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Abstract 
 

Prior research in the field of Music Information Retrieval has yielded techniques 

for extracting musical information from digital audio, and made it possible to analyze 

human music production computationally. I hypothesize that a computer can be 

programmed to produce output similar to that of a musical artist on two production tasks 

performed by disk jockeys. The first, “mixing,” aims to create seamless transitions 

between songs in a playlist. The second, “mashup” creation, aims to overlay multiple 

similar tracks to create a new combined song. To automate these tasks, I first created 

example sets of my own mixes and mashups, and looked for patterns and relationships in 

the audio analysis data from the public music analysis API provided by The Echo Nest, 

Inc. I used my findings to write Python scripts that automatically perform the mixing or 

mashing tasks on any input audio files. The software was udged by a sample of 

individuals for its ability to produce output similar to that of a human DJ. Preliminary 

results support the claim that automatic music production processes can be convincing, 

but also show how programs perform poorly when processing unexpected input, 

suggesting that tasks are most easily replicated within specific, predefined artistic styles. 
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This document is dedicated to generic pop music producers,  

and the oversimplified music that I have completely overanalyzed. 
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Chapter 1: Introduction 
 

1.1 Motivation and Personal Background 
 

 Historically, large-scale analysis required a music researcher to interpret large 

amounts of sheet music, or listen to days of recorded songs. The task of looking for 

relationships or patterns in large libraries of music was inevitably arduous and time 

consuming. Because digital audio is encoded into a binary abstraction, software can 

process music computationally to deeply analyze large amounts of data more easily. As 

computers get faster and digital audio libraries become more extensive, researchers have 

an even greater opportunity to take a new approach to how music information is gathered. 

 Music Information Retrieval (MIR) is a field that combines signal processing and 

musicology to quantify digital audio features. My research investigates how these metrics 

can be used to look for patterns in music, identify common procedures in music 

production, and then automate the procedures to create original music. I hypothesize that 

unwritten algorithms already exist in music production, and that the creative process can 

be better understood if its procedures are identified in the form of software. There are 

millions of musicians worldwide, and this work may not only shed light on how music is 

already being produced, but also inspire a new approach to music production entirely. 

 My pursuit of this study stems from an interest in music composition that far 

precedes my knowledge of Music Information Retrieval. My experience in composing 

and recording original works fostered my understanding of music theory and inspired me 

to take a novel look at music production. My undergraduate coursework in computer 
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engineering laid the foundation to view digital audio as an enhanced musical format that 

can harness computational power to catalyze and improve musicological analysis.  

 

1.2 Past Research in Music Information Retrieval 
 

Prior MIR research has already advanced considerably toward the goal of 

quantifying specific audio features, some of which are described in the next chapter in 

greater detail. The Music Information Retrieval Evaluation Exchange (MIREX)1 is an 

annual event organized to test the effectiveness of new MIR algorithms, which also 

motivates research to improve the accuracy of existing algorithms. The Echo Nest, Inc. 

implements this work to make data metrics available to software developers through its 

public music analysis API2. Companies like Spotify3 and iHeartRadio4 have partnered 

with The Echo Nest to improve their music services by gaining greater understanding of 

their users’ listening tastes. Some of the existing successful applications of MIR classify 

songs based on their metadata, such as artist or genre, while others rely on deeper 

analysis of intrinsic song content. 	
  

There are examples of MIR research that leverage quantified audio features to 

solve problems having to do with song similarity. Ellis and Poliner (2007) propose a 

method for using musical data metrics to identify different artist renditions of the same 

song. Tsai et al. (2005) present another methodology for querying music databases for 

songs with a specific melody. Bertin-Mahieux et al. (2010) investigate the development 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 http://www.music-ir.org/mirex/wiki/MIREX_HOME 
2 https://github.com/echonest/remix 
3 https://www.spotify.com/us/for-music/ 
4 http://www.iheart.com/	
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of a “codebook” of common song features to be used to identify similar features in large 

collections of music. These research efforts yielded helpful ideas when solving problems 

that involved the analysis and comparison of musical features. 

Example Python modules exist that demonstrate the capabilities of The Echo 

Nest’s public music analysis API. One project5 uses analysis data to pull ten-second 

audio clips from multiple songs and concatenate them together into one track. Another 

program6 uses any song’s data metrics to find patterns and similarities within its 

structure, and then rearrange the structure into an extended version of the song. Existing 

software projects like these7 share useful methods for leveraging The Echo Nest’s 

development features to complete project objectives like those defined for this project.   

1.3 Project Objectives 
 

The objectives of this project are to investigate another application of MIR 

research that uses The Echo Nest’s metrics and machine learning techniques to automate 

two specific music production tasks currently performed by human disk jockeys. The 

first, “mixing,” aims to create seamless transitions between songs in a playlist. The 

second, “mashup” creation, aims to overlay multiple similar tracks to create a euphonious 

combined song. Each application is written as a separate software program in Python, and 

uses The Echo Nest’s Analysis API to obtain audio analysis data, and their Remix API to 

modify or edit the audio.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  https://github.com/echonest/remix/tree/master/examples/capsule 
6 https://github.com/echonest/remix/tree/master/examples/earworm 
7 https://github.com/echonest/remix/tree/master/examples	
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The first program is called Automatic DJ, and is designed to imitate the 

performance of a live DJ. Existing software programs like MIXXX8 and Ultramixer 49 

include features that automatically transition between songs, but besides automatically 

fading volumes between songs, they do not imitate the mixing work of a real DJ. My 

program analyzes the musical content of every song in a playlist, reorders and modifies 

the audio files, and transitions between them with a beat-matched crossfade. 

The second program, Automatic MashUp, uses song features of two input tracks 

to find compatible song sections to overlay and combine into a new mashup. No other 

software program like this has been developed successfully, and although the software 

from this project produces some capable output, I show how inaccurate analysis data has 

a large impact on the development of a successful algorithm. 

 Some additional software applications provide support as DJ tools during this 

project. Audacity10 is a free application that was used to shift the tempo and pitch for 

audio files. Apple’s GarageBand11 was purchased from Apple’s App Store to edit audio 

files further, and to mix together new audio files.  

 

 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 http://www.mixxx.org/ 
9 http://www.ultramixer.com/ 
10 http://audacity.sourceforge.net/copyright 
11 http://www.apple.com/ilife/garageband/ 
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1.4 Thesis Objectives 
 

 This thesis uses digital audio analysis data to explore its application in software 

programs that imitate music production tasks. I demonstrate how MIR techniques as 

implemented by The Echo Nest can be used to automate music creation, and reveal 

instances where the software’s efficacy is ultimately limited by the occasional 

unreliability of analysis data. This thesis also explores the feasibility of automating music 

production, and identifies challenges associated with programming music production 

processes. The document closes with recommendations for future work based on 

subjective human listening tests and my own conclusions from this project.
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Chapter 2: Literature Review 
 

2.1 Glossary of Musical Terms 
 

 Music theory concepts and vocabulary from Randel (2003) are referenced 

throughout the text. The following is a brief review of some definitions and concepts. The 

next section in this chapter explains how The Echo Nest quantifies these items as 

concrete analysis data12.   

• Beat: A beat is a rhythmic unit of time. In a song with a constant tempo, all of the 

beats are the same duration. 

• Bar: A bar is a sequence of beats that begin with an emphasized beat. This 

document only refers to bars with a length of four beats. 

• Chroma: The chroma, or chromatic content, is the strength of the twelve different 

pitches {C, C#, D, Eb, E, F, F#, G, Ab, A, Bb, B}. 

• Chord Progression: A chord progression is a repeating pattern of changing 

chromatic content prescribed to a specific sequence of bars. 

• Timbre: Timbre is the quality that differentiates sounds with the same pitch and 

loudness. 

• Rhythm: Rhythm is characterized by timing patterns in a musical piece, and is 

described in this document using timbre information. 

• Dynamics: Dynamics is the term used to describe how the loudness of a song 

changes. It’s commonly positively correlated with a song’s intensity or energy. 

• Key: A song usually only uses a subset of the twelve notes in the chromatic 

spectrum. A specific subset of pitches is defined as a Key. 

• Tempo: The Tempo is the speed of the song in beats-per-minute (BPM). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12	
  http://echonest.github.com/remix/apidocs/	
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• Section: A song section is a subset of beats that share some kind of commonality 

in their attributes. The musical works explored in this paper are commonly 

composed of three types of sections: 

o Verse: A verse is a section of a song typically characterized by softer 

dynamics, lower energy, and more thoughtful lyrics. 

o Chorus: Also known as a refrain, a chorus is a song section that is 

typically characterized by louder dynamics, higher energy, and repeating, 

catchy lyrics. 

o Bridge: The bridge is a section of the song that usually follows a chorus, 

and is similar to the chorus in that it is typically characterized by louder 

dynamics and higher energy. The bridge is usually just a variation of the 

chorus. 

• Song Structure: A song’s structure is the holistic representation of all of its 

sections. 

    

2.2 Echo Nest Data Representation 
 

 The Echo Nest quantifies all of the terms in their Analysis API. The following 

analysis terms connect these concrete representations with their abstract meanings. 

• Analysis data: This term is used later in the paper, and refers to the analysis data 

returned by The Echo Nest’s Analysis API to describe abstract song attributes like 

chroma, timbre, loudness, and more.   

• Segments: Segments are short audio clips of musical “events” or notes, for each 

of which The Echo Nest uses to calculate analysis data. If a larger time quantifier, 

like beats or bars, is referenced as having analysis data, the analysis data is 

actually an average of the segments that comprise the beat or bar. 

• Confidence: Each analysis metric is accompanied by a confidence value to 

express the confidence with which The Echo Nest estimates that specific 

musicological quantity. In my experience, however, confidence values do not 

accurately indicate the correctness of a value. 
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• Sections: The Echo Nest calculates and provides a list of demarcated sections for 

a song. The specification for how these sections are calculated is not clearly 

provided, however, so I do not use this feature in the Automatic DJ development 

phase when deeper analysis is necessary. The abstract definition and this concrete 

list definition are both used in the paper, so it is important to understand the 

difference between the definitions. 

• Beats, Bars, and Sections Lists: All three of these time markers are represented as 

sequences of tuples. Each tuple contains a start time, a duration time, and a 

confidence value. 

• Local Context: The local context of a beat is its index within its respective bar. 

For example, the local context of beat 1 is 0, and the local context of beat 4 is 3. 

The local context values for a sequence of four bars is {{0,1,2,3}, {0,1,2,3}, 

{0,1,2,3}, {0,1,2,3}}. 

 

2.3 Image Processing with Scikit-Image 
	
  
	
  
	
   Chapter 4 briefly presents song attributes in the format of two-dimensional 

images. This section cites a previous application of image processing to a song-similarity 

problem, and provides additional information about the Scikit-Image python module’s 

template matching procedure13 is used to find similarity between songs. 

  The image processing methodology used in this document is based on a 

technique used by Bartsche & Wakefield (2001) to locate the refrains in an audio 

recording. A two-dimensional similarity matrix of the song recording with itself reveals 

similar song sections as dark diagonal lines in the image. The figure below shows an 

example of such a similarity matrix. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 http://scikit-image.org/docs/dev/auto_examples/plot_template.html	
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Figure 1: The similarity matrix for Jimmy Buffet's Margaritaville. 

The dark diagonal line specified on the image shows where the chromatic similarity 

between regions of approximately 30 to 70 seconds and 100 to 140 seconds is strong 

enough to indicate that a refrain occurs during those times. The template matching 

procedure used in this project also calculates similarity in a two-dimensional fashion, but 

differs in that it first breaks song sections into smaller sized “template” images before 

calculating similarity between two recordings.    

 Scikit-Image provides a match_template function based on a method by Lewis 

(1995) that calculates normalized cross-correlation to find instances of a smaller, 

“template” image within a larger image. In these example photos from Sci-kit Image 
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(2013), the location of a single coin is shown within a larger image of many coins as the 

result of such a template matching procedure. The pixel with the highest correlation 

value, designated by the red circle in the picture, specifies the smaller coins location in 

the larger image. 

	
  

Figure 2: Coin template                       

 Figure 3: Larger image of many different coins 

 

 

Figure 4: Match_template result 

  
 This method is referenced again in the text when finding similarity between song 

sections and their attributes. 
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Chapter 3: Automatic DJ 
 

3.1 Development 
 

 In this section, program specifications for Automatic DJ are defined, and then 

certain design decisions are explained. The complete Python script is included in 

Appendix A, and a visual workflow the program’s operation is included in Appendix B. 

 The specifications for this program are first determined by defining basic 

characteristics common to disk jockey performances. A typical DJ playlist promotes a 

certain mood or atmosphere, such as that of a high-energy dance venue. The individual 

tracks are also deliberately arranged and mixed together to create seamless transitions 

that make the playlist a unified whole. Four basic considerations outlined by Smidansky 

(2012) most commonly determine the arrangement: 

• Tempo – Songs of similar tempo are grouped together in order to preserve a 

steady pulse when transitioning between tracks. 

• Beat Location/Beat Matching – Overlapping incoming and outgoing tracks must 

have their beats aligned to preserve rhythmic similarity between tracks. 

• Local Context – Songs transitions match the local context of the outgoing and 

incoming tracks to preserve the number of beats in a bar. For example, the last 

four beats of the outgoing song must match the first four beats of the incoming 

song, 1-to-1, 2-to-2, 3-to-3, 4-to-4. 

• Song Structure – Song transitions typically happen at the end or beginning of 

sections to preserve one song’s structural identity into the next. 

 

The Analysis API returns specific values for a song’s tempo, so playlist items of 

similar speed can be easily grouped together after the program’s initialization. Beat 
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location and local context attributes are also pre-calculated by the Analysis API, but 

specifying a song structure’s significance to the DJ mixing process is more a complicated 

task.  

To determine how transition points are chosen in the context of song structure, I 

made a twenty song DJ mix of my own to train an algorithm that automatically chooses 

transition points. I selected contemporary tracks with strong, high-energy dance rhythms 

to further define the program’s input and mitigate the amount of variability between 

songs of different genre. I recorded the times where each individual song fades in and 

fades out of the mix in the following table. Each row is a separate audio file that partially 

comprises the entire mix, and the times recorded are specific to the audio file, not the 

duration of the entire twenty-song mix. 

Song	
  Name	
   Start	
  Time	
   End	
  Time	
  
Spectrum	
   2:27.876	
   5:25.127	
  
Somebody	
  Told	
  Me	
   0:21.150	
   3:13.356	
  
Bangarang	
   0:26.516	
   2:11.312	
  
When	
  Love	
  Takes	
  Over	
   0:37.282	
   2:05.899	
  
Believer	
   0:00.000	
   4:32.304	
  
Feel	
  So	
  Close	
   0:37.785	
   3:15.357	
  
I	
  Remember	
   0:15.230	
   3:15.357	
  
We	
  Are	
  The	
  People	
   1:22.312	
   2:55.997	
  
Call	
  On	
  Me	
   0:30.887	
   2:02.294	
  
Pins	
   0:14.775	
   3:12.008	
  
Downforce	
   3:33.437	
   4:58.800	
  
Dreamcatcher	
   3:58.297	
   4:54.371	
  
Hearts	
  On	
  Fire	
   0:15.370	
   0:46.003	
  
Move	
  Your	
  Feet	
   0:04.746	
   2:52.450	
  
Le7els	
   1:07.721	
   2:37.716	
  
Til	
  Death	
   0:37.539	
   2:52.498	
  
Lights	
   0:41.044	
   3:21.012	
  
What	
  You	
  Know	
   0:41.625	
   2:18.350	
  
Cry	
   2:02.042	
   3:33.469	
  
Sandstorm	
   0:29.553	
   1:26.022	
  

Table 1: Training Set of manually selected demarcations 
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Using the data above, I graphed each song to look for relationships between its 

musical attributes and my transition location choices, and found that loudness data 

sufficiently indicates a relationship between song dynamics and my transition points. I 

low-pass filtered the loudness with a moving average to suppress any distracting outlier 

values and found the relationships shown in following graph. The x-axis is a sequence of 

the audio file’s individual analysis segments, and the y-axis corresponds to each 

segment’s maximum loudness attribute. The red vertical lines mark where I made my 

manual selections. 

	
  

Figure 5: Loudness data for When Love Takes Over by David Guetta 

 

The graphs show how most songs have a unique average loudness for different structural 

sections. A song chorus is typically louder than the verse, and looks like a plateau in the 

image above. I typically made my selection where there was a “beat-drop,” or the sudden 
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increase in dynamics before a chorus or other section of high energy. My selections were 

motivated by the goal of preserving a high-energy dance atmosphere, and this goal is 

indicated in the graphs as plateaus, or regions of consistent loudness.      

The code responsible for choosing transition points analyzes a song’s loudness 

data, and then demarcates it similar to the graphs above. I compared the computer-

generated and human-generated demarcations graphically on the training songs, and 

changed the following four key system parameters to match the algorithm’s output with 

my own selections as closely as possible. 

• Window length – This determined how much smoothing was done to the loudness 

data. A small window length does less smoothing and makes consistently loud 

regions less apparent, but consequently also preserves possibly indicative changes 

in dynamics. A large window length does more smoothing and does the opposite, 

making song sections more distinct, but stifling possibly important sudden 

changes in dynamics. I set this value to a16 beat long approximation of segments 

by default, as this length was the best balance the two conflicting interests.  

• Loudness Ceiling – This metric defined when the loudness data was “loud 

enough” to be considered the beginning of a chorus. It is determined as a multiple 

of the mean loudness of the entire song (a negative number of decibels). I set this 

parameter to .8 by default, because songs typically rose to this loudness level 

where I made my demarcation selections. 

• Loudness Floor – This metric defined when the loudness data was “quiet enough” 

to indicate that the consistently loud region of the song was over. It is also 

determined as a multiple of the mean loudness of the entire song. I set this value 

to 1.2 by default, because my manually chosen song regions were typically cut off 

once they fell below this amount of loudness.   

• Minimum Duration – This parameter defined the minimum duration for the 

chosen region. A typical mix plays each song for at least one minute, so this 

parameter was assigned a value of 60.0 seconds. 
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If the algorithm is unable to find a region that fits these parameters, then the Loudness 

Ceiling and Loudness Floor values are slightly increased by .05 to include more song 

segments in the chosen regions until the Minimum Duration parameter is satisfied. 

The graphs in Appendix C compare the program’s selections with my own for 

every item in the training set. The picture below is one example, where my manual 

selections in red compare to the program’s selections in green. 

 

	
  

Figure 6: Manual and automatic demarcations based on loudness data 

Next, I ran the choosing algorithm on a validation set of ten more songs and modified the 

system parameters as needed to increase the accuracy of the automatically chosen 

demarcations.     
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In addition to selecting the most consistently high-energy region of the song,  the 

software includes functionality for automatically transitioning between the songs. The 

Remix API has helpful methods for analyzing a track’s beat information, and then cross 

fading from one song to the next. I converted the chosen analysis segments to their 

corresponding sequence of bars within the song, to ensure that each song in the playlist 

starts and ends on beat 1 to satisfy the Local Context consideration from above. Finally, I 

transitioned between the beat lists using the Crossmatch method included in the 

echonest.action module. Crossmatch lengthens or shortens the ends of audio files of 

different tempo so that their overlapping beats are synchronized. I used Crossmatch to 

overlap the last four beats of the outgoing song with the first four beats of the incoming 

song, and simultaneously cross fade between the two songs.  

After completing the entire system’s code, I completed some functional testing on 

a test set of 20 new songs with similar characteristics to those selected for the traning and 

validation sets. The testing showed that there were common attributes of songs for which 

the program performed well, and of songs for which the program performed poorly. As 

expected, high-energy dance songs with sections characterized by significant changes in 

average loudness performed best. The graph below is an example of such a song, and the 

“plateaus” in its graph represent the ideal case of when song sections clearly differ in 

their average loudness. 
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Figure 7: Loudness data for LE7ELS by Aviici 

These are the kinds of songs that trained the section-choosing algorithm, so it makes 

sense that this genre of random input generated the best output. Alternatively, the 

algorithm performed less reliably on input songs with loudness values that varied more 

during song sections, or varied very little throughout the entire song. Loudness values for 

Michael Jackson’s “Don’t Stop ‘Til You Get Enough” do not reveal any distinct sections, 

so the choosing algorithm did not demarcate this song as accurately. 
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Figure 8: Loudness data for Don't Stop Til' You Get Enough by Michael Jackson 

In addition to the choosing algorithm’s imperfections, inaccuracy in The Echo 

Nest’s analysis data was another occasional source of error. Loudness data was 

consistently accurate, but local context and beat detection information was less reliable, 

and resulted in less seamless transitions between songs. The code responsible for calling 

Crossmatch assumes that the two overlapping lists of four beats both have a local context 

of {1,2,3,4}. If the local context data returned by the Remix API is inaccurate, then two 

lists with local context {1,2,3,4} and {4,1,2,3} may be mixed together, and the listener 

hears an arrhythmic sequence such as {1,2,3,4,4,1,2,3,…} instead of the correct sequence 

of {1,2,3,4,1,2,3,4,…}. A song’s tempo estimation was almost always very accurate, but 

was sometimes incorrectly estimated at half-time or double-time. This issue sometimes 

resulted in awkward Crossmatches, because actually only 2 beats of one song would 

overlap with 4 of the other. This issue often resulted, however, in an interesting transition 
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between two songs with tempos that proved to still sound compatible. Using the results of 

the functional testing and the criteria for good input cases, I selected a playlist of songs 

for formal testing on human subjects. 

 

3.2 Testing 
 

Human listeners ultimately decide a DJ’s performance, so this test procedure 

gathers feedback from individuals and quantifies the program’s ability to produce output 

similar to that of a human DJ. Twenty volunteers listened to ten audio clips and 

completed the questionnaire in Appendix D. Each clip is approximately forty seconds in 

length, and consists of a transition from one song to the next. The questionnaire asks 

subjects to guess if individual transitions were generated automatically by a computer or 

manually by a human. Listeners also rated on a 1-10 scale the compatibility, or 

seamlessness, of each transition and how well the transitions were located within the 

song’s structure.  

To generate the ten audio clips, I used the ideal input characteristics defined after 

functional testing to choose the following eleven input songs. 
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Name	
   Artist	
  
Payphone	
   Maroon	
  5	
  Feat.	
  Wiz	
  Khalifa	
  
There	
  She	
  Goes	
   Taio	
  Cruz	
  
Greyhound	
   Swedish	
  House	
  Mafia	
  
Euphoria	
   Loreen	
  
30	
  Days	
   The	
  Saturdays	
  
Chasing	
  The	
  Sun	
   The	
  Wanted	
  
LaserLight	
   Jessie	
  J	
  Featuring	
  David	
  

Guetta	
  
Turn	
  Up	
  The	
  Music	
   Chris	
  Brown	
  
Scream	
   Usher	
  
Let’s	
  Go	
   Calvin	
  Harris	
  Feat.	
  Ne-­‐Yo	
  
Feel	
  The	
  Love	
   Rudimental	
  Feat.	
  John	
  

Newman	
  
Table 2: Automatic DJ test input 

After running the program and generating the mixed output playlist, I manually created 

the ten audio clips to better feature the transitions between the eleven input songs. Each 

clip includes about ten to twenty seconds of audio before and after the transition point to 

give listeners context about where the transitions occurs within the two songs’ structures. 

I then used a random number generator to pick four of the ten transitions, and replaced 

them with my own manually generated transitions. These test cases comprised the 

“Playlist 1” referenced on the survey sheet, and are included in the following table.  
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Name Duration (secs) Generated By… 
Feel The Love to Payphone 47 Human 
Payphone to Greyhound 50 Computer 
Greyhound to Laserlight 46 Human 
Laserlight to Scream 37 Computer 
Scream to Let’s Go 44 Human 
Let’s Go to There She Goes 45 Computer 
There She Goes to Chasing The Sun 47 Human 
Chasing the Sun to Turn Up The Music 48 Computer 
Turn Up The Music to 30 Days 47 Computer 
30 Days to Euphoria 44 Computer 

Table 3: Audio clips of transitions used for human testing 

 

The full results from the study are included in Appendix E, and briefly summarized in the 

table below.  

 

Origin	
   Compatibility	
   Location	
   %	
  Marked	
  Human	
  	
  
Computer	
   5.92	
   6.03	
   34.16	
  
Human	
   6.94	
   7.38	
   50	
  
Total	
   6.33	
   6.57	
   40.5	
  

Table 4: Average test results for Automatic DJ 

The table shows average ratings for compatibility and location, and the percentage of 

responses that believed a transition type to be human. The twenty responses are broken 

down into two categories based on whether the transition type was truly human-

generated, or actually computer-generated. The table shows that human-generated 

transitions were on average rated higher than computer-generated transitions in both the 

compatibility and location categories. Also presented above is that human-generated 

transitions were typically perceived to be human-generated more often than computer-

generated transitions.  
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3.2.1 Statistical Results 
	
  

The following ANOVA tests use a significance threshold of .05 to determine 

which variables impacted the listeners’ responses. Each test answers the following 

questions for different combinations of Factor 1, Factor 2, and Result variables: 

1. Does the independent variable Factor 1 have a significant impact on the 

dependent Response variable? 

2. Does the independent variable Factor 2 have a significant impact on the 

dependent Response variable? 

3. Is there an interaction between independent variables Factor 1 and Factor 2 that 

significantly impacts the dependent Response variable? 

Each unique combination of factors is placed into its own test group, and each test group 

is comprised of three tests against three different response variables. The variables used 

in the table are defined as follows: 

• Listener #: Listener number is the unique integer used to identify one of the 

twenty listeners. 

• Song #: Song number is the unique integer used to identify one of the ten audio 

clips used in each of the listening tests. 

• isHumanTruth: A Boolean value used to declare whether an audio clip is human-

generated (isHumanTruth = 1) or computer-generated (isHumanTruth = 0). 

• isHumanChoice: A Boolean value used to declare whether an audio clip was 

perceived to be human-generated (isHumanChoice = 1) or computer-generated 

(isHumanChoice = 0).  
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Group Test Factor 1 Factor 2 Response 
1 Listener # isHumanTruth isHumanChoice 
2 Listener # isHumanTruth compatibility A 
3 Listener # isHumanTruth location 
4 Listener # isHumanChoice isHumanTruth 
5 Listener # isHumanChoice compatibility B 
6 Listener # isHumanChoice location 
10 Song # isHumanChoice isHumanTruth 
11 Song # isHumanChoice compatibility C 
12 Song # isHumanChoice location 

 

Table 5: Automatic DJ ANOVA tests 

The hypotheses and results for each ground of tests are summarized below. For each test, 

the two factors and their interaction are each evaluated as sources of variance, and 

considered to have a significant impact on the response if the significance value (p) is 

less than the significance threshold of .05. Conclusions for each group summarize the 

software’s ability to produce human-quality output. 

Group A 

Hypotheses: 

1. Listener number has no significant impact on listeners’ perceptions of which 

transitions are human or computer-generated, or how the listeners rate 

compatibility or location. 

2. The factor of whether a transition was generated by a human or by a computer has 

no significant impact on listeners’ perceptions of which transitions were human or 

computer-generated, or how the listeners rate compatibility or location.  

3. The interaction between listener number and whether a transition was generated 

by a human or by a computer has no significant impact on listeners’ perceptions 
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of which transitions were human or computer-generated, or how the listeners rate 

compatibility or location.  

Significance Values (p):  

Source of Variation isHumanChoice Compatibility Location 
Listener # 0.999 0.024 0.310 
isHumanTruth 0.028 0.045 0.003 
Listener #*isHumanTruth 0.113 0.099 0.154 
 

Conclusions: 

1. Listener number has no significant impact on the listeners’ perceptions of which 

transitions were human or computer-generated, or how the listeners rate location. 

Listener number does, however, have a significant impact on how listeners rate 

compatibility. 

2. The factor of whether a transition was generated by a human or by a computer has 

a significant impact on listeners’ perceptions of which transitions were human or 

computer-generated, and how the listeners rate compatibility and location. 

3. The interaction between listener number and whether a transition was generated 

by a human or by a computer has no significant impact on listeners’ perceptions 

of which transitions were human or computer-generated, or how the listeners rate 

compatibility or location.   

Group B 

Hypotheses: 

1. Listener number has no significant impact on whether transitions were human or 

computer-generated, or how the listeners rate compatibility or location. 
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2. Listeners’ perceptions of whether a transition was generated by a human or by a 

computer have no significant impact on which transitions were human or 

computer-generated, but do have a significant impact on how the listeners rate 

compatibility and location.  

3. The interaction between listener number and listeners’ perceptions of whether a 

transition was generated by a human or by a computer has no significant impact 

on which transitions were human or computer-generated, or how the listeners rate 

compatibility or location.  

Significance Values (p): 

Source of Variation isHumanTruth Compatibility Location 
Listener # 1.000 0.009 0.338 
isHumanChoice 0.030 0.000 0.002 
Listener #*isHumanChoice 0.126 0.745 0.422 

 

Conclusions: 

1. Listener number has no significant impact on whether transitions were human or 

computer-generated, or how the listeners rate location. Listener number does, 

however, have a significant impact on how listeners rate compatibility. 

2. Listeners’ perceptions of whether a transition was generated by a human or by a 

computer have a significant impact on which transitions were human or 

computer-generated, and how the listeners rate compatibility and location.  

3. The interaction between listener number and listeners’ perceptions of whether a 

transition was generated by a human or by a computer has no significant impact 

on which transitions were human or computer-generated, or how the listeners rate 

compatibility or location.  
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Group C 

Hypotheses: 

1. Song number has no significant impact on how listeners rate compatibility or 

location, and is completely related to whether a transition was generated by a 

human or by a computer. 

2. Listeners’ perceptions of whether a transition was generated by a human or by a 

computer have no significant impact on which transitions were human or 

computer-generated, but do have a significant impact on how the listeners rate 

compatibility and location.  

3. The interaction between song number and listeners’ perceptions of whether a 

transition was generated by a human or by a computer has no significant impact 

on which transitions were human or computer-generated, or how the listeners rate 

compatibility or location.  

Significance Values (p): 

Source of Variation isHumanTruth Compatibility Location 
Song # - 0.009 0.015 
isHumanChoice .041 0.000 0.000 
Song #*isHumanChoice .529 0.176 0.141 

 

Conclusions: 

1. Song number has a significant impact on how the listeners rate compatibility or 

location. 

2. Listeners’ perceptions of whether a transition was generated by a human or by a 

computer have a significant impact on which transitions were human or 

computer-generated, and how the listeners rate compatibility or location.  



35	
  	
  

3. The interaction between song number and listeners’ perceptions of whether a 

transition was generated by a human or by a computer has no significant impact 

on which transitions were human or computer-generated, or how the listeners rate 

compatibility or location.  

The following table summarizes key conclusions drawn from the test procedures. 

Source of Variation Variables affected 
Listener # compatibility 
Song # compatibility, location 
isHumanTruth isHumanChoice, compatibility, location 
isHumanChoice isHumanTruth14, compatibility, location 

Table 6: Automatic DJ ANOVA key conclusions 

The general hypothesis that precedes all of the ANOVA tests asserts that human 

listeners respond to transitions generated by the Automatic DJ similarly to those 

generated by a human DJ. The test conclusions, however, prove that listeners’ reactions 

(as measured by the compatibility, location, and isHumanChoice quantifiers) are 

significantly impacted by whether or not the transition is generated by a human or in 

computer software. Because listeners react to the two transition types so differently, it 

can be concluded that the current version of the Automatic DJ program cannot accurately 

imitate human-quality DJ mixing.  

3.2.2 General Listener Feedback 
 

 This section summarizes common feedback collected from the free-response 

questions included in the questionnaire. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Although this effect is statistically significant, it is incorrect to conclude that listeners’ perceptions 
actually affect whether or not a transition was generated by a human.	
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1. In your own words, how well do the computer-generated transitions imitate those of a 

real DJ? Responses to this question indicated the importance of context when judging the 

effectiveness of automatically mixed DJ playlists. Listeners noted that they scrutinize DJ 

performances less when they are outside of a testing environment. A more thorough 

listening test process would vary the amount of distraction during the testing process to 

see if setting and context affect the listeners’ reactions to the song transitions. Although 

as one survey responder pointed out, however, perhaps the most prized feature of the 

Automatic DJ program is that    

2. Imagine hearing these computer generated transitions in a mix at a venue or club. 

Could they pass for DJ quality, or is it apparent that they were generated by a computer? 

Does anything specific compromise their credibility? Listeners cited the repetition of the 

same transition technique as the strongest indicator of a computer-generated transition. 

Feedback for this question also argued that one awkward transition amongst ten smooth 

transitions is enough to draw attention and compromise the quality of a mix.  

3. Do you have any suggestions to improve this program? The	
  most	
  popular	
  response	
  

to	
  this	
  question	
  recommended	
  increased	
  precision	
  when	
  choosing	
  transition	
  points.	
  

Similar	
  to	
  answers	
  for	
  the	
  previous	
  question,	
  some	
  responses	
  also	
  called	
  for	
  

increased	
  variety	
  in	
  how	
  the	
  program	
  transitions	
  from	
  one	
  song	
  to	
  the	
  next.	
  	
  	
  	
  	
  

 

The statistical test results and listener feedback contributed to the following list of 

enhancements that may be used to improve upon the existing Automatic DJ code.  
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3.3 Enhancements 
 

 This section identifies specific program enhancements that still need to be 

addressed, and offers possible solutions.  

 

1. Variety in Transition Techniques – The program currently uses a 4 beat beat-

matched crossfade to transition between songs, whereas a professional DJ uses a 

variety of techniques to produce multiple creative transitions in a mix. I first 

recommend replacing the hardcoded 4 beat default for Crossmatching with a 

randomly selected number from the set {2,4,8,12}. This simple change will allow 

for quick transitions that occur over a short amount of time, as well as more 

gradual transitions that allow for more overlap between songs. 

2. More Intelligent Choosing Algorithm – Testing has revealed that the section 

choosing algorithm is effective at identifying significant changes in song 

dynamics, but less robust at noticing gradual increases or decreases in loudness 

common to pre-chorus build-ups or fade-outs. I recommend using multiple filters 

on the loudness data to not only accentuate areas of consistent loudness, but to 

also accentuate areas of consistent change in loudness. Whereas a moving average 

was already used in the former case, I believe some form of a moving derivative 

would be a sufficient way to highlight these build-up and fade-out regions in the 

loudness data. 

3. Using Sections in Choosing Algorithm – The sections analysis data returned by 

the Analysis API may provide additional insight when further developing the 

choosing algorithm. One could try comparing demarcations produced by the 
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choosing algorithm with those of the sections list, to either verify or discredit the 

performance of the algorithm. During the development stage of the Automatic 

MashUp program, the average loudness of a section seemed to be very relevant to 

how the sections were demarcated. I touch on how section loudness is used to 

understand compatibility between different song structures in the following 

section. 
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Chapter 4: Automatic MashUp 
 

4.1 Development 
 

 The Automatic MashUp program builds on the Automatic DJ by investigating a 

more complicated music production task of layering multiple tracks. I begin this section 

by first defining the criteria for a successful mashup, and then detail my software 

development methodology. I finish the section with a summary of the feedback from 

human listening tests, and then recommend feasible enhancements to improve the 

program’s performance. The complete Python script of this application is included in 

Appendix F and a visual summary of how the program operates is included in Appendix 

G. 

 A professional mashup producer not only adheres to basic requirements rooted in 

music theory, but as Hoffner (2013) explains, also makes deliberate stylistic choices to 

create successful mashups. The former group of basic considerations is common to all 

mashups, and is described in detail below. 

 

• Key – Every song in the mashup must have the same chromatic scale, or else 

dissonance will occur. 

• Tempo – Every song in the mashup must have a compatible tempo, or else the 

tracks will become out of sync and sound arrhythmic. The tempo values can be 

identical, or they can be multiples of each other and still sound compatible. 

• Track Separation – Fully mixed tracks cannot be overlaid to create a mashup, 

because the combination of their instrumental content is almost always too great, 

and will result in distortion or artifacts. The combination of multiple vocal parts is 
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usually permissible, but the combination of two entire instrumentals is often 

inconsistent. Separate acapella and instrumental “component” tracks are instead 

mixed together to preserve the number of instrumental parts in a song. 

 

Since the Analysis API returns estimates for song key and tempo, I write code that uses 

the modify module to modify the audio files as necessary to ensure that the first two items 

are upheld. The algorithm calculates the average key and tempo for the two songs, and 

then calls modify functions that shift the pitch and speed of the audio files to their new 

key and tempo values. The third item cannot be feasibly automated, because track 

isolation is a very complicated procedure that produces only imperfect results when done 

manually. I decided to leave the responsibility of collecting component tracks to the user, 

since they cannot be automatically extracted, but can be found online from websites like 

YouTube and MP3PoolOnline. 

Matching key and tempo is a common sense first step to automatic mashup 

creation, but determining how to automatically overlay the songs requires more 

investigation. To gain a better understanding of how component tracks are aligned with 

each other, I investigated the mashup creation process by manually producing my own set 

of mashups. I first collected a large number of acapella and instrumental component 

tracks, and determined the key and tempo for their corresponding fully mixed tracks in 

my library. I then grouped together songs of similar tempo and key, as shown in the table 

below. 
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Mashup 
Group  

Name Artist Key  Tempo 

1 Just Dance Lady Gaga E 119 
 In My Head Jason Derulo Eb  110 
2 Paradise Coldplay F  70 
 Wide Awake Katy Perry F  80 
 Day n Nite Kid Cudi D  69 
3 Good Feeling Flo Rida E  128  
 Dynamite Taio Cruz E  120 
 Just Dance Lady Gaga E  119 
4 Titanium David Guetta Feat. Sia Eb  126 
 Who’s That Chick? Rihanna D  128 
 Disturbia Rihanna D  125 
 Parallel Universe The Red Hot Chili Peppers Eb  124 
5 Don’t Stop The Music Rihanna A  123 
 Every Teardrop Is A Waterfall Coldplay A  118 
 What I’ve Done Linkin Park Bb  120 
6 Firework Katy Perry Ab  124 
 Paparazzi Lady Gaga Ab  115 
 Feel So Close Calvin Harris G  128 
7 When You Were Young The Killers B  130 
 When Love Takes Over David Guetta Feat. Kelly 

Rowland 
B  130 

 We Run The Night Havana Brown C  127 
 Lights Ellie Goulding B  120 
8 Feel So Close Calvin Harris G  128 
 Last Friday Night Katy Perry F#  126 
 Please Don’t Go Mike Posner G  120 
9 Burn It Down Linkin Park C  110 
 Pumped Up Kicks Foster The People Eb  128 
 I Miss You Blink-182 B  110 

Table 7: Groups of component tracks used for mashup creation 

I used the modify module and my written python code to match the tempo and 

key of the grouped component tracks, and then imported them into GarageBand to be 

aligned and manipulated manually to gain insight into mashup production. I found that I 

typically overlaid two songs where their chord progressions were most similar. I 

subsequently aligned the tracks to match their 4 beat local contexts, and found consistent 

structural commonality between chord progressions, rhythmic information, and loudness 
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levels. I decided to include three data sources in my analysis for compatibility in the 

software.  

 

• Chromatic Content – The chromatic content of a song reveals chord progression 

patterns, and governs harmonic compatibility between songs.  

• Timbre Content – The timbre content of a song best describes its rhythmic 

patterns, and signifies rhythmic compatibility between songs. 

• Loudness Content – The loudness content of a song, as shown in the Automatic 

DJ program, reveals information about song structure and how energy changes in 

a song. 

 

These attributes can be more easily visualized as a two-dimensional image. The 

picture below is as many pixels tall as the number of beats in the song, and thirty pixels 

wide for each beat. The thirty pixels are comprised of twelve chroma values, twelve 

timbre values, and six identical loudness values. The loudness data on the far right are 

black, because they are mainly negative values, but they become more relevant when 

processing the image later. 
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Figure 9: Chroma, timbre, and loudness per beat 

I used these matrices to calculate compatibility between two songs. Since the goal of a 

mashup is to combine compatible sections from different tracks, I used template 

matching to find the best match for each section, or template, in one song within the 

entirety of the other song. The following diagram shows how four different analysis 

sections of one song are compared to the entirety of the other song in four separate 

template matching procedures.  

 

CHROMA TIMBRE LOUDNESS 
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Figure 10: High-level visual depiction of template matching. 

I placed the result of each template matching procedure in the same image, and then 

designated the pixel with the highest correlation as the center of the best-matched 

template. The image below shows the actual results for all four of the template matching 

processes depicted in the above diagram. 
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Figure 11: Four analysis section templates matched with another song 

Each is pixel is a correlation value that signifies how well matched the section is with a 

specific position in the other song. The sections are of different length, but are all 30 

values wide and therefore separated by 30 on the x-axis. The red circle designates the 

best correlation value, or the location of the best-matched template, and its pixel location 

derives the section number and corresponding best-matched beats.    

After determining the best matching sections, their comprising beat lists were 

further aligned so that their local context values were in the same sequence. This measure 

ensured that beat 1 of one song matched with beat 1 of the other song I then mixed 

together the corresponding sections of the two tracks’ respective vocal and/or 

instrumental tracks. The vocal version of the new song (labeled “Song 2” in the figure 
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below) is combined with the instrumental version of the original song (labeled “Song 1” 

in the figure below) for the entirety of their best-matched sections. The combination is 

then given context by a few seconds of the original vocal track before and after fading to 

the new vocal.  

	
  

Figure 12: Automatic MashUp output audio clip. 

The result of the procedure is a short audio clip used to demonstrate the software’s ability 

to complete its original program requirements.  

Functional testing produced some successful mashup pairs, but because the 

program relies on accurate analysis data from the Remix API, it suffered from frequent 

inaccuracies in this data. Estimations for the song key were sometimes incorrect, which 

stopped the program from correctly matching the key of the component songs. Analysis 

data for beat location and local context was also unreliable, so song sections could not 

always be aligned perfectly. The two images below show four beats of two different 

tracks being aligned according to beat number.  The program’s attempt to properly align 

the two tracks (left) is compromised by incorrectly assigned beat numbers for Song 2, 

yielding an awkwardly aligned combination of the two different songs. 
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To eliminate these sources of error, input tracks were verified for correctness in 

their beat and key analysis data before being used as program input. To pick test cases for 

human listening tests, I manually analyzed 72 possible input tracks, and found that only 

five had fully reliable analysis information.  

Name	
   Artist	
  

Fallin	
   K.	
  Michelle	
  

Louboutins	
   Jennifer	
  Lopez	
  

Please	
  Don’t	
  Go	
   Michael	
  Posner	
  

Titanium	
   David	
  Guetta	
  Feat.	
  Sia	
  

Good	
  Girls	
  Like	
  Bad	
  

Boys	
  

Jadyn	
  Maria	
  ft.	
  Flo	
  

Rida	
  

Table 8: Test cases with fully verified beat and key information 

I used the five tracks to automatically generate ten mashups for human listening tests.  

 

4.2 Testing 
 

Similar to the Automatic DJ testing procedure, human test subjects rated a ten-

item playlist of computer and human-generated audio clips. The survey is included in 

Appendix D, and the table below shows the mashups used in the study. The notation 

“Song1 X Song2” means that Song1 served as the instrumental track upon which the 

acapella track of Song2 was overlaid.  
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Name Duration (secs) Generated By… 

Fallin X Louboutins 31 Human 

Fallin X Please Don’t Go 30 Computer 

Titanium X Good Girls Like Bad Boys 22 Computer 

Titanium X Louboutins 34 Computer 

Please Don’t Go X Titanium 24 Computer 

Please Don’t Go X Fallin 16 Human 

Louboutins X Fallin 26 Human 

Louboutins X Good Girls Like Bad Boys 30 Computer 

Good Girls Like Bad Boys X Please Don’t Go 47 Human 

Good Girls Like Bad Boys X Titanium 25 Computer 

Table 9: Mashup audio clips used in human testing 

The full test results are included in Appendix H, and briefly summarized in the table 

below. Listeners guessed whether a mashup was created by a human or by software, and 

rated how well the rhythm, harmony, dynamics, and structure of the two songs combined 

on a scale from 1 to 10. 

 

Origin	
   Rhythm	
   Harmony	
   Dynamics	
   Structure	
   %	
  Marked	
  Human	
  	
  
Computer	
   6.10	
   6.19	
   6.49	
   5.68	
   36.14	
  
Human	
   8.00	
   7.78	
   7.95	
   7.51	
   68.75	
  
Total	
   6.87	
   6.83	
   7.08	
   6.415	
   47.08	
  

Table 10: Average test results for Automatic MashUp 

The table shows average ratings and the percentage of responses that believed a mashup 

type to be human. The twenty responses are broken down into two categories based on 

whether the mashup was truly human-generated, or actually computer-generated. The 
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table shows that human-generated mashups were on average rated higher than computer-

generated mashups in all four categories categories. Also presented above is that human-

generated mashups were typically perceived to be human-generated more often than 

computer-generated transitions.  

Testing reveals a clearly more positive response for human-generated mashups, as 

well as interesting relationships between variables that significantly affect results. 

Statistical testing procedures used in section 3.2.1 are applied to draw conclusions from 

the survey responses.     

 

4.2.1 Statistical Results 
 

The following ANOVA tests use a significance threshold of .05 to determine 

which variables impacted the listeners’ responses. Each test answers the following 

questions for different combinations of Factor 1, Factor 2, and Result variables: 

1. Does the independent variable Factor 1 have a significant impact on the 

dependent Response variable? 

2. Does the independent variable Factor 2 have a significant impact on the 

dependent Response variable? 

3. Is there an interaction between independent variables Factor 1 and Factor 2 that 

significantly impacts the dependent Response variable? 

Each unique combination of factors is placed into its own test group, and each test group 

is comprised of three tests against three different response variables. The variables used 

in the table are defined as follows: 



50	
  	
  

• Listener #: Listener number is the unique integer used to identify one of the 

twenty listeners. 

• Song #: Song number is the unique integer used to identify one of the ten audio 

clips used in each of the listening tests. 

• isHumanTruth: A Boolean value used to declare whether an audio clip is human-

generated (isHumanTruth = 1) or computer-generated (isHumanTruth = 0). 

• isHumanChoice: A Boolean value used to declare whether an audio clip was 

perceived to be human-generated (isHumanChoice = 1) or computer-generated 

(isHumanChoice = 0). 

• Rhythmic compatibility (Rcomp):  A measure of how well the rhythmic attributes 

of two different tracks combine to make a mashup.  

• Harmonic compatibility (Hcomp):  A measure of how well the harmonic or 

chromatic attributes of two different tracks combine to make a mashup.  

• Dynamic compatibility (Dcomp):  A measure of how well the dynamic 

characteristics of two different tracks combine to make a mashup.  

• Structural compatibility (Scomp):  A measure of how well the structures of two 

different tracks combine to make a mashup.  
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Group Test Factor 1 Factor 2 Response 
1 Listener # isHumanTruth isHumanChoice 
2 Listener # isHumanTruth Rcomp 
3 Listener # isHumanTruth Hcomp 
4 Listener # isHumanTruth Dcomp 

A 

5 Listener # isHumanTruth Scomp 
6 Listener # isHumanChoice isHumanTruth 
7 Listener # isHumanChoice Rcomp 
8 Listener # isHumanChoice Hcomp 
9 Listener # isHumanChoice Dcomp 

B 

10 Listener # isHumanChoice Scomp 
11 Song # isHumanChoice isHumanTruth 
12 Song # isHumanChoice Rcomp 
13 Song # isHumanChoice Hcomp 
14 Song # isHumanChoice Dcomp 

C 

15 Song # isHumanChoice Scomp 
Figure 13: Automatic MashUp ANOVA tests. 

The hypotheses and results for each group of tests are summarized below. For each test, 

the two factors and their interaction are each evaluated as sources of variance, and 

considered to have a significant impact on the response if the significance value (p) is 

less than the significance threshold of .05. Conclusions for each group summarize the 

software’s ability to produce human-quality output. 

Group A 
 
Hypotheses: 
 

1. Listener number has no significant impact on listeners’ perceptions of which 

mashups are human or computer-generated, or how the listeners rate rhythmic, 

harmonic, dynamic, or structural compatibility. 

2. The factor of whether a mashup was generated by a human or by a computer has 

no significant impact on listeners’ perceptions of which mashups were human or 
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computer-generated, or how the listeners rate rhythmic, harmonic, dynamic, or 

structural compatibility. 

3. The interaction between listener number and whether a mashup was generated by 

a human or by a computer has no significant impact on listeners’ perceptions of 

which mashups were human or computer-generated, or how the listeners rate 

rhythmic, harmonic, dynamic, or structural compatibility. 

 
Significance Values (p): 
 
Source of Variation isHumanChoice Rcomp Hcomp Dcomp Scomp 
Listener # 0.818 0.243 0.000 0.000 0.000 
isHumanTruth 0.000 0.000 0.000 0.000 0.000 
Listener #*isHumanTruth 0.117 0.018 0.030 0.204 0.004 

 
Conclusions: 

1. Listener number has no significant impact on the listeners’ perceptions of which 

mashups were human or computer-generated, or how the listeners rate rhythmic 

compatibility. Listener number does, however, have a significant impact on how 

listeners rate harmonic, dynamic, and structural compatibility. 

2. The factor of whether a mashup was generated by a human or by a computer has a 

significant impact on listeners’ perceptions of which mashups were human or 

computer-generated, and how the listeners rate rhythmic, harmonic, dynamic, and 

structural compatibility. 

3. The interaction between listener number and whether a mashup was generated by 

a human or by a computer has no significant impact on listeners’ perceptions of 

which mashups were human or computer-generated, or how the listeners rate 

dynamic compatibility. The interaction does, however, impact how listeners rate 

rhythmic, harmonic, and structural compatibility.  
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Group B 

Hypotheses: 

1. Listener number has no significant impact on whether mashups were human or 

computer-generated, or how the listeners rate rhythmic, harmonic, dynamic, or 

structural compatibility. 

2. Listeners’ perceptions of whether a mashup was generated by a human or by a 

computer have no significant impact on which mashups were human or computer-

generated, but do have a significant impact on how the listeners rate rhythmic, 

harmonic, dynamic, or structural compatibility.  

3. The interaction between listener number and listeners’ perceptions of whether a 

mashup was generated by a human or by a computer has no significant impact on 

which mashups were human or computer-generated, or how the listeners rate 

rhythmic, harmonic, dynamic, or structural compatibility.  

Significance Values (p): 

Source of Variation isHumanTruth Rcomp Hcomp Dcomp Scomp 
Listener # 1.000 0.094 0.000 0.000 0.000 
isHumanChoice 0.000 0.000 0.000 0.000 0.000 
Listener #*isHumanChoice 0.075 0.000 0.007 0.020 0.001 

 

Conclusions: 

1. Listener number has no significant impact on whether mashups were human or 

computer-generated, or how the listeners rate rhythmic compatibility. Listener 

number does, however, have a significant impact on how listeners rate harmonic, 

dynamic, and structural compatibility. 
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2. Listeners’ perceptions of whether a mashup was generated by a human or by a 

computer have a significant impact on which mashups were human or computer-

generated, and how the listeners rate rhythmic, harmonic, dynamic, and structural 

compatibility.  

3. The interaction between listener number and listeners’ perceptions of whether a 

mashup was generated by a human or by a computer has no significant impact on 

which mashups were human or computer-generated, but does have a significant 

impact on how listeners rate rhythmic, harmonic, dynamic, and structural 

compatibility.  

Group C 

Hypotheses: 

1. Song number has no significant impact on how the listeners rate rhythmic, 

harmonic, dynamic, or structural compatibility, and is completely related to 

whether or not a mashup is computer or human generated. 

2. Listeners’ perceptions of whether a mashup was generated by a human or by a 

computer have no significant impact on which mashups were human or computer-

generated, but do have a significant impact on how the listeners rate rhythmic, 

harmonic, dynamic, or structural compatibility. 

3. The interaction between song number and listeners’ perceptions of whether a 

mashup was generated by a human or by a computer has no significant impact on 

which mashups were human or computer-generated, or how the listeners rate 

rhythmic, harmonic, dynamic, or structural compatibility. 
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Significance Values (p): 

Source of Variation isHumanTruth Rcomp Hcomp Dcomp Scomp 
Song # - 0.000 0.000 0.003 0.000 
isHumanChoice 0.000 0.000 0.000 0.000 0.000 
Song #*isHumanChoice 0.081 0.000 0.000 0.009 0.000 

 

Conclusions: 

1. Song number has a significant impact on how the listeners rate rhythmic, 

harmonic, dynamic, and structural compatibility. 

2. Listeners’ perceptions of whether a mashup was generated by a human or by a 

computer have a significant impact on which mashups were human or computer-

generated, and how the listeners rate rhythmic, harmonic, dynamic, and structural 

compatibility. 

3. The interaction between song number and listeners’ perceptions of whether a 

mashup was generated by a human or by a computer has no significant impact on 

which mashups were human or computer-generated, but does have a significant 

impact on how listeners rate rhythmic, harmonic, dynamic, and structural 

compatibility.  
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The following table summarizes key conclusions drawn from the test procedures. 

Source of Variation Variables affected 
Listener # Hcomp, Dcomp, Scomp 
Song # Rcomp, Hcomp, Dcomp, Scomp 
isHumanTruth isHumanChoice, Rcomp, Hcomp, Dcomp, Scomp 
isHumanChoice isHumanTruth15, Rcomp, Hcomp, Dcomp, Scomp 
Listener #*isHumanTruth Rcomp, Hcomp, Scomp 
Listener #*isHumanChoice Rcomp, Hcomp, Dcomp, Scomp 
Song #*isHumanTruth Rcomp, Hcomp, Dcomp, Scomp 

Table 11: Automatic MashUp ANOVA key conclusions 

The general hypothesis that precedes all of the ANOVA tests asserts that human 

listeners respond to mashups generated by the Automatic MashUp similarly to those 

generated by a human mashup artist. The test conclusions, however, prove that listeners’ 

reactions (as measured by the Rcomp, Hcomp, Dcomp, Scomp, and isHumanChoice 

quantifiers) are significantly affected by whether or not the transition is generated by a 

human or by computer software. Because listeners react to the two mashup types so 

differently, it can be concluded that the current version of the Automatic MashUp 

program cannot accurately imitate human-quality DJ mixing. 

The test results also reveal that variation between listeners and interactions 

between factors affected all five of the response variables. The human listeners were 

therefore less reliable judges of mashups than they were of transitions in the previous 

chapter. Future testing may require human listeners with a stronger understanding of 

music production.  
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  Although this effect is statistically significant, it is incorrect to conclude that listeners’ perceptions 
actually affect whether or not a mashup was generated by a human.	
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4.2.2 General Listener Feedback 
 

This section summarizes common feedback collected from the free-response 

questions included in the questionnaire. 

1. How well do the computer-generated mashups replicate the quality of a human music 

artist? The collective answer to this question indicated that the software is incapable of 

imitating human output, but responses differed in their reasoning. Some listeners 

divulged that they tended to focus on just one or two of the four musical attributes 

defined in the study (rhythm, harmony, dynamics, and structure) to judge the overall 

quality of a mashup. The responses suggest that a mashup with well-rounded 

compatibility scores may not be as effective as a mashup that has one strong 

compatibility score tailored to a subset of listeners with similar taste.  

2. Can you identify anything specific about the computer-generated mashups that 

compromise their credibility? Listeners answered that human-generated mashups seemed 

to have more deliberate section combinations, especially in terms of rhythmic and 

structural compatibility.  

3. Do you have any suggestions to improve this program? The most popular response to 

this question recommended more precise track alignment. Many responses also called for 

better compatibility in one of the four attributes.   

4.3 Enhancements 
 

This section identifies specific program enhancements that still need to be 

addressed, and offers possible solutions.  
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1. Local Context Alignment – Because the software aligns songs based on unreliable 

local context analysis data, the output will sometimes sound euphonious, but often 

sound awkwardly arrhythmic. Although I am not confident such a simple change 

would totally ameliorate the issue, I would first recommend testing the program 

without any local context alignment, and only rely on the template matching 

procedure to align the data correctly. 

2. More Precise Track Mixing – The instrumental and acapella tracks are currently 

mixed together using a 50/50 loudness ratio. Some tracks include artifacts from 

loudness values going above the audio codec’s maximum loudness threshold. I 

recommend comparing instrumental and acapella tracks to their full studio mix to 

better identify the correct mixing ratio for both tracks, and also include a measure 

to normalize audio data before encoding. 

3. Key and Tempo Matching – The software calculates average key and tempo 

values to shift the pitch and speed of the mashup component songs. Although the 

current method achieves its intended purpose of harmonic and temporal 

compatibility, testing revealed that shifting both the instrumental and acapella 

tracks by an equal amount is overly simplistic. Acapella tracks were more robust 

to pitch and tempo shifting procedures, whereas instrumental tracks easily 

degraded in sound quality. Instead of averaging the songs’ key and tempo 

attributes, I recommend shifting the acapella track to match the instrumental 

track’s key and tempo. 

4. User-defined Matching Parameters – Song sections are currently compared and 

matched using a fixed weighting of timbre, chroma, and loudness attributes. I 
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recommend further defining the relationship between how different weightings of 

these metrics in the software affect how listeners rate the rhythmic, harmonic, 

dynamic, and structural compatibility of the mashups. I also recommend 

considering how weighting differs between listeners to allow users to customize 

software parameters according to their specific listening tastes. 
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Chapter 5: Conclusion 
 

The results of this project yield some successful application of prior MIR research 

in both software programs, and some examples of where imperfect data metrics limit the 

performance of the applications. Because the Automatic DJ program relied mainly on 

consistently accurate loudness data, its performance was more reliable, and showed 

promise in its ability to model the output of a human DJ. Even when a song’s beat 

information was inaccurate, the Crossmatch method used to transition between songs was 

often sufficient in covering up the unaligned beats. The Automatic MashUp program 

produced some examples of success, but ultimately fell short in its ability to produce 

human-quality mashups. The software’s success relied heavily on accurate analysis data, 

and its development was thwarted by the challenge of finding songs with correct key and 

beat predictions. If an application such as this is to be developed in the future, it must be 

preceded by techniques for more robust key estimation and beat detection. Ultimately, an 

inaccurate library of data limited the success of the The Automatic MashUp program.  

 The progress made with this software also shows that music production 

algorithms can be identified and automated, but that the variability in the output of the 

imitated work must be matched by the algorithm’s complexity. For both programs, a few 

basic considerations were identified as common to the entire production process, and 

played an important role in guiding both development phases. These limited sets of 

variables were sufficient for making basic programs, but music production will always 

contain an infinite amount of things that can be unexpectedly altered, so there will always 

be a need to make these automatic algorithms even more complex.  
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The criticisms for the programs that were raised during human listening tests all 

call for an increase in variability. The programs may need to be more robust in 

understanding input songs of greater variability, as demonstrated by the Automatic DJ’s 

ability to identify sudden changes in loudness, and its inability to identify gradual build-

ups in loudness. The programs may also require greater variability in how they generate 

output, like the enhancement that calls for random transition durations between songs in 

the Automatic DJ. 

Finally, the greatest enhancement for these programs would be to combine their 

functionality and build upon their ability to produce music. The tasks of mixing and 

matching are often used by DJs simultaneously in a performance, so a combination of 

both programs could serve as a useful application for professional disk jockeys. One 

could even try using studio samples from multiple different instrument and vocal tracks 

as input to the Automatic MashUp program to fabricate “multi-track mashups,” or 

ultimately, original music.  

The results of this project will hopefully provide new insight to the millions of 

active musicians in the digital age. Written music has taken on a new, digital format, and 

has gained the powerful capability of computational analysis. By furthering MIR research 

and applying its findings, music composers will be able to expand their creativity, and 

music admirers will acquire greater understanding.  
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Appendix A: Automatic DJ Python Script 
#!/usr/bin/env python 
# encoding: utf=8 
''' 
Created on Oct 15, 2012 
@author: jordanhawkins 
''' 
import echonest.audio as audio 
import echonest.action as action 
import echonest.selection as selection 
import os 
import plistlib 
import shutil 
import urllib 
import numpy.matlib as matlib 
import numpy as np 
import scipy.signal as signal 
import matplotlib.pyplot as pyplot 
 
workingDirectory = '/Users/jordanhawkins/Documents/workspace/Automatic DJ/src/root/nested' 
programFiles = ['__init__.py','Main.py','AutoMashUp.py'] 
lib = plistlib.readPlist('/Users/jordanhawkins/Music/iTunes/iTunes Music Library.xml') 
LOUDNESS_THRESH = -8 # per capsule_support module 
MIX_LENGTH = 4 # defines the length, in beats, of fades between songs 
""" 
Remove any old audio files from the project directory. 
""" 
def flushDirectory(): 
    for filename in os.listdir(workingDirectory): 
        if programFiles.count(filename) == 0: 
            os.remove(filename) 
   
""" 
Copy audio files listed in the "Automatic DJ Input" iTunes playlist  
into the project directory. 
"""                  
def getAudioFiles(): 
    for count in range(len(lib['Playlists'])): 
        if lib['Playlists'][count]['Name'] == 'Automatic DJ Input': 
            playlistItems = lib['Playlists'][count]['Playlist Items'] 
            trackIDs = [i['Track ID'] for i in playlistItems] 
            for i in range(len(trackIDs)): 
                location = lib['Tracks'][str(trackIDs[i])]['Location'] 
                location = urllib.unquote(location) 
                try: 
                    shutil.copy(location[16:], workingDirectory) 
                except: 
                    print "exception in getAudioFiles" 
            break 
     
""" 
Find the longest consistently loud region of the song. 
window is the approximate number of segments in a 16 beat span. 
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lpf is a 16-beat-long rectangular window convolved with the loudness  
values to smoothen them the while loop tries to find a loud region  
of the song that's at least 60 seconds long. If such a region cannot 
be found the first time, the LOUDNESS_FLOOR value is increased to  
tolerate slightly softer loud regions for the sake of a longer  
song duration. 
*To better understand the mathematics involved, note that loudness  
is measured in negative decibels, so a small negative number is  
louder than a large negative number. 
""" 
def findLoudestRegion(segments,tempos): 
    segmentMarkers = [] 
    for segs,tempo in zip(segments,tempos): 
        LOUDNESS_CEILING = .8 
        LOUDNESS_FLOOR = 1.2 
        window = int((16.0/tempo)*60.0/(matlib.mean(matlib.array(segs.durations)))) 
        lpf = np.convolve(segs.loudness_max,np.ones(window)/window)[window/2:-(window/2)] 
        lpf[0:window/2] = lpf[window/2] 
        lpf[-(window/2):] = lpf[-(window/2)] 
        mean = matlib.mean(matlib.array(lpf)) 
        marker1 = 0 
        finalMarkers = (0,0) 
        foundFirstMarker = 0 
        while((sum([s.duration for s in segs[finalMarkers[0]:finalMarkers[1]]]) < 60.0) 
              and LOUDNESS_FLOOR < 2.0): 
            for i,l in enumerate(lpf): 
                if(foundFirstMarker): 
                    if l < mean*LOUDNESS_FLOOR or i == len(lpf)-1: 
                        foundFirstMarker = 0 
                        if((i-marker1) > (finalMarkers[1]-finalMarkers[0])): 
                            finalMarkers = (marker1,i)                          
                elif l > mean*LOUDNESS_CEILING:  
                    foundFirstMarker = 1 
                    marker1 = i 
            # adjust thresholds to allow for longer region to be chosen, if necessary 
            LOUDNESS_FLOOR = LOUDNESS_FLOOR + .05 
            LOUDNESS_CEILING = LOUDNESS_CEILING + .05 
        segmentMarkers.append(finalMarkers) 
        return segmentMarkers   
 
 
""" 
Collects the names of the audio files in the project directory, 
then creates a list of LocalAudioFile objects, which gets returned 
along with key analysis objects. 
""" 
def getInput(): 
    filenames = [] 
    for filename in os.listdir(workingDirectory): 
        if programFiles.count(filename) == 0: 
            filenames.append(filename)   
    inputList = [] 
    for filename in filenames: 
        try: 
            inputList.append((audio.LocalAudioFile(filename).analysis.tempo['value'], 
                              audio.LocalAudioFile(filename),filename)) 



65	
  	
  

        except: print "Exception in getInput for filename: ", filename 
    inputList.sort() 
    localAudioFiles = [t[1] for t in inputList] 
    return [f.analysis.segments for f in localAudioFiles], [t[2] for t in inputList],[f.analysis.tempo['value'] for 
f in localAudioFiles], localAudioFiles, [f.analysis.beats for f in localAudioFiles] 
""" 
I copied this method from capsule_support. It equalizes the volume of the input tracks. 
""" 
def equalize_tracks(tracks): 
    def db_2_volume(loudness): 
        return (1.0 - LOUDNESS_THRESH * (LOUDNESS_THRESH - loudness) / 100.0)    
    for track in tracks: 
        loudness = track.analysis.loudness 
        track.gain = db_2_volume(loudness) 
 
""" 
This method deletes the original input songs from the directory so they don't  
get copied into iTunes. 
"""    
def deleteOldSongs(filenames): 
    for filename in os.listdir(workingDirectory): 
        if filename in filenames: 
            os.remove(filename) 
             
""" 
This method generates 4-beat Crossmatch objects, then renders them attached  
to the end of Playback objects. 
""" 
def generateCrossmatch(localAudioFiles, beatMarkers, filenames, beats): 
    actions = [] 
    for i in range(len(beatMarkers)-1):  
        cm = action.Crossmatch((localAudioFiles[i], localAudioFiles[i+1]),  
            ([(b.start, b.duration) for b in beats[i][beatMarkers[i][1] -  
            MIX_LENGTH:beatMarkers[i][1]]],[(b.start, b.duration)  
            for b in beats[i+1][beatMarkers[i+1][0]:beatMarkers[i+1][0]+ 
            MIX_LENGTH]])) 
        actions.append(cm) 
    for i in range(len(beatMarkers)):  
        startBeat = beats[i][beatMarkers[i][0]+MIX_LENGTH] 
        endBeat = beats[i][beatMarkers[i][1]-MIX_LENGTH] 
        actions.insert(2*i, action.Playback(localAudioFiles[i],  
            startBeat.start, endBeat.start-startBeat.start)) 
    action.render([action.Fadein(localAudioFiles[0],beats[0] 
        [beatMarkers[0][0]].start,beats[0][beatMarkers[0][0]+MIX_LENGTH]. 
        start-beats[0][beatMarkers[0][0]].start)],"000 fade in") 
    for i in range(len(actions)/2): 
        index = str(i+1) 
        while(len(index) < 3): index = "0" + index 
        try: 
            action.render([actions[2*i],actions[2*i+1]], index + " " + filenames[i]) 
        except: print filenames[i]                         
    index = str(len(filenames)) 
    while(len(index) < 3): index = "0" + index 
    action.render([actions[-1]], index + " " + filenames[-1]) 
    action.render([action.Fadeout(localAudioFiles[-1],beats[-1][beatMarkers[-1][1]- 
        MIX_LENGTH].start,beats[-1][beatMarkers[-1][1]].start-beats[-1] 
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        [beatMarkers[-1][1]-MIX_LENGTH].start)], "999 fade out") 
 
""" 
This method finds the closest beat to my designated segments for Crossmatching. 
I had some trouble with this method, which is why it is so fragmented. I may resolve 
this later. 
"""  
def getBeatMarkers(loudnessMarkers,segments,beats): 
    return [(b.index(b.that(selection.overlap(segments[i][loudnessMarkers[i][0]]))[0]), 
             b.index(b.that(selection.overlap(segments[i][loudnessMarkers[i][1]]))[0])) 
            for i,b in enumerate(beats)] 
         
""" 
This method probably won't be used as much as Crossmatch. 
It immediately transitions between songs, without any kind of mix. 
"""    
def generateFaderSlam(localAudioFiles, beatMarkers, filenames): 
    actions = [action.Playback(laf, b[0].start, (b[1].start-b[0].start)) for laf,b in 
zip(localAudioFiles,beatMarkers)] 
    for i in range(len(actions)):  
        action.render([actions[i]],str(i) + " " + filenames[i]) 
          
def main(): 
    flushDirectory() 
    getAudioFiles() 
    segments, filenames, tempos, localAudioFiles, beats = getInput() 
    equalize_tracks(localAudioFiles) 
    loudnessMarkers = findLoudestRegion(segments,tempos) 
    beatMarkers = getBeatMarkers(loudnessMarkers,segments,beats) 
    generateCrossmatch(localAudioFiles,beatMarkers,filenames,beats) 
    deleteOldSongs(filenames) 
    os.system('automator /Users/jordanhawkins/Documents/workspace/' 
        + 'Automatic\ DJ/import.workflow/')       
     
if __name__ == '__main__': 
    main() 
	
  


