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6.1 Introduction

As discussed in Chapter 1, the wireless communication channel can be modeled as a time-
varying (TV) linear1 system whose output is corrupted by additive noise. To reliably
recover the transmitted information from the channel output, the receiver must address
the effects of both linear distortion and additive noise. While, in theory, the mitigation
of linear distortion and additive noise should be done jointly, in practice the task is often
partitioned into two tasks, equalization and decoding, in order to reduce implementation
complexity.

Roughly speaking,equalizationleverages knowledge of channel structure to mitigate
the effects of the linear distortion whiledecodingleverages knowledge of code structure
to mitigate the channel’s additive noise component. The equalizer might be well informed
about the channel (e.g., knowing the complete channel impulse response) or relatively un-
informed (e.g., knowing only the maximum channel length). In some cases, knowledge of
symbol structure (e.g., the symbol alphabet or, if applicable, the fact that the symbols have
a constant modulus) is assumed to be in the domain of the equalizer, while in other cases
it is assumed to be in the domain of the decoder; since the equalizer and decoder work
together to infer the transmitted information from the channel output, the role of equal-
ization versus decoding is somewhat a matter of definition. For this chapter, however, we
assume that exploitation of code structure isnot in the domain of the equalizer.

Generally speaking, the output of the equalizer is a sequence of symbol (or bit) esti-
mates which have been, to the best of the equalizer’s ability, freed of channel corruption.
These estimates are then passed to the decoder for further refinement and final decision
making. In so calledturbo equalizationschemes [DJB+95, KST04], the decoder passes

1Some channels are better modeled as nonlinear, but such channels are not the focus of this book.
i
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Figure 6.1 Soft-input soft-output (SISO) equalizer connected with a SISO decoder ina turbo con-
figuration. Note the presence of de-interleaverΠ−1 fed by the extrinsic equalizer LLRs Lc,ext[ j] =
Lc|y[ j]−Lc[ j], and interleaverΠ fed by the extrinsic decoder LLRs L′

ext[ j] = L′
pos[ j]−L′

pri[ j].

refined soft bit estimates back to the equalizer for further refinement, and the equalizer
passes further refined soft bit estimates to the decoder. Theprocess is then iterated un-
til the equalizer and decoder “agree” on the soft bit estimates. Note that the use of soft
bit estimates implies that the equalizer treats the bits as (a priori) independent. Turbo
equalization is illustrated in Fig. 6.1 and will be discussed in more detail later.

The inputs to an equalizer depend on its design. So-calledcoherent equalizersare as-
sumed to know the parameters describing thestateof the TV linear system that they are
trying to mitigate, or an estimate thereof. Typical examples of channel state parameters
include impulse response coefficients or inter-carrier interference coefficients. Coher-
ent equalization requires the simultaneous operation of achannel estimator, whose main
purpose is to provide accurate and up-to-date estimates of the TV channel state to the
equalizer. Channel estimation is discussed in Chapter 4. The idea to separate channel
estimation from equalization can be traced back to early work by Kailath [Kai60].

So-callednoncoherent equalizersoperate without explicit knowledge of the channel
state, and therefore are not dependent on the implementation of a channel estimator. Non-
coherent equalizers, however, are sometimes assumed to know thechannel statistics(e.g.,
the scattering function) or an estimate thereof. In the caseof a non-stationary channel,
the statistics themselves would need to be tracked. In theirmost general form, nonco-
herent equalizers treat the channel parameters as “nuisance parameters” that complicate
data estimation. In some cases they explicitly estimate thechannel state parameters in
conjunction with the data (i.e.,joint channel/symbol estimation), while in other cases they
compute data estimates without ever computing a channel estimate.

The equalization of rapidly TV communication channels is much more challenging
than the equalization of their time-invariant (or slowly TV) counterparts. This can be
understood intuitively as follows. From the perspective ofcoherent equalization, a rapidly
TV channel implies that the channel state is constantly changing, which implies that the
equalizer must be constantly redesigned in order to stay well matched to the channel.
From the perspective of noncoherent equalization, a rapidly TV channel has more degrees



Section 6.2: System model iii

of freedom (over a given bandwidth and signaling epoch) thana slowly varying channel,
and thus more nuisance parameters to contend with.

Beyond these intuitive considerations, there is another important reason why rapidly
TV channels are more difficult to equalize than slowly TV ones. For time-invariant lin-
ear channels, information can be split up and transmitted inparallel on non-interfering
subcarriers. In this case, equalization becomes a simple matter of adjusting the gain and
phase on each received subcarrier. This is, in fact, the mainidea behind multi-carrier
modulation schemes likeorthogonal frequency division multiplexing(OFDM) [Cim85].
For slowly TV channels, the same approach can be easily extended: to mimic a time-
invariant channel, the OFDM symbol duration can be chosen shorter than the channel’s
coherence time. But, as now explained, such an approach turns out to be impractical for
rapidly TV channels. To prevent interference between adjacent OFDM symbols, guard
intervals are typically inserted. For time-invariant or slowly TV channels, the loss in spec-
tral efficiency due to the inclusion of these guards can be made small, since the channel
delay spread (and hence the guard interval) is much smaller than the channel coherence
time (and hence the OFDM symbol length). For rapidly TV channels, the OFDM sym-
bol length would need to be made extremely short, at which point the loss of spectral
efficiency due to guard insertion would be severe. If one tried to optimize the modula-
tion strategy, one would find that it is in fact impossible to prevent interference among
the subcarriers without significant compromise in spectralefficiency [SB03]— a conse-
quence of the Balian-Low theorem [Dau92]. To summarize: while the equalization of
slowly TV channels can be trivialized via suitable choice ofthe transmission scheme, the
equalization of rapidly TV channels cannot.

The remainder of this chapter will be organized as follows. In Section 6.2, we outline
the system model assumed throughout the chapter and detail the essential features that
result from rapid channel time-variation. In Section 6.3, we describe coherent approaches
to equalization of rapidly TV channels and, in Section 6.4, we describe noncoherent ap-
proaches. In Section 6.5, we conclude.

6.2 System model

We now outline the system model used in the remainder of the chapter. In this chapter,
we focus on systems which use a single transmitter antenna and a single receiver antenna;
multi-antenna systems will be discussed in Chapter 8.

6.2.1 Basic assumptions

As discussed in Chapter 1, the time-domain received sampler[n] can be written in terms of
the transmitted sequence(s[n])n∈Z, the TV time-n length-M impulse response(h[n,m])M−1

m=0 ,



iv Chapter 6: Equalization of Time-Varying Channels

and additive white Gaussian noise process(w[n])n∈Z of varianceσ2
w as follows:

r[n] =
M−1

∑
m=0

h[n,m]s[n−m]+w[n]. (6.1)

In this chapter, we assume that the transmitted sequence(s[n])n∈Z is generated from the
finite-alphabet symbol sequence(a[k])k∈Z using a genericfinite-memory linear modula-
tion scheme, and that the demodulated sequence(y[k])k∈Z is generated from the received
sequence(r[n])n∈Z using a correspondingfinite-memory linear demodulationscheme.
Prior to modulation, the symbol sequence(a[k])k∈Z is mapped from a coded-bit sequence
(c[ j]) j∈Z which is generated from an information-bit sequence(b[i])i∈Z via rate-Rc cod-
ing and interleaving. We denote the symbol alphabet byA , its cardinality by|A |, and
the set of admissible symbol sequences (as allowed by coding/interleaving) byAA .

For ease of notation, we find it convenient to assumeblock transmissionwith block
lengthK, where the symbols

a ,
(
a[0] a[1] · · · a[K−1]

)T ∈ A
K

can be related to the demodulated channel outputs

y ,
(
y[0] y[1] · · · y[K−1]

)T ∈ C
K

through the matrix/vector equation

y = ΓΓΓHG
︸ ︷︷ ︸

, Q

a+ z. (6.2)

We note, however, that the block lengthK can be arbitrarily large and that the receiver
might not be able to store/process the entire vectory. In (6.2), ΓΓΓ, H, andG are matrix
representations of the linear demodulation operator, the linear TV channel, and the linear
modulation operator, respectively, and

z ,
(
z[0] z[1] · · · z[K−1]

)T ∈ C
K

represents the noise after demodulation. We note that theeffective channel matrixQ =
ΓΓΓHG ∈ C

K×K represents the combined effects of modulation, channel propagation, and
demodulation, and will be used extensively throughout the chapter. Finally, we collect, in
the vectorc, theK log2 |A | coded bits that determine theK symbols ina. Note that, with
a block length ofK, we haveAA ⊂ A K .

In writing (6.2), we have assumed that theK demodulated samples iny are sufficient
for equalization/decoding of theK symbols ina (i.e., that(y[k])k<0 and(y[k])k≥K can be
ignored), and that inter-block interference (IBI) is negligible. These assumptions will be
satisfied for any well-designed block transmission scheme.Furthermore, we will assume
that the noisez, the symbolsa, and the effective channelQ are mutually independent, and
that (unless otherwise noted) the symbolsa are zero-mean (i.e.,µµµa = 0) and white (i.e.,2

2Throughout the chapter, we use subscripted versions ofC to denote covariance matrices.
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Figure 6.2 Support region of (a) “widely quasi-banded” and (b) “narrowly quasi-banded” ma-
trices. While M is often large (e.g., in the hundreds), D is usually very small(e.g.,1 or 2).

Ca = σ2
a I). Finally, it should be noted that the demodulated noisez is not assumed to

be white unless otherwise noted; although(w[n])n∈Z is white, the demodulation process
does not necessarily guarantee white(z[k])k∈Z.

Throughout the chapter, we assume that the equalizer knows the symbol alphabetA
but not the code structure, i.e.,AA . Thus, the topic ofjoint equalization/decoding lies
outside the scope of this chapter. Turbo equalization, where separate equalization and
decoding steps are iterated (as illustrated in Fig. 6.1) will, however, be discussed.

6.2.2 The structure of the effective channel matrix Q

In block equalization, if it can be assumed that certain coefficients ofQ will be negligible
for nearly all realizations ofQ, then it is reasonable to conclude that an equalizer which
ignores these coefficients will perform nearly as good as an equalizer which incorporates
these coefficients. However, the equalizer which ignores these coefficients may be sig-
nificantly cheaper to implement, especially if the proportion of negligible coefficients is
large. This is, in fact, the guiding principle behind the design of practical equalization
algorithms for rapidly TV channels.

Based on the characteristics of rapidly TV channels and commonly used modula-
tion/demodulation schemes, we partition effective channel matricesQ into three classes
based on the support region of non-negligible coefficients within the matrix: i)widely
quasi-banded, ii) narrowly quasi-banded, and iii) fully populatedmatrices. The sup-
port regions of widely quasi-banded and narrowly quasi-banded matrices are defined in
Fig. 6.2, and illustrative examples ofQ based on a randomly generated channel impulse
response and several modulation/demodulation schemes aregiven in Fig. 6.3 (the con-
struction of which will be detailed below). Note that we use the term “quasi-banded” as
opposed to “banded” due to the corner3 support regions in Fig. 6.2. Banded matrices, like
that illustrated in Fig. 6.5(b), will also be discussed in the sequel.

3Note that the one-corner support of the widely quasi-bandedmatrix in Fig. 6.2(a) can be transformed into the
two-corner support of the narrowly quasi-banded matrix in Fig. 6.2(b) by simply rotating the columns of the
former matrix right byM/2 places. Thus, the essential difference between these matrices is really the width of
the support region (i.e.,M versus 2D+1).



vi Chapter 6: Equalization of Time-Varying Channels

(a) TV convolution (b) widely quasi-banded (c) narrowly quasi-banded (d) fully populated

Figure 6.3 Example of (a) a TV-channel’s propagation matrix and the corresponding effective
channel matrices that result from (b) CP-SCM, (c) CP-OFDM with max-SINR receiver windowing
[Sch04], and (d) CP-OFDM with rectangular receiver windowing. The dot size is proportional to
the coefficient magnitude.

To understand how these patterns manifest inQ = ΓΓΓHG, we must consider the com-
posite effect of linear modulationG, propagation through the TV linear channelH, and
demodulationΓΓΓ. As implied by (6.1), the channel propagation matrixH is a TV convo-
lution matrix whosenth row contains the impulse response coefficients(h[n,m])M−1

m=0 . For
example, Fig. 6.3(a) shows a TV channel propagation matrix for M = 8 that was randomly
generated according to the WSSUS Jakes [Stü01] fading assumption with νmaxTs = 0.03,
whereνmax denotes the maximum (single-sided) Doppler spread in Hz andTs the channel-
use interval (i.e., the symbol period in a single-carrier system) in seconds. If the channel
was time-invariant, the propagation matrix would have a Toeplitz structure. But here,
since the channel is rapidly TV, each coefficient’s magnitude varies smoothly along its
diagonal of the propagation matrix. Given the constructionof H, the characteristics ofQ
will depend on the choices ofG andΓΓΓ and their interaction withH, as discussed next.

Single-carrier modulation/demodulation
For single-carrier modulation/demodulation schemes,G and ΓΓΓ accomplish little more
than insertion and removal of a guard interval (of lengthNg ≥ M−1). In this case,Q is
created from the propagation matrixH by simply cutting the firstNg columns ofH out
and superimposing them onto the lastNg columns ofH. This operation was used, e.g.,
to create the widely quasi-banded matrix in Fig. 6.3(b) fromthe TV convolution matrix
in Fig. 6.3(a). More precisely, whenH has dimensionsK × (K +M−1), cyclic-prefixed
single carrier modulation (CP-SCM) [FABSE02] uses

G =





0 IM−1

IK−M+1 0
0 IM−1



 and ΓΓΓ = IK , (6.3)

whereas zero-padded single carrier modulation (ZP-SCM) [WMG04] uses a slightly dif-
ferent construction ofG, H, andΓΓΓ that results in an equivalentQ matrix. We consider the
effective channel matrix generated from SCM to bewidely quasi-bandedbecauseM, the
width of the non-negligible band inQ, is typically large: sinceM , ⌈τmax/Ts⌉ is the dis-
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crete delay spread of the channel, it is not unusual forM to be in the hundreds (e.g., delay
spreadτmax = 20µs and bandwidth 1/Ts = 10 MHz yield M = 200). Though small-M
applications do exist, they yield equalization problems that are not very challenging, and
hence not very interesting, especially in the coherent setting. Hence, we focus on the case
of largeM.

Time-frequency concentrated modulation/demodulation
The effect, on the transmitted signal{s[n]}, of propagation through the linear TV channel
{h[n,m]} can be understood assimultaneous delay and Doppler spreading. Thus, if each
symbol a[k] is modulated on a time-frequency concentrated waveform

gk ,
(
gk[0] · · · gk[N−1]

)T
for suitable4 N, so that

s[n] =
K−1

∑
k=0

a[k]gk[n] for n= 0, . . . ,N−M, (6.4)

wheregk is sufficiently “isolated” from the other waveforms{gk′}k′ 6=k in the time-frequency
domain, then propagation through the delay/Doppler spreading channel should cause only
mild interference between these{a[k]}. Extraction of thekth symbol’s contribution from
the received signal{r[n]} would then be accomplished via the linear demodulation oper-
ation

y[k] =
N−1

∑
n=0

r[n]γ∗k [n] for k= 0, . . . ,K−1, (6.5)

for γγγk =
(
γk[0] · · · γk[N−1]

)T
concentrated at the same time and frequency asgk.

This is the main idea behind pulse-shaped multicarrier schemes like [LAB95, HB97,
MK97, KM98, Böl02, SB03, Sch04, RBL06, DS07, MSG+07] as well as Slepian schemes
like [SAMT05].

With suitably designed modulation/demodulation waveforms{gk} and{γγγk}, the com-
bined channel matrixQ under (6.4)-(6.5) can be ensured to have thenarrowly quasi-
banded structureillustrated in Fig. 6.2(b). There,D can be interpreted as the (single-
sided) discrete Doppler spread of the effective channel and2D+1 can be recognized as
the width of the non-negligible interference band. Typically D is chosen as

D = ⌈νmaxTsK+D0⌉, (6.6)

whereD0 is a small non-negative constant (e.g., 0≤ D0 ≤ 2 for a well-designed mod-
ulation/demodulation scheme), as discussed in the sequel.We can see thatQ will be
narrowly quasi-banded, so that 2D+1≪ M, by plugging the typical block-length choice
of K = 4M into (6.6) and then using the definitionM = τmax/Ts to see that [HS06]

D ≤ ⌈4νmaxτmax⌉+ ⌈D0⌉ (6.7)

= 1+ ⌈D0⌉ when 0< 2νmaxτmax≤ 0.5. (6.8)

4If N exceeds the time period between consecutive block transmissions, then inter-block interference (IBI) can
result. In this case, the model (6.2) can be generalized toy = Qa+Qpreapre +Qpstapst + z, whereQpreapre

accounts for pre-cursor IBI andQpstapst accounts for post-cursor IBI. The IBI can be made negligible,however,
with suitable design of modulation/demodulation pulses{gk} and{γγγk}.
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Figure 6.4 For the IBI modely = Qa+Qpreapre +Qpstapst + z, with K = 64, Ng = 15, M = 16,
νmaxTs= 0.003, and WSSUS Jakes fading (see Chapter 1), subplot (b) shows the mean-square value
(in dB) of a coefficient inQ versus its distance “d” from the main diagonal ofQ, while subplots (a)
and (c) show the same for the coefficients inQpre andQpst, respectively. The dashed vertical line
indicates D= ⌈νmaxTsK⌉. JOMS refers to Das and Schniter’s joint transmitter/receiver optimiza-
tion max-SINR scheme [DS07] whileS-OFDM refers to Strohmer and Beaver’s orthogonal scheme
[SB03].

The quantity 2νmaxτmax, sometimes referred to as the “spreading index,” describesthe
total severity of delay-Doppler spreading. The boundary betweenunderspreadandover-
spreadchannels occurs at 2νmaxτmax= 1, and it can be safely assumed that 2νmaxτmax≪ 1
for practical applications. Thus, from (6.8), we conclude that the width of the non-
negligible coefficient band is 2D+1≤ 3+2⌈D0⌉ when suitable modulation/demodulation
waveforms are used. In summary, 2D+1≪ M is a reasonable claim for the values ofM
that are of interest in this chapter.

As an example, Fig. 6.3(c) showsQ constructed via cyclic-prefixed orthogonal fre-
quency division multiplexing (CP-OFDM) [Cim85] with max-SINR receiver pulse-shaping
[Sch04] using the TV convolution matrix shown in Fig. 6.3(a). Though the channel has
an extremely high spreading index of 2νmaxτmax= 0.8, all coefficients inQ outside of the
3-wide band are negligible. As another example, Fig. 6.4 shows E

{∣
∣[Q]k,k+d

∣
∣2
}

(in dB)
versusd for several modulation/demodulation schemes and a channelwith a spreading in-
dex of 0.1. (E

{∣
∣[Q]k,k+d

∣
∣2
}

is invariant tok.) As can be seen in Fig. 6.4, the JOMS scheme
from [DS07] suppresses coefficients outside the band of radiusD = ⌈νmaxTsK⌉= 1 by at
least 44 dB.
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At this point we make one final observation about a narrowly quasi-banded matrixQ.
If we upper-triangularizeQ, e.g., via the QR decompositionQ = VQ̄ whereV is unitary
andQ̄ is upper triangular, then̄Q will have the “V-shaped” structure shown in Fig. 6.5(c)
on page xiii. Such upper-triangularization ofQ occurs prior to decision feedback and
tree-search based equalization, as discussed in Section 6.3.2.

Other modulation/demodulation schemes
When the modulation and demodulation pulses{gk}K−1

k=0 and{γγγk}K−1
k=0 arenot designed

to curb the effects of delay/Doppler spreading, the supportof non-negligible coefficients
within Q can be widespread, to the point whereQ must be considered asfully populated.
Examples of such modulation/demodulation schemes includethe wavelet-based schemes
[Wor96, Mar00], the chirp-based schemes [Mar01, BT01, KS08], a scheme designed to
maximize a lower bound on capacity [YCL07], and the diversity maximizing schemes
[MG03, HS07c].

Even popular multicarrier schemes like CP-OFDM, when used with a rectangular re-
ceiver pulse, yield a near-fully populatedQ when the channel is TV rapidly enough.
Fig. 6.3 shows this by example: the effective channel matrixin Fig. 6.3(d) was con-
structed from the TV convolution matrix in Fig. 6.3(a) via standard CP-OFDM. Notice
that the non-negligible coefficients inQ are not all located in the central band of the ma-
trix. Fig. 6.4 shows a similar phenomenon: for CP-OFDM,E

{∣
∣[Q]k,k+d

∣
∣2
}

decays very
slowly with d, the distance from the main diagonal ofQ.

6.3 Coherent equalization

In this section, we focus oncoherent equalization, i.e., equalization under the assump-
tion that the channel matrixH, and thus the effective channel matrixQ, is known. The
noncoherent case will be discussed in Section 6.4.

In Section 6.3.1, we discuss several criteria (i.e., notions of optimality) under which
coherent equalizers are designed, and, in Section 6.3.2, wedescribe classical equalization
algorithms for genericQ. Then, in Sections 6.3.3–6.3.4, we focus on coherent equaliza-
tion techniques for the specific types ofQ anticipated for rapidly TV channels in Sec-
tion 6.2.2.

6.3.1 Coherent equalization criteria

Referring to (6.2), the goal of coherent block equalizationis estimation of the symbol
vectora, or the corresponding coded-bit vectorc, from the linearly distorted and noisy
demodulator output vectory, assuming knowledge of the channel matrixQ and the noise
statistics. Note that this may or may not include a hard-decision or quantization step,
as explained later. In any case, we are fundamentally interested in identifying the “opti-
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mal” method to generate these symbol estimates. The answer,however, depends on how
optimality is defined, i.e., whichequalization criterionis employed.

In organizing the criteria that are most often used for equalizer design, it helps to
consider how the equalizer outputs will be used by the receiver (e.g., by the decoder).

Hard symbol or bit estimates
If there is no decoder or if the decoder wantshard estimatesof the symbols or bits, then
the goal is to produce a finite-alphabet estimateâ ∈ A K . (Recall that the equalizer is
assumed to know the symbol alphabetA but not the set of coded symbol sequencesAA .)

Maximum a posteriori(MAP) sequence detection(SD) [Poo94] minimizes the proba-
bility of sequence error. By definition, the MAPSD estimate is

âcMAPSD , arg max
a′∈A K

Pr{a = a′ | y,Q}. (6.9)

In (6.9), we use the notation “cMAPSD” to emphasize that this is thecoherentversion of
the MAP criterion applied tosequencedetection. In contrast, coherent MAPsymboland
bit detection takes the form

âcMAP[k] , argmax
a∈A

Pr{a[k] = a | y,Q} for k∈ 0, . . . ,K−1 (6.10)

ĉcMAP[ j] , arg max
c∈{0,1}

Pr{c[ j] = c | y,Q} for j ∈ 0, . . . ,K log2 |A |−1. (6.11)

In writing (6.9)-(6.11), we have treated the channelQ as a random quantity.
If we assume that each of the symbol sequences inA K has equal prior probability, i.e.,

Pr{a = a′} = 1/|A |K ∀a′ ∈ A K , then coherent MAPSD reduces to coherentmaximum
likelihood (ML) SD [Poo94]:

âcMLSD , arg max
a∈A K

f (y | a,Q), (6.12)

where f (y | a,Q) denotes the probability density function ofy conditioned ona andQ,
also known as thelikelihood function. To see this, notice from Bayes rule that

Pr{a = a′ | y,Q} =
f (y | a′,Q)Pr{a = a′ | Q}

f (y | Q)
=

1
|A |K

f (y | a′,Q)

f (y | Q)
, (6.13)

from which it becomes clear that maximizing Pr{a = a′ | y,Q} over a′ is equivalent to
maximizing f (y | a′,Q) overa′. Due to our assumption of zero-mean Gaussian noise with

covarianceCz, we havef (y | a′,Q) = 1
πK det{Cz} exp(−‖y−Qa′

∥
∥2

C−1
z
), so that coherent

MLSD reduces to

âcMLSD = arg min
a∈A K

∥
∥y−Qa

∥
∥2

C−1
z
. (6.14)

Above, we used the quadratic-form notation‖z‖2
A , zHAz, whereA is any positive semi-

definite Hermitian matrix.
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Complex-field symbol estimates
If the decoder prefers or tolerates complex-valued symbol estimates, rather than finite-
alphabet symbol estimates, then one can consider equalization schemes that yield̂a ∈C

K .
Note, however, that we still assumea ∈ A K .

A popular criterion for this case isminimum mean-squared error(MMSE) [Poo94].
The coherent unconstrained MMSE sequence estimate is defined as

âcMMSE , arg min
a′∈CK

E
{
‖a−a′‖2

∣
∣ y,Q

}
. (6.15)

Since the MMSE estimate equals the conditional mean [Poo94], we have

âcMMSE = E{a | y,Q} = ∑
a∈A K

a p(a | y,Q) (6.16)

= ∑
a∈A K

a
f (y | a,Q)p(a)

∑a′∈A K f (y | a′,Q)p(a′)
. (6.17)

If we assume thatp(a) is uniformly distributed overA K , then

âcMMSE =
∑a∈A K a exp

(
−‖y−Qa‖2

C−1
z

)

∑a′∈A K exp
(
−‖y−Qa′‖2

C−1
z

) . (6.18)

Notice from (6.18) that the finite-alphabet nature ofa makes the conditional mean difficult
to evaluate, since it requires the evaluation of|A |K terms.

To reduce complexity, the MMSE criterion is often employed in conjunction with par-
ticular constraints on how the symbol estimates are generated fromy. The most common
examples are MMSElinear equalization(6.22) and MMSEdecision feedback equal-
ization (6.27). Note that, if one assumes thata|y,Q is Gaussian distributed, then the
unconstrained MMSE estimator (6.15) itself becomes a linear function ofy [Poo94].

As the signal-to-noise ratio (SNR) increases, the effect oflinear channel distortion
overwhelms that of additive noise, motivating the so-called zero-forcing(ZF) criterion.
Effectively, ZF equalizers “invert” the effect of the linear channel distortion while ignor-
ing the presence of additive channel noise. The most common examples are ZF linear
equalization and ZF decision feedback equalization, both described in Section 6.3.2. In
the absence of additive noise, ZF equalizers are equivalentto their MMSE counterparts.

Soft bit estimates
If the decoder preferssoft bit estimates, then the goal is to produce reliability information
on each of the coded bits inc. Typically, bit reliabilities are expressed in the form of alog
likelihood ratio (LLR) for each bit. The goal of coherent equalization thus becomes the
computation of the coherent posterior LLRs5

Lc|y,Q[ j] , ln
Pr{c[ j] = 1 | y,Q}
Pr{c[ j] = 0 | y,Q} for j = 0, . . . ,K log2 |A |−1, (6.19)

5Sometimes it is more practical to calculate posteriors using only a limited number of (sayJ) future observations
[LVS95]. In this so-called “fixed lag” case, the conditioning in (6.19) is performed on(y[0], . . . ,y[⌈ j

log2 |A | ⌉+
J])T instead ofy.
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given the a-priori LLRs

Lc[ j] , ln
Pr{c[ j] = 1}
Pr{c[ j] = 0} for j = 0, . . . ,K log2 |A |−1. (6.20)

When nothing is a-priori known about the bitc[ j], the valueLc[ j] = 0 is used. Nonzero
a-priori LLRs are used, e.g., when the equalizer is fed by theoutputs of a soft decoder,
as in turbo equalization (see Fig. 6.1) or when certain bits are known pilots. Ifc[ j] was
a pilot (or otherwise known with complete confidence), thenLc[ j] =±∞. Recall that the
use of a-priori LLRs implies that the equalizer treats the coded bits as independent.

Hard MAP bit estimates can be generated by quantizing the posterior LLRs as follows:

ĉcMAP[ j] =
1
2

(
1+sign(Lc|y,Q[ j])

)
. (6.21)

6.3.2 Coherent equalization tools

The coherent equalization criteria discussed in Section 6.3.1 each describe a particular
goal for equalization, but not how equalization would be practically implemented. For
example, the MAPSD, MLSD, and (unconstrained) MMSE estimates described in Sec-
tion 6.3.1 require the evaluation ofO(|A |K) metrics if computed via brute force, which
is not practical for typical values ofK. In this section, we review classical equalization
implementations whose designs are guided by the various criteria in Section 6.3.1.

Trellis-based equalization
Trellis methods can be used to implement MLSD and MAP equalization whenQ is a
bandedmatrix. As illustrated in Fig. 6.5, a banded matrix differs from its quasi-banded
counterpart due to the lack of corner elements. A banded matrix manifests when, e.g., the
first and last few elements ofa are known or zero-valued.6 If Q is a banded matrix with a
2D+1 wide band, then theViterbi algorithm[For72] can perform MAPSD/MLSD equal-
ization usingO(KD|A |2D+1) operations. Similarly, theforward-backward(or BCJR)
algorithm [BCJR74] can be used to accomplish MAP symbol/bitequalization with a com-
plexity ofO(KD|A |2D+1) operations [For73, Appendix]. Lower-complexity trellis-based
approximate MAP equalizers include fixed-lag approaches [LVS95] and the soft-output
Viterbi algorithm (SOVA) [HH89]. In all cases, the complexity is linear in the block
lengthK and exponential in the effective channel length 2D+1. Thus, these techniques
will be practical if and only if 2D+1 is very small.

Trellis methods can be modified to work onquasi-bandedQ using, e.g., a “tail-biting”
approach. Here, from an arbitrary location within the block, the Viterbi algorithm is ini-
tialized from each of the possible|A |2D+1 states and forced to terminate in the same state;
the initialization leading to the optimum sequence metric is then chosen. This approach
requires running the Viterbi algorithm|A |2D+1 times, for a total cost ofO(KD|A |4D+2)
operations.

6More precisely, consider the system model (6.2). IfQ is as illustrated in Fig. 6.5(a) and the lastM−1 elements

of a are zero-valued, then we can writey= Q̆ă+z whereă=
(
a[0] · · · a[K−M]

)T
and wherĕQ is a banded

matrix (as illustrated in Fig. 6.5(b)) with anM-wide band. Or, ifQ is as illustrated in Fig. 6.5(b) and the first and

last D elements ofa are zero-valued, then we can writey = Q̆ă+ z whereă =
(
a[D] · · · a[K−D−1]

)T

and whereQ̆ is a banded matrix (as illustrated in Fig. 6.5(b)) with a 2D+1 wide band.
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DD+1 2D+1 2DN−2D

K

2D+1

(a) (b) (c)

Figure 6.5 Support region of (a) “quasi-banded,” (b) “banded,” and (c) “V-shaped” matrices.
From quasi-banded (a), banded (b) is obtained by deleting the first andlast D columns, while V-
shaped (c) is obtained by upper triangularization.

Linear equalization
In linear equalization, the symbol estimates are a linear function of the observationy, i.e.,

âLIN = Ey, (6.22)

for a suitably chosen matrixE ∈ C
K×K . In some cases, such as when it is impractical to

process the entire observationy at once, additional constraints are placed onE. Because
linear equalization ignores the finite-alphabet property of a, its performance is generally
much worse than that of techniques which leverage the finite-alphabet property.

The coherentlinear MMSE(LMMSE)7 equalizer uses, forE in (6.22),

ELMMSE , arg min
E∈CK×K

E
{
‖a− âLIN‖2

∣
∣ Q
}
. (6.23)

Given the symbol and noise statistics assumed in Section 6.2, it can be shown [Ver98] that

ELMMSE = QH(QQH +σ−2
a Cz)

−1 (6.24)

= (QHC−1
z Q+σ−2

a IK)
−1QHC−1

z . (6.25)

The matrix inversion lemma8 can be used to relate (6.24) and (6.25). Thelinear ZF (LZF)
estimator uses (6.22) withE set to

ELZF = Q−1, (6.26)

assuming thatQ is invertible. WhenQ is not invertible, the LZF equalizer is said not to
exist.

Due to the matrix inversions in (6.24)–(6.26), the complexity of LMMSE and LZF
equalization isO(K3), which is much less than theO(|A |K) complexity of unconstrained
MMSE estimation in (6.18). Still,O(K3) may be impractical whenK is large.

7Note that the LMMSE equalizer described here is a generalization of the classical tapped delay-line LMMSE
equalizer [Pro01].
8The matrix inversion lemma can be stated as(A−1+BC−1BH)−1 = A−AB(C+BHAB)−1BHA, assuming
the inverses exist.
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Decision feedback equalization
Decision feedback equalization(DFE) exploits the finite-alphabet symbol property while
keeping complexity close to that of linear equalization. Essentially, it makes hard symbol
decisions sequentially and leverages past decisions for future symbol estimates.

The DFE generates complex-valued symbol estimates as follows:9

âDFE = Ey− (U− IK)DA (âDFE). (6.27)

In (6.27),DA (·) : CK → A K denotes element-wise quantization w.r.t. the symbol alpha-
betA , U ∈ C

K×K is monic upper triangular (to ensure that decision feedbackis strictly
causal), andE ∈C

K×K . Keeping the monic upper-triangular property ofU in mind, (6.27)
can be understood as follows: the estimate ˆaDFE[K−1] is linearly computed fromy using
the last row inE; then, the estimate ˆaDFE[K −2] is linearly computed fromy and quan-
tizedâDFE[K−1] using the second-to-last rows inE andU, respectively; then, the estimate
âDFE[K −3] is linearly computed fromy and quantized{âDFE[K −2], âDFE[K −1]} using
the third-to-last rows inE andU, respectively; and so on.

The DFE matricesE and U are typically designed according to the MMSE or ZF
criteria. As with linear equalization, additional constraints may be placed onE and/orU.
The coherentMMSE-DFE[CF97] uses (6.27) with{E,U} set to

{EMMSE-DFE,UMMSE-DFE} = argmin
E,U

E{‖a− âDFE‖2 | Q}

assumingDA (âDFE) = a, (6.28)

i.e., set to minimize the MSE of̂aDFE under the assumption of perfect decision feedback.
It can be shown thatUMMSE-DFE andEMMSE-DFE can be computed with the aid of an LDU
decomposition [ADS00]:

UH
MMSE-DFE∆∆∆MMSE-DFEUMMSE-DFE = QHC−1

z Q+σ−2
a I (6.29)

EMMSE-DFE = UMMSE-DFEELMMSE, (6.30)

with ELMMSE given by (6.24)-(6.25). TheZF-DFE takes the form of (6.27) withUZF-DFE

computed via the LDU decompositionUH
ZF-DFE∆∆∆ZF-DFEUZF-DFE = QHQ, and withEZF-DFE =

UZF-DFEQ−1.
In practice, the hard decisions in (6.27) are not always perfect, which leads to the

phenomenon known aserror propagation[Od85]. There, a decision error ona[k] has the
effect of amplifying, rather than canceling, the interference thata[k] causes to the not-yet-
estimated symbols{a[k′]}k−1

k′=0. While error propagation can be somewhat alleviated by
detecting symbols with higher signal-to-interference noise ratio (SINR) first (e.g., by V-
BLAST detection ordering [WFGV98]), error propagation is better avoided through tree
search or iterative soft equalization, as discussed below.

Finally, we note that hybrid trellis/DFE techniques have been proposed with complex-
ities and performances that lie between trellis and DFE methods. Two of the more well
known techniques arereduced state sequence estimation[EQ88] anddelayed decision
feedback estimation[DHH89].

9The DFE described here is sometimes referred to as a “generalized” DFE to distinguish it from the classical
DFE implemented using tapped delay-line forward and feedbackfilters [ADC95].
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Equalization based on tree search
In DFE, a single hypothesis of the sequence(a[k+ 1], . . . ,a[K − 1]) is used to aid the
estimation ofa[k]. Tree-search10 methods improve on this idea by keeping and using
several hypotheses of the sequence(a[k+ 1], . . . ,a[K − 1]) until it is clear which is the
single best hypothesis.

Tree-search algorithms can be partitioned into optimal andsuboptimal approaches.
Optimal tree searchmethods are capable of implementing MLSD with a complexity that
is on averagemuch less than that of brute-force search [Mow94]. Though this average
complexity has been claimed to grow as roughlyO(K3) at sufficiently high SNR [HV05],
a careful analysis shows that, in fact, the average complexity of optimal tree search is
exponential inK [JO05]. To circumvent the potentially high complexity of exact tree
search (especially at low SNR),suboptimal tree searchmay be considered, since a very
small performance sacrifice can often lead to a huge reduction in complexity. In fact, a
well-designed suboptimal tree search can achieve near-ML performance with near-DFE
complexity [MEDC06]. When assessing a suboptimal tree search algorithm, it is most
appropriate to think in terms of itsperformance/complexity tradeoff.

Before conducting a tree search, the observationsy in (6.2) must be pre-processed to
yield acausal observation modelof the form

ȳ = Q̄ā+ z̄, (6.31)

whereQ̄ is upper triangular and̄a is some permutation ofa. Ignoring permutation for the
moment (so that̄a = a), the standard approach to upper-triangularization of (6.2) is QR
decomposition: if Q = VQRQ̄QR, whereVQR is unitary andQ̄QR is upper triangular, then
pre-processing according tōy = VH

QRy , ȳQR yields (6.31) withQ̄ = Q̄QR andz̄ = VH
QRz ,

z̄QR. Notice that̄zQR is statistically equivalent toz. As we show below, QR pre-processing
is closely related to the feedforward filtering operation inZF-DFE. Since the MMSE-
DFE is known to outperform the ZF-DFE in noisy environments,it has been suggested
[DEC03] to replace the QR pre-processing step with its MMSE-DFE equivalent, at least
for suboptimal tree search. To see this from another perspective, imagine for the moment
that suboptimal tree search is conducted according to the most greedy method possible,
i.e., with a single surviving hypothesis per stage. Then, ifQR pre-processing is used, this
suboptimal tree search is exactly the ZF-DFE, whereas, if MMSE-DFE pre-processing is
used, this suboptimal tree search is exactly the MMSE-DFE.

We will now provide the technical link between the QR decomposition and the ZF-
DFE, as well as the details of the MMSE-DFE pre-processor. Comparing the LDU de-
compositionQHQ = UH

ZF-DFE∆∆∆ZF-DFEUZF-DFE to the QR decompositionQ = VQRQ̄QR, it

becomes evident that̄QQR = ∆∆∆1/2
ZF-DFEUZF-DFE, from which it follows thatVH

QR = Q̄QRQ−1 =

∆∆∆1/2
ZF-DFEUZF-DFEQ−1 = ∆∆∆1/2

ZF-DFEEZF-DFE. Thus,ȳQR = ∆∆∆1/2
ZF-DFEEZF-DFEy can be recognized as a

scaled version of the ZF-DFE feedforward filter outputEZF-DFEy. If we repeat the same
steps with MMSE-DFE quantities in place of ZF-DFE quantities, we obtain theMMSE-

10What we call “tree search” is sometimes referred to as closest lattice point search, lattice decoding, sequential
decoding, or sphere decoding.
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DFE pre-processed observation[DEC03]

ȳMMSE-DFE , ∆∆∆1/2
MMSE-DFEEMMSE-DFEy, (6.32)

and the corresponding causal model

ȳMMSE-DFE = ∆∆∆1/2
MMSE-DFEUMMSE-DFEa+ z̄MMSE-DFE, (6.33)

wherez̄MMSE-DFE , ȳMMSE-DFE −∆∆∆1/2
MMSE-DFEUMMSE-DFEa.

MMSE-DFE pre-processed tree search proceeds from the causal model (6.33), where
the interferencēzMMSE-DFE is treated as (signal-independent) additive white Gaussian noise
(AWGN). Although it can be shown that̄zMMSE-DFE is white (in fact,Cz̄MMSE-DFE = I for any
Cz), it can readily be seen that̄zMMSE-DFE is signal-dependent (and hence non-Gaussian)
[DEC03]. Thus, treatinḡzMMSE-DFE as if it were AWGN will produce suboptimal11 se-
quence estimates. However, it turns out that the increase inpre-quantization SINR (from
the use of MMSE-DFE in place of ZF-DFE) more than compensatesfor the loss in op-
timality (due to non-AWGNz̄MMSE-DFE). Thus, relative to QR pre-processing, MMSE-
DFE pre-processing has been observed to yield significant improvements in the perfor-
mance/complexity tradeoff of suboptimal tree search [MEDC06].

Other types of pre-processing include lattice reduction (e.g., the method of Lenstra,
Lenstra, and Lovász [LLL82]) and column permutation (e.g.,re-ordering ofa so that
stronger symbols are decided first, as in V-BLAST ordering [WFGV98]). Since these
techniques would destroy the quasi-banded structure ofQ, however, we will not elaborate
on them further.

Tree search algorithms (whether optimal or suboptimal) canbe categorized as breadth-
first, depth-first, or best-first [AM84, MEDC06]. Breadth-first search algorithms in-
clude, e.g., the M-algorithm [AM84], the T-algorithm [Sim90], statistical pruning algo-
rithms [GH03], the Wozencraft sequential decoder [WR61], and the Pohst sphere de-
coder [FP85]. Depth-first search algorithms include, e.g.,the Schnorr-Euchner sphere
decoder and its variants [VB99, AEVZ02, DEC03]. Best-first search algorithms include,
e.g., the stack and Fano algorithms [VO79, Fan63, MEDC06]. Since a thorough descrip-
tion and comparison of these approaches are outside the scope of this chapter, we make
only a few remarks. The Fano algorithm was recently found to yield a superior com-
plexity/performance tradeoff whenQ was either a convolution matrix or fully populated
[MEDC06]. The same result does not appear to hold whenQ is quasi-banded, though
[HS06]. The M-algorithm is popular for two reasons: simplicity and fixed complexity
(i.e., complexity invariant to channel/noise realizations and SNR).

While so far we have focused on tree-search implementations of MLSD, we now de-
scribe how tree search can be used to find (approximate) posterior LLRs, and thus MAP
symbol and bit estimates, using the method of Hochwald and ten Brink [Ht03]. First we
define thecoherent MAP sequence metric

ζcoh(c) , ln f (y | c,Q)+ lTc c (6.34)

= −‖y−Qa‖2
C−1

z
− ln(πK det{Cz})+ lTc c, (6.35)

11Interestingly, it has been shown thatz̄MMSE-DFE can be treated as AWGN whenA is constant modulus. In other

words,âcMLSD = argmina∈A K ‖ȳMMSE-DFE −∆∆∆1/2
MMSE-DFEUMMSE-DFEa‖2 for constant modulusA [HS05].
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wherelc ,
(
Lc[0] · · · Lc[K−1]

)T
, with Lc[k] being a-priori LLRs from (6.20), and

where the symbolsa are determined by the hypothesized bit vectorc. As previously
remarked, the use of a-prior LLRs implies that the coded bits{c[ j]} are treated as inde-
pendent. It is straighforward to show (see Appendix 6.A) that the posterior LLR defined
in (6.19) can be written as

Lc|y,Q[ j] = ln
∑c:c[ j]=1eζcoh(c)

∑c:c[ j]=0eζcoh(c)
. (6.36)

Note that, in the summations of (6.36), all possibilities ofc ∈ {0,1}K log2 |A | are consid-
ered, not only those in the codebook. (The same holds true in related equations throughout
the chapter.) This reflects our assumption that the equalizer doesnotuse knowledge of the
code structure to generate posterior LLRs; code structure is exploited only by the decoder.

ComputingLc|y,Q[ j] via (6.36) would require 2K log2 |A | evaluations of the MAP metric
ζcoh(c), and hence would be impractical. However, as suggested in [Ht03], the “max-log”
approximation ln∑c eζ (c) ≈ maxc ζ (c) can be applied to yield

Lc|y,Q[ j] ≈ max
c:c[ j]=1

ζcoh(c)− max
c:c[ j]=0

ζcoh(c). (6.37)

Suboptimal tree search can then be used to find the set of all bit vectorsc ∈ {0,1}K log2 |A |

which yield non-negligible coherent MAP metricsζcoh(c), as detailed in [dW05]. Once
the posterior LLRs have been calculated, it is possible to generate hard bit estimates via
(6.21), if needed. In a turbo configuration, though, the equalizer passes the posterior LLRs
to a soft-input/soft-output decoder. After decoding, the refined LLRs are passed back to
the equalizer to be used as priors, i.e.,lc. (Recall Fig. 6.1.)

Iterative soft equalization
For approximate symbol/bit MAP equalization, one can consider usingiterative soft equal-
ization techniques [WP99, TKS02] as an alternative to the trellis andtree-search ap-
proaches described earlier. The iterative soft equalization techniques described here use
linear estimationstrategies in conjunction withevolving beliefsof the interfering bits. Af-
ter estimating a given bit, the equalizer updates its beliefabout that bit to better estimate
the other bits. Once all bit beliefs (e.g., LLRs) have been updated, the process repeats.
The equalizer may itself iterate several times and/or it maytrade soft bit information with
a soft-input/soft-output decoder in a turbo configuration.

Below we detail the main concepts behind iterative soft equalization for the simple
case of BPSK.12 This simplification allows us to make a direct mapping between each bit
and a corresponding symbol, e.g.,a[ j] = 2b[ j]−1 for j = 0, . . . ,K−1, whereb[ j]∈ {0,1}
anda[ j] ∈ A = {−1,+1}. In this case, the a-priori LLR from (6.20) can be rewritten as

Lc[ j] = ln
Pr{a[ j] = +1}
Pr{a[ j] =−1} . (6.38)

12The case of non-binary alphabets follows similar principlesbut is more tedious to describe.
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Suppose that we are interested in estimating thej th bit, c[ j], or equivalently thej th

symbol,a[ j]. And say that, when doing so, we have prior information on theother bits,

and thus the other symbols̄a j ,
(
a[0] · · · a[ j −1] 0 a[ j +1] · · · a[K−1]

)T
,

that comes in the form of a-priori LLRs. To facilitate the useof linear operations, the
symbol estimation stage treats the elements inā j as independent Gaussian with means
and variances that are calculated from the respective LLRs.In particular, the calculated
mean ofa[k] (for k 6= j) is computed viaµa[k] , ∑a∈{−1,+1}a Pr{a[k] = a} using the
identity

Pr{a[k] = a} =
exp
(
(a−1)Lc[k]/2

)

1+exp(−Lc[k])
for a∈ {−1,+1}, (6.39)

from which it can be shown that

µa[k] =
1−exp(−Lc[k])
1+exp(−Lc[k])

= tanh(Lc[k]/2). (6.40)

Similarly, the calculated variance ofa[k] (for k 6= j) is computed via

va[k] , −µa[k]
2+ ∑

a∈{−1,+1}
a2Pr{a[k] = a} = 1−µa[k]

2. (6.41)

The estimation ofa[ j] proceeds by writing the observation as

y = q ja[ j]+Qā j + z, (6.42)

whereq j denotes thej th column ofQ. For convenience, we collect the calculated means

into µ̄µµ j ,
(
µa[0] · · · µa[ j −1] 0 µa[ j +1] · · · µa[K−1]

)T
and the calculated

variances intōv j ,
(
va[0] · · · va[ j −1] 0 va[ j +1] · · · va[K−1]

)T
.

In the classical iterative soft equalization approach proposed by Wang and Poor [WP99],
soft interference cancellation:

x j = y−Qµ̄µµ j (6.43)

is followed by LMMSE combining:

âLMMSE[ j] = eH
j x j with e j = arg min

e∈CK
E
{∣
∣a[ j]− eHx j

∣
∣2
}
. (6.44)

Writing the interference-canceled vector as

x j = q ja[ j]+ r j , (6.45)

with residual interference vector

r j = Q(ā j − µ̄µµ j)+ z, (6.46)

it can be seen thatCr j = Qdiag{v̄ j}QH +Cz. Withholding prior belief ona[ j], so that
E{a[ j]}= 0 and var{a[ j]}= 1, the LMMSE combiner in (6.44) becomes

e j = C−1
x j

Cx j ,a[ j] =
(
q jqH

j +Cr j

)−1q j =
1

1+qH
j C−1

r j q j
C−1

r j
q j , (6.47)
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where the matrix inversion lemma was used to obtain the rightside of (6.47). Thus,
âLMMSE[ j] becomes

âLMMSE[ j] =
qH

j C−1
r j

x j

1+qH
j C−1

r j q j
. (6.48)

From straightforward arguments,13 one can conclude that any scaled version of the
statistic

g[ j] , qH
j C−1

r j
x j , (6.49)

including the LMMSE estimate ˆaLMMSE[ j], is sufficient [Poo94] for ML14 detection ofa[ j]
(and thus ofb[ j]) from x j . In fact, the ML symbol decision is simply the sign of

Lg[ j] , ln
f (g[ j] | a[ j] = +1)
f (g[ j] | a[ j] =−1)

= ln
f (g[ j] | c[ j] = 1)
f (g[ j] | c[ j] = 0)

. (6.50)

Expandingg[ j] as

g[ j] = qH
j C−1

r j
q j a[ j]+qH

j C−1
r j

r j , (6.51)

it can be seen thatg[ j]
∣
∣a[ j] is circular Gaussian with meana[ j]µg[ j] and varianceσ2

g[ j],

whereµg[ j] = qH
j C−1

r j
q j = σ2

g[ j]. Hence,

Lg[ j] = ln
exp
(
−
∣
∣g[ j]−µg[ j]

∣
∣2/σ2

g[ j]

)

exp
(
−
∣
∣g[ j]+µg[ j]

∣
∣2/σ2

g[ j]

) (6.52)

= −
∣
∣g[ j]−µg[ j]

∣
∣2/σ2

g[ j]+
∣
∣g[ j]+µg[ j]

∣
∣2/σ2

g[ j] (6.53)

= 4Re{g[ j]}. (6.54)

Finally, a posterior LLR ona[ j] (and hence onc[ j]) can be generated via

ln
Pr{a[ j] = +1 | g[ j]}
Pr{a[ j] =−1 | g[ j]} = ln

Pr{c[ j] = 1 | g[ j]}
Pr{c[ j] = 0 | g[ j]} = Lg[ j]+Lc[ j], (6.55)

where (6.50) and Bayes rule were used to obtain the right sideof (6.55). The posterior
LLR (6.55) can then be used in place ofLc[ j] in (6.40)-(6.41) to calculate the meanµa[ j]
and varianceva[ j] for subsequent estimation of{c[k]}k6= j .

Remarks on complexity
The coherent equalization tools described in this section are quite general; they apply
to anyQ, and thus any type of linear modulation/demodulation combined with any type
of linear channel propagation (whether the channel is rapidly TV or not). In fact, when

13Sufficiency can be understood as follows. After constructing the interference-cancelled/whitened observation

C−1/2
r j x j = C−1/2

r j q j a[ j]+C−1/2
r j r j , the application of the matched filterC−1/2

r j q j , or any scaling thereof, yields
a sufficient statistic for the detection ofa[ j] [Poo94]. These two steps are combined in writing (6.49).
14Since we assume a uniform prior ona[ j], ML detection is equivalent to MAP detection.
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structure inQ is lacking or ignored, equalization can be viewed as a form ofCDMA
multiuser detection[Ver98, Mos96] where the code matrix (in this caseQ) changes from
one bit to the next, or as a form ofMIMO decoding[TV05] for communication over a
flat-fading channel withK transmit andK receive antennas. For the case of genericQ,
however, the cost of implementing the equalization criteria rises rapidly withK, the block
size. For example, we saw that linear and DFE schemes consumeO(K3) operations per
block, and that more sophisticated schemes can be significantly more expensive. Since,
for the applications we envision, typical values ofK can be in the hundreds or thousands,
equalization is made practical only by leveraging the structural properties ofQ discussed
in Section 6.2.2. Using these properties, Sections 6.3.3–6.3.4 below describe equalization
algorithms specifically tailored to rapidly TV channels.

6.3.3 Coherent equalization for time-frequency concentrated
modulation/demodulation

Recall from Section 6.2.2 that, when sufficiently time-frequency concentrated modula-
tion/demodulation pulses are used, the effective channel matrix Q falls into the “narrowly
quasi-banded” class. Here,Q contains only negligible coefficients outside of the shaded
region in Fig. 6.2(b), for someD ≪ K. The main idea behind the equalization algorithms
discussed in this section is that, by ignoring these negligible coefficients, the complexity
of equalization can be significantly reduced without a significant loss in performance.

In this section, we will treat the interference caused by thenegligible coefficients in
Q as if it were part of the additive noisez, allowing us to regard the negligible coeffi-
cients inQ as if they were zero-valued. In doing so, we will assume that the interference
radiusD has been chosen large enough so that these additional contributions toz are rel-
atively small (for the SNRs of interest). In particular, we will assume that the value of
D allows us to continue treatingz as statistically independent ofa, as assumed in Sec-
tion 6.2. With suitably designed modulation/demodulationschemes like the max-SINR
schemes in [DS07], these assumptions have been shown [HS06]15 to be satisfied with
D = ⌈νmaxTsK⌉+ 1 at SNRs up to at least 10dB and withD = ⌈νmaxTsK⌉+ 2 at SNRs
up to at least 30dB. Less time-frequency concentrated schemes require larger values of
D, making equalization more expensive to implement for the same level of residual in-
terference. For example, the interference profiles in Fig. 6.4 suggest that Strohmer and
Beaver’s scheme [SB03] requires a radiusD at least 2 higher than the max-SINR scheme
of [DS07] for the same level of residual interference.

In the remainder of this section, we provide some insight into how the narrowly quasi-
banded structure ofQ can be leveraged to lower the complexity of the equalizationstrate-
gies described in Section 6.3.2. In particular, we identifytwo principal approaches to
this problem:fast serial equalizationandfast joint equalization. We keep our description
brief because equalization for narrowly quasi-bandedQ is related to particular forms of
equalization for OFDM, which is the topic of Chapter 7.

15For the specifiedD and SNR range, MLSD performance was found to be identical whether the out-of-bandQ
coefficients were treated as part of the channel or as part of the noise. We note that the variable “D” in [HS06] is
defined to have twice the value ofD in this chapter, since in [HS06] the effective channel matrixis real-valued.
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Figure 6.6 The local observation model used for fast serial equalization.

Fast serial equalization
Many techniques that leverage the narrowly quasi-banded structure ofQ can be classified
as fast serial equalizationtechniques. These techniques avoid theK ×K matrix oper-
ations (e.g., inversion and LDU decomposition) specified inSection 6.3.2 for, e.g., lin-
ear equalization (6.24)-(6.26), decision feedback equalization (6.29)-(6.30), tree-search
based equalization (6.35), and iterative soft equalization (6.49). Instead, the fast serial
techniques work on thelocal observation model

yk = Qkak+ zk (6.56)

when estimating the symbola[k] (or any coded bits represented bya[k]) for k= 0, . . . ,K−
1. Here,yk ,

(
y[k−D] · · · y[k+D]

)T
and ak ,

(
a[k−2D] · · · a[k+2D]

)T
are

illustrated in Fig. 6.6, along withQk andzk. The principal idea behind the local model is
the following.Since a[k] affects only the local observationsyk ∈C

2D+1 within y∈C
K , use

only these local observations to estimate a[k]. We can thus think ofQk ∈ C
(2D+1)×(4D+1)

as the “local effective channel matrix.” It is usually convenient to increment the index
k in steps of 1, so that estimation is performedserially, i.e., one symbol at a time. And
sometimes it helps to start over atk = 0 afterk = K −1 has been reached. Notice that,
due to the corner support regions of the quasi-bandedQ in Fig. 6.6, the local observation
window shifts cyclically withiny.

To our knowledge, Jeon, Chang, and Choo [JCC99] were the firstto apply this fast
serial approach to the equalization of rapidly TV channels.In particular, they proposed an
LMMSE approximation that required onlyO(KD3) operations per block. Note that, when
D ≪ K, their approach is much cheaper than standardO(K3) LMMSE, i.e., (6.24)-(6.25).
Cai and Giannakis [CG03] proposed LMMSE and MMSE-DFE extensions of [JCC99]
where the inversion of the(2D+1)× (2D+1) covariance matrixCyk was accomplished
using a rank-one update. However, their schemes requireO(K2D) operations per block,
where the quadratic dependence onK remained as a result of not fully exploiting the
quasi-banded property ofQ. Barhumi, Leus, and Moonen [BLM04, BLM06] proposed
generalizedO(K2D2) per-tone linear equalization schemes that allowed oversampling in
the frequency domain.
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Hunziker and Dahlhaus [HD03] proposed an iterative approximation to ML symbol de-
tection in which the likelihoods of individual symbols wereserially maximized assuming
tentative hard decisions on the other symbols. To reduce error propagation, they initial-
ized using an approximation of LZF that was implemented serially using Gauss-Seidel
iterations. Schniter and Das [Sch04, DS07] proposed iterative soft equalization based on
the local observation model (6.56), requiring onlyO(KD3) operations per block itera-
tion. As discussed in Section 6.3.2, a well-designed iterative soft equalizer is effective at
preventing error propagation and can be used in a turbo configuration, as in [DS07]. A
similar iterative soft equalization scheme was proposed later by Peng and Ryan [PR06].

Fast joint equalization
Fast joint equalizationtechniques have also been proposed for the coherent equaliza-
tion of narrowly quasi-banded versions ofQ that result when time-frequency concen-
trated modulation/demodulation is used with rapidly TV channels. As opposed to serial
equalization schemes, which estimate the symbols ina one-at-a-time, joint equalization
schemes estimate theK symbols ina jointly.

Early joint techniques assumed not only thatQ is narrowly quasi-banded, but also
that the off-diagonal coefficients within the support region of Q are themselves relatively
small. For example, iterative LZF approximation techniques that requireO(KD) oper-
ations per block iteration where proposed by Toeltsch and Molisch [TM01] and Guil-
laud and Slock [GS03]. Gorokhov and Linnartz [GL04] proposed O(KD) approximate
LMMSE and DFE-like schemes using a first-order Taylor seriesapproximation of the
K × K LMMSE matrix inverse. Tomasin, Gorokhov, Yang, and Linnartz [TGYL05]
extended the techniques in [GL04] to incorporate iterativehard interference cancella-
tion. Hou and Chen [HC05] proposed anO(KD2) nonlinear estimator of the form̂a =
EFFy−EFBDA (EFFy), whereEFF and EFB are both narrowly banded. Note that, in
[HC05], quantization is performed on the linear estimatesEFFy rather than (causally) on
the final estimateŝa, as in DFE (6.27).

More recently, Rugini, Banelli and Leus proposedO(KD2) exact LMMSE [RBL05]
and MMSE-DFE [RBL06] schemes for narrowly banded16 Q based on fast LDU de-
composition. Furthermore, they showed how to design a receiver window to ensure
that the noise covarianceCz is quasi-banded, making the observation covarianceCy =
σ2

a QHQ+Cz banded as well. These non-approximate LMMSE and MMSE-DFE equal-
izers are expected to outperform their approximate counterparts. (See Chapter 7 for more
details.)

Joint MLSD-based schemes exploiting the quasi-banded structure ofQ have also been
proposed. For example, Matheus and Kammeyer [MK97] appliedthe Viterbi algorithm to
implement exact MLSD on a(2D+1)-bandedQ with complexityO(KD|A |2D+1). The
same idea was re-invented in later works, e.g., [SAMT05]. For typical values of|A | and
D, however, the complexity of Viterbi equalization can be orders-of-magnitude higher
than that of MMSE-DFE. Thus, Hwang and Schniter [HS06] investigated tree-search ap-
proaches to approximate MLSD. Their techniques use fast MMSE-DFE pre-processing,

16With minor modifications, the fast LDU decomposition that Rugini, Banelli, and Leus developed for banded
matrices (i.e., those matching Fig. 6.5(b)) can be extended toquasi-banded matrices (i.e., those matching
Fig. 6.5(a)) [HS06].
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costingO(KD2) operations, followed by a tree-search that employs a fast metric update

and is tuned to the V-shaped structure of the upper triangular matrix ∆∆∆1/2
MMSE-DFEUMMSE-DFE

in the causal model (6.33). (Recall the V-shaped illustration in Fig. 6.5(c).) The resulting
scheme has approximately the same complexity as the fast MMSE-DFE from [RBL06],
yet results in performance that is almost indistinguishable from MLSD.

MAP schemes exploiting the quasi-banded structure ofQ have also been proposed.
For (2D+ 1)-bandedQ, e.g., Liu and Fitz [LF07] used reduced-state sequence estima-
tion [EQ88] to compute approximate soft bit estimates whileHwang and Schniter [HS09]
applied tree-search (with a fast metric update). Finally, using the technique of Tüchler,
Koetter, and Singer [TKS02], it is straightforward to translate any set of LMMSE esti-
mates into soft bit estimates. Leveraging this idea, Fang and Leus [FRL08] turned the fast
joint LMMSE estimation scheme of [RBL05] into a soft bit estimation scheme.

Other approaches to equalization for time-frequency concentrated schemes
For completeness, we mention two other schemes proposed forthe equalization of chan-
nels yielding a narrowly quasi-bandedQ. The paper by Choi, Voltz, and Cassara [CVC01]
was among the first to consider equalization for multicarrier modulation over doubly se-
lective (i.e., time- and frequency-selective) channels, and it proposed ZF, LMMSE, and
ZF-DFE schemes for doing so. However, these schemes consumed O(K3) operations per
block because the narrowly quasi-banded structure ofQ was not leveraged. For the same
application, Stamoulis, Diggavi, and Al-Dhahir [SDAD02] proposed anO(K2) LMMSE
approximation where the matrix to be inverted during each block interval is replaced by
its time average. As we have seen, however, near-optimal schemes can be designed with
complexities that arelinear in K.

6.3.4 Coherent equalization for single-carrier modulation/demodulation

Recall from Section 6.2.2 that, when single-carrier modulation/demodulation is used,
the effective channel matrixQ falls into the “widely quasi-banded” class. Here,Q has
only negligible coefficients outside the shaded region in Fig. 6.2(a), whereM denotes
the discrete channel delay spread. Since, in this case,Q is quasi-banded, the equaliza-
tion techniques described in Section 6.3.3 canin principle be applied here as well (e.g.,
[ASLC06]). However, this approach will only be practical when M is small. SinceM
is often large (e.g., in the hundreds), there is good reason to study equalization schemes
whose complexities are robust to largeM.

Frequency-domain equalization
Frequency-domain equalization(FDE) [FABSE02] is one approach to make the equal-
ization complexity of single-carrier schemes reasonable whenM is large. To describe
FDE, we focus on the case of CP-SCM modulation/demodulation, assuming adequate
guard length (i.e.,Ng ≥ M−1) and white noise (i.e.,Cz = σ2

z IK). The first step of FDE
is transformation of the observationsy to the frequency domain. Denoting theK ×K
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unitary discrete Fourier transform (DFT) matrix byW and using under-bars to identify
frequency-domain vectors (e.g.,y , Wy, a , Wa, andz , Wz), it follows from (6.2) that

y = Qa+ z (6.57)

whereQ = WQWH and wherez also has covarianceσ2
z IK . The second step of FDE is

estimation ofa from y. While the elements ofa belong to a finite alphabet, the elements
of a do not, and hence the estimator must be linear. One option is LMMSE estimation,

i.e., âLMMSE = (QHQ+
σ2

z
σ2

a
IK)

−1QHy. The third and final step of FDE is transformation

of â back to the time domain, yielding the symbol estimatesâ , WH â. If the DFTs are
implemented using radix-2 FFTs, they will consume onlyO(K log2K) operations.

With a time-invariant channel, the use of CP-SCM makesQ circulant (recalling Sec-
tion 6.2.2) and henceQ diagonal. In this case, the LMMSE estimation step consumes
only O(K) operations (because the matrix to invert is diagonal), and FDE consumes
O(K log2K) operations in total. Note that, for largeM, FDE would be significantly
cheaper than LMMSE estimation ofa from y via fast LDU [RBL05] (as discussed in
Section 6.3.3), which consumesO(KM2) operations, where typicallyM ≈ K/4.

With a TV channel,Q will not be circulant, and thusQ will not be diagonal. In this
case, the off-diagonal terms ofQ will be non-zero, complicating the estimation ofa from
y. In fact, the interference power profile ofQ with CP-SCM is identical to that ofQ
with CP-OFDM, which (as shown in Fig. 6.4) decays quite slowly with distance from the
diagonal. However, through the application of time-domainwindowing17 at the demodu-
lator [SL03], it is possible to giveQ the narrowly quasi-banded support of Fig. 6.2(b), in
which case any of the fastlinear equalization techniques described in Section 6.3.3 can
be used to estimatea from y. For example, in [TL08], Tang and Leus proposed a method
to equalize a single carrier system using the OFDM fast LMMSEtechnique [RBL05].

Becausea does not have a finite-alphabet structure, the trellis, DFE,and tree-search
based techniques discussed in Section 6.3.3 are not directly applicable to the estimation
of a. Iterative soft equalization, however, is applicable. We now summarize the approach
proposed by Schniter and Liu in [SL03]. First, the fast serial iterative soft equalization
technique of [Sch04] is used to compute the LMMSE interference-canceled estimatêa
from the frequency-domain windowed observationsy (given current estimates of the time-
domain symbol means and variances). Next, the estimatesâ are transformed to the time
domain viaâ = WH â, from which posterior LLRs are calculated for each of the bits
c[ j]. The posterior LLR computation is more complicated than (6.54)-(6.55), though,
due to the correlation that results from the time-frequencytransformation. Finally, the
posterior LLRs are used as priors in the next iteration, which begins by re-calculating
the time-domain symbol means and variances. In [SL03], a fast algorithm for the entire
procedure was derived that consumes onlyO(D2K logK) operations per block iteration.
Ng and Falconer [NF04] later extended the technique of [SL03] to include widely linear
estimation (though they neglected the receiver windowing step).

Though the windowed FDE method above focuses on CP-SCM, similar techniques
can be applied to ZP-SCM under appropriate processing of thereceived guard samples.

17With time-domain windowing,y = W∆∆∆y andQ = W∆∆∆QWH for suitably chosen diagonal∆∆∆.
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For single-carrier modulationwithout a prefix, the use ofIBI-cancellation and cyclic-
prefix reconstruction[KS98] enables the application of the CP-SCM-based windowed
FDE methods discussed above, as demonstrated by Schniter and Liu in [SL04].

Other approaches to equalization for single-carrier schemes
Barhumi, Leus, and Moonen [BLM05] proposed a CP-SCM equalization technique based
on LTV filters whose time-variations were constrained to obey a (possibly oversampled)
complex-exponential basis expansion model of orderI −1. Under these constraints, LZF
and LMMSE equalizers, requiringO(KI3M3) operations per block, were designed. How-
ever, due to the cubic complexity inM, these schemes are much more expensive than
frequency-domain equalization whenM is large.

6.4 Noncoherent equalization

In Section 6.3 we discussed the coherent approach to equalization, i.e., estimation ofa
from y in (6.2), where the channelH, and hence the effective channelQ, was assumed to
be known. Here we discussnoncoherent equalization, where the channel realizationH is
unknown but its statistics may be known.

In Section 6.4.1, we rewrite the system model in a form that ismore convenient for
noncoherent equalization. Then, in Sections 6.4.2 and 6.4.3, we describe criteria and
algorithms for noncoherent equalization, respectively. Finally, in Sections 6.4.4–6.4.5,
we describe specific strategies suitable for the noncoherent equalization of rapidly TV
channels.

6.4.1 Noncoherent system model

Since the effective channelQ is now unknown, it helps to re-formulate the system model
developed in Section 6.2 into a more convenient form. In particular, we rewrite (6.2)
using an efficient parameterization for the entries of the matrix18 Q. To do this, we build
a basis expansion model(BEM) for the trajectories of the effective channel coefficients
that make upQ, and then we write the observation in terms of these BEM coefficients.

From (6.2), we can see that

y[l ] =
K−1

∑
k=0

[Q]l ,ka[k]+z[l ] =
l−K+1

∑
d=l

[Q]l ,l−da[l −d]+z[l ] (6.58)

=
K−1

∑
d=0

q[l ,d]a[l −d]+z[l ] (6.59)

18We choose to parameterize the entries ofQ rather than those ofH to avoid explicitly defining the modulation
and demodulation operations.
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for q[l ,d] , [Q]l ,〈l−d〉K and where the index ofa[·] in (6.59), and henceforth, is taken
modulo-K. Here,〈 j〉K denotes “j moduloK.” Notice that (6.59) expresses the relationship
between{a[l ]} and {y[l ]} in exactly the same way as (6.1) expressed the relationship
between{s[n]} and{r[n]}: using a TV convolution. In fact, when the modulation and
demodulation operations are trivial, as in single-carriermodulation, we haveq[l ,d] =
h[l ,d]. Due to the support ofQ, as described in Section 6.2.2, the summation range
in (6.59) can be truncated tod ∈ {−D, . . . ,D} for narrowly quasi-bandedQ and tod ∈
{0, . . . ,M − 1} for widely quasi-bandedQ. In this section, we will assume the general
case thatd ∈ {0, . . . ,Nq−1}, so that the widely quasi-banded case follows directly from
Nq = M and the narrowly quasi-banded case follows fromNq = 2D+1 after cyclically
left-shifting the columns ofQ by D places. (Recall Fig. 6.2.)

While BEMs are usually applied to the channel impulse response trajectories{h[n,m]}N−1
n=0

(e.g., [TG96]), here we apply a BEM to theeffectivechannel impulse response trajectory,
which includes the effects of modulation/demodulation. Inparticular, we model thedth

trajectory{q[l ,d]}K−1
l=0 using the BEM coefficients{θ [i,d]}I−1

i=0 and basis waveforms con-
structed from{β [l , i]}, as follows:

q[l ,d] =
I−1

∑
i=0

β [l , i]θ [i,d] for l = 0, . . . ,K−1. (6.60)

If one prefers not to use a BEM, then thetrivial BEM, specified byI =K andβ [l , i] = δ [l−
i], whereδ [·] denotes the Kronecker delta, guaranteesθ [l ,d] = q[l ,d] ∀l ,d. Usingθθθ d ,
(
θ [0,d] · · · θ [I −1,d]

)T ∈ C
I and βββ l ,

(
β [l ,0] · · · β [l , I −1]

)H ∈ C
I , we have

q[l ,d] = βββ H
l θθθ d and hence equation (6.59) can be rewritten in terms of BEM quantities as

y[l ] = βββ H
l

Nq−1

∑
d=0

a[l −d]θθθ d +z[l ]. (6.61)

Collecting the demodulator outputs{y[l ]}k
l=0 in a vector, (6.61) implies






y[0]
...

y[k]






︸ ︷︷ ︸

, yk

=






a[0]βββ H
0 · · · a[−Nq+1]βββ H

0
...

...
a[k]βββ H

k · · · a[k−Nq+1]βββ H
k






︸ ︷︷ ︸

, ΛΛΛak






θθθ 0
...

θθθ Nq−1






︸ ︷︷ ︸

, θθθ

+






z[0]
...

z[k]






︸ ︷︷ ︸

, zk

, (6.62)

summarized by

yk = ΛΛΛakθθθ + zk. (6.63)

The matrixΛΛΛak is constructed from the partial symbol vectorak ,
(
a[0] · · · a[k]

)T

and the BEM waveforms{βββ l}k
l=0. Notice thataK−1 = a, yK−1 = y, andzK−1 = z for the

previously defined vectorsa, y, andz. Notice also that, in (6.63), the channel realization
is represented by the BEM coefficient vectorθθθ .
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Throughout this section, we assume (for simplicity) that the symbol block is zero-
prefixed, i.e.,a[l ] = 0 for l ∈ {−Nq + 1, . . . ,0}. Note that, due to the cyclic indexing
assumption ona[·], this implies thata[l ] = 0 for l ∈ {K −Nq+1, . . . ,K −1}. With this
assumption, (6.61) yields a causal relationship between the symbols and the demodulator
outputs, i.e.,{y[l ]}l≤k depends only on{a[l ]}l≤k.

We also assume that the channel isRayleigh fading, i.e., that the impulse response coef-
ficients are zero-mean19 Gaussian distributed. Due to the linearity of modulation/demodulation
and basis expansion modeling, this implies that the BEM coefficientsθθθ will also be zero-
mean Gaussian. All other model assumptions stated in Section 6.2 apply here as well.

6.4.2 Noncoherent equalization criteria

In this section, we review several well-known noncoherent equalization criteria. As in
our previous discussion of coherent criteria, we partitionthe discussion into criteria that
apply to hard symbol estimates, complex-field symbol estimates, and soft bit estimates.

Before continuing, though, we discuss the importantambiguityphenomenon that can
arise in noncoherent equalization. For example, ifCa ∈ A K for somea ∈ A K and some
C 6= 1, then it is impossible to distinguish, from the outputy, between the hypotheses
(a,θθθ) and(Ca,C−1θθθ). Notice thatC accounts for both phase and/or gain ambiguity. To
prevent ambiguity, one could, e.g., use an asymmetric scalar alphabetA or treat a single
symbol (e.g.,a[0]) as a known pilot, so that the set of candidate symbol vectorsbecomes
asymmetric [Har00]. In stating the criteria below, we assume that the ambiguity issue has
been taken care of.

Hard symbol estimates
Similar to coherent equalization, the minimal probabilityof sequence error is guaranteed
by noncoherent maximum a posteriori sequence detection(MAPSD):

âncMAPSD , arg max
a′∈A K

Pr{a = a′ | y}. (6.64)

Note that the noncoherent posterior in (6.64) is not conditioned on the effective channel
matrixQ, as was the coherent posterior in (6.9). Similarly, noncoherent MAP symbol and
bit detection are defined as

âncMAP[k] , argmax
a∈A

Pr{a[k] = a | y} for k∈ 0, . . . ,K−1 (6.65)

ĉncMAP[ j] , arg max
c∈{0,1}

Pr{c[ j] = c | y} for j ∈ 0, . . . ,K log2 |A |−1. (6.66)

If the equalizer assumes thata is uniformly distributed overA K , then noncoherent
MAPSD reduces tononcoherent maximum likelihood sequence detection(MLSD):

âncMLSD , arg max
a∈A K

f (y | a). (6.67)

19Some details of the non-zero case can be found in [RC96].
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(The justification is similar to (6.13).) Due to the Rayleighfading assumption,f (y | a) is
a Gaussian distribution with zero mean and covariance

Cy|a = Cz +ΛΛΛaCθθθ ΛΛΛH
a . (6.68)

Given this conditional distribution fory, (6.67) reduces to

âncMLSD = arg min
a∈A K

{

yHC−1
y|ay+ ln(πK det{Cy|a})

}

. (6.69)

There is an interesting connection between the noncoherentMAPSD/MLSD criteria
and MMSE channel estimation [Kai69, HM89]. To see this, we first write the MMSE
estimate ofθθθ from y under the sequence hypothesisa as

θ̂θθ MMSE|a , E{θθθ | y,a} = Cθθθ ,y|aC−1
y|ay (6.70)

= Cθθθ ΛΛΛH
a
(
Cz +ΛΛΛaCθθθ ΛΛΛH

a
)−1y (6.71)

=
(
C−1

θθθ +ΛΛΛH
a C−1

z ΛΛΛa
)−1ΛΛΛH

a C−1
z y, (6.72)

where the matrix inversion lemma was used to obtain (6.72). In Appendix 6.B, we use
(6.72) to show that (6.69) can be rewritten as

âncMLSD = arg min
a∈A K

{∥
∥y−ΛΛΛaθ̂θθ MMSE|a

∥
∥2

C−1
z

+‖θ̂θθ MMSE|a‖2
C−1

θθθ
+ ln(πK det{Cy|a})

}

. (6.73)

Equation (6.73) states that the noncoherent MLSD metric canbe written as the coherent
MLSD metric based on theimplicit channel estimatêθθθ MMSE|a, plus a term that penalizes

the deviation inθ̂θθ MMSE|a from the prior statistics onθθθ , plus what is sometimes referred
to as a “bias” term. Thus, while the noncoherent MLSD/MAPSD estimates can be found
without computing a channel estimate (as in (6.69)), they can also be found via joint
channel/symbol estimation (as in (6.73)).

If the channel statistics (i.e.,Cθθθ ) are unknown, then the noncoherent ML and MAP
criteria do not apply. In this case, it may be more appropriate to employ thegeneralized
likelihood ratio test(GLRT) criterion [WM02]:

âGLRT , argmax
a∈A K

max
θθθ∈CNqI

f (y | a,θθθ). (6.74)

Since lnf (y | a,θθθ) = −‖y−ΛΛΛaθθθ‖2
C−1

z
− ln(πK det{Cz}), the GLRT sequence estimate

can be expressed as

âGLRT = arg min
a∈A K

∥
∥y−ΛΛΛaθ̂θθ ML|a

∥
∥2

C−1
z
, (6.75)

whereθ̂θθ ML|a , argmaxθθθ∈CNqI f (y | a,θθθ) denotes thea-conditional maximum likelihood
(ML) channel estimate, i.e.,

θ̂θθ ML|a = arg min
θθθ∈CNqI

‖y−ΛΛΛaθθθ‖2
C−1

z
(6.76)

=
(
ΛΛΛH

a C−1
z ΛΛΛa

)−1ΛΛΛH
a C−1

z y. (6.77)
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Combining (6.77) and (6.75), the GLRT sequence estimate becomes

âGLRT = arg max
a∈A K

yHC−1
z ΛΛΛa

(
ΛΛΛH

a C−1
z ΛΛΛa

)−1ΛΛΛH
a C−1

z y. (6.78)

Notice that, when the noise is white,θ̂θθ ML|a in (6.77) reduces to the conditionalleast-

squares(LS) channel estimate:̂θθθ LS|a =
(
ΛΛΛH

a ΛΛΛa
)−1ΛΛΛH

a y.
Finally, we note that the GLRT metric in (6.78) equals the limiting case of theyHC−1

y|ay

component of the noncoherent MLSD metric in (6.69) whenCθθθ = σ2
θ I andσ2

θ → ∞, i.e.,
when the signal is white and the noise power is negligible relative to the signal power.

Complex-field symbol estimates
Thenoncoherent minimum mean-squared error(MMSE) criterion specifies the complex-
valued sequence estimate

âncMMSE , arg min
a′∈CK

E
{
‖a−a′‖2

∣
∣ y
}
. (6.79)

Note that, unlike the coherent case (6.15), the expectationin (6.79) is not conditioned on
the channelQ. Writing the MMSE estimate as the conditional mean [Poo94], we find

âncMMSE = E{a | y} = ∑
a∈A K

a p(a | y) (6.80)

= ∑
a∈A K

a
f (y | a)p(a)

∑a′∈A K f (y | a′)p(a′)
(6.81)

= ∑
a∈A K

a
p(a)

∫
f (y | a,θθθ) f (θθθ)dθθθ

∑a′∈A K p(a′)
∫

f (y | a′,θθθ) f (θθθ)dθθθ
. (6.82)

If we assume thatp(a) is uniformly distributed overA K , then

âncMMSE =
∑a∈A K a

∫
exp
(
−‖y−ΛΛΛaθθθ‖2

C−1
z

−‖θθθ‖2
C−1

θθθ

)
dθθθ

∑a′∈A K
∫

exp
(
−‖y−ΛΛΛa′θθθ‖2

C−1
z

−‖θθθ‖2
C−1

θθθ

)
dθθθ

. (6.83)

Note that the finite-alphabet nature ofa makes the conditional mean difficult to com-
pute, since it requires the evaluation of|A |K-term summations. Unlike the coherent case,
imposing constraints (e.g., linear) on the noncoherent MMSE estimator does not signifi-
cantly simplify its design, and so this approach is not very popular.

Soft bit estimates
In soft noncoherent equalization (as used in, e.g., turbo equalization), the equalizer com-
putes posterior LLRs20 for the coded bitsc[ j]

Lc|y[ j] , ln
Pr{c[ j] = 1 | y}
Pr{c[ j] = 0 | y} for j = 0, . . . ,K log2 |A |−1, (6.84)

20Under the “fixed lag” constraint, the conditioning in (6.84)is performed on
(

y[0] · · · y[⌈ j
log2 |A | ⌉+J]

)T

instead ofy [ZFG97], where the look-ahead intervalJ ≥ 0 trades off between performance and complexity.
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given the a-priori LLRs defined in (6.20). Note that the posterior probabilities in (6.84)
are not conditioned on the channel, unlike the coherent case(6.19). If needed, the nonco-
herent MAP bit estimates can be generated from the noncoherent posterior LLRs via

ĉncMAP[ j] =
1
2

(
1+sign(Lc|y[ j])

)
. (6.85)

6.4.3 Noncoherent equalization tools

The noncoherent MLSD, MAPSD, MAP, and MMSE estimates, as outlined in Section 6.4.2,
require the evaluation ofO(|A |K)metrics if computed via brute force, which is not practi-
cal for the anticipated values ofK. In this section, we review algorithms that are designed
for practical noncoherent equalization.

The suboptimality of trellis-based noncoherent equalization
Among the optimal coherent MAPSD, MLSD, and symbol/bit MAP algorithms in Sec-
tion 6.3.2 were trellis-based methods. We now investigate whether similar approaches
exist for optimal noncoherent equalization. In doing so, weuse the causal21 model sum-
marized by (6.63). To simplify the notation, we assume BPSK,allowing us to make a
direct mapping between each bit and symbol, e.g.,a[ j] = 2b[ j]−1 for j = 0, . . . ,K −1,
wherea[ j] ∈ A = {−1,+1}. Finally, we allow prior beliefs on the bits (and thus sym-
bols) in the form of a-priori LLRs{Lc[k]}K−1

k=0 , defined in (6.20) and simplified for BPSK
symbols in (6.38).

Analogous to the coherent MAP sequence metric (6.34), we nowdefine anoncoherent
MAP sequence metric. In particular, we define apartial noncoherent MAP sequence
metric that depends on the partial observationyk from (6.63) and the partial bit vector
ck ,

(
c[0] · · · c[k]

)T
:

ζnc(ck) , ln f (yk | ck)+ lTk ck. (6.86)

Here,lk ,
(
Lc[0] · · · Lc[k]

)T
is a partial version of the a-priori LLR vectorlc defined

just after (6.35). Notice that the complete noncoherent MAPsequence metricζnc(c) is
obtained whenk = K − 1. If we are interested in noncoherent MLSD rather than non-
coherent MAPSD, then we would useζnc(c) with lc = 0, and if we are interested in the
GLRT criterion, then would additionally assume thatCθθθ = σ2

θ I with σ2
θ → ∞.

Under the Rayleigh fading assumption,f (yk | ck) is Gaussian with zero mean and
covarianceCyk|ak

= Czk +ΛΛΛakCθθθ ΛΛΛH
ak

, whereak denotes the BPSK symbol vector corre-
sponding to the bit vectorck. Thus, we have

ζnc(ck) = −yH
k C−1

yk|ak
yk− ln(πk+1det{Cyk|ak

})+ lTk ck, (6.87)

21Note that this causal model is different from the one used for DFE in Section 6.3.2. For DFE,a was estimated
backwardsfrom the last symbol, whereas herea is estimatedforwardsfrom the first symbol.
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which reduces to the noncoherent MLSD metric in (6.69) whenlk = 0. Using the matrix
inversion lemma, (6.87) can be rewritten as

ζnc(ck) = −yH
k C−1

zk
ΛΛΛakΣΣΣ−1

ak
ΛΛΛH

ak
C−1

zk
yk− ln(πk+1det{Cyk|ak

})+ lTk ck (6.88)

with ΣΣΣak , C−1
θθθ +ΛΛΛH

ak
C−1

zk
ΛΛΛak. From (6.63), it follows that the partial observation can be

decomposed as

yk =

(
yk−1

y[k]

)

=

(
ΛΛΛak−1

λλλ H
ak

)

θθθ +

(
zk−1

z[k]

)

, (6.89)

whereλλλ H
ak

is the last row ofΛΛΛak. When the noise is white (i.e.,Czk = σ2
z Ik+1), it can

then be shown that (6.88) and (6.89) can be combined to write the noncoherent metric
recursively:

ζnc(ck) = ζnc(ck−1)+Lc[k]c[k]+ lnηak (6.90)

−
(

λλλ aky[k]
θ̂θθ MMSE|ak−1

)H
(

σ−2
z ΣΣΣ−1

ak
I−ηakΣΣΣ−1

ak−1
λλλ akλλλ H

ak

I−ηakλλλ akλλλ H
ak

ΣΣΣ−1
ak−1

−ηakσ2
z λλλ akλλλ H

ak

)(
λλλ aky[k]

θ̂θθ MMSE|ak−1

)

.

In (6.90),ηak , (σ2
z +λλλ H

ak
ΣΣΣ−1

ak−1
λλλ ak)

−1 andθ̂θθ MMSE|ak−1
denotes the MMSE estimate ofθθθ

from yk−1 under the sequence hypothesisak−1.
From (6.90) we can make a two important observations. First,we know that a trellis-

based implementation exists only if the metric update depends on afixednumber of past
symbols. Whileλλλ ak depends only on the pastNq symbols{a[k], . . . ,a[k−Nq+1]}, the
termsΣΣΣ−1

ak
andθ̂θθ MMSE|ak−1

depend, in general, on the full sequenceak, implying that opti-
mal noncoherent MAPSD/MLSD/GLRT cannot be implemented by atrellis-based tech-
nique. Second, when the BEM coefficient trajectories (i.e.,{θ [i,d]}I−1

i=0 for eachd) satisfy
an order-NAR Gauss-Markov model and the trellis has|A |Nq+NAR states, the Kalman filter
can be used to recursively compute the MMSE channel estimateθ̂θθ MMSE|ak−1

and its error

covariance,ΣΣΣ−1
ak−1

, conditioned on the symbolsak−1 that define each surviving path. Thus,
while a trellis can facilitate the computation of the exact partial sequence metric, it cannot
guarantee optimal pruning. The literature is not always clear about these points, however.
For example, Chugg [Chu98] points out that some seminal and often-cited works (e.g.,
[MS79, DS94]) seem to claim that noncoherent MLSD can be implemented with a trellis,
and shows precisely why this cannot be the case.

Not surprisingly, trellis-based implementations of the noncoherent MAP symbol and
bit criteria (6.65)-(6.66) are also suboptimal. With the forward-backward algorithm,22

there is no concept of surviving paths, and channel state information is required for each
state of the trellis. When the channel is unknown, the trelliscan be expanded so that
a channel estimate can be calculated at each state, after which the forward-backward
algorithm can again be applied, though not optimally: the performance (and complexity)
depends on the amount of trellis expansion [GL97, DCH01, HP00, AC00].

22For fixed-lag MAP symbol estimates, the situation is a bit different since the forward-backward algorithm
does not apply. There the posterior symbol probabilities canbe calculated recursively (assuming Gauss-Markov
BEM trajectories), but they require averaging over all possible past-symbol sequences and thus cannot be folded
into a trellis [ZFG97].
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Noncoherent equalization via per-survivor processing
While trellis-based noncoherent equalization is suboptimal, a trellis can be used forap-
proximatenoncoherent MAPSD/MLSD/GLRT and MAP symbol and bit estimation.

Of the many practical suboptimal trellis-based schemes that have been proposed, a
good number can be classified asper-survivor processing(PSP) [RPT95]. There, the
idea is to compute (at stagek of the trellis) a separate channel estimateθ̂θθ ak for each
surviving path extensionak, and then evaluate a partial metric corresponding to the pair
(ak, θ̂θθ ak). Only the surviving path extensions leading to the best metrics are retained as
survivors, after which the process repeats at the next stageof the trellis. As discussed
above, an|A |Nq+NAR-state trellis facilitates recursive MMSE estimation of order-NAR

Gauss-Markov BEM trajectories via Kalman filtering, and thus recursive computation
of MAPSD and MLSD partial metrics (recalling (6.73)). Thus,for that channel class,
the Viterbi algorithm with per-survivor Kalman filtering provides near-optimal noncoher-
ent MAPSD/MLSD. This idea seems to have been first proposed inMorley and Snyder
[MS79] using continuous-time filtering. Lodge and Moher [LM90] considered discrete-
time filters and realized that, if the observations are first whitened (which requires only a
bank of LTI filters), then the metric calculation simplifies in a way that eliminates the need
for Kalman filtering. This latter approach is known as the “innovations” approach. Simi-
lar ideas can be applied to fixed-lag MAP symbol/bit estimation processing, as proposed
by Iltis, Shynk, and Giridhar [ISG94].

Because the complexity of these trellis-based PSP methods grows exponentially in
Nq+NAR, however, PSP methods based on more general tree-searches may be more prac-
tical for near-optimal noncoherent detection, especiallyat high SNR, where sphere de-
coders can find the optimal solution without visiting many nodes. In fact, the proposal
of noncoherent tree-search can already be found in early works, e.g., Dai and Shwedyk
[DS94]. Notice that, with appropriate definition of the metric, the tree-search methods dis-
cussed in Section 6.3.2—in the context of coherent equalization—apply here too, except
that the pre-processing used there now becomes unnecessarybecause the model (6.63)
is already causal. A further advantage of tree-search is that it does not require BEM co-
efficients to satisfy a Gauss-Markov property, which can be useful in, e.g., multi-carrier
applications. In any case, the key to a computationally efficient tree-search is minimizing
both the number of nodes visited and the complexity per visited node. In regards to the
latter, Hwang and Schniter [HS07b] have shown that the quantities θ̂θθ MMSE|ak−1

andΣΣΣ−1
ak

can be updated recursively (for the generic modulation/demodulation and BEM setup of
(6.63)), yielding anO

(
N2

q I2
)

update to the noncoherent metric (6.90).

Iterative noncoherent equalization via the EM algorithm
The expectation-maximization(EM) algorithm [DLR77] is a well known approach for
ML estimation in the presence of “missing data.” Ify is the observation,x is the vector
to be estimated, andu is the “missing data,” then the EM algorithm attempts to find
x̂ML = argmaxx f (y | x) = argmaxx ln f (y | x) iteratively using the following recursion23

23If the missing datau was discrete, integration in (6.91) would be replaced by summation.
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(wherei denotes the iteration index):

x̂(i+1) = argmax
x

∫

f (u | y, x̂(i)) ln f (y,u | x)du. (6.91)

In Appendix 6.C, we show that (6.91) arises from the goal of maximally increasing the
likelihood at each iteration. So calledgeneralized EMalgorithms, which increase but
do not necessarily maximally increase the likelihood at each iteration, have also been
proposed (e.g., [FH94]). The EM recursion is sometimes regarded as having two separate
steps: an “E step” which computes the conditional expectation (i.e., the integral) in (6.91),
and an “M step” which performs the maximization in (6.91). ABayesian EM(EMB)
algorithm, with the goal to find̂xMAP = maxx f (x | y), follows by direct extension. Using
Bayes rule and disregarding irrelevant terms, we can writex̂MAP = argmaxx

(
ln f (y | x)+

ln f (x)
)

and attempt to find̂xMAP using the recursion

x̂(i+1) = argmax
x

{∫

f (u | y, x̂(i)) ln f (y,u | x)du+ ln f (x)
}

. (6.92)

One can immediately think of two ways that the EM(B) algorithms could be applied to
noncoherent equalization: i) the coded bits could be estimated while treating the channel
as missing (i.e., “info EM(B)”) [GH97], or ii) the channel could be estimated, while
treating the data as missing, and later used for coherent sequence detection (i.e., “channel
EM(B)”) [KV94, AHFF97, CT01, CV01, YR03, NP03, NL05]. EM(B)algorithms that
treat both channel and data values as parameters to be estimated have also been proposed,
e.g., [ZJP99].

We now describe thechannel EM(B)algorithm for noncoherent equalization. (See
Appendix 6.D for a discussion of the less practicalinfo EM(B)algorithm.) For this, we
use the modely = ΛΛΛaθθθ +z from (6.63), where we once again find it convenient to assume
BPSK in order to ensure a one-to-one correspondence betweensymbolsa and bitsc. For
noncoherent equalization,θθθ is the vector to estimate andc is the missing data, so that
(from (6.92)) channel EMB24 performs the recursion

θ̂θθ (i+1)
= argmax

θ̂θθ

{

∑
c∈{0,1}K

p(c | y, θ̂θθ (i)
) ln f (y,c | θ̂θθ)+ ln f (θ̂θθ)

}

. (6.93)

Using the property lnf (y,c | θθθ) = ln f (y | c,θθθ)+ ln f (c) in conjunction with the Rayleigh
fading and Gaussian noise assumptions, (6.93) reduces to

θ̂θθ (i+1)
= argmin

θ̂θθ

{

∑
c∈{0,1}K

p(c | y, θ̂θθ (i)
)‖y−ΛΛΛaθ̂θθ‖2

C−1
z

+ θ̂θθ H
C−1

θθθ θ̂θθ
}

(6.94)

=

(

C−1
θθθ + ∑

c∈{0,1}K

p(c | y, θ̂θθ (i)
)ΛΛΛH

a C−1
z ΛΛΛa

)−1

∑
c∈{0,1}K

p(c | y, θ̂θθ (i)
)ΛΛΛH

a C−1
z y. (6.95)

Above,a denotes the symbol vector corresponding to the bit vectorc. From (6.95), chan-
nel EM(B) can be interpreted as performingiterative soft decision-directed channel esti-
mation, using soft decisions computed from the previous channel estimate. In fact, with

24Channel EM would yield (6.93) without the lnf (θ̂θθ) term and hence (6.94)-(6.97) without theC−1
θθθ term. This

relationship is reminiscent of that between GLRT and ncMLSD.
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constant modulus (CM)A and white noise, the summed terms in (6.95) can be rewritten
using the tanh(·) operator, reminiscent of (6.40). Soft decision-directed channel esti-
mation can be contrasted with per-survivor channel estimation, as used in noncoherent
MAPSD/MLSD and GLRT, in that soft decision-directed channel estimation generates
a singlechannel estimate after “averaging” the soft bit estimates,whereas per-survivor
channel estimation generatesmultiple channel estimates, one for each hypothesized bit
sequence. Iterative soft decision-directed channel estimation has also been considered
outside of the EM(B) context in, e.g., [BC98, OT04, SSS04, FRL08, LF08].

The posterior bit probabilities{p(c | y, θ̂θθ (i)
)}c∈{0,1}K required for (6.95) can be ob-

tained in various ways. For the case of BEM trajectories thatsatisfy a Gauss-Markov
model, the forward-backward algorithm can be employed [KV94]. A different approach
was proposed in [HS09] that allows the use of a-priori LLRs and more general BEM
statistics. We now briefly describe this approach. Writing

p(c | y, θ̂θθ (i)
) =

f (y | c, θ̂θθ (i)
)p(c)

∑c′∈{0,1}K f (y | c′, θ̂θθ (i)
)p(c′)

=
eζcoh(c;θ̂θθ (i)

)

∑c′∈{0,1}K eζcoh(c′;θ̂θθ
(i)
)
, (6.96)

where we have used the coherent MAP sequence metricζcoh(c; θ̂θθ (i)
)= ln f (y | c, θ̂θθ (i)

)+ lTc c

from (6.34) with theθ̂θθ (i)
-dependence explicitly noted, the EM recursion (6.95) can be

restated as

θ̂θθ (i+1)
=

(

∑
c∈{0,1}K

eζcoh(c;θ̂θθ (i)
)(C−1

θθθ +ΛΛΛH
a C−1

z ΛΛΛa)

)−1

∑
c∈{0,1}K

eζcoh(c;θ̂θθ (i)
)ΛΛΛH

a C−1
z y. (6.97)

Equation (6.97) suggests iterating a soft decision-directed channel estimator, with input

{ζcoh(c; θ̂θθ (i)
)}c∈{0,1}K and outputθ̂θθ (i+1)

, and a soft-input/soft-output coherent equalizer,

with input θ̂θθ (i)
and output{ζcoh(c; θ̂θθ (i)

)}c∈{0,1}K . Together, the pair forms a soft-input/soft-
outputnoncoherent equalizer, which could be iterated with a soft-input/soft-output de-
coder for turbo reception.

When the channel is frequency-nonselective, the noise is white, and the BEM is trivial,

ln f (y | c, θ̂θθ (i)
) = C− 1

σ2
w

∑K−1
k=0

∣
∣y[k]− c[k]θ̂ [k,0]

∣
∣2, so that the 2K term summations in

(6.97) decouple intoK binary summations [CV01], greatly simplifying the evaluation
of (6.97). In the general case, the 2K-term summations do not decouple, but not all 2K

metrics{ζcoh(c; θ̂θθ (i)
)}c∈{0,1}K need to be calculated, because very few of them yield non-

negligible eζcoh(c;θ̂θθ (i)
). The dominant posterior probabilities can be found withouttoo

much effort using, e.g., M-algorithm tree-search [HS09], as discussed for the coherent
case in Section 6.3.2.

Other noncoherent equalization schemes
Other approaches to noncoherent equalization exist as well. For example, Anastasopou-
los et al. [ACC+07, MAKA07] applied message passing algorithms to MLSD and MAP
symbol detection over time-selective flat-fading channels. They have shown that, under
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certain conditions, MLSD complexity scales asO(K2rank{Cθθθ }). Due to space limitations,
these techniques will not be discussed here. One can also imagine ad hoc combination of
decoupled (coherent) equalization and channel estimation. Examples will be provided in
the sequel.

6.4.4 Noncoherent equalization for single-carrier
modulation/demodulation

When single-carrier modulation/demodulation is used, the effective channel coincides
with the propagation channel (i.e.,q[l ,d] = h[l ,d] ∀l ,d andNq = M), whose trajectories
{h[n,m]}N−1

n=0 (for eachm∈ {0, . . . ,M−1}) are well described by a Gauss-Markov model
of suitable orderNAR. Thus, when the trivial BEM is employed to write (6.2), so that
θ [i,d] = q[i,d] ∀i,d, the BEM trajectories themselves are well described by a Gauss-
Markov model of orderNAR. In this case, and assuming the noisez is white, an|A |M+NAR-
state trellis can be used to implement near-optimal noncoherent MAPSD/MLSD, as well
as near-optimal MAP symbol and bit detection, as described in Section 6.4.3. In fact,
these ideas dominated much of the early literature on noncoherent equalization of rapidly
TV channels.

Near-optimal trellis-PSP equalization for single-carrier schemes
As mentioned earlier, Lodge and Moher [LM90] were one of the first papers to pro-
pose a near-optimal trellis-based implementation of noncoherent MLSD. In particular,
they proposed to use the Viterbi algorithm with per-branch linear prediction for MLSD
of CM signals with ARMA time-selective channels. Soon after, Iltis [Ilt92] proposed to
use the Viterbi algorithm in conjunction with an extended Kalman filter for per-survivor
joint estimation of symbol timing offset and an AR doubly selective channel. Dai and
Shwedyk [DS94] proposed similar near-optimal trellis-based implementations of nonco-
herent MLSD for general signal alphabets and ARMA doubly selective channels, using
per-branch Kalman filtering. Yu and Pasupathy [YP95] then extended [LM90] to general
signal alphabets and ARMA doubly selective channels. The latter technique was extended
further to carrier-frequency-offset Rician channels by Hart and Taylor in [HT98].

In related work, Gertsman and Lodge [GL97] showed that the forward-backward algo-
rithm, with per-branch linear prediction, can be used for near-MAP symbol detection un-
der AR time-selective channels and CM alphabets. Independently, these ideas were gener-
alized this approach to doubly selective channels and general signal alphabets by Hart and
Pasupathy [HP00] and Davis, Collings, and Hoeher [DCH01]. For fixed-lag MAP sym-
bol estimation, Zhang, Fitz, and Gelfand [ZFG97] proposed to use per-survivor Kalman
filtering, echoing earlier work by Iltis et al. [ISG94]. Anastasopoulos and Chugg [AC00]
then presented two general families of trellis algorithms,one based on parameter-first
combining and the other on sequence-first combining, that yield both forward-backward
and fixed-lag algorithms.



xxxvi Chapter 6: Equalization of Time-Varying Channels

Reduced-complexity trellis-PSP equalization for single-carrier schemes
Due to the complexity of near-optimal PSP methods, which aretypically based on per-
sequence Kalman filtering, simpler PSP techniques have alsobeen proposed based on
simpler forms of adaptive filtering, such as the RLS25 and LMS algorithms. For example,
Kubo, Murakami, and Fujino [KMF94] proposed to use the Viterbi algorithm in con-
junction with the LMS algorithm [Hay01] for per-survivor channel estimation, whereas
Raheli, Polydoros, and Tzou [RPT95] proposed to use the Viterbi algorithm in conjunc-
tion with the RLS algorithm [Hay01]. Other LMS and RLS approaches were discussed in
[AC00].

While the previously described PSP algorithms assumed a trivial BEM, PSP for more
general BEMs has also been considered. For example, trellis-based PSP algorithms for
joint estimation of symbols and polynomial BEM [BH99a] coefficients were proposed,
for time-selective channels, by Borah and Hart [BH99c] and Leon and Taylor [LT03].
DFE and trellis methods for both polynomial and Karhunen-Loève BEMs [BH99b] were
studied by Borah and Hart in [BH99b] for doubly selective channels. Trellis-based PSP
using a complex-exponential BEM [TG96] was discussed by El-Mahdy [EM04].

Near-optimal tree-PSP equalization for single-carrier schemes
Since the trellis-based approaches to noncoherent equalization typically use an(M +
NAR)-state trellis, withO(K|A |M+NAR) complexity, they are impractical for all but very
short delay spreads. Tree-search based PSP is one way to circumvent this complexity. In
one of the earliest proposals, Dai and Shwedyk [DS94] suggested to use a Fano-like tree-
search with per-survivor Kalman estimation to non-coherently equalize a doubly selec-
tive ARMA channel (assuming a trivial BEM). The method in Zhang, Fitz, and Gelfand
[ZFG97] can be considered as using the T-algorithm to obtainsymbol-MAP fixed-lag
metrics for the same channel. For a doubly selective channelmodeled by a generic BEM,
Hwang and Schniter proposed PSP-based noncoherent M-algorithm tree-searches that
accomplish approximate MLSD, in [HS07a], and approximate MAP bit detection, in
[HS07b]. The latter, with complexityO(KM2I2), was combined with soft decoding in
a turbo receiver.

Iterative noncoherent equalization for single-carrier schemes
For EM-based iterative noncoherent equalization of single-carrier systems, the channel
EM(B) algorithm described in Section 6.4.3 is the most popular approach; the info EM(B)
algorithm, proposed by Georghiades and Han [GH97] for AR time-selective fading and
CM signaling and described in Appendix 6.D, was found, in themore recent studies
[CPB03, YR03], to have convergence problems.

One of the first applications of the channel EMB algorithm to noncoherent equaliza-
tion of frequency-selective channels was given by Kaleh andVallet [KV94]. Anton-Haro,
Fonollosa and Fonollosa [AHFF97] proposed a channel EM algorithm for doubly selec-
tive channels that used a polynomial BEM, assuming CM signaling. More recently, Yan

25Recall that the ML channel estimate (6.77) reduces to an LS estimate in the case of white noise, which can be
computed recursively using RLS.
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and Rao [YR03] proposed a channel EMB method for AR-1 time-selective channels and
CM signaling that employs a Kalman filter. Nissilä and Pasupathy [NP03] generalized
these ideas to AR doubly selective channels and arbitrary constellations through the use
of Kalman smoothing. All of these approaches used the forward-backward algorithm to
evaluate the posterior bit probabilities in (6.95). Because the number of trellis states in
the forward-backward algorithm is|A |M+NAR , however, these approaches are practical
for only very short delay spreadM.

To circumvent the complexity of trellis processing, Hwang and Schniter [HS09] pro-
posed to use suboptimal tree-search to compute the dominantposterior bit probabilities,
via (6.96)-(6.97), leading to a complexity of onlyO(KM2I2). This approach can be
considered an extension of the technique originally proposed by Chiavaccini and Vitetta
[CV01] for a time-selective channel and trivial BEM, to doubly selective channels mod-
eled by generic BEMs.

6.4.5 Noncoherent equalization for time-frequency concentrated
modulation/demodulation

We saw, in the previous section, that the use of single-carrier modulation/demodulation
facilitated Gauss-Markov modeling of the effective channel trajectory{q[l ,d]}K−1

l=0 . Time-
frequency concentrated modulation/demodulation schemes26 generally do not facilitate
the use of a Gauss-Markov model with orderNAR ≪ K, sinceq[l ,d] can change very
quickly in l . For example, with multicarrier schemes,{q[l ,0]}K−1

l=0 represents the channel
frequency response, which may exhibit deep and sudden nulls. Thus, the trellis-based ap-
proaches to noncoherent equalization (whether optimal, PSP approximate, or EM-based)
do not apply here. For this reason, the literature on noncoherent equalization for time-
frequency concentrated modulation/demodulation schemesis somewhat sparse.

For time-frequency concentrated modulation/demodulation, the dimensionality of the
effective channel response{q[l ,d]} is more efficiently reduced by a BEM, e.g., the complex-
exponential BEM (as proposed in the classical OFDM work [ESJJ+98]). Cui and Tellam-
bura [CT07] applied the complex exponential (CE)-BEM, madeseveral approximations
to the noncoherent MLSD metric in (6.69) to reduce it to a simple quadratic formaHRa
(with a-independentR), and then used tree-search to find the optimala ∈ A K , all under
the assumption thatA was constant modulus. Hwang and Schniter took a more direct
approach, leveraging the CE-BEM to design PSP-based and channel EMB-based non-
coherent MAP bit equalization algorithms in [HS08] and [HS09], respectively, whose
complexities scale asO

(
K(2D+1)2I2

)
. The key to these low complexities is the use of

a fast metric update. Here, the BEM dimensionI refers to the number ofactivechannel
taps; it is typical thatI ≪ M when the delay power profile issparse. These latter algo-
rithms achieve near-MAP performance with a complexity thatis quite reasonable, even
for large simultaneous channel delay and Doppler spreads.

26In this section, we will include OFDM in the “time-frequency concentrated” class under the assumption that
the Doppler spread is mild enough to guarantee a short inter-carrier interference spread.
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6.5 Conclusion

In this chapter, we have given a broad overview of coherent and noncoherent equaliza-
tion for rapidly TV channels, focusing on the case of significant delay spread. To better
understand the problem, we described the combined effect ofmodulation, channel propa-
gation, and demodulation using an effective channel matrixQ, and then examined the key
features ofQ. We found that the support of the significant coefficients within Q can be
described as widely quasi-banded when single-carrier modulation/demodulation is used,
and narrowly quasi-banded when time-frequency concentrated modulation/demodulation
is used. This structure ofQ was later used to explain the design of low-complexity equal-
ization algorithms.

We then discussed coherent equalization, whereQ is assumed to be known. Various
equalization criteria were described, including those based on ML, MAP, MMSE, and
the computation of posterior LLRs. Equalization tools weredescribed next, including
trellis-based, linear, decision feedback, tree-search based, and iterative methods. We then
described how these criteria and tools have been applied to the design of coherent equaliz-
ers for time-frequency concentrated modulation/demodulation over rapidly TV channels,
highlighting fast serial and fast joint equalization schemes. For equalization of single-
carrier modulation/demodulation over rapidly TV channels, we focused on frequency-
domain equalization approaches that yield high performance with low complexity.

Finally, we discussed noncoherent equalization, whereQ is assumed unknown (though
sometimes its statistics are known). For this, the system model was reformulated to ac-
commodate an efficient BEM-based parameterization of the effective channelQ. Various
equalization criteria were described, including those based on ML, MAP, GLRT, MMSE,
and posterior LLRs. Equalization tools were described next, including those based on
trellis, tree search, per-survivor processing, and the EM algorithm. We then described
how these criteria and tools have been applied to the design of noncoherent equalizers for
single-carrier modulation/demodulation over rapidly TV channels. While the traditional
approach was to leverage a Gauss-Markov fading model for thechannel trajectory, general
BEM approaches have been developed more recently. Finally,we described noncoherent
equalization for time-frequency concentrated modulation/demodulation over rapidly TV
channels, a problem which has received attention only recently.
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Appendix

6.A Derivation of posterior LLR expression (6.36)

Applying Bayes rule to the numerator of the posterior LLR in (6.19), we find

Pr{c[ j] = 1 | y,Q} = ∑
c:c[ j]=1

p(c | y,Q) = ∑
c:c[ j]=1

f (y | c,Q)p(c | Q)

f (y | Q)
. (6.98)

As in the text, all possibilities of coded bit vectorsc ∈ {0,1}K log2 |A | are considered in
the summations, not only those in the codebook. Doing the same to the denominator of
(6.19) and then taking the log of their ratio yields

Lc|y,Q[ j] = ln
∑c:c[ j]=1 f (y | c,Q)p(c | Q)

∑c:c[ j]=0 f (y | c,Q)p(c | Q)
. (6.99)

Assuming independent coded bits, so thatp(c | Q) = p(c) = ∏K log2 |A |−1
j ′=0 p(c[ j ′]), and

using the identity

p(c[ j ′]) =
exp
(
(c[ j ′]−1)Lc[ j ′]

)

1+exp(−Lc[ j ′])
for c[ j ′] ∈ {0,1}, (6.100)

we can rewrite (6.99) as

Lc|y,Q[ j] = ln
∑c:c[ j]=1 f (y | c,Q)exp(lTc c)

∑c:c[ j]=0 f (y | c,Q)exp(lTc c)
(6.101)

for lc ,
(
Lc[0] · · · Lc[K−1]

)T
. Finally, writing the LLR expression (6.101) in terms

of the MAP metric (6.34) yields (6.36).

6.B Derivation of the noncoherent MLSD expression (6.73)

Using (6.68), we can write the first term in (6.69) as

yHC−1
y|ay = yH(Cz +ΛΛΛaCθθθ ΛΛΛH

a
)−1y. (6.102)

Applying the matrix inversion lemma, and introducing a pairof terms that sum to zero,

yHC−1
y|ay = yHC−1

z y−yHC−1
z ΛΛΛa

(
C−1

θθθ +ΛΛΛH
a C−1

z ΛΛΛa
)−1ΛΛΛH

a C−1
z y

−yHC−1
z ΛΛΛa

(
C−1

θθθ +ΛΛΛH
a C−1

z ΛΛΛa
)−1ΛΛΛH

a C−1
z y

+yHC−1
z ΛΛΛa

(
C−1

θθθ +ΛΛΛH
a C−1

z ΛΛΛa
)−1ΛΛΛH

a C−1
z y. (6.103)
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Plugging in the expression for̂θθθ MMSE|a in (6.72),

yHC−1
y|ay = yHC−1

z y− θ̂θθ H
MMSE|aΛΛΛH

a C−1
z y−yHC−1

z ΛΛΛaθ̂θθ MMSE|a

+ θ̂θθ H
MMSE|a

(
C−1

θθθ +ΛΛΛH
a C−1

z ΛΛΛa
)
θ̂θθ MMSE|a (6.104)

=
∥
∥y−ΛΛΛaθ̂θθ MMSE|a

∥
∥2

C−1
z

+‖θ̂θθ MMSE|a‖2
C−1

θθθ
. (6.105)

6.C Explanation of EM recursion (6.91)

Given an estimatêx(i) at theith iteration, the EM algorithm [DLR77] attempts to findx
which maximizes theincreasein log-likelihood, i.e.,

ln f (y | x)− ln f (y | x̂(i))

= ln
∫

f (y,u | x)du− ln f (y | x̂(i)) (6.106)

= ln
∫

f (u | y, x̂(i))
f (y,u | x)

f (u | y, x̂(i))
du− ln f (y | x̂(i)) (6.107)

≥
∫

f (u | y, x̂(i)) ln
f (y,u | x)

f (u | y, x̂(i))
du− ln f (y | x̂(i)) , ∆(x | x̂(i)), (6.108)

where Jensen’s inequality was used in (6.108). From (6.108), it can be seen that̂x(i+1) ,

argmaxx ∆(x | x̂(i)) can be written as (6.91) after dropping non-essential terms. Since

∆(x̂(i) | x̂(i)) =

∫

f (u | y, x̂(i)) ln
f (y,u | x̂(i))

f (u | y, x̂(i))
du− ln f (y | x̂(i)) (6.109)

=
∫

f (u | y, x̂(i)) ln
f (y,u | x̂(i))

f (u | y, x̂(i))
du

+ ln
1

f (y | x̂(i))

∫

f (u | y, x̂(i))du (6.110)

=
∫

f (u | y, x̂(i)) ln
f (y,u | x̂(i))

f (u | y, x̂(i)) f (y | x̂(i))
︸ ︷︷ ︸

=1

du (6.111)

= 0, (6.112)

if follows that the increase in log-likelihood associated with the EM estimatêx(i+1) equals
∆(x̂(i+1) | x̂(i)) = maxx ∆(x | x̂(i)) ≥ ∆(x̂(i) | x̂(i)) = 0, and hence the EM recursion never
decreases the log likelihood. Thus, when the likelihoodf (y | x) is unimodal inx, the EM
recursions will converge tôxML.
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6.D Info EM(B) algorithms for noncoherent equalization

In info EMB, the bitsc are estimated while treating the channel parametersθθθ as missing
data, so that (6.92) becomes (withx = c andu = θθθ )

ĉ(i+1) = arg max
c∈{0,1}K

{∫

f (θθθ | y, ĉ(i)) ln f (y,θθθ | c)dθθθ + ln p(c)
}

. (6.113)

The identity lnf (y,θθθ | c) = ln f (y | θθθ ,c) + ln f (θθθ), in conjunction with the Gaussian
noise assumption, yields

ĉ(i+1) = arg min
c∈{0,1}K

{∫

f (θθθ | y, ĉ(i))‖y−ΛΛΛa′θθθ‖2
C−1

z
dθθθ − ln p(c)

}

, (6.114)

wherea is a one-to-one function ofc. Then using Bayes rule for

f (θθθ | y, ĉ(i)) =
f (y | θθθ , ĉ(i)) f (θθθ)

∫
f (y | θθθ ′, ĉ(i)) f (θθθ ′)dθθθ ′ ,

in conjunction with the Rayleigh fading assumption, (6.113) reduces to

ĉ(i+1) = arg min
c∈{0,1}K

{∫ ‖y−ΛΛΛaθθθ‖2
C−1

z
f (y | θθθ , ĉ(i)) f (θθθ)dθθθ

∫
f (y | θθθ ′, ĉ(i)) f (θθθ ′)dθθθ ′ − ln p(c)

}

(6.115)

= arg min
c∈{0,1}K

{∫ exp
(
−‖y−ΛΛΛâ(i)θθθ‖2

C−1
z

−‖θθθ‖2
C−1

θθθ

)
‖y−ΛΛΛaθθθ‖2

C−1
z

dθθθ
∫

exp
(
−‖y−ΛΛΛâ(i)θθθ

′‖2
C−1

z
−‖θθθ ′‖2

C−1
θθθ

)
dθθθ ′

− ln p(c)

}

. (6.116)

The optimization problem (6.116) is, in general, difficult to solve. In the simplified case of
frequency-nonselective fading, white noise, CM alphabet,and the trivial BEM, though,
‖y−ΛΛΛaθθθ‖2

C−1
z

= C1 +C2 ∏K−1
k=0 Re{a[k]θ̂ [k,0]} for C1 andC2 that do not depend ona,

making the optimization problem (6.116) tractable [GH97].Even then, the hard-decision
nature of info EMB makes it subject to error propagation. Thus, it is not surprising that
channel EMB has been shown to outperform info EMB for this simplified setup [YR03].

For info EM, or without an informative prior distribution for c, the lnp(c) term can be
neglected, so that

ĉ(i+1) = arg min
c∈{0,1}K

∫

exp
(
−‖y−ΛΛΛâ(i)θθθ‖2

C−1
z

−‖θθθ‖2
C−1

θθθ

)
‖y−ΛΛΛaθθθ‖2

C−1
z

dθθθ . (6.117)

Note, however, that the minimization is not significantly simplified relative to (6.116).
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Table 6.1 Variables introduced for the equalization chapter

no. symbol description avoid

1.1 H channel convolution matrix

1.2 G modulation matrix

1.3 ΓΓΓ demodulation matrix

1.4 Q = ΓΓΓHG effective channel matrix

1.5 U upper triangular matrix

1.6 AA ⊂ A K codebook

1.7 Lc[i] =
Pr{c[i]=1}
Pr{c[i]=0} a-priori log likelihood ratio (LLR),

1.8 Lc|y,Q[i] =
Pr{c[i]=1 | y,Q}
Pr{c[i]=0 | y,Q} coherent posterior log likelihood ratio (LLR),

1.9 Lc|y[i] =
Pr{c[i]=1 | y}
Pr{c[i]=0 | y} noncoherent posterior log likelihood ratio (LLR),

1.10 ‖x‖C =
√

xHCx weighted norm ofx w.r.t Hermitian PSD matrixC

1.11 DA (·) quantization w.r.t. alphabetA

1.12 Ng OFDM guard length

1.13 NAR Gauss-Markov model order

1.14 diag{.} create diagonal matrix from vector
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