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6.1 Introduction

As discussed in Chapter 1, the wireless communication aiaam be modeled as a time-
varying (TV) lineatt system whose output is corrupted by additive noise. Tobilia
recover the transmitted information from the channel oytthe receiver must address
the effects of both linear distortion and additive noise. Mjhin theory, the mitigation
of linear distortion and additive noise should be done Jgijrh practice the task is often
partitioned into two tasks, equalization and decoding,rifeoto reduce implementation
complexity.

Roughly speakingequalizationleverages knowledge of channel structure to mitigate
the effects of the linear distortion whittecodingleverages knowledge of code structure
to mitigate the channel’s additive noise component. Thakzgr might be well informed
about the channel (e.g., knowing the complete channel isegelsponse) or relatively un-
informed (e.qg., knowing only the maximum channel length)séme cases, knowledge of
symbol structure (e.g., the symbol alphabet or, if appleabe fact that the symbols have
a constant modulus) is assumed to be in the domain of theizgyathile in other cases
it is assumed to be in the domain of the decoder; since thdirguand decoder work
together to infer the transmitted information from the amaroutput, the role of equal-
ization versus decoding is somewhat a matter of definition tis chapter, however, we
assume that exploitation of code structuraasin the domain of the equalizer.

Generally speaking, the output of the equalizer is a sequehsymbol (or bit) esti-
mates which have been, to the best of the equalizer’'s alifiltgd of channel corruption.
These estimates are then passed to the decoder for furfimemnent and final decision
making. In so calledurbo equalizatiorschemes [DJB95, KST04], the decoder passes

1Some channels are better modeled as nonlinear, but such tharmeot the focus of this book.
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Figure6.1 Soft-input soft-output (SISO) equalizer connected with a SISO decoaéuibo con-
figuration. Note the presence of de-interlealet! fed by the extrinsic equalizer LLRg d[j] =
Leyli] —Lelj], and interleaver fed by the extrinsic decoder LLR§ L] = Ly, [j] — Ly, [il-
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refined soft bit estimates back to the equalizer for furtedéinement, and the equalizer
passes further refined soft bit estimates to the decoder.piideess is then iterated un-
til the equalizer and decoder “agree” on the soft bit estamalNote that the use of soft
bit estimates implies that the equalizer treats the bitsagwipri) independent. Turbo
equalization is illustrated in Fig. 6.1 and will be discus#®more detail later.

The inputs to an equalizer depend on its design. So-catledrent equalizerare as-
sumed to know the parameters describingdtateof the TV linear system that they are
trying to mitigate, or an estimate thereof. Typical exarepéchannel state parameters
include impulse response coefficients or inter-carrieerietence coefficients. Coher-
ent equalization requires the simultaneous operationobiganel estimatgiwhose main
purpose is to provide accurate and up-to-date estimatdseof¥V channel state to the
equalizer. Channel estimation is discussed in Chapter 4 idéa to separate channel
estimation from equalization can be traced back to earlkwgrKailath [Kai60].

So-callednoncoherent equalizersperate without explicit knowledge of the channel
state, and therefore are not dependent on the implememtiteochannel estimator. Non-
coherent equalizers, however, are sometimes assumedwatkeohannel statisticée.g.,
the scattering function) or an estimate thereof. In the cdisenon-stationary channel,
the statistics themselves would need to be tracked. In thest general form, nonco-
herent equalizers treat the channel parameters as “neig@rameters” that complicate
data estimation. In some cases they explicitly estimateckianel state parameters in
conjunction with the data (i.ggint channel/symbol estimatiprwhile in other cases they
compute data estimates without ever computing a channeiagst

The equalization of rapidly TV communication channels iscmmore challenging
than the equalization of their time-invariant (or slowly JI®unterparts. This can be
understood intuitively as follows. From the perspectiveatierent equalization, a rapidly
TV channel implies that the channel state is constantly giman which implies that the
equalizer must be constantly redesigned in order to stay maiched to the channel.
From the perspective of noncoherent equalization, a napiichannel has more degrees
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of freedom (over a given bandwidth and signaling epoch) thalowly varying channel,
and thus more nuisance parameters to contend with.

Beyond these intuitive considerations, there is anoth@oitant reason why rapidly
TV channels are more difficult to equalize than slowly TV anEer time-invariant lin-
ear channels, information can be split up and transmittgaainallel on non-interfering
subcarriers. In this case, equalization becomes a simpentd adjusting the gain and
phase on each received subcarrier. This is, in fact, the idas behind multi-carrier
modulation schemes likerthogonal frequency division multiplexif@FDM) [Cim85].
For slowly TV channels, the same approach can be easily @xtkernto mimic a time-
invariant channel, the OFDM symbol duration can be chosentshthan the channel’'s
coherence time. But, as now explained, such an approach duitrto be impractical for
rapidly TV channels. To prevent interference between atyfa©FDM symbols, guard
intervals are typically inserted. For time-invariant angly TV channels, the loss in spec-
tral efficiency due to the inclusion of these guards can beensadkll, since the channel
delay spread (and hence the guard interval) is much smblerthe channel coherence
time (and hence the OFDM symbol length). For rapidly TV clesnthe OFDM sym-
bol length would need to be made extremely short, at whichtpbie loss of spectral
efficiency due to guard insertion would be severe. If onaltt@optimize the modula-
tion strategy, one would find that it is in fact impossible teyent interference among
the subcarriers without significant compromise in spedfiatiency [SB03]— a conse-
quence of the Balian-Low theorem [Dau92]. To summarize:levtiie equalization of
slowly TV channels can be trivialized via suitable choicehaf transmission scheme, the
equalization of rapidly TV channels cannot.

The remainder of this chapter will be organized as followsSéction 6.2, we outline
the system model assumed throughout the chapter and detagissential features that
result from rapid channel time-variation. In Section 6.8,aescribe coherent approaches
to equalization of rapidly TV channels and, in Section 6.4,describe noncoherent ap-
proaches. In Section 6.5, we conclude.

6.2 System model

We now outline the system model used in the remainder of thpteh In this chapter,
we focus on systems which use a single transmitter antertha single receiver antenna;
multi-antenna systems will be discussed in Chapter 8.

6.2.1 Basic assumptions

As discussed in Chapter 1, the time-domain received sarfrplean be written in terms of

the transmitted sequen¢gn|)ncz, the TV timen lengthM impulse responsgn[n, m)M -2,
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and additive white Gaussian noise proc@s )z, of variancea? as follows:

rn = Mz_lh[n, mjs[n— m]| 4 w[n]. (6.1)
m=0

In this chapter, we assume that the transmitted sequsimg,cz is generated from the
finite-alphabet symbol sequen¢ak])kcz using a genericinite-memory linear modula-
tion scheme, and that the demodulated sequéy{&B <7 is generated from the received
sequencer[n|)nez Using a correspondininite-memory linear demodulatioscheme.
Prior to modulation, the symbol sequer(ek])xcz is mapped from a coded-bit sequence
(c[j])jez which is generated from an information-bit seque(itig )iz, via rateR; cod-
ing and interleaving. We denote the symbol alphabethyits cardinality by|.<7|, and
the set of admissible symbol sequences (as allowed by dialieideaving) by« .

For ease of notation, we find it convenient to assustoek transmissiomwith block
lengthK, where the symbols

a2 (a0 a1l - akK-1)" e
can be related to the demodulated channel outputs
T
y2 o vy - yK-1) ec”
through the matrix/vector equation
y = IFHGa+z (6.2)
2Q

We note, however, that the block lendthcan be arbitrarily large and that the receiver
might not be able to store/process the entire vegtoln (6.2),, H, andG are matrix
representations of the linear demodulation operator,ieat TV channel, and the linear
modulation operator, respectively, and

22 (40 71 - ZK-1))"T eCX

represents the noise after demodulation. We note thatftbetive channel matriQ =
MHG e CX*K represents the combined effects of modulation, channglagation, and
demodulation, and will be used extensively throughout tiepter. Finally, we collect, in
the vectorc, theK log, |.<7| coded bits that determine thesymbols ina. Note that, with
a block length oK, we havesZ C o7X.

In writing (6.2), we have assumed that tkedemodulated samples jnare sufficient
for equalization/decoding of th€ symbols ina (i.e., that(y[k] k<o and (y[k])k>k can be
ignored), and that inter-block interference (IBI) is ngdlie. These assumptions will be
satisfied for any well-designed block transmission schdfaethermore, we will assume
that the noise, the symbols, and the effective chann€l are mutually independent, and
that (unless otherwise noted) the symmlre zero-mean (i.ey, = 0) and white (i.e?

2Throughout the chapter, we use subscripted versiofistofdenote covariance matrices.
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Figure 6.2 Support region of (a) “widely quasi-banded” and (b) “narrowly gsiebanded” ma-
trices. While M is often large (e.g., in the hundreds), D is usually very S@ajl,1 or 2).

Ca = 021). Finally, it should be noted that the demodulated naise not assumed to
be white unless otherwise noted; althougin|).cz is white, the demodulation process
does not necessarily guarantee whit])ycz.

Throughout the chapter, we assume that the equalizer kri@mvsymbol alphabety
but not the code structure, i.eef. Thus, the topic ofoint equalization/decoding lies
outside the scope of this chapter. Turbo equalization, /lseparate equalization and
decoding steps are iterated (as illustrated in Fig. 6.1) halwever, be discussed.

6.2.2 The structure of the effective channel matrix Q

In block equalization, if it can be assumed that certainfadehts ofQ will be negligible

for nearly all realizations o, then it is reasonable to conclude that an equalizer which
ignores these coefficients will perform nearly as good asjaaléezer which incorporates
these coefficients. However, the equalizer which ignoresefcoefficients may be sig-
nificantly cheaper to implement, especially if the propmtdf negligible coefficients is
large. This is, in fact, the guiding principle behind theidasof practical equalization
algorithms for rapidly TV channels.

Based on the characteristics of rapidly TV channels and comlynused modula-
tion/demodulation schemes, we partition effective chanredricesQ into three classes
based on the support region of non-negligible coefficierithimthe matrix: i)widely
quasi-bandedii) narrowly quasi-bandedand iii) fully populatedmatrices. The sup-
port regions of widely quasi-banded and narrowly quasidednmatrices are defined in
Fig. 6.2, and illustrative examples @f based on a randomly generated channel impulse
response and several modulation/demodulation schemegvarein Fig. 6.3 (the con-
struction of which will be detailed below). Note that we uke term “quasi-banded” as
opposed to “banded” due to the corhsupport regions in Fig. 6.2. Banded matrices, like
that illustrated in Fig. 6.5(b), will also be discussed ia gequel.

3Note that the one-corner support of the widely quasi-bamdatiix in Fig. 6.2(a) can be transformed into the
two-corner support of the narrowly quasi-banded matrix ig. B.2(b) by simply rotating the columns of the
former matrix right byM /2 places. Thus, the essential difference between thesecestsireally the width of
the support region (i.eM versus D + 1).
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(a) TV convolution (b) widely quasi-banded (c) narrowly quasi-banded (d) fully populated

Figure 6.3 Example of (a) a TV-channel's propagation matrix and the correspmndffective
channel matrices that result from (b) CP-SCM, (c) CP-OFDM with miNRSreceiver windowing
[Scho4], and (d) CP-OFDM with rectangular receiver windowing. Tlo size is proportional to
the coefficient magnitude.

To understand how these patterns manife ir THG, we must consider the com-
posite effect of linear modulatio®, propagation through the TV linear chanik&l and
demodulatior”. As implied by (6.1), the channel propagation mattixs a TV convo-
lution matrix whosen'" row contains the impulse response coefficiehfs, m))M . For
example, Fig. 6.3(a) shows a TV channel propagation mairikf= 8 that was randomly
generated according to the WSSUS Jakes [Stii01] fading assumapth vpmaxTs = 0.03,
wherevnax denotes the maximum (single-sided) Doppler spread in HAgtiek channel-
use interval (i.e., the symbol period in a single-carriestsgn) in seconds. If the channel
was time-invariant, the propagation matrix would have aplite structure. But here,
since the channel is rapidly TV, each coefficient's magratudries smoothly along its
diagonal of the propagation matrix. Given the constructibhl, the characteristics @@
will depend on the choices @& andl" and their interaction withd, as discussed next.

Single-carrier modulation/demodulation

For single-carrier modulation/demodulation schem@sand IF' accomplish little more
than insertion and removal of a guard interval (of lenygh> M — 1). In this caseQ is
created from the propagation mattk by simply cutting the firstNg columns ofH out
and superimposing them onto the l&§tcolumns ofH. This operation was used, e.g.,
to create the widely quasi-banded matrix in Fig. 6.3(b) fitie TV convolution matrix
in Fig. 6.3(a). More precisely, when has dimensionK x (K + M — 1), cyclic-prefixed
single carrier modulation (CP-SCM) [FABSEO02] uses

0 Im—1
G = |K7M+l 0 and I = IK, (6.3)
0 Im-1

whereas zero-padded single carrier modulation (ZP-SCM) [¥@¥] uses a slightly dif-
ferent construction o6, H, andrl” that results in an equivale@@ matrix. We consider the
effective channel matrix generated from SCM tovidely quasi-bandetiecauséM, the
width of the non-negligible band iQ, is typically large: sincél £ [Tyax/Ts] is the dis-
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crete delay spread of the channel, it is not unusualfdéo be in the hundreds (e.g., delay
spreadtnax = 20us and bandwidth AT = 10 MHz yield M = 200). Though smalM
applications do exist, they yield equalization problenst #ire not very challenging, and
hence not very interesting, especially in the cohereningetHence, we focus on the case
of largeM.

Time-frequency concentrated modulation/demodulation

The effect, on the transmitted sigra(n] }, of propagation through the linear TV channel
{h[n,m]} can be understood agmultaneous delay and Doppler spreadifighus, if each
symbol alk] is modulated on a time-frequency concentrated waveform

o= (o[0] -+ okN-— 1])T for suitablé N, so that
K—1
gn = %a[k}gk[n] for n=0,...,N—M, (6.4)
K=

wheregy is sufficiently “isolated” from the other wavefornigy }« in the time-frequency
domain, then propagation through the delay/Doppler sjmgadhannel should cause only
mild interference between thegalk|}. Extraction of thek" symbol’s contribution from
the received signdlr[n|} would then be accomplished via the linear demodulation-oper
ation

yk] = Nir[n]w‘:[n] for k=0,...,K—-1, (6.5)
WIN - 1))

for y, = (w[0] concentrated at the same time and frequencgas
This is the main idea behind pulse-shaped multicarrier regiselike [LAB95, HB97,
MK97, KM98, B6l02, SB03, Sch04, RBL06, DS07, MS@7] as well as Slepian schemes
like [SAMTOS5].

With suitably designed modulation/demodulation wavef®figy} and{y,}, the com-
bined channel matriXQ under (6.4)-(6.5) can be ensured to have nlerowly quasi-
banded structuréllustrated in Fig. 6.2(b). Therd) can be interpreted as the (single-
sided) discrete Doppler spread of the effective channel2ingt 1 can be recognized as
the width of the non-negligible interference band. Tydic&l is chosen as

whereDg is a small non-negative constant (e.gx<®g < 2 for a well-designed mod-
ulation/demodulation scheme), as discussed in the sedlelcan see tha® will be
narrowly quasi-bandedso that D + 1 < M, by plugging the typical block-length choice
of K =4M into (6.6) and then using the definitidh = tynay/Ts to see that [HS06]

D < [4VmaxImax| + [Do] (6.7)

4If N exceeds the time period between consecutive block transmisghen inter-block interference (IBI) can
result. In this case, the model (6.2) can be generalizgo=taQa+ Qpreapre + Qpstpst + Z, WhereQpreapre
accounts for pre-cursor IBl ar@pstapst accounts for post-cursor IBI. The IBI can be made negligibdeyever,
with suitable design of modulation/demodulation pulégs; and{y;}.
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Figure6.4 For the IBI modely = Qa+ Qpre@pre + Qpst@pst + 2z, With K = 64, Ng = 15, M = 16,
VmaxTs = 0.003 and WSSUS Jakes fading (see Chapter 1), subplot (b) shows thesqeae value

(in dB) of a coefficient ifQ versus its distance “d” from the main diagonal @ while subplots (a)
and (c) show the same for the coefficientQige and Qpst, respectively. The dashed vertical line
indicates D= [VmaxTsK|. JOMS refers to Das and Schniter’s joint transmitter/receiver optimiza-
tion max-SINR scheme [DS07] whiseOFDM refers to Strohmer and Beaver’s orthogonal scheme
[SBO3].

The quantity ZmaxTmax, SOmetimes referred to as the “spreading index,” desctibes
total severity of delay-Doppler spreading. The boundatybenunderspreacandover-
spreadchannels occurs abgaxImax= 1, and it can be safely assumed tha}gTmax < 1
for practical applications. Thus, from (6.8), we conclutiattthe width of the non-
negligible coefficient band is2+ 1 < 3+2[Dg| when suitable modulation/demodulation
waveforms are used. In summar 2 1 < M is a reasonable claim for the valueshdf
that are of interest in this chapter.

As an example, Fig. 6.3(c) shov@® constructed via cyclic-prefixed orthogonal fre-
qguency division multiplexing (CP-OFDM) [Cim85] with maxH¥R receiver pulse-shaping
[Sch04] using the TV convolution matrix shown in Fig. 6.3(@hough the channel has
an extremely high spreading index afiaxTmax = 0.8, all coefficients irQ outside of the
3-wide band are negligible. As another example, Fig. 6.4Msl1b[|[Q]k,k+d\2} (in dB)
versudl for several modulation/demodulation schemes and a chavitineh spreading in-
dex of Q1. (E{|[Qlkk+d |2} is invariant tok.) As can be seen in Fig. 6.4, the JOMS scheme
from [DS07] suppresses coefficients outside the band ofis&li= [VmaxTsK| = 1 by at
least 44 dB.
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At this point we make one final observation about a narrowlgsitbanded matrig.
If we upper-triangulariz€, e.g., via the QR decompositi@p = VQ whereV is unitary
andQ is upper triangular, the® will have the “V-shaped” structure shown in Fig. 6.5(c)
on page xiii. Such upper-triangularization @f occurs prior to decision feedback and
tree-search based equalization, as discussed in Secsién 6.

Other modulation/demodulation schemes

When the modulation and demodulation pul§gg}k 4 and{y,}<_4 arenot designed
to curb the effects of delay/Doppler spreading, the suppionbn-negligible coefficients
within Q can be widespread, to the point whé&enust be considered #slly populated
Examples of such modulation/demodulation schemes inchele/avelet-based schemes
[Wor96, Mar00], the chirp-based schemes [Mar01, BT01, S8&cheme designed to
maximize a lower bound on capacity [YCLO7], and the divgrsitaximizing schemes
[MGO03, HSO07c].

Even popular multicarrier schemes like CP-OFDM, when usihl avrectangular re-
ceiver pulse, yield a near-fully populat&d when the channel is TV rapidly enough.
Fig. 6.3 shows this by example: the effective channel matrikig. 6.3(d) was con-
structed from the TV convolution matrix in Fig. 6.3(a) viastard CP-OFDM. Notice
that the non-negligible coefficients (@ are not all located in the central band of the ma-
trix. Fig. 6.4 shows a similar phenomenon: for CP-OFCB) [Q]k.k+d}2} decays very
slowly with d, the distance from the main diagonal@f

6.3 Coherent equalization

In this section, we focus oooherent equalizatigni.e., equalization under the assump-
tion that the channel matrid, and thus the effective channel mat@ is known. The
noncoherent case will be discussed in Section 6.4.

In Section 6.3.1, we discuss several criteria (i.e., natiohoptimality) under which
coherent equalizers are designed, and, in Section 6.3.@esaibe classical equalization
algorithms for generi®. Then, in Sections 6.3.3-6.3.4, we focus on coherent exgaali
tion techniques for the specific types Qfanticipated for rapidly TV channels in Sec-
tion 6.2.2.

6.3.1 Coherent equalization criteria

Referring to (6.2), the goal of coherent block equalizai®mestimation of the symbol
vectora, or the corresponding coded-bit vectmrfrom the linearly distorted and noisy
demodulator output vectyr, assuming knowledge of the channel ma@®iand the noise
statistics. Note that this may or may not include a hardsgieaior quantization step,
as explained later. In any case, we are fundamentally stexien identifying the “opti-
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mal” method to generate these symbol estimates. The anlsaweever, depends on how
optimality is defined, i.e., whickqualization criterioris employed.

In organizing the criteria that are most often used for égealdesign, it helps to
consider how the equalizer outputs will be used by the recée.g., by the decoder).

Hard symbol or bit estimates

If there is no decoder or if the decoder wahtsd estimatesf the symbols or bits, then

the goal is to produce a finite-alphabet estiméte «7. (Recall that the equalizer is

assumed to know the symbol alphakétbut not the set of coded symbol sequencés
Maximum a posterior(MAP) sequence detectiqi$D) [Po094] minimizes the proba-

bility of sequence error. By definition, the MAPSD estimate i

Aarsp = arg maxPr{a=4a |y,Q}. (6.9)
EUTAN
In (6.9), we use the notatiotMAPSD” to emphasize that this is theherentversion of

the MAP criterion applied tesequenceletection. In contrast, coherent MAymboland
bit detection takes the form

aouar K] = argmgpr{a[k}:aw,Q} for keoO,...,K-1 (6.10)
ac

Cwarlj] = arg r?oaﬁPr{C[H=C\y7Q} for j€O,...,Klog,|</| - 1. (6.11)
ce{0,

In writing (6.9)-(6.11), we have treated the chan@Qeds a random quantity.

If we assume that each of the symbol sequencegirhas equal prior probability, i.e.,
Prla=a} = 1/|«/|€ v& € &7¥, then coherent MAPSD reduces to coheneraximum
likelihood (ML) SD [P0094]:

Amsp = argag?}z(f(y |a,Q), (6.12)

wheref(y | a,Q) denotes the probability density function ptonditioned ora andQ,
also known as thékelihood function To see this, notice from Bayes rule that

fiyla,QPfa=2a'|Q} _ 1 f(y|&,Q)
flylQ) [ f(y[Q)

from which it becomes clear that maximizing{Br=a' | y,Q} overad' is equivalent to
maximizingf(y | &, Q) overa’. Due to our assumption of zero-mean Gaussian noise with
covarianceC,, we havef(y | &,Q) = mexp(—ny— Qa’Hé;l), so that coherent
MLSD reduces to

Pa=2|y,Q}

(6.13)

~ . 2
Bowso = argag;QHy—Qchgl. (6.14)

Above, we used the quadratic-form notatifjz = zH Az, whereA is any positive semi-
definite Hermitian matrix.



Section 6.3: Coherent equalization i

Complex-field symbol estimates
If the decoder prefers or tolerates complex-valued symbtinates, rather than finite-
alphabet symbol estimates, then one can consider equatizahemes that yieldc CK.
Note, however, that we still assuraes 7K.

A popular criterion for this case isinimum mean-squared errgMMSE) [Po094].
The coherent unconstrained MMSE sequence estimate is define

dwwse = arg minE{|la—a|®|y,Q}. (6.15)
aeCK
Since the MMSE estimate equals the conditional mean [Poo@&thave
amvse = E{aly,Q} = z ap@aly,Q) (6.16)
aca/K
s, fy[aQp@ (6.17)

aSox Taeax flylad,Q)p(a)
If we assume thap(a) is uniformly distributed over7X, then
Sacrx @ exp(— |y —Qal2 )
Tacoexp(— ly— Qa2 ;)

Notice from (6.18) that the finite-alphabet natur@ofiakes the conditional mean difficult
to evaluate, since it requires the evaluation@fX terms.

To reduce complexity, the MMSE criterion is often employe@onjunction with par-
ticular constraints on how the symbol estimates are gesefeamy. The most common
examples are MMSHinear equalization(6.22) and MMSEdecision feedback equal-
ization (6.27). Note that, if one assumes ttey,Q is Gaussian distributed, then the
unconstrained MMSE estimator (6.15) itself becomes a lineaction ofy [Po094].

As the signal-to-noise ratio (SNR) increases, the effedingfar channel distortion
overwhelms that of additive noise, motivating the so-chilero-forcing(ZF) criterion.
Effectively, ZF equalizers “invert” the effect of the lineehannel distortion while ignor-
ing the presence of additive channel noise. The most commammes are ZF linear
equalization and ZF decision feedback equalization, be#itidbed in Section 6.3.2. In
the absence of additive noise, ZF equalizers are equivaldéheir MMSE counterparts.

(6.18)

AcmMSE

Soft bit estimates

If the decoder prefersoft bit estimateghen the goal is to produce reliability information
on each of the coded bits @ Typically, bit reliabilities are expressed in the form dbg
likelihood ratio (LLR) for each bit. The goal of coherent equalization thusdmees the
computation of the coherent posterior LL'Rs

Priclji]=1]y,Q}
Pric[i]=01y,Q}

A

for j=0,...,Klog,|/|-1, (6.19)

5Sometimes it is more practical to calculate posteriors usihgatimited number of (say) future observations
[LVS95]. In this so-called “fixed lag” case, the conditiogiim (6.19) is performed ofy[0], ... ,y[(Wl +

J)T instead ofy.
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given the a-priori LLRs

o s PHclil=1} L _
L[j]] = Pric(j] =0} for j=0,...,Klog, || —1. (6.20)
When nothing is a-priori known about the Iojtj], the valueL¢[j] = 0 is used. Nonzero

a-priori LLRs are used, e.g., when the equalizer is fed byothtputs of a soft decoder,
as in turbo equalization (see Fig. 6.1) or when certain bigskaown pilots. Ifc[j] was
a pilot (or otherwise known with complete confidence), thefj] = +-. Recall that the
use of a-priori LLRs implies that the equalizer treats theezbbits as independent.
Hard MAP bit estimates can be generated by quantizing theposLLRs as follows:

Coneli] = 3(14sign(Layolil). (6.21)

6.3.2 Coherent equalization tools

The coherent equalization criteria discussed in Secti8rilGach describe a particular
goal for equalization, but not how equalization would bectically implemented. For
example, the MAPSD, MLSD, and (unconstrained) MMSE estsatescribed in Sec-
tion 6.3.1 require the evaluation 6f(|.<7|X) metrics if computed via brute force, which
is not practical for typical values d€. In this section, we review classical equalization
implementations whose designs are guided by the variotesierin Section 6.3.1.

Trellis-based equalization

Trellis methods can be used to implement MLSD and MAP eqatitim whenQ is a
bandedmatrix. As illustrated in Fig. 6.5, a banded matrix differsrf its quasi-banded
counterpart due to the lack of corner elements. A bandedxmaanifests when, e.g., the
first and last few elements afare known or zero-valuedllf Q is a banded matrix with a
2D + 1 wide band, then théiterbi algorithm[For72] can perform MAPSD/MLSD equal-
ization usingd(KD|<7|?P+1) operations. Similarly, théorward-backward(or BCJR)
algorithm [BCJR74] can be used to accomplish MAP symbodgitalization with a com-
plexity of ¢ (KD|.7|?P*1) operations [For73, Appendix]. Lower-complexity treligsed
approximate MAP equalizers include fixed-lag approach®sf5] and the soft-output
Viterbi algorithm (SOVA) [HH89]. In all cases, the compléxiis linear in the block
lengthK and exponential in the effective channel lengih-21. Thus, these techniques
will be practical if and only if D + 1 is very small.

Trellis methods can be modified to work qonastbandedQ using, e.g., a “tail-biting”
approach. Here, from an arbitrary location within the bldtle Viterbi algorithm is ini-
tialized from each of the possible7 |?°+1 states and forced to terminate in the same state;
the initialization leading to the optimum sequence mesithen chosen. This approach
requires running the Viterbi algorithiny |22+ times, for a total cost of7(KD|.e7 |*P+?)
operations.

SMore precisely, consider the system model (6.2 I6 as illustrated in Fig. 6.5(a) and the laét- 1 elements
of aare zero-valued, then we can wijte- Q3+ z whered = (a[o] - aK-— M])T and wherd) is a banded
matrix (as illustrated in Fig. 6.5(b)) with av-wide band. Or, iQ is as illustrated in Fig. 6.5(b) and the first and
lastD elements ofa are zero-valued, then we can write= Qa+z whered = (aD] -~ a[K-D-— 1])T
and whereQ is a banded matrix (as illustrated in Fig. 6.5(b)) with2-2 1 wide band.
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Figure 6.5 Support region of (a) “quasi-banded,” (b) “banded,” and (c) “Shaped” matrices.
From quasi-banded (a), banded (b) is obtained by deleting the firstastdD columns, while V-
shaped (c) is obtained by upper triangularization.

Linear equalization
In linear equalizationthe symbol estimates are a linear function of the obsemstii.e.,

an = Ey, (6.22)

for a suitably chosen matri& € CX*K. In some cases, such as when it is impractical to
process the entire observatigrat once, additional constraints are placedsorBecause
linear equalization ignores the finite-alphabet propeftg,dts performance is generally
much worse than that of techniques which leverage the faiibabet property.

The coherenlinear MMSE(LMMSE)’ equalizer uses, fdE in (6.22),

.y i —a.wl?
Elvvse = argEE@EQK E{ lla—aunl| ‘ Q} (6.23)
Given the symbol and noise statistics assumed in Sectigiit 6&h be shown [Ver98] that
Eumse = Q"(QQ"+0;°C,) ! (6.24)
= (Q"c;'Q+0%k) Qe (6.25)

The matrix inversion lemn¥acan be used to relate (6.24) and (6.25). Tihear ZF (LZF)
estimator uses (6.22) with set to

Exr = Q1 (6.26)

assuming tha® is invertible. WherQ is not invertible, the LZF equalizer is said not to
exist.

Due to the matrix inversions in (6.24)—(6.26), the compiexif LMMSE and LZF
equalization is7(K2), which is much less than th&(|.<7|¥) complexity of unconstrained
MMSE estimation in (6.18). Stillg’(K3) may be impractical wheK is large.

"Note that the LMMSE equalizer described here is a genetiizaf the classical tapped delay-line LMMSE
equalizer [Pro01].

8The matrix inversion lemma can be stated As® + BC™1B")~t = A — AB(C + BHAB)~1B" A, assuming
the inverses exist.
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Decision feedback equalization
Decision feedback equalizatigpFE) exploits the finite-alphabet symbol property while
keeping complexity close to that of linear equalizationsdtgially, it makes hard symbol
decisions sequentially and leverages past decisions tiarefgymbol estimates.

The DFE generates complex-valued symbol estimates asviflo

dore = Ey—(U—Ik)Zy (). (6.27)

In (6.27),2.,(-) : CK — o7¥ denotes element-wise quantization w.r.t. the symbol alpha
bet.o7, U € CX*K is monic upper triangular (to ensure that decision feedlimskrictly
causal), andE € CX*K, Keeping the monic upper-triangular propertytbin mind, (6.27)
can be understood as follows: the estimajge [K — 1] is linearly computed frony using
the last row inE; then, the estimateyre[K — 2] is linearly computed frony and quan-
tizeddpre [K — 1] using the second-to-last rowskEandU, respectively; then, the estimate
dpre[K — 3] is linearly computed frony and quantized &pre [K — 2], 8pre[K — 1]} using
the third-to-last rows ife andU, respectively; and so on.

The DFE matrice€ and U are typically designed according to the MMSE or ZF
criteria. As with linear equalization, additional congtita may be placed o& and/orU.
The coherenMMSE-DFE[CF97] uses (6.27) witRE, U} set to

{Ewmseore, Uwvseore} = arg E"'LiJnE{Ha*éDFE”Z | Q}

assumingZ., (épre) = &, (6.28)

i.e., set to minimize the MSE @& under the assumption of perfect decision feedback
It can be shown that yyse.ore @aNdEyuvse.ore Can be computed with the aid of an LDU
decomposition [ADS00]:

Ul\l—/liMSE.DFEAMMSE-DFEUMMSE-DFE = Q" C;lQ + U;2| (6.29)
Ewvseore =  Unmse-oreEcumse, (6.30)

with E yuse given by (6.24)-(6.25). Th&F-DFE takes the form of (6.27) withJ e pre
computed via the LDU decompositids} Az oreUze.ore = QHQ, and WithE . pre =
UZF-DFEQil'

In practice, the hard decisions in (6.27) are not alwaysegérfwhich leads to the
phenomenon known asror propagationfOd85]. There, a decision error @fk] has the
effect of amplifying, rather than canceling, the interfere that[k] causes to the not-yet-
estimated symbol$alk’] E,; 10. While error propagation can be somewhat alleviated by
detecting symbols with higher signal-to-interferenceseaiatio (SINR) first (e.g., by V-
BLAST detection ordering [WFGV98]), error propagation igtbeavoided through tree
search or iterative soft equalization, as discussed below.

Finally, we note that hybrid trellis/DFE techniques havergroposed with complex-
ities and performances that lie between trellis and DFE odsth Two of the more well
known techniques areeduced state sequence estimatj&i@Q88] anddelayed decision
feedback estimatiofDHH89].

9The DFE described here is sometimes referred to as a “gerestalFE to distinguish it from the classical
DFE implemented using tapped delay-line forward and feedbieks [ADC95].
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Equalization based on tree search

In DFE, a single hypothesis of the sequeriafk + 1],...,alK — 1]) is used to aid the
estimation ofalk]. Tree-searc methods improve on this idea by keeping and using
several hypotheses of the sequelia+ 1],...,alK — 1]) until it is clear which is the
single best hypothesis.

Tree-search algorithms can be partitioned into optimal sutabptimal approaches.
Optimal tree searcimethods are capable of implementing MLSD with a complexigt t
is on averagemuch less than that of brute-force search [Mow94]. Though dlierage
complexity has been claimed to grow as roughigk ®) at sufficiently high SNR [HV05],

a careful analysis shows that, in fact, the average contplexioptimal tree search is
exponential inK [JOO05]. To circumvent the potentially high complexity ofaex tree
search (especially at low SNRyuboptimal tree searchhay be considered, since a very
small performance sacrifice can often lead to a huge redugticomplexity. In fact, a
well-designed suboptimal tree search can achieve nearéflopnance with near-DFE
complexity [MEDCO06]. When assessing a suboptimal tree sealgorithm, it is most
appropriate to think in terms of ifgerformance/complexity tradeoff

Before conducting a tree search, the observatjoims(6.2) must be pre-processed to
yield acausal observation modef the form

Yy = Qa+z (6.31)

whereQ is upper triangular andis some permutation @. Ignoring permutation for the
moment (so thad = a), the standard approach to upper-triangularization &)(®.QR
decompositionif Q = VqrQqgr, WhereVqg is unitary andQqgr is upper triangular, then
pre-processing according yo= VELy £ Yo yields (6.31) withQ = Qgr andz = VHzz £
Zor. Notice thatzor is statistically equivalent te. As we show below, QR pre-processing
is closely related to the feedforward filtering operatiorZif-DFE. Since the MMSE-
DFE is known to outperform the ZF-DFE in noisy environmeiithias been suggested
[DECO03] to replace the QR pre-processing step with its MM3EE equivalent, at least
for suboptimal tree search. To see this from another petispetnagine for the moment
that suboptimal tree search is conducted according to trst greedy method possible,
i.e., with a single surviving hypothesis per stage. The@Rf pre-processing is used, this
suboptimal tree search is exactly the ZF-DFE, whereas, if98MDFE pre-processing is
used, this suboptimal tree search is exactly the MMSE-DFE.

We will now provide the technical link between the QR decosifion and the ZF-
DFE, as well as the details of the MMSE-DFE pre-processomi@uing the LDU de-
compositionQ"Q = UL .. Azr preUze pre to the QR decompositio® = VorQor, it

becomes evident th@or = A;é_ZDFEUZF_DFE, from which it follows thatv 5, = QurQ 1=

A;é_ZDFEUZF_DFEQ‘l = A%_ZDFEEZF_DFE. Thus,yor = A%_ZDFE Ezrorey Can be recognized as a
scaled version of the ZF-DFE feedforward filter outfijt.orey. If we repeat the same

steps with MMSE-DFE quantities in place of ZF-DFE quangitize obtain theMMSE-

10what we call “tree search” is sometimes referred to as clostiselgpoint search, lattice decoding, sequential
decoding, or sphere decoding.
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DFE pre-processed observatippECO03]
AL2

YMMSE-DFE = VMSE-DFE EMMSE-DFEY 5 (6.32)
and the corresponding causal model
AL2

y_MMSE-DFE = MMSE_DFEUMMSE-DFEa+ ZMMSE-DFE7 (6.33)

= A 1/2
wherezywse-ore = Ymmse-ore — AM{\ASE.DFE Ummse-pre.

MMSE-DFE pre-processed tree search proceeds from thelgaosal (6.33), where
the interferenceywse.ore is treated as (signal-independent) additive white Ganswiise
(AWGN). Although it can be shown thagse.ore is white (in fact,Cz,,, .. .= = | for any
C,), it can readily be seen thajse.ore is signal-dependent (and hence non-Gaussian)
[DECO03]. Thus, treatin@yyse.ore as if it were AWGN will produce suboptim&l se-
guence estimates. However, it turns out that the increageehguantization SINR (from
the use of MMSE-DFE in place of ZF-DFE) more than compendatethe loss in op-
timality (due to non-AWGNZzyvseore). Thus, relative to QR pre-processing, MMSE-
DFE pre-processing has been observed to yield significamtowements in the perfor-
mance/complexity tradeoff of suboptimal tree search [MBBLC

Other types of pre-processing include lattice reductiog.(¢he method of Lenstra,
Lenstra, and Lovasz [LLL82]) and column permutation (erg-prdering ofa so that
stronger symbols are decided first, as in V-BLAST ordering {¥¥08]). Since these
techniques would destroy the quasi-banded structug® bbwever, we will not elaborate
on them further.

Tree search algorithms (whether optimal or suboptimalbsacategorized as breadth-
first, depth-first, or best-first [AM84, MEDCO06]. Breadthsfirsearch algorithms in-
clude, e.g., the M-algorithm [AM84], the T-algorithm [Sii®9 statistical pruning algo-
rithms [GHO3], the Wozencraft sequential decoder [WR61H #me Pohst sphere de-
coder [FP85]. Depth-first search algorithms include, dtge, Schnorr-Euchner sphere
decoder and its variants [VB99, AEVZ02, DECO03]. Best-fiestich algorithms include,
e.g., the stack and Fano algorithms [VO79, Fan63, MEDCO6kesa thorough descrip-
tion and comparison of these approaches are outside the stapis chapter, we make
only a few remarks. The Fano algorithm was recently foundiétdya superior com-
plexity/performance tradeoff whe@ was either a convolution matrix or fully populated
[MEDCO06]. The same result does not appear to hold wQeis quasi-banded, though
[HS06]. The M-algorithm is popular for two reasons: simjpjicand fixed complexity
(i.e., complexity invariant to channel/noise realizai@nd SNR).

While so far we have focused on tree-search implementatibht 8D, we now de-
scribe how tree search can be used to find (approximate)rpodté Rs, and thus MAP
symbol and bit estimates, using the method of Hochwald am@tak [Ht03]. First we
define thecoherent MAP sequence metric

Zcoh(c) £ lnf(y|ch)+|ZC (634)
= —ly-QalZ . —In(rdetCz}) +I{c. (6.35)

Uinterestingly, it has been shown tfzafse.ore can be treated as AWGN whe is constant modulus. In other
A . — 1/2
words,acvisp = argmin,e .« ||Yumse-ore fAM/MSE,DFEUMMSE,DFEaHZ for constant modulus? [HS05].
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wherele £ (Lc[0] -+ Lc[K —1])T, with L¢[K] being a-priori LLRs from (6.20), and
where the symbols are determined by the hypothesized bit veatorAs previously
remarked, the use of a-prior LLRs implies that the coded {at§]} are treated as inde-
pendent. It is straighforward to show (see Appendix 6.A} tha posterior LLR defined
in (6.19) can be written as

i Zeclj=1 8o

3 ccljjo €eon(© (6.36)

Lc\yQ [J]

Note that, in the summations of (6.36), all possibilitiecaf {0,1}K'°%!“| are consid-
ered, not only those in the codebook. (The same holds trdted equations throughout
the chapter.) This reflects our assumption that the equalaegsnotuse knowledge of the
code structure to generate posterior LLRs; code strucsierploited only by the decoder.

Computingly [j] via (6.36) would require'2°%|<“| evaluations of the MAP metric
{.on(C), and hence would be impractical. However, as suggested@8]Hhe “max-log”
approximation Iry .€°(©) ~ max,  (c) can be applied to yield

Lc|y,Q[” ~ C:rg[]j]ai(l Zcoh(c) - C:C[j]ai(OZCOh (C) (637)

Suboptimal tree search can then be used to find the set of aédibrsc € {0, 1}'('092‘“7‘
which yield non-negligible coherent MAP metri¢s,(c), as detailed in [dWO05]. Once
the posterior LLRs have been calculated, it is possible tegee hard bit estimates via
(6.21), if needed. In a turbo configuration, though, the éneiapasses the posterior LLRs
to a soft-input/soft-output decoder. After decoding, tened LLRs are passed back to
the equalizer to be used as priors, ilg.(Recall Fig. 6.1.)

Iterative soft equalization

For approximate symbol/bit MAP equalization, one can adersisingterative soft equal-
ization techniques [WP99, TKS02] as an alternative to the trellis sed-search ap-
proaches described earlier. The iterative soft equatingtchniques described here use
linear estimatiorstrategies in conjunction witkvolving beliefef the interfering bits. Af-
ter estimating a given bit, the equalizer updates its baliefut that bit to better estimate
the other bits. Once all bit beliefs (e.g., LLRs) have beedatpd, the process repeats.
The equalizer may itself iterate several times and/or it in@ge soft bit information with

a soft-input/soft-output decoder in a turbo configuration.

Below we detail the main concepts behind iterative soft égaigon for the simple
case of BPSK2 This simplification allows us to make a direct mapping betweach bit
and a corresponding symbol, eg[j] = 2b[j] —1forj=0,...,K—1, whereb[j] € {0,1}
anda[j] € & = {—1,+1}. In this case, the a-priori LLR from (6.20) can be rewrittsn a

Pr{a[j] = +1}

Lelj] Pralj] = -1}

(6.38)

12The case of non-hinary alphabets follows similar princiflesis more tedious to describe.
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Suppose that we are interested in estimatingjtheit, c[j], or equivalently thejt"
symbol,a[j]. And say that, when doing so, we have prior information onather bits,
and thus the other symbolg = (a[0] --- a[j—1] 0 a[j+1] - a[K—l])T,
that comes in the form of a-priori LLRs. To facilitate the usfdlinear operations, the
symbol estimation stage treats the elementajias independent Gaussian with means
and variances that are calculated from the respective LIiRparticular, the calculated
mean ofa[k] (for k # j) is computed viaua[K] £ ¥ ac(_113aPr{alk] = a} using the
identity

exp((a—1)LeK/2)

Pr{akl=a} = 1+ exp(—LoK) for ae{-1,+1}, (6.39)
from which it can be shown that
1—exp(—Lck])
UalK] TrexpLN) tanhL¢[K]/2). (6.40)
Similarly, the calculated variance afk| (for k # j) is computed via
vall £ —palkP+ Y @®Pr{ak =a) = 1- [k (6.41)
ac{-1+1}

The estimation o j] proceeds by writing the observation as
y = qja[j]+Qaj+z (6.42)

whereq; denotes thg'" column ofQ. For convenience, we collect the calculated means
into {1, 2 (Hal0] - Hali—-1 O pa[i+1 - Ha[K—1))" and the calculated

variances inta/; = (Va[0] -+ Va[j—1] O wva[j+1] -+ VaK— 1])T.
In the classical iterative soft equalization approach psagl by Wang and Poor [WP99],
soft interference cancellation:

Xj = y-QH (6.43)
is followed by LMMSE combining:

awwseli] = €x; with ej:argerg(]CiEE{|a[j]feij|2}. (6.44)

Writing the interference-canceled vector as
Xj = qjalj]+rj, (6.45)
with residual interference vector
rjp = Q@ —Hj)+z (6.46)
it can be seen thal,; = Qdiag{v;}Q" + C,. Withholding prior belief ora[j], so that
E{a[j]} =0and vafa|j]} = 1, the LMMSE combiner in (6.44) becomes

_ -1 _
ej = CleCXj,a[j] = (QJQTJFCrJ) q] = erlqj7 (647)

1+qtCrila;
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where the matrix inversion lemma was used to obtain the ghe of (6.47). Thus,
8 wvse[]] becomes
q§'Cr '

_ina (6.48)

é-LMMSE“]
From straightforward argument3,one can conclude that any scaled version of the
statistic
gil £ dfc i, (6.49)

including the LMMSE estimate, juse[j], is sufficient [P0094] for ME# detection of[j]
(and thus obfj]) from x;. In fact, the ML symbol decision is simply the sign of

Ll lall=+Y i) el =)
Sl = N giTa =0~ "l el =0) (6.50)
Expandingg[j] as
il = df'Cltajalj]+di'C My, (6.51)

it can be seen thag[j]|a[j] is circular Gaussian with meaaj ]|ty and variancergm,

wherepy;j = qf'C; 'qj = Ug[j]' Hence,

_ 2
exp(— |9li] - Ky |*/ o))

Lyli] = n : (6-52)
? exp(—|gli] + Hg(j| /92,
= —lolil — g |/ oG+ alil + kg |/ oGy (6.53)
= 4Re€g[j]}. (6.54)
Finally, a posterior LLR ora[j] (and hence on[j]) can be generated via
0 Prialj]=+1|g[j]} |, Prc[j]=1]d[j]} Lgljl+Le[j], (6.55)

Praj]=-11g[j]} ~  Pr{c[j]=0]g[i]}
where (6.50) and Bayes rule were used to obtain the rightafidé.55). The posterior
LLR (6.55) can then be used in placelafj] in (6.40)-(6.41) to calculate the meag| ]
and variance/y[j] for subsequent estimation €[K] }y.;.

Remarks on complexity

The coherent equalization tools described in this sectienqaite general; they apply
to anyQ, and thus any type of linear modulation/demodulation comtiwith any type
of linear channel propagation (whether the channel is ha@if or not). In fact, when

13gyfficiency can be understood as follows. After constructite interference-cancelled/whitened observation
ijl/zxj = ijl/ij alj]+ ijl/zr j, the application of the matched filt@rjl/ij, or any scaling thereof, yields

a sufficient statistic for the detection affj] [Poo94]. These two steps are combined in writing (6.49).

14Since we assume a uniform prior afi], ML detection is equivalent to MAP detection.
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structure inQ is lacking or ignored, equalization can be viewed as a fornrcBMA
multiuser detectiofiVer98, Mos96] where the code matrix (in this ca3echanges from
one bit to the next, or as a form MIMO decoding[TV05] for communication over a
flat-fading channel wittK transmit andK receive antennas. For the case of genéic
however, the cost of implementing the equalization citeises rapidly withK, the block
size. For example, we saw that linear and DFE schemes conéi(Ki operations per
block, and that more sophisticated schemes can be sigrificanre expensive. Since,
for the applications we envision, typical valueskotan be in the hundreds or thousands,
equalization is made practical only by leveraging the stn@t properties of) discussed
in Section 6.2.2. Using these properties, Sections 6.333%4-6elow describe equalization
algorithms specifically tailored to rapidly TV channels.

6.3.3 Coherent equalization for time-frequency concentrated
modulation/demodulation

Recall from Section 6.2.2 that, when sufficiently time-freqcy concentrated modula-
tion/demodulation pulses are used, the effective chana#ixQ falls into the “narrowly
guasi-banded” class. Her®, contains only negligible coefficients outside of the shaded
region in Fig. 6.2(b), for somB <« K. The main idea behind the equalization algorithms
discussed in this section is that, by ignoring these ndgégioefficients, the complexity
of equalization can be significantly reduced without a sigant loss in performance.

In this section, we will treat the interference caused byrtegligible coefficients in
Q as if it were part of the additive noisg allowing us to regard the negligible coeffi-
cients inQ as if they were zero-valued. In doing so, we will assume thainterference
radiusD has been chosen large enough so that these additionalodiuns toz are rel-
atively small (for the SNRs of interest). In particular, wéhassume that the value of
D allows us to continue treatingas statistically independent af as assumed in Sec-
tion 6.2. With suitably designed modulation/demodulatehemes like the max-SINR
schemes in [DS07], these assumptions have been shown [HRS6dje satisfied with
D = [VmaxTsK] + 1 at SNRs up to at least 10dB and with= [VyaxTsK] + 2 at SNRs
up to at least 30dB. Less time-frequency concentrated seheeguire larger values of
D, making equalization more expensive to implement for thraeséevel of residual in-
terference. For example, the interference profiles in Fig.seiggest that Strohnmer and
Beaver's scheme [SBO03] requires a radiuat least 2 higher than the max-SINR scheme
of [DS07] for the same level of residual interference.

In the remainder of this section, we provide some insigltt hdw the narrowly quasi-
banded structure @ can be leveraged to lower the complexity of the equalizatomte-
gies described in Section 6.3.2. In particular, we idertifp principal approaches to
this problem:fast serial equalizatiomndfast joint equalizationWe keep our description
brief because equalization for narrowly quasi-ban@eid related to particular forms of
equalization for OFDM, which is the topic of Chapter 7.

15For the specifiedd and SNR range, MLSD performance was found to be identicaltvenghe out-of-ban®
coefficients were treated as part of the channel or as pareafdise. We note that the variabl2™in [HS06] is
defined to have twice the value Dfin this chapter, since in [HS06] the effective channel magriseal-valued.
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Figure6.6 The local observation model used for fast serial equalization.

Fast serial equalization

Many techniques that leverage the narrowly quasi-bandedtate ofQ can be classified
asfast serial equalizatioriechniques. These techniques avoid khe K matrix oper-
ations (e.g., inversion and LDU decomposition) specifie@éetion 6.3.2 for, e.g., lin-
ear equalization (6.24)-(6.26), decision feedback egatdin (6.29)-(6.30), tree-search
based equalization (6.35), and iterative soft equalira®49). Instead, the fast serial
techniques work on thiecal observation model

Yk = Quax+z (6.56)

when estimating the symbalk] (or any coded bits representeddjy]) fork=0,...,K —

1. Hereyy = (ylk—D] - y[k+ D})T anda = (alk—2D] --- a[k+2D])T are
illustrated in Fig. 6.6, along witkQyx andz,. The principal idea behind the local model is
the following. Since dk] affects only the local observatiogge C?°+1 withiny € CX, use
only these local observations to estimaflg aWe can thus think 0y e C(20+1)x(4D+1)

as the focal effective channel matrix.” It is usually convenient to iaprent the index
kin steps of 1, so that estimation is perfornetially, i.e., one symbol at a time. And
sometimes it helps to start overlat= 0 afterk = K — 1 has been reached. Notice that,
due to the corner support regions of the quasi-bar@@dFig. 6.6, the local observation
window shifts cyclically withiny.

To our knowledge, Jeon, Chang, and Choo [JCC99] were thetdirgpply this fast
serial approach to the equalization of rapidly TV channegarticular, they proposed an
LMMSE approximation that required only(KD?) operations per block. Note that, when
D < K, their approach is much cheaper than standaiid®) LMMSE, i.e., (6.24)-(6.25).
Cai and Giannakis [CGO03] proposed LMMSE and MMSE-DFE etarsof [JCC99]
where the inversion of the2D + 1) x (2D + 1) covariance matrixCy, was accomplished
using a rank-one update. However, their schemes redqi(ik&D) operations per block,
where the quadratic dependence Krremained as a result of not fully exploiting the
quasi-banded property @. Barhumi, Leus, and Moonen [BLM04, BLMO06] proposed
generalized?(K?D?) per-tone linear equalization schemes that allowed ovegbagnin
the frequency domain.
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Hunziker and Dahlhaus [HDO3] proposed an iterative apjpnation to ML symbol de-
tection in which the likelihoods of individual symbols wegerially maximized assuming
tentative hard decisions on the other symbols. To reduce propagation, they initial-
ized using an approximation of LZF that was implementedadigrusing Gauss-Seidel
iterations. Schniter and Das [Sch04, DS07] proposed iterabft equalization based on
the local observation model (6.56), requiring oK D3) operations per block itera-
tion. As discussed in Section 6.3.2, a well-designed itegaoft equalizer is effective at
preventing error propagation and can be used in a turbo aoafign, as in [DS07]. A
similar iterative soft equalization scheme was proposet lay Peng and Ryan [PRO6].

Fast joint equalization

Fast joint equalizatiortechniques have also been proposed for the coherent eaualiz
tion of narrowly quasi-banded versions @f that result when time-frequency concen-
trated modulation/demodulation is used with rapidly TV mhels. As opposed to serial
equalization schemes, which estimate the symboksadne-at-a-time, joint equalization
schemes estimate tiesymbols ina jointly.

Early joint techniques assumed not only tl@atis narrowly quasi-banded, but also
that the off-diagonal coefficients within the support regad Q are themselves relatively
small. For example, iterative LZF approximation techngjtieat requires’(KD) oper-
ations per block iteration where proposed by Toeltsch andisglo [TMO1] and Guil-
laud and Slock [GS03]. Gorokhov and Linnartz [GL04] propbg&KD) approximate
LMMSE and DFE-like schemes using a first-order Taylor seajgroximation of the
K x K LMMSE matrix inverse. Tomasin, Gorokhov, Yang, and LinagfGYLO5]
extended the techniques in [GLO4] to incorporate iteratiaed interference cancella-
tion. Hou and Chen [HCO05] proposed @{KD?) nonlinear estimator of the for =
Erry — Erg 2.7 (Erry), WhereEge and Epg are both narrowly banded. Note that, in
[HCO5], quantization is performed on the linear estim&gsy rather than (causally) on
the final estimate§, as in DFE (6.27).

More recently, Rugini, Banelli and Leus propos€@KD?) exact LMMSE [RBLO5]
and MMSE-DFE [RBL06] schemes for narrowly bande@ based on fast LDU de-
composition. Furthermore, they showed how to design a vecavindow to ensure
that the noise covariandg; is quasi-banded, making the observation covaridbge-
02Q"Q + C, banded as well. These non-approximate LMMSE and MMSE-DRElkeq
izers are expected to outperform their approximate copatés. (See Chapter 7 for more
details.)

Joint MLSD-based schemes exploiting the quasi-bandedtsteiofQ have also been
proposed. For example, Matheus and Kammeyer [MK97] aptied/iterbi algorithm to
implement exact MLSD on D + 1)-bandedQ with complexity &(KD|.«7|?P*1). The
same idea was re-invented in later works, e.g., [SAMTO5}.tfoical values of.<7| and
D, however, the complexity of Viterbi equalization can beeysdof-magnitude higher
than that of MMSE-DFE. Thus, Hwang and Schniter [HSO06] itigaged tree-search ap-
proaches to approximate MLSD. Their techniques use fast BNAGE pre-processing,

18with minor modifications, the fast LDU decomposition that RugBanelli, and Leus developed for banded
matrices (i.e., those matching Fig. 6.5(b)) can be extendeguiési-banded matrices (i.e., those matching
Fig. 6.5(a)) [HS06].
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costing(KD?) operations, followed by a tree-search that employs a fagiiengdate
and is tuned to the V-shaped structure of the upper triangodarix A;ﬁSE_DFEUMMSE_DFE
in the causal model (6.33). (Recall the V-shaped illugtraiin Fig. 6.5(c).) The resulting
scheme has approximately the same complexity as the fastBADFE from [RBLO6],
yet results in performance that is almost indistinguisbdi@m MLSD.

MAP schemes exploiting the quasi-banded structur® dfave also been proposed.
For (2D + 1)-bandedQ, e.g., Liu and Fitz [LFO7] used reduced-state sequencmasti
tion [EQ88] to compute approximate soft bit estimates wHileang and Schniter [HS09]
applied tree-search (with a fast metric update). Finakjna the technique of Tichler,
Koetter, and Singer [TKSO02], it is straightforward to trkate any set of LMMSE esti-
mates into soft bit estimates. Leveraging this idea, Fadd eus [FRLO8] turned the fast
joint LMMSE estimation scheme of [RBLO5] into a soft bit estition scheme.

Other approaches to equalization for time-frequency concentrated schemes

For completeness, we mention two other schemes proposéuefequalization of chan-
nels yielding a narrowly quasi-band@d The paper by Choi, \Voltz, and Cassara [CVCO01]
was among the first to consider equalization for multicamedulation over doubly se-
lective (i.e., time- and frequency-selective) channetg i proposed ZF, LMMSE, and
ZF-DFE schemes for doing so. However, these schemes codsfite’) operations per
block because the narrowly quasi-banded structuf@ whs not leveraged. For the same
application, Stamoulis, Diggavi, and Al-Dhahir [SDADO2pposed arv’(K?) LMMSE
approximation where the matrix to be inverted during eadclbinterval is replaced by
its time average. As we have seen, however, near-optimehses can be designed with
complexities that arénear in K.

6.3.4 Coherent equalization for single-carrier modulation/demodulation

Recall from Section 6.2.2 that, when single-carrier motioféddemodulation is used,
the effective channel matri® falls into the “widely quasi-banded” class. Hef@,has
only negligible coefficients outside the shaded region i Bi2(a), whereM denotes
the discrete channel delay spread. Since, in this d@de,quasi-banded, the equaliza-
tion techniques described in Section 6.3.3 Taprinciple be applied here as well (e.g.,
[ASLCO06]). However, this approach will only be practical @hM is small. SinceM

is often large (e.g., in the hundreds), there is good reasstutly equalization schemes
whose complexities are robust to large

Frequency-domain equalization

Frequency-domain equalizatidifrDE) [FABSEOQ2] is one approach to make the equal-
ization complexity of single-carrier schemes reasonalitervM is large. To describe
FDE, we focus on the case of CP-SCM modulation/demodulaiseuming adequate
guard length (i.e.Ng > M — 1) and white noise (i.eC, = 021k). The first step of FDE

is transformation of the observatiogsto the frequency domain. Denoting thex K
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unitary discrete Fourier transform (DFT) matrix By and using under-bars to identify
frequency-domain vectors (e.g.= Wy, a= Wa, andz £ Wz), it follows from (6.2) that

y = Qa+z (6.57)

whereQ = WQWH and wherez also has covariancezzl k- The second step of FDE is
estimation ofa fromy. While the elements ad belong to a finite alphabet, the elements
of a do not, and hence the estimator must be linear. One optioMMS&E estimation,

e, 8 uwse = (Q"Q + g—zzl K)*lng. The third and final step of FDE is transformation

of & back to the time domain, yielding the symbol estima€s WHAa. If the DFTs are
implemented using radix-2 FFTs, they will consume ofil§K log, K) operations.

With a time-invariant channel, the use of CP-SCM maResirculant (recalling Sec-
tion 6.2.2) and henc® diagonal. In this case, the LMMSE estimation step consumes
only 0(K) operations (because the matrix to invert is diagonal), ab& Eonsumes
0 (Klog,K) operations in total. Note that, for largd, FDE would be significantly
cheaper than LMMSE estimation affrom y via fast LDU [RBLO5] (as discussed in
Section 6.3.3), which consumey KM?) operations, where typicaliyl ~ K /4.

With a TV channelQ will not be circulant, and thu® will not be diagonal. In this
case, the off-diagonal terms @ will be non-zero, complicating the estimationafrom
y. In fact, the interference &)wer profile @ with CP-SCM is identical to that of
with CP-OFDM, which (as shown in Fig. 6.4) decays quite sjowith distance from the
diagonal. However, through the application of time-domaindowing!’ at the demodu-
lator [SLO3], it is possible to giv® the narrowly quasi-banded support of Fig. 6.2(b), in
which case any of the fadinear equalization techniques described in Section 6.3.3 can
be used to estimagefromy. For example, in [TLO8], Tang and Leus proposed a method
to equalize a single carrier system using the OFDM fast LMNi&fBnique [RBLO5].

Becausea does not have a finite-alphabet structure, the trellis, Difigl, tree-search
based techniques discussed in Section 6.3.3 are not giggtlicable to the estimation
of a. Iterative soft equalization, however, is applicable. \We/rsummarize the approach
proposed by Schniter and Liu in [SLO3]. First, the fast dat@ative soft equalization
technigue of [Sch04] is used to compute the LMMSE interfeeescanceled estimate
from the frequency-domain windowed observatigigiven current estimates of the time-
domain symbol means and variances). Next, the estindades transformed to the time
domain viad = WH4, from which posterior LLRs are calculated for each of thes bit
c[j]. The posterior LLR computation is more complicated tha®45(6.55), though,
due to the correlation that results from the time-frequetnapsformation. Finally, the
posterior LLRs are used as priors in the next iteration, tiiegins by re-calculating
the time-domain symbol means and variances. In [SL0O3], tealgsrithm for the entire
procedure was derived that consumes ofilfp?K logK) operations per block iteration.
Ng and Falconer [NF04] later extended the technique of [$t@&clude widely linear
estimation (though they neglected the receiver windowteg)s

Though the windowed FDE method above focuses on CP-SCMlasiteichniques
can be applied to ZP-SCM under appropriate processing afetteived guard samples.

"with time-domain windowingy = WAy andQ = WAQWH" for suitably chosen diagonal.
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For single-carrier modulatiowithout a prefix, the use ofBl-cancellation and cyclic-
prefix reconstructiofKS98] enables the application of the CP-SCM-based windbowe
FDE methods discussed above, as demonstrated by Schrdtemeim [SLO4].

Other approaches to equalization for single-carrier schemes

Barhumi, Leus, and Moonen [BLMO5] proposed a CP-SCM eqattin technique based

on LTV filters whose time-variations were constrained toyoadpossibly oversampled)
complex-exponential basis expansion model of otdefl.. Under these constraints, LZF
and LMMSE equalizers, requiring(KI13M?3) operations per block, were designed. How-
ever, due to the cubic complexity M, these schemes are much more expensive than
frequency-domain equalization whhis large.

6.4 Noncoherent equalization

In Section 6.3 we discussed the coherent approach to egtiatizi.e., estimation ch
fromy in (6.2), where the channkl, and hence the effective chani@lwas assumed to
be known. Here we discus®ncoherent equalizationvhere the channel realizatibhis
unknown but its statistics may be known.

In Section 6.4.1, we rewrite the system model in a form thamhdge convenient for
noncoherent equalization. Then, in Sections 6.4.2 an@®,6wle describe criteria and
algorithms for noncoherent equalization, respectivelinaly, in Sections 6.4.4-6.4.5,
we describe specific strategies suitable for the noncohegmlization of rapidly TV
channels.

6.4.1 Noncoherent system model

Since the effective chann@l is now unknown, it helps to re-formulate the system model
developed in Section 6.2 into a more convenient form. Inipaer, we rewrite (6.2)
using an efficient parameterization for the entries of thérisd& Q. To do this, we build
a basis expansion mod@EM) for the trajectories of the effective channel coeéfitis
that make um, and then we write the observation in terms of these BEM aeffts.

From (6.2), we can see that

K-1 |—K+1
ylil] = kZO[Q]Lka[k]Jrz[I] = d; [Qli—qal —d] +2]I] (6.58)
. :fqu,d}au—dwzm (659
=0

18\e choose to parameterize the entrieQafther than those df to avoid explicitly defining the modulation
and demodulation operations.
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for qfl,d] £ [Q]; 4_q), @and where the index [ ] in (6.59), and henceforth, is taken
moduloK. Here,(j)x denotes § moduloK.” Notice that (6.59) expresses the relationship
between{a]l]} and {y[l]} in exactly the same way as (6.1) expressed the relationship
between{s[n]} and{r[n|}: using a TV convolution. In fact, when the modulation and
demodulation operations are trivial, as in single-carmedulation, we havey|l,d] =
hll,d]. Due to the support o), as described in Section 6.2.2, the summation range
in (6.59) can be truncated the {-D,...,D} for narrowly quasi-bande@ and tod €
{0,...,M — 1} for widely quasi-bande®. In this section, we will assume the general
case that € {0,...,Nq— 1}, so that the widely quasi-banded case follows directly from
Ng = M and the narrowly quasi-banded case follows frilgn= 2D + 1 after cyclically
left-shifting the columns o by D places. (Recall Fig. 6.2.)

While BEMs are usually applied to the channel impulse resptragectoriegh[n, m| ,’;‘;01
(e.g., [TG96]), here we apply a BEM to tledfectivechannel impulse response trajectory,
which includes the effects of modulation/demodulation pémticular, we model thd"
trajectory{q[l,d]}{*;* using the BEM coefficient§6]i,d]}| 5 and basis waveforms con-
structed from{ 8]l,i]}, as follows:

-1
ql,d = ;B[I,i]e[i,d] forl =0,..., K-1. (6.60)
i=
If one prefers not to use a BEM, then tiiwial BEM, specified by =K andg]l,i] = 9|l —
i|, whered|-] denotes the Kronecker delta, guarantgfisd] = q[l,d] VI,d. Using8q =
(6[0,d] - Bl—1,d))" €C andB, £ (B[I,0] -~ BlI,1-1)" €', we have
ql,d] = BFOd and hence equation (6.59) can be rewritten in terms of BEMfifies as
Ng—1
yil = Bf dz a[l —d]6g+7]. (6.61)
=0

Collecting the demodulator outpufg(l]}¥_, in a vector, (6.61) implies

y[O] a0y - a—Ng+1B§ 0o Z[0]
: = : : ; +1 : |, (6.62)
yIK akiBy - ak—Ng+1BF/) \On-1)  \2K
N—— —_————  ——
£ Yk 2 Aak 20 2 Z

summarized by

Yk = Ngy0+2z (6.63)
The matrixA,_ is constructed from the partial symbol vecay= (a[0] - a[k])T
and the BEM waveform§p, }}‘:0. Notice thatax 1 = &, Yyk_1 =Y, andzx_1 = z for the
previously defined vectors y, andz. Notice also that, in (6.63), the channel realization
is represented by the BEM coefficient vecéhr
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Throughout this section, we assume (for simplicity) tha siymbol block is zero-
prefixed, i.e.all] =0 for | € {—Ng+1,...,0}. Note that, due to the cyclic indexing
assumption ora[-|, this implies tha@[l] = 0 for | € {K —Ng+1,...,K —1}. With this
assumption, (6.61) yields a causal relationship betweesymbols and the demodulator
outputs, i.e.{y[l]}i<k depends only ofal] } <.

We also assume that the channd®&yleigh fadingi.e., that the impulse response coef-
ficients are zero-meahGaussian distributed. Due to the linearity of modulatieniddulation
and basis expansion modeling, this implies that the BEMfeits @ will also be zero-
mean Gaussian. All other model assumptions stated in $egtapply here as well.

6.4.2 Noncoherent equalization criteria

In this section, we review several well-known noncoherentadization criteria. As in
our previous discussion of coherent criteria, we partittom discussion into criteria that
apply to hard symbol estimates, complex-field symbol essiaand soft bit estimates.

Before continuing, though, we discuss the imporambiguityphenomenon that can
arise in noncoherent equalization. For exampl€aifc 7K for somea € o7X and some
C # 1, then it is impossible to distinguish, from the outgutbetween the hypotheses
(a,0) and(Ca,C~10). Notice thatC accounts for both phase and/or gain ambiguity. To
prevent ambiguity, one could, e.g., use an asymmetricisagdhabete or treat a single
symbol (e.g.a[0]) as a known pilot, so that the set of candidate symbol vettecomes
asymmetric [Har00]. In stating the criteria below, we assuhat the ambiguity issue has
been taken care of.

Hard symbol estimates
Similar to coherent equalization, the minimal probabitfysequence error is guaranteed
by noncoherent maximum a posteriori sequence dete¢htkPSD):

Bvapsp = arg maxP{a=a' |y}. (6.64)
deak

Note that the noncoherent posterior in (6.64) is not coon@d on the effective channel
matrix Q, as was the coherent posterior in (6.9). Similarly, noncefmeMAP symbol and
bit detection are defined as

doar[k = arg m?Pr{a[k] =aly} forkeO,...,K—1 (6.65)
ac

CGevar[j]] = arg r?oaﬁ Pr{c[j]=c |y} forje€O,...,Klog,|«|—1. (6.66)
cc{0,

If the equalizer assumes thatis uniformly distributed overzX, then noncoherent
MAPSD reduces tmoncoherent maximum likelihood sequence dete¢htirSD):

Aomsy = argag?}z(f(y|a). (6.67)

1950me details of the non-zero case can be found in [RC96].
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(The justification is similar to (6.13).) Due to the Raylefiglding assumptionf (y | a) is
a Gaussian distribution with zero mean and covariance

Cya = Cz+ACeAl. (6.68)

Given this conditional distribution foy, (6.67) reduces to

A _ ; Hr-1
Bwiso = arg min {y Cy‘ay+ln(nK det{Cy‘a})}. (6.69)

There is an interesting connection between the noncoh®ARSD/MLSD criteria
and MMSE channel estimation [Kai69, HM89]. To see this, wstfwrite the MMSE
estimate of@ from y under the sequence hypothesias

eMMSE|a £ E{G|Yaa} = Ce,y|aC;‘;y (6-70)
—  CoAY (C,+ACoA) Ty (6.71)
= (Cot+AYC A AN CL Yy, (6.72)

where the matrix inversion lemma was used to obtain (6.72)Adpendix 6.B, we use
(6.72) to show that (6.69) can be rewritten as

8ncmLsD = argag‘mi{g{ Hy - AaéMMSE\aHégl + ] éMMSE\aH(z:;l + In(TlK det{cyla})}- (6.73)

Equation (6.73) states that the noncoherent MLSD metricoeawritten as the coherent
MLSD metric based on thenplicit channel estimatOMMSE|a, plus a term that penalizes
the deviation inéMMSE|a from the prior statistics o, plus what is sometimes referred
to as a “bias” term. Thus, while the noncoherent MLSD/MAP Siineates can be found
without computing a channel estimate (as in (6.69)), thay alao be found via joint
channel/symbol estimation (as in (6.73)).

If the channel statistics (i.eGg) are unknown, then the noncoherent ML and MAP
criteria do not apply. In this case, it may be more approeriatemploy theyeneralized
likelihood ratio tes{GLRT) criterion [WMO2]:

Boirr = argmaxmax f(y|a,@). (6.74)

acaK BeCNd
Since Inf(y | a,0) = —Hy—AaBH%_1 —In(r€ de{C,}), the GLRT sequence estimate
can be expressed as

Bor = arg min|ly — AaBuyjal|Z 1, (6.75)
ac.7K z

whereéML‘a £ arg max_Nq (Y | @ 8) denotes the-conditional maximum likelihood
(ML) channel estimate, i.e.,

Buja = arg min |y—AabZ . (6.76)
BG(Cqu z

= (Afc; L) A C Y. (6.77)
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Combining (6.77) and (6.75), the GLRT sequence estimaterbes
for = arg maxy"'C; "Aa(ALC; Aa) TALC; Y. (6.78)
ac.

Notice that, when the noise is Whitéwa in (6.77) reduces to the conditionkdast-
squareg(LS) channel estimated, . = (ASAa) *Ally.
Finally, we note that the GLRT metric in (6.78) equals theitiing case of thg/" C;‘él‘y

component of the noncoherent MLSD metric in (6.69) wkign= Ggl andag — 00, i.e.,
when the signal is white and the noise power is negligiblatied to the signal power.

Complex-field symbol estimates
Thenoncoherent minimum mean-squared eli@MSE) criterion specifies the complex-
valued sequence estimate

Boowmse = arg minE{[la—a||* | y}. (6.79)
aeCK

Note that, unlike the coherent case (6.15), the expectati¢®79) is not conditioned on
the channe. Writing the MMSE estimate as the conditional mean [Poo94] find

domse = Efaly} = Z ap(aly) (6.80)
ac.aK
_ f(y|a)p(a) (6.81)

acaK Sacax fyl|a@)p@)
- p(@)[f(y|a6)f(8)d6
- aeé‘Ka Yacax @) [f(y|a,6)f(68)d6 (6.82)

If we assume thap(a) is uniformly distributed over7X, then

Dacak @ feXp( - \|Y—/\a9||(2:;1 - HeHéal)de

Sacor ) exp(—y—AxB]Z ]2 ,)d8
z e

Note that the finite-alphabet nature @fmakes the conditional mean difficult to com-
pute, since it requires the evaluation of |X-term summations. Unlike the coherent case,
imposing constraints (e.g., linear) on the noncoherent MStimator does not signifi-
cantly simplify its design, and so this approach is not verguar.

(6.83)

AncMMSE

Soft bit estimates
In soft noncoherent equalization (as used in, e.g., turb@legption), the equalizer com-
putes posterior LLR¥ for the coded bitg]j]

Leyli] 2 i PRI =21y} g j=0,... Klog,|o/| -1,  (6.84)

Pr{clj] =0]y}

. T
20under the “fixed lag” constraint, the conditioning in (6.84performed 0r(y[0] YUWW +J}>
instead ofy [ZFG97], where the look-ahead intenval> O trades off between performance and complexity.
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given the a-priori LLRs defined in (6.20). Note that the poeteprobabilities in (6.84)
are not conditioned on the channel, unlike the coherent(@%8). If needed, the nonco-
herent MAP bit estimates can be generated from the nonaatheosterior LLRS via

Gomeli] = 3(1+Sign(Layi))- (6.85)

6.4.3 Noncoherent equalization tools

The noncoherent MLSD, MAPSD, MAP, and MMSE estimates, aimadt in Section 6.4.2,
require the evaluation a?(|.<7|X) metrics if computed via brute force, which is not practi-
cal for the anticipated values &f. In this section, we review algorithms that are designed
for practical noncoherent equalization.

The suboptimality of trellis-based noncoherent equalization
Among the optimal coherent MAPSD, MLSD, and symbol/bit MAIBaaithms in Sec-
tion 6.3.2 were trellis-based methods. We now investigatetier similar approaches
exist for optimal noncoherent equalization. In doing so,use the caus& model sum-
marized by (6.63). To simplify the notation, we assume BP&Kwing us to make a
direct mapping between each bit and symbol, eg],= 2b[j]— 1 for j =0,...,K -1,
wherea[j] € &/ = {—1,+1}. Finally, we allow prior beliefs on the bits (and thus sym-
bols) in the form of a-priori LLRY{L¢[K|}£ ", defined in (6.20) and simplified for BPSK
symbols in (6.38).

Analogous to the coherent MAP sequence metric (6.34), wededime anoncoherent
MAP sequence metricln particular, we define partial noncoherent MAP sequence

metric that depends on the partial observatyrirom (6.63) and the partial bit vector

&2 (co - k)"

Zno(C) = Inf(y| o)+ (6.86)

Here,lx = (Lc[0] - Lc[k])T is a partial version of the a-priori LLR vectty defined
just after (6.35). Notice that the complete noncoherent M&Buence metri¢,.(c) is
obtained wherk = K — 1. If we are interested in noncoherent MLSD rather than non-
coherent MAPSD, then we would ugg.(c) with Ic = 0, and if we are interested in the
GLRT criterion, then would additionally assume ti@ = 0§l with g3 — .

Under the Rayleigh fading assumptiof(yk | ck) is Gaussian with zero mean and
covarianceCy, o, = C, +AakCQAg'k, whereay denotes the BPSK symbol vector corre-
sponding to the bit vectagi. Thus, we have

Gelo) = —YRC, L yk—In(m" det{Cy q }) + ke, (6.87)

2INote that this causal model is different from the one used fefE ih Section 6.3.2. For DFfB,was estimated
backwardgrom the last symbol, whereas hexés estimatedorwardsfrom the first symbol.
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which reduces to the noncoherent MLSD metric in (6.69) wihea 0. Using the matrix
inversion lemma, (6.87) can be rewritten as

Zo(t) = —YRCIALILINL CLly—In(m det{Cy, o }) +kCc  (6.88)

with X, £ Cgt +A';kC;k1Aak. From (6.63), it follows that the partial observation can be

decomposed as
o (Yk1) Aak1> 0 <Zk1)
= = + ; 6.89
Y (y{k}) < AR 2K (6.89)
where)«gk is the last row ofA; . When the noise is white (i.eC,, = azzlkﬂ), it can

then be shown that (6.88) and (6.89) can be combined to Wrggenbncoherent metric
recursively

Goc(C) = nc(Ck—1) + Lc[KC[K] +1Inng, (6.90)
) <AAaky[k1 )” 0;°Tyt oMyl Aadg (AAaky[k} )
Buwiselay | —NaAaAg Tl —Na0fAalg Bumiselay

In (6.90),Na, = (02 +’\:kz§kl,1’\ak)71 andByyseja, , denotes the MMSE estimate 6f
from yy_1 under the sequence hypothesjs;.

From (6.90) we can make a two important observations. Rirst<now that a trellis-
based implementation exists only if the metric update dépem afixed number of past
symbols. WhileA ,, depends only on the paist; symbols{alk, ... ,alk — Ng+ 1]}, the
terms):;k1 and éMMSEWl depend, in general, on the full sequemgeimplying that opti-
mal noncoherent MAPSD/MLSD/GLRT cannot be implemented lnelis-based tech-
nigue. Second, when the BEM coefficient trajectories ({.Q[i,,d]}};& for eachd) satisfy
an ordeN,z Gauss-Markov model and the trellis Hag|Na M= states, the Kalman filter
can be used to recursively compute the MMSE channel estif\@fg: |5, , and its error

covarianceZ;kfl, conditioned on the symboé_; that define each surviving path. Thus,
while a trellis can facilitate the computation of the exaattial sequence metric, it cannot
guarantee optimal pruning. The literature is not alwayarcédout these points, however.
For example, Chugg [Chu98] points out that some seminal &ea-cited works (e.g.,
[MS79, DS94]) seem to claim that noncoherent MLSD can beémginted with a trellis,
and shows precisely why this cannot be the case.

Not surprisingly, trellis-based implementations of thexcoherent MAP symbol and
bit criteria (6.65)-(6.66) are also suboptimal. With theward-backward algorithr#?
there is no concept of surviving paths, and channel staterirdtion is required for each
state of the trellis. When the channel is unknown, the treie be expanded so that
a channel estimate can be calculated at each state, afteh wie forward-backward
algorithm can again be applied, though not optimally: théquenance (and complexity)
depends on the amount of trellis expansion [GL97, DCHO1,{RAC00].

22For fixed-lag MAP symbol estimates, the situation is a bit diffe since the forward-backward algorithm
does not apply. There the posterior symbol probabilitiesheacalculated recursively (assuming Gauss-Markov
BEM trajectories), but they require averaging over all fldegpast-symbol sequences and thus cannot be folded
into a trellis [ZFG97].
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Noncoherent equalization via per-survivor processing
While trellis-based noncoherent equalization is subogtimérellis can be used fap-
proximatenoncoherent MAPSD/MLSD/GLRT and MAP symbol and bit estiiomat

Of the many practical suboptimal trellis-based schemesttage been proposed, a
good number can be classified per-survivor processingPSP) [RPT95]. There, the
idea is to compute (at stadeof the trellis) a separate channel estimétg for each
surviving path extensiogy, and then evaluate a partial metric corresponding to the pai
(ak, B4,). Only the surviving path extensions leading to the besticgetre retained as
survivors, after which the process repeats at the next sthgee trellis. As discussed
above, an|.7|NatNar-state trellis facilitates recursive MMSE estimation otlerN,g
Gauss-Markov BEM trajectories via Kalman filtering, andghrecursive computation
of MAPSD and MLSD partial metrics (recalling (6.73)). Thder that channel class,
the Viterbi algorithm with per-survivor Kalman filteringg@rides near-optimal noncoher-
ent MAPSD/MLSD. This idea seems to have been first proposédiitiey and Snyder
[MS79] using continuous-time filtering. Lodge and Moher [B®] considered discrete-
time filters and realized that, if the observations are fifsit@ned (which requires only a
bank of LTl filters), then the metric calculation simplifiesd way that eliminates the need
for Kalman filtering. This latter approach is known as thentmations” approach. Simi-
lar ideas can be applied to fixed-lag MAP symbol/bit estioraprocessing, as proposed
by lltis, Shynk, and Giridhar [ISG94].

Because the complexity of these trellis-based PSP methaigsgexponentially in
Ng + Nar, however, PSP methods based on more general tree-searapés more prac-
tical for near-optimal noncoherent detection, especialligh SNR, where sphere de-
coders can find the optimal solution without visiting manyles. In fact, the proposal
of noncoherent tree-search can already be found in earliksyerg., Dai and Shwedyk
[DS94]. Notice that, with appropriate definition of the nmietthe tree-search methods dis-
cussed in Section 6.3.2—in the context of coherent equiadizatapply here too, except
that the pre-processing used there now becomes unnecéssayse the model (6.63)
is already causal. A further advantage of tree-search tsttdaes not require BEM co-
efficients to satisfy a Gauss-Markov property, which can $e&ful in, e.g., multi-carrier
applications. In any case, the key to a computationallyiefiitree-search is minimizing
both the number of nodes visited and the complexity peredsitode. In regards to the
latter, Hwang and Schniter [HS07b] have shown that the @mBMMSHaH and Z;kl
can be updated recursively (for the generic modulationftiration and BEM setup of
(6.63)), yielding anZ’(N&12) update to the noncoherent metric (6.90).

Iterative noncoherent equalization via the EM algorithm

The expectation-maximizatio(EM) algorithm [DLR77] is a well known approach for
ML estimation in the presence of “missing data."ylfs the observationx is the vector

to be estimated, and is the “missing data,” then the EM algorithm attempts to find
v = argmax f(y | x) = argmax/In f(y | x) iteratively using the following recursiéh

23)f the missing datai was discrete, integration in (6.91) would be replaced by suioma
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(wherei denotes the iteration index):
Y = arg max/ f(u | Y, X" In f(y,u | x)du. (6.91)

In Appendix 6.C, we show that (6.91) arises from the goal okimally increasing the
likelihood at each iteration. So callegeneralized EMalgorithms, which increase but
do not necessarily maximally increase the likelihood atheigeration, have also been
proposed (e.g., [FH94]). The EM recursion is sometimesrosghas having two separate
steps: an “E step” which computes the conditional expemtdtie., the integral) in (6.91),
and an “M step” which performs the maximization in (6.91). Bayesian EM(EMB)
algorithm, with the goal to finéuap = max, f (X | y), follows by direct extension. Using
Bayes rule and disregarding irrelevant terms, we can &yjtg = arg max (In fy|x)+

In f(x)) and attempt to finduae Using the recursion

g — argn;n(ax{/f(u|y,>“<(‘>)lnf(y,u|x)du+|nf(x)}. (6.92)

One can immediately think of two ways that the EM(B) algarithcould be applied to
noncoherent equalization: i) the coded bits could be estidmanhile treating the channel
as missing (i.e., “info EM(B)”) [GH97], or ii) the channel aldl be estimated, while
treating the data as missing, and later used for cohereneseq detection (i.e., “channel
EM(B)”) [KV94, AHFF97, CT01, CV01, YR03, NP03, NLO5]. EM(Bilgorithms that
treat both channel and data values as parameters to be testinzae also been proposed,
e.g., [ZIP99].

We now describe thehannel EM(B)algorithm for noncoherent equalization. (See
Appendix 6.D for a discussion of the less practicdb EM(B) algorithm.) For this, we
use the mode} = A,0 +z from (6.63), where we once again find it convenient to assume
BPSK in order to ensure a one-to-one correspondence besyedrolsa and bitsc. For
noncoherent equalizatio), is the vector to estimate ardis the missing data, so that
(from (6.92)) channel EMB' performs the recursion

8"y — arg rr]ax{ z p(cly, é(i)) Inf(y,c|8)+In f(é)}. (6.93)
ce{0,1}K

Using the property Iffi(y,c| 8) =In f(y | ¢,0)+In f(c) in conjunction with the Rayleigh

fading and Gaussian noise assumptions, (6.93) reduces to

argmin{ S p(cyﬁ(”)y—Aa9||2_1+9HC919} (6.94)
ce{0,1}K z

é(i+1)

-1

- A0 _ A _

(Cel+ S pcly,8)ALC, 1Aa> S plcly,8)AICty. (6.95)
ce{0,1}K ce{0,1}K

Above,a denotes the symbol vector corresponding to the bit vextbrom (6.95), chan-

nel EM(B) can be interpreted as performiitgrative soft decision-directed channel esti-

mation using soft decisions computed from the previous chanrghate. In fact, with

24Channel EM would yield (6.93) without the fr(@) term and hence (6.94)-(6.97) Withouttﬁg1 term. This
relationship is reminiscent of that between GLRT and ncMLSD.
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constant modulus (CMy7 and white noise, the summed terms in (6.95) can be rewritten
using the tanf) operator, reminiscent of (6.40). Soft decision-directbdrmel esti-
mation can be contrasted with per-survivor channel estimats used in nhoncoherent
MAPSD/MLSD and GLRT, in that soft decision-directed chadnestimation generates

a single channel estimate after “averaging” the soft bit estimatdsereas per-survivor
channel estimation generatasiltiple channel estimates, one for each hypothesized bit
sequence. lterative soft decision-directed channel esiim has also been considered
outside of the EM(B) context in, e.g., [BC98, OT04, SSS04 .68 LF08].

The posterior bit probabilitie$p(c | y,G('))}ce{Ql}K required for (6.95) can be ob-
tained in various ways. For the case of BEM trajectories #adisfy a Gauss-Markov
model, the forward-backward algorithm can be employed [KV® different approach
was proposed in [HS09] that allows the use of a-priori LLRd amore general BEM
statistics. We now briefly describe this approach. Writing

pc|y,8")

f(y|c.8")p(c) efeon(c8")
A0 - PR (6.96)
ZC’E{O,l}K f(y | Clv 6 )p(d) ZC’E{O,l}K efcon(c;0°7)

where we have used the coherent MAP sequence ndgiic; é(i)) =Inf(y|c, 9“)) +1lc

from (6.34) with theé(i)-dependence explicitly noted, the EM recursion (6.95) can b
restated as

-1
N "0 N0
8" = ( Y eon(@@)(Cot+AY c;lAa)> S en@@IANC, Yy, (6.97)
ce{0,1}K ce{0,1}K

Equation (6.97) suggests iterating a soft decision-déechannel estimator, with input

{Zcoh(c;e(l))}ce{oﬁl}K and outputd" ™, and a soft-input/soft-output coherent equalizer,
with input 8"’ and output{ Zeen (c; é('))}ce{oﬁl}K. Together, the pair forms a soft-input/soft-
outputnoncoherent equalizer, which could be iterated with a softirgoft-output de-

coder for turbo reception.

When the channel is frequency-nonselective, the noise iewdmd the BEM is trivial,
Inf(y | c,8")=c— % 5Kty - clkB[k,0]|%, so that the ¥ term summations in
(6.97) decouple int&K vleinary summations [CVO01], greatly simplifying the evaioat
of (6.97). In the general case, th&-ferm summations do not decouple, but not &I 2
metrics{con(C; é(l))}ce{oyl}K need to be calculated, because very few of them yield non-

X0 . . _ .
negligible e%con(©€) The dominant posterior probabilities can be found withtmat
much effort using, e.g., M-algorithm tree-search [HS08] d&scussed for the coherent
case in Section 6.3.2.

Other noncoherent equalization schemes

Other approaches to noncoherent equalization exist as ka@llexample, Anastasopou-
los et al. [ACC 07, MAKAOQ7] applied message passing algorithms to MLSD ansPiv
symbol detection over time-selective flat-fading channg&lsey have shown that, under
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certain conditions, MLSD complexity scales@gk?@"KCe}). Due to space limitations,
these techniques will not be discussed here. One can alginienad hoc combination of
decoupled (coherent) equalization and channel estimairamples will be provided in
the sequel.

6.4.4 Noncoherent equalization for single-carrier
modulation/demodulation

When single-carrier modulation/demodulation is used, tifectve channel coincides
with the propagation channel (i.@jl,d] = h[l,d] VI,d andNg = M), whose trajectories
{h[n,m}N-1 (for eachm e {0,...,M — 1}) are well described by a Gauss-Markov model
of suitable ordeN,z. Thus, when the trivial BEM is employed to write (6.2), sottha
6[i,d] = q[i,d] Vi,d, the BEM trajectories themselves are well described by as&au
Markov model of ordeN,x. In this case, and assuming the naisewhite, anj.o7|M Nar-
state trellis can be used to implement near-optimal norreolh&APSD/MLSD, as well
as near-optimal MAP symbol and bit detection, as describe8ection 6.4.3. In fact,
these ideas dominated much of the early literature on nareohequalization of rapidly
TV channels.

Near-optimal trellis-PSP equalization for single-carrier schemes

As mentioned earlier, Lodge and Moher [LM90] were one of thst fpapers to pro-
pose a near-optimal trellis-based implementation of nbagent MLSD. In particular,
they proposed to use the Viterbi algorithm with per-branokdr prediction for MLSD
of CM signals with ARMA time-selective channels. Soon aftkis [I1t92] proposed to
use the Viterbi algorithm in conjunction with an extendedrian filter for per-survivor
joint estimation of symbol timing offset and an AR doublyeslve channel. Dai and
Shwedyk [DS94] proposed similar near-optimal trellisdxhimplementations of nonco-
herent MLSD for general signal alphabets and ARMA doublgsiile channels, using
per-branch Kalman filtering. Yu and Pasupathy [YP95] theteroted [LM90] to general
signal alphabets and ARMA doubly selective channels. Titerleechnique was extended
further to carrier-frequency-offset Rician channels bytkad Taylor in [HT98].

In related work, Gertsman and Lodge [GL97] showed that thedeod-backward algo-
rithm, with per-branch linear prediction, can be used farfdAP symbol detection un-
der AR time-selective channels and CM alphabets. Indepelydthese ideas were gener-
alized this approach to doubly selective channels and gesignal alphabets by Hart and
Pasupathy [HP0O] and Davis, Collings, and Hoeher [DCHO®}. fixed-lag MAP sym-
bol estimation, Zhang, Fitz, and Gelfand [ZFG97] proposedde per-survivor Kalman
filtering, echoing earlier work by lltis et al. [ISG94]. Artasopoulos and Chugg [ACO00]
then presented two general families of trellis algorithmise based on parameter-first
combining and the other on sequence-first combining, tted yaoth forward-backward
and fixed-lag algorithms.
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Reduced-complexity trellis-PSP equalization for single-carrier schemes

Due to the complexity of near-optimal PSP methods, whichtygsially based on per-
sequence Kalman filtering, simpler PSP techniques haveba&en proposed based on
simpler forms of adaptive filtering, such as the R2&nd LMS algorithms. For example,
Kubo, Murakami, and Fujino [KMF94] proposed to use the \Btealgorithm in con-
junction with the LMS algorithm [Hay01] for per-survivor ahnel estimation, whereas
Raheli, Polydoros, and Tzou [RPT95] proposed to use thebitdgorithm in conjunc-
tion with the RLS algorithm [Hay01]. Other LMS and RLS apprbes were discussed in
[ACOQ].

While the previously described PSP algorithms assumedialtB&EM, PSP for more
general BEMs has also been considered. For example, doelisd PSP algorithms for
joint estimation of symbols and polynomial BEM [BH99a] cfigients were proposed,
for time-selective channels, by Borah and Hart [BH99c] aredr and Taylor [LTO3].
DFE and trellis methods for both polynomial and Karhune@sBEMs [BH99b] were
studied by Borah and Hart in [BH99b] for doubly selective mhels. Trellis-based PSP
using a complex-exponential BEM [TG96] was discussed bilehdy [EMO4].

Near-optimal tree-PSP equalization for single-carrier schemes

Since the trellis-based approaches to noncoherent egtializtypically use arM +
Nar)-state trellis, withe'(K |27 |M+Nar) complexity, they are impractical for all but very
short delay spreads. Tree-search based PSP is one wayumeent this complexity. In
one of the earliest proposals, Dai and Shwedyk [DS94] sugdés use a Fano-like tree-
search with per-survivor Kalman estimation to non-cohlyesqualize a doubly selec-
tive ARMA channel (assuming a trivial BEM). The method in AaFitz, and Gelfand
[ZFG97] can be considered as using the T-algorithm to oldgmbol-MAP fixed-lag
metrics for the same channel. For a doubly selective chanadtled by a generic BEM,
Hwang and Schniter proposed PSP-based noncoherent Mtahigdree-searches that
accomplish approximate MLSD, in [HS07a], and approximat&Rvbit detection, in
[HSO7b]. The latter, with complexity’(KM?12), was combined with soft decoding in
a turbo receiver.

Iterative noncoherent equalization for single-carrier schemes

For EM-based iterative noncoherent equalization of shogleier systems, the channel
EM(B) algorithm described in Section 6.4.3 is the most papapproach; the info EM(B)

algorithm, proposed by Georghiades and Han [GH97] for ARetBrlective fading and

CM signaling and described in Appendix 6.D, was found, in there recent studies

[CPBO03, YRO03], to have convergence problems.

One of the first applications of the channel EMB algorithm ¢meoherent equaliza-
tion of frequency-selective channels was given by Kaleh\aiigt [K\VV94]. Anton-Haro,
Fonollosa and Fonollosa [AHFF97] proposed a channel EMralgo for doubly selec-
tive channels that used a polynomial BEM, assuming CM siggaMore recently, Yan

25Recall that the ML channel estimate (6.77) reduces to an liatst in the case of white noise, which can be
computed recursively using RLS.
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and Rao [YRO03] proposed a channel EMB method for AR-1 timeesiwe channels and
CM signaling that employs a Kalman filter. Nissila and Pasup@NP03] generalized
these ideas to AR doubly selective channels and arbitramgtetiations through the use
of Kalman smoothing. All of these approaches used the faivoackward algorithm to
evaluate the posterior bit probabilities in (6.95). Beeati®e number of trellis states in
the forward-backward algorithm ig7|M+Nar, however, these approaches are practical
for only very short delay spread.

To circumvent the complexity of trellis processing, Hwamgl &chniter [HS09] pro-
posed to use suboptimal tree-search to compute the donpoaterior bit probabilities,
via (6.96)-(6.97), leading to a complexity of onl§(KM?212). This approach can be
considered an extension of the technique originally preddsy Chiavaccini and Vitetta
[CVO01] for a time-selective channel and trivial BEM, to ddyikelective channels mod-
eled by generic BEMs.

6.4.5 Noncoherent equalization for time-frequency concentrated
modulation/demodulation

We saw, in the previous section, that the use of single@ramiodulation/demodulation
facilitated Gauss-Markov modeling of the effective chdrregectory{q|! 7d]}}<:‘01. Time-
frequency concentrated modulation/demodulation sch&hgeserally do not facilitate
the use of a Gauss-Markov model with ordéfr < K, sinceq|l,d] can change very
quickly inI. For example, with multicarrier schemdsyl ,0]}{‘151 represents the channel
frequency response, which may exhibit deep and sudden ftiliss, the trellis-based ap-
proaches to noncoherent equalization (whether optima?, &fproximate, or EM-based)
do not apply here. For this reason, the literature on noresthequalization for time-
frequency concentrated modulation/demodulation schésrsgsmewhat sparse.

For time-frequency concentrated modulation/demodufatioe dimensionality of the
effective channel respongq|l,d]} is more efficiently reduced by a BEM, e.g., the complex-
exponential BEM (as proposed in the classical OFDM work [ES8]). Cui and Tellam-
bura [CTO7] applied the complex exponential (CE)-BEM, madeeral approximations
to the noncoherent MLSD metric in (6.69) to reduce it to a $ewuadratic forma™ Ra
(with a-independenR), and then used tree-search to find the optienal.erX, all under
the assumption that” was constant modulus. Hwang and Schniter took a more direct
approach, leveraging the CE-BEM to design PSP-based anmthehBMB-based non-
coherent MAP bit equalization algorithms in [HS08] and [l9§0respectively, whose
complexities scale ag§ (K (2D +1)?12). The key to these low complexities is the use of
a fast metric update. Here, the BEM dimenslaefers to the number adctivechannel
taps; it is typical that < M when the delay power profile gparse These latter algo-
rithms achieve near-MAP performance with a complexity teajuite reasonable, even
for large simultaneous channel delay and Doppler spreads.

28|n this section, we will include OFDM in the “time-frequencyrentrated” class under the assumption that
the Doppler spread is mild enough to guarantee a short iateiec interference spread.
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6.5 Conclusion

In this chapter, we have given a broad overview of coheredtreomcoherent equaliza-
tion for rapidly TV channels, focusing on the case of sigaificdelay spread. To better
understand the problem, we described the combined effesbdtilation, channel propa-
gation, and demodulation using an effective channel m@triand then examined the key
features ofQ. We found that the support of the significant coefficientshimiQ can be
described as widely quasi-banded when single-carrier tatido/demodulation is used,
and narrowly quasi-banded when time-frequency concetraiodulation/demodulation
is used. This structure @ was later used to explain the design of low-complexity equal
ization algorithms.

We then discussed coherent equalization, wi@is assumed to be known. Various
equalization criteria were described, including thoseedazn ML, MAP, MMSE, and
the computation of posterior LLRs. Equalization tools wdescribed next, including
trellis-based, linear, decision feedback, tree-searshdaand iterative methods. We then
described how these criteria and tools have been appliée tesign of coherent equaliz-
ers for time-frequency concentrated modulation/demadauaver rapidly TV channels,
highlighting fast serial and fast joint equalization sclesm For equalization of single-
carrier modulation/demodulation over rapidly TV channele focused on frequency-
domain equalization approaches that yield high performavith low complexity.

Finally, we discussed noncoherent equalization, wieieassumed unknown (though
sometimes its statistics are known). For this, the systemeinoas reformulated to ac-
commodate an efficient BEM-based parameterization of tieetafe channe@. Various
equalization criteria were described, including thoseedas ML, MAP, GLRT, MMSE,
and posterior LLRs. Equalization tools were described ,nexiuding those based on
trellis, tree search, per-survivor processing, and the Bdrahm. We then described
how these criteria and tools have been applied to the de§igonecoherent equalizers for
single-carrier modulation/demodulation over rapidly Tvaanels. While the traditional
approach was to leverage a Gauss-Markov fading model fattaenel trajectory, general
BEM approaches have been developed more recently. Fimadlgescribed noncoherent
equalization for time-frequency concentrated moduldtiemodulation over rapidly TV
channels, a problem which has received attention only tgcen
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Appendix
6.A Derivation of posterior LLR expression (6.36)
Applying Bayes rule to the numerator of the posterior LLR61Q), we find

_ f(y|c.Q)p(c|Q)
P = 1 5 - ) =
Heli] =11y,Q} c;c%ﬂ p(c|y,Q) ofra TVIQ)

. (6.98)

As in the text, all possibilities of coded bit vectars: {0,1}K°%I<| are considered in
the summations, not only those in the codebook. Doing theegarthe denominator of
(6.19) and then taking the log of their ratio yields

In ZCZC“]:l f(y | CvQ) p(C ‘ Q)
Yeej=o f(yc,Q)p(c| Q)

Assuming independent coded bits, so thé&t | Q) = p(c) = ﬂ:f':c’gz"”‘fl p(c[j’]), and

using the identity

Leyolll = . (6.99)

exp((clj’] — DLe[j'])

Y j/
PElD = ety

for c[j’] €{0,1}, (6.100)

we can rewrite (6.99) as

In ZC:c[j]:l f(y ‘ c, Q) equzc)
ZC:c[j]:O f (y ‘ c, Q) exp(llc)

Leyolil = (6.101)

forlc £ (Lg[0] -+ Le[K— 1])T. Finally, writing the LLR expression (6.101) in terms
of the MAP metric (6.34) yields (6.36).

6.B Derivation of the noncoherent MLSD expression (6.73)

Using (6.68), we can write the first term in (6.69) as
_ -1
YICay = Y7 (Cz+ACoAY) Y. (6.102)
Applying the matrix inversion lemma, and introducing a piterms that sum to zero,
_ — — — _ -1 _
YICly = Y ly—y"C MAa(Cot +AYC M) ALC, Yy
—yHC M AL(Ct + AN C IAG) Al )ty
+YPC AL (Cot + A CL TA) T C Yy (6.103)
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Plugging in the expression fcﬁMMSE‘a in (6.72),

_ _ AH _ _ A
yH Cy|ally = yH C; 1y - eMMSE|aA;| C; 1y - yH C; 1Aa9MMSE\a
AH _ _ ~
+ eMMSE\a(Cel + /\2 C; 1Aa) BMMSE\a (6.104)
~ 2 ~
= Hy—/\aGMMSE\aHC;l‘F ||6MMSE\a||é51- (6.105)

6.C Explanation of EM recursion (6.91)

Given an estimat&® at theit" iteration, the EM algorithm [DLR77] attempts to find
which maximizes théncreasein log-likelihood, i.e.,

Inf(y|x)—Inf(y|&?)

— In/f (y,u | x)du—Inf(y | %9 (6.106)
_ y,u| _ &l

- In/f 1Y) gy gy U (v %) (6.107)
> /f(u|y,§<“>) (ij{‘;} ?)du—lnf(yfé”) 2 Ax[%V), (6.108)

where Jensen’s inequality was used in (6.108). From (6, 108)n be seen that'+V £
argmaxA(x | XV) can be written as (6.91) after dropping non-essential te8imce

. , R0 |
R (RY) = [1(u]y.x")m ;gluy| ;i);dumf(ym) (6.109)
fly,ulx")
_ (i)
_ /f(u\y,x Ny
1 )
- &)
+In f(ym)/f(uw,x )du (6.110)
o fy,u[%")
_ (i
/f(u YR e e T (6.111)

=1
= 0, (6.112)

if follows that the increase in log-likelihood associateithvthe EM estimat&( Y equals
AXTY | xD) = maxA(x | X7) > AXD | V) = 0, and hence the EM recursion never
decreases the log likelihood. Thus, when the likelihdé@gl| x) is unimodal inx, the EM
recursions will converge t&, .
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6.D Info EM(B) algorithms for noncoherent equalization

In info EMB, the bitsc are estimated while treating the channel paramddeas missing
data, so that (6.92) becomes (with= c andu = 0)

¢ = arg max {/f(6|y,6<”)lnf(y,9 | c)d6 +In p(c)}. (6.113)
ce{0,1}K

The identity Inf(y,8 | c) =Inf(y | 8,c)+Inf(0), in conjunction with the Gaussian
noise assumption, yields

¢ty = arg min /fe LM ly=Ay0]% .d6—In c}, 6.114
a_min, { [ 1613, ly-AdBIZ a0 -inpio)}. (6110

wherea is a one-to-one function af Then using Bayes rule for

on fy|8,&0)f(8)
MOIVED =Ty Tomen (@8

in conjunction with the Rayleigh fading assumption, (6 tEluces to

Jlly=Aa8]Z_1f(y| 6,8")f(6)de
Jf(y|6'.e)i(6)de’

- Jexp(—ly Ay 8112 ~[16]2.2) ly —Aab]2 16
Jexp(=lly = Ay 6122 — ||9/||é51)d9'

¢V = arg min{ —Inp(c)} (6.115)

—In p(c)}. (6.116)

The optimization problem (6.116) is, in general, difficalsolve. In the simplified case of
frequency-nonselective fading, white noise, CM alphabed the trivial BEM, though,
ly = AaB|2_; = C1+Co [i_g Re{alk6[k, 0]} for C; andC, that do not depend oa,
making the Zoptimization problem (6.116) tractable [GH%}en then, the hard-decision
nature of info EMB makes it subject to error propagation. §;hitiis not surprising that
channel EMB has been shown to outperform info EMB for thispdified setup [YRO03].
For info EM, or without an informative prior distributionife, the Inp(c) term can be

neglected, so that

A+ . ) 2 2 2
a0 argcep&llq}(/exp(*||Y*/\,§<u>9||cz—1* HeHcgl)HY*/\a9||C21d9- (6.117)

Note, however, that the minimization is not significantiyplified relative to (6.116).
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Chapter 6: Equalization of Time-Varying Channels

Table6.1 Variables introduced for the equalization chapter

’ no. ‘ symbol description ‘ avoid ‘
11| H channel convolution matrix

12| G modulation matrix

13| r demodulation matrix

14| Q=THG effective channel matrix

15| U upper triangular matrix

1.6 | o c X codebook

1.7 | Lefi] = ol a-priori log likelihood ratio (LLR),

1.8 | Lyyolil = % coherent posterior log likelihood ratio (LLR),

1.9 Lyylil = % noncoherent posterior log likelihood ratio (LLR),
1.10 | [x/|c = vxHCx weighted norm ok w.r.t Hermitian PSD matrixC
1.11| 24() guantization w.r.t. alphabey
1.12 | Ng OFDM guard length
1.13 | Nar Gauss-Markov model order
1.14 | diag{.} create diagonal matrix from vector
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