Ŝ(µn+1). (5.8)

The transition metric is:

λp(µn → µn+1) = ||E(µn+1)||2F . (5.9)

The surviving metric Mp(µn+1) is calculated as in (5.7). The surviving path

{Ŝ[k](µn+1)}n+1
k=0

SV
connected to the state µn+1 is the tentative decision of code se-

quence which has the surviving metric Mp(µn+1). Next the channel estimation for
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state µn+1 is updated in similar way as in step 2 of LMS,

Ĥ(µn+1)
SV = Ĥ(µn)SV + βE(µn+1)

SV Ŝ
H

(µn+1)
SV . (5.10)

The updated estimation Ĥ(µn+1)
SV is computed for each surviving path

{Ŝ[k](µn+1)}n+1
k=0

SV
.

The PSP sequence decoder based on LMS channel identification is summarized

below.

PSP using LMS

1. Start with an initial estimation Ĥ(0).

2. n = n + 1, 0 ≤ n ≤ Nc − 1,

(a) For each state µn+1, find the groups {µn} that can be connected to state

µn+1.

(b) Find the tentative decisions of the DUST codes {Ŝ[k](µn+1)}n+1
k=0 along the

transition µn → µn+1.

(c) Use the codes {Ŝ[k](µn+1)}n+1
k=n−M+2 from the tentative decisions above to

construct block column Ŝ(µn+1).

(d) Find the block column error between the actual received signal and the

desired response approximated on Ĥ(µn)SV ,

E(µn+1) = X[n + 1]− Ĥ(µn)SV Ŝ(µn+1).

(e) Find the branch metric from the error E(µn+1),

λp(µn → µn+1) = ||E(µn+1)||2F .
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(f) Find the surviving path metric connected to state µn+1 using the criteria,

Mp(µn+1) = min
µn

[Mp(µn) + λp(µn → µn+1)],

and keep the surviving path connected to µn+1 as {Ŝ[k](µn+1)}n+1
k=0

SV
.

(g) Update the channel estimation using the errors and the block column con-

structed from the surviving path {Ŝ[k](µn+1)}n+1
k=0

SV
connected to the state

µn+1,

Ĥ(µn+1)
SV = Ĥ(µn)SV + βE(µn+1)

SV Ŝ(µn+1)
SV .

3. Find the minimum path metric min
µNc−1

Mp(µNc−1) and the surviving path

{Ŝ[k](µNc−1)}Nc−1
k=0

SV
which generate this minimum path metric. This is the

output of PSP sequence decoder.

5.2.2 PSP using RLS

RLS is also proposed in [11] to accomplish the channel identification in PSP se-

quence decoding. RLS algorithm can be viewed as a special kind of Kalman filter [12].

Assume the same SISO model as in the description of LMS. In addition, define γ as

a “forgetting factor”. In the method of exponential weighed least squares, we want

to minimize the cost function
∑n

i=1 γn−i|e(i)|2. Defining Φ(n) as the correlation ma-

trix of the input signal t(n) and p(n) = Φ−1(n) and using the Matrix Inversion

Lemma [12], we obtain the RLS algorithm:

1. Initialize correlation matrix inverse p[0] = Φ[0] = (E(t[0]tH [0]))−1.

2. At n = 1, 2, · · ·, find:

gain vector: k[n] = γ−1p[n−1]t[n]
1+γ−1tH [n]p[n−1]t[n]

,
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estimation error: e[n] = r[n]− f̂H [n− 1]t[n],

channel estimate: f̂ [n] = f̂ [n− 1] + k[n]eH [n],

correlation matrix inverse: p[n] = γ−1p[n− 1]− γ−1k[n]tH [n]p[n− 1].

If we combine RLS channel estimation with PSP sequence decoder, Ĥ(µn−1)
SV is

estimated by recursively minimizing the exponentially weighted cost:

Nc−1∑

k=0

γNc−1−k||X[k]− Ĥ(µNc−1)
SV Ŝ(µk)

SV ||2F , (5.11)

where γ is the forgetting factor used to track possibly time-varying channels (0 <

γ ≤ 1). We outline PSP based on RLS below:

PSP using RLS

1. Start with the initial estimate Ĥ(0), Ŝ(0) and the inverse of the correlation matrix

P̂(0) = (Ŝ(0)
Nh
Ŝ(0)H

Nh
)−1.

2. n = n + 1, 0 ≤ n ≤ Nc − 1,

(a) to (f) are the same as in Section 5.2.1.

(g) Update the gain of the surviving path connected to state µn+1,

K(µn+1)
SV =

P(µn)SV Ŝ(µn+1)
SV

Ŝ
H

(µn+1)
SV

Pn(µn)SV Ŝ(µn+1)SV + γI
,

Update the inverse of the correlation matrix of the surviving path connected to

state µn+1,

P(µn+1)
SV = γ−1

[
I−K(µn+1)

SV (Ŝ
H

(µn+1)
SV

)

]
P(µn)SV ,

Update the channel estimation using the errors and gain of the surviving path

connected to µn+1,

Ĥ(µn+1)
SV = Ĥ(µn)SV + E(µn+1)

SV K(µn+1)
SV .
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3. Find the minimum path metric Mp(µNc−1) and the surviving path

{Ŝ[k](µNc−1)}Nc−1
k=0

SV
which generate this minimum path metric. This is the

output of PSP sequence decoder.

5.3 Iterative PSP Sequence Estimation

According to the ML criteria (4.4) derived in Chapter 4, the optimal estimation

of the codewords is obtained from:

Ŝ = arg min
H,S∈U

‖X−HSNh
‖2

F ,

which is a minimization over H and S. If we rewrite the above equation as:

Ŝ = arg min
S∈U

min
H

(
Nc−1∑
n=0

||X[n]−HS[n]||2F ). (5.12)

We can do the optimization iteratively if given an initial estimation Ŝ(0). In our

system, the initial estimate Ŝ(0) is obtained using blind sub-space algorithm and the

non-coherent decoder for DUST codes. Using the inner minimization in (5.12), the

initial estimate Ĥ(0) is obtained from least square method: Ĥ(0) = XŜ(0)
Nh

†, which gives

ML estimate Ĥ(0) given Ŝ(0). Ĥ(0) in turn suggests an updated estimation Ŝ(1) and

we can use PSP based on LMS or RLS to get Ŝ(1). With Ŝ(1), the inner minimization

gives an updated estimation Ĥ(1), and PSP works much better with the updated

channel estimation Ĥ(1). So we can use PSP in an iterative way as (5.12) suggested:

after we get the output code sequence estimation Ŝ(k) from the kth time using PSP,

least square estimation Ĥ(k) = XŜ(k)
Nh

† is obtained. We then send Ĥ(k) to the PSP

sequence decoder again and get Ŝ(k+1). The iteration is stopped when the channel

estimation Ĥ(k) = Ĥ(k+1). Usually after two to three iterations, the algorithm stops.

In some special cases, the estimation Ĥ(k) converges very slowly. To save complexity
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and avoid too many times of iteration, we can set the maximum number of iteration

Nm as before. So we always have fewer than Nm iterations.

Our final blind equalization and identification algorithm for our MIMO differential

space-time modulated systems can be summarized below:

1. Obtain the initial block code sequence estimation Ŝ(0) from blind sub-space

method and non-coherent decor for DUST codes.

2. Get the initial channel estimation Ĥ(0) = XŜ(0)
Nh

† using least square method.

3. k = k + 1, 1 ≤ k ≤ Nm,

(a) Use Ĥ(k−1) in PSP algorithm and get Ŝ(k).

(b) Least square estimation of channels: Ĥ(k) = XŜ(k)
Nh

†.

(c) If Ĥ(k) 6= Ĥ(k−1), goto (a).
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CHAPTER 6

CR BOUND ANALYSIS AND SIMULATION RESULTS

6.1 Constrained Cramér-Rao Bound

To evaluate the effect of the iterative PSP algorithm we proposed, we want to

find the bound on MIMO channel estimation error with side information. Here we

implement the method of computing the constrained CR bound introduced by Sadler,

et al. [13]. The side information for our blind channel estimation is the structure of

the DUST codewords. To simplify the derivation process for the constrained CR

bound, we will use most of the conclusions in [13]. For proof details, please refer

to [13], [14].

First, we transform our MIMO linear system model introduced in Chapter 1 to

an equivalent model described in [13] and then we use the results derived in [13]

directly. With the model equation (1.1), the channel response H[k] ∈ CNrNo×Nt ,

k = 0, · · · , Nh − 1, can be written as:

H[k] =




c1,1[k] · · · c1,Nt [k]
...

. . .
...

cNrNo,1[k] · · · cNrNo,Nt [k]


 .

Assume that sk[n] denotes the kth element of the transmitted signal vector s[n],

xi[n] denotes the ith element of the received signal vector x[n], wi[n] denotes the ith
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element of the noise vector w[n], i = 1, · · · , NrNo. Rearranging the MIMO model

(1.1) we get,

xi[n] =
Nt∑

k=1

Nh−1∑

l=0

ci,k[l]sk[n− l]. (6.1)

If we take the ith element of all the received vectors x[0], · · · ,x[N − 1], and stacking

them into a vector: xi = [xi[0], · · · , xi[N − 1]]T , take the ith element of all the noise

vectors w[0], · · · ,w[N − 1], and stacking them into a vector: wi = [wi[0], · · · , wi[N −

1]]T , then from (6.1) we get,

xi =
Nt∑

k=1




ci,k[Nh − 1] · · · ci,k[0]
. . . . . .

ci,k[Nh − 1] · · · ci,k[0]




N×(N+Nh−1)




sk[−Nh + 1]
...

sk[N ]


 + wi

=
Nt∑

k=1

Ci,ksk + wi.

If we define x = [xT
1 , · · · ,xT

NrNo
]T , sk = [sk[−Nh + 1], · · · , sk[N − 1]]T , w =

[wT
1 , · · · ,wT

NrNo
]T , the system model can be written as:

x =
Nt∑

k=1




C1,k
...

CNrNo,k


 sk + w

=
Nt∑

k=1

Cksk + w (6.2)

This is an equivalent model as (5) in [13], which is a MIMO model with Nt users and

NrNo channels.

We may use the conclusions in [13] now. Define the complex vector of unknown

parameter (channel response and symbols) as (15) in [13]:

Θ =
[
cT

1 , sT
1 , · · · , · · · , cT

Nt
, sT

Nt

]T
, (6.3)

where

ck = [cT
1,k, · · · , cT

NrNo,k], ci,k = [ci,k[0], · · · , ci,k[Nh − 1]]T .
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The mean of x conditioned on Ck and sk from (6.2) is:

µ(Θ) =
Nt∑

k=1

Cksk. (6.4)

The covariance matrix of x conditioned on Ck and sk is σ2
wI. From (17) in [13], we

get complex-valued Fisher Information matrix:

Jc =
2

σ2
w

(
∂µ(Θ)

∂Θ
)H ∂µ(Θ)

∂Θ
. (6.5)

Define: [
∂µ(Θ)

∂Θ

]

ij

=
∂[µ(Θ)]i
∂[Θ]j

,

where [µ(Θ)]i means the ith element of µ(Θ) and [Θ]j means the jthe element of Θ.

From (11) and (12) in [13], we get,

∂µ(Θ)

∂Θ
= [Q1, · · · ,QNt ] (6.6)

Qk = [INrNo ⊗ S(k),Ck] k = 1, · · · , Nt, (6.7)

where INrNo is the NrNo ×NrNo identity matrix, ⊗ denotes the Kronecker product,

and

S(k) =




sk[0] · · · sk[−Nh + 1]
...

. . .
...

sk[N − 1] · · · sk[N −Nh + 1]


 k = 1, · · · , Nt. (6.8)

So the complex Fisher information matrix in (6.5) can be rewritten as:

Jc =
2

σ2
w




QH
1 Q1 · · · QH

1 QNt

...
. . .

...
QH

Nt
Q1 · · · QH

Nt
QNt


 . (6.9)

Define the real parameter vector as:

ξ = [Re(Θ)T , Im(Θ)T ]T . (6.10)
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The real-valued FIM corresponding to real valued unknown parameter ξ in (6.10) is:

Jr = 2

[
Re(Jc) −Im(Jc)
Im(Jc) Re(Jc)

]
. (6.11)

Now consider our side information from the diagonal structure of the DUST code-

words. For any codeword:

S[n] =




s1,1[n] · · · s1,Nt [n]
...

. . .
...

sNt,1[n] · · · sNt,Nt [n]


 ,

all the diagonal elements are unit modulus, |sk,k[n]| = 1, and all the off-diagonal

elements equals 0. Using this, we can get R = NcN
2
t equality constraints with the

form:

sk,j 6=k[n] = 0 and |sk,k[n]| − 1 = 0 for j, k = 1, · · · , Nt, n = 0, · · · , Nc − 1.

Suppose the dimension of ξ is D, then define a R×D gradient matrix

F (ξ) =
∂f(ξ)

∂ξ
. (6.12)

where f(ξ) collects the R equality constraints. Now define F equals to F (ξo) where

ξo is the true value of the parameter vector. Let U be a D × (D − R) matrix whose

columns are an orthonormal basis for the null space of F , so that FU = 0, UT U = I,

then the constrained CR bound is:

E[(ξ̂ − ξo)(ξ̂ − ξo)
T ] ≥ U(UTJrU)−1UT . (6.13)

From (6.13), we can compute the channel estimation error ||H − Ĥ||2F and compare

it with the estimation error from the iterative PSP algorithm. We have done simu-

lations for some specific cases in the next section to evaluate the performance of our

algorithms.
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6.2 Simulation results

The basic problem for this project is that in the MIMO system with frequency-

selective channel response, if we use DUST codewords, how to blindly estimate the

codeword sequence and the channel response. The blind equalization and identifi-

cation algorithm we present mainly contains two steps: first, find the initialization

estimation of the code sequence using blind sub-space algorithm and the non-coherent

decoder for DUST codewords; second, use the initialization estimation to aid further

estimation of the code sequence and channel response. As to the second step, we

consider two methods, one is the ILSP and soft ILSP introduced in chapter 4, the

other is the iterative PSP algorithm introduced in chapter 5. For the iterative PSP

algorithm, there are two types: the iterative PSP using LMS and the iterative PSP

using RLS.

For the first group of simulation, we compare the effect of the bit error rate (BER)

and the frame error rate (FER) of all our blind algorithms. We also give the curve

for the known channel response case (non-blind). For the non-blind case, the optimal

decoder is the maximum likelihood sequence decoder. We set the parameters for the

simulation as: Nt = 2 transmit antennas, Nr = 2 receiving antennas, up-sampling

rate for the received signal No = 2, number of frequency selective channel taps is

Nh = 3. The channels are generated as multi-ray channels with pulse shaping. Every

frame contains Nc = 51 codewords. The step size β for the iterative PSP on LMS is

0.2. The forgetting factor γ for the iterative PSP on RLS is 0.8. The size of group

codewords is L = 4. They are diagonal and unitary matrices from [4]:

S[n] ∈
[[

j 0
0 −j

]
,

[ −1 0
0 −1

]
,

[ −j 0
0 j

]
,

[
1 0
0 1

]]
.
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Figure 6.1: FER comparison of different algorithms

Figure 6.1 gives the simulation results for the FER versus SNR of all the algorithms

proposed. Frame error rate is computed as the number of frames in which all the

codewords are recovered correctly over the total number of frames for experiments.

Figure 6.2 gives the simulation results for the BER versus SNR. From these two

figures, we can see that the iterative PSP algorithm is better than soft ILSP and

ILSP algorithm. The iterative PSP on RLS is better than iterative PSP on LMS.

Since PSP on LMS is much simpler, the complexity of PSP on RLS is the expense for

its increase of performance. But there is still difference between the performance in

the non-blind case and our blind case. Theoretically the BER and FER of blind case

should be higher than the non-blind case. To evaluate how good our iterative PSP

algorithms performs in the blind case, we give the constrained CR bound simulation

as a comparison.
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Figure 6.2: BER comparison of different algorithms

Figure 6.3 shows the CR bound for channel estimation error ||H−Ĥ||2F and channel

estimation error from iterative PSP on RLS algorithm and channel estimation error

from the initialization estimation of the blind sup-space algorithm. From this plot,

we can see that the iterative PSP on RLS algorithm based on initialization from sub-

space method is a good way of blind equalization and identification for our MIMO

system. Although it can not achieve the constrained CR bound, it is approaching

the CR bound especially in high SNR case. We can also see that the initialization

channel estimation from the blind sub-space algorithm does not perform very well in

the noisy case.

We also investigate the effect of the number of the receiving antennas, the num-

ber of the over-sampling rate and the frame length to our iterative PSP on RLS

algorithms. Figure 6.4 shows the effect of the number of receiving antenna to the
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Figure 6.3: Channel Estimation Error Comparison

iterative PSP algorithm. We keep all the parameters the same as those of the first

group of simulation except changing Nr from 2 to 4. When we increase the number

of antennas, the performance becomes much better.

Figure 6.5 shows the effect of the up-sampling rate. We keep all the parameters

the same as those of the first group simulation except changing the up-sampling rate

No. If there is no up-sampling, then No = 1. We use No = 2 as the default up-

sampling rate in our algorithm. The plot shows that when the up-sampling rate is 2,

it’s much better than no up-sampling case.

Figure 6.6 shows the effect of the frame length to the iterative PSP on RLS algo-

rithm. We keep all the parameters the same as those of the first group of simulation

except changing the frame length from Nc = 51 to 25. And the plot shows the longer

the frame length, the better the performance. This is in accordance with our intuition,
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since the longer the frame, the algorithm has more chances to learn the channels. For

small length of 25 codewords in a frame, we can still blindly identify the channels and

estimate the transmit codewords using this algorithm.

6.3 Conclusion

This thesis presents an approach of blind equalization and identification for MIMO

communication system with frequency-selective fading channels. The blind sub-space

algorithm plus the non-coherent decoder for the DUST codewords gives a blind equal-

ization as initialization. This scheme works perfect in the absence of noise because

the deterministic subspace method gives perfect results for the ideal case. But when

noise is added, the deterministic subspace method gives an estimate with great noise,

55



so the initialization estimation of both the channels and codeword sequence contains

great noise.

To improve the accuracy of our blind algorithm, ILSP and soft ILSP are considered

for further estimation of the channels and symbols. These approaches are based on

projection, since the DUST codewords are block codewords in a group with finite

alphabet, we can project every codeword in a frame to the group codewords. But

ILSP and soft ILSP does not improve the performance as we hoped. The reason

might be that the initialization estimation from the sub-space method is not accurate

enough.

Iterative PSP on LMS or RLS based on sequence detection generalized for MIMO

system is considered also. Although the PSP algorithm is sub-optimal, this approach

gives great improvement in performance. Constrained CR bound are theoretically

and computationally derived to evaluate the performance of the iterative PSP on RLS

algorithm. Simulations show that it works well since it is approaching the constrained

CR bound especially in high SNR case.

Generally speaking, we present an approach of blind identification and equaliza-

tion for the differential space-time coded wide-band MIMO communication system.

We also investigated some properties of the algorithm, such as the effect of the number

of receive antennas and the number of block codewords in a frame. The simulation

results are in consistent with what we derived theoretically. We showed the impor-

tance of over-sampling for the system. The blind sub-space algorithm is making use

of over-sampled output and the initialization estimation from the sub-space algorithm

is crucial to the iterative PSP algorithm.
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There are still some limits for our algorithm. For example, this scheme is only

designed for small number of taps of channel response because the complexity for

the iterative PSP grows exponentially with the number of taps. How to solve the

problem of longer taps of channel response can be further research topics. Another

problem is that, after the sub-space method, we get an estimation of the symbols

with an ambiguity matrix plus some additional noise. The property of the noise

influences the non-coherent decoder we are using for the DUST code. How to analyze

the property of the noise from the sub-space method may be further studied. Since

the iterative PSP works better with better initialization, how to improve the accuracy

of initial estimation from the blind sub-space method may need further investigation.

Besides, if some other space-time codewords other than DUST code is employed, how

to accomplish the blind equalization and identification for wide-band MIMO systems

are broad topics for further research.
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