
	
 1	

Automating Music Production with Music Information Retrieval

A thesis submitted for partial fulfillment of requirements

for graduation with research distinction in the

Department of Computer Science and Engineering

of The Ohio State University

By

Jordan V. Hawkins

The Ohio State University

March 2013

2	
 	

Abstract

Prior research in the field of Music Information Retrieval has yielded techniques

for extracting musical information from digital audio, and made it possible to analyze

human music production computationally. I hypothesize that a computer can be

programmed to produce output similar to that of a musical artist on two production tasks

performed by disk jockeys. The first, “mixing,” aims to create seamless transitions

between songs in a playlist. The second, “mashup” creation, aims to overlay multiple

similar tracks to create a new combined song. To automate these tasks, I first created

example sets of my own mixes and mashups, and looked for patterns and relationships in

the audio analysis data from the public music analysis API provided by The Echo Nest,

Inc. I used my findings to write Python scripts that automatically perform the mixing or

mashing tasks on any input audio files. The software was udged by a sample of

individuals for its ability to produce output similar to that of a human DJ. Preliminary

results support the claim that automatic music production processes can be convincing,

but also show how programs perform poorly when processing unexpected input,

suggesting that tasks are most easily replicated within specific, predefined artistic styles.

3	
 	

Dedication
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

This document is dedicated to generic pop music producers,

and the oversimplified music that I have completely overanalyzed.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

4	
 	

Acknowledgements
	

 Multiple individuals contributed their time and ideas to help facilitate this project.

I am grateful for the selflessness with which they set aside their personal priorities to help

me pursue this passion. The following people played an integral part in my progress over

the past year, and deserve to be recognized as genuine advocates for undergraduate

research.

I want to first thank Liz Riter for assisting me throughout my involvement with

undergraduate research. My experience would not have been possible without her

eagerness to answer questions and connect her students to the right faculty. Dr. Bradley

Clymer was also essential to getting this project started by connecting me with Dr.

Raphael Wenger to enroll in the proper CSE undergraduate research coursework. Dr.

Clymer gave additional support again by volunteering to serve on the oral defense

committee of this thesis. I would also like to thank Dr. Phillip Schniter for agreeing to

advise this project, and for also serving on my oral defense committee.

I am lucky to have had many of my peers provide feedback or guidance during

the development and testing and my software programs. I would like to recognize DJ

Mike “Dansky” Smidansky for his advice programming the DJ music production tasks

identified in this study. The eventual test phase of the software would not have been

possible without the twenty anonymous human test subjects that helped rate the

performance of the programs.

 Finally, I would like to thank Dr. Michael Mandel for co-advising this research

project. Dr. Mandel’s prior experience with Music Information Retrieval was invaluable

when defining project objectives, as was his guidance while taking steps to complete

5	
 	

them. Without the help of exceptional advisors and helpful friends, this project would not

have been possible.

	

	

6	
 	

Table of Contents
Abstract.. 2	

Dedication .. 3	

Acknowledgements ... 4	

List of Tables ... 7	

List of Figures.. 8	

Chapter 1: Introduction ... 9	

1.1 Motivation and Personal Background ...9	

1.2 Past Research in Music Information Retrieval ... 10	

1.3 Project Objectives.. 11	

1.4 Thesis Objectives ... 13	

Chapter 2: Literature Review.. 14	

2.1 Glossary of Musical Terms .. 14	

2.2 Echo Nest Data Representation .. 15	

2.3 Image Processing with Scikit-Image.. 16	

Chapter 3: Automatic DJ ... 19	

3.1 Development ... 19	

3.2 Testing .. 27	

3.2.1 Statistical Results .. 30	

3.2.2 General Listener Feedback .. 35	

3.3 Enhancements .. 37	

Chapter 4: Automatic MashUp ... 39	

4.1 Development ... 39	

4.2 Testing .. 47	

4.2.1 Statistical Results .. 49	

4.2.2 General Listener Feedback .. 57	

4.3 Enhancements .. 57	

Chapter 5: Conclusion.. 60	

References.. 62	

Appendix A: Automatic DJ Python Script ... 63	

Appendix B: Automatic DJ Flowchart ... 67	

Appendix C: Automatic DJ Training, Validation Set Graphs 68	

Appendix D: Human Listening Test Questionnaire .. 83	

Appendix E: Automatic DJ Listening Test Results ... 85	

Appendix F: Automatic MashUp Python Script.. 93	

Appendix G: Automatic MashUp Flowchart ... 100	

Appendix H: Automatic MashUp Listening Test Results ... 102	

	

7	
 	

List of Tables
	

Table 1: Training Set of manually selected demarcations .. 20	

Table 2: Automatic DJ test input .. 28	

Table 3: Audio clips of transitions used for human testing .. 29	

Table 4: Average test results for Automatic DJ... 29	

Table 5: Automatic DJ ANOVA tests ... 31	

Table 6: Automatic DJ ANOVA key conclusions .. 35	

Table 7: Groups of component tracks used for mashup creation 41	

Table 8: Test cases with fully verified beat and key information............................... 47	

Table 9: Mashup audio clips used in human testing.. 48	

Table 10: Average test results for Automatic MashUp ... 48	

Table 11: Automatic MashUp ANOVA key conclusions .. 56	

8	
 	

List of Figures

Figure 1: The similarity matrix for Jimmy Buffet's Margaritaville. 17	

Figure 2: Coin template.. 18	

Figure 3: Larger image of many different coins .. 18	

Figure 4: Match_template result ... 18	

Figure 5: Loudness data for When Love Takes Over by David Guetta 21	

Figure 6: Manual and automatic demarcations based on loudness data................... 23	

Figure 7: Loudness data for LE7ELS by Aviici ... 25	

Figure 8: Loudness data for Don't Stop Til' You Get Enough by Michael Jackson.. 26	

Figure 10: Chroma, timbre, and loudness per beat... 43	

Figure 11: High-level visual depiction of template matching. 44	

Figure 12: Four analysis section templates matched with another song 45	

Figure 13: Automatic MashUp output audio clip. ... 46	

Figure 14: Automatic MashUp ANOVA tests. ... 51	

	

9	
 	

Chapter 1: Introduction

1.1 Motivation and Personal Background

 Historically, large-scale analysis required a music researcher to interpret large

amounts of sheet music, or listen to days of recorded songs. The task of looking for

relationships or patterns in large libraries of music was inevitably arduous and time

consuming. Because digital audio is encoded into a binary abstraction, software can

process music computationally to deeply analyze large amounts of data more easily. As

computers get faster and digital audio libraries become more extensive, researchers have

an even greater opportunity to take a new approach to how music information is gathered.

 Music Information Retrieval (MIR) is a field that combines signal processing and

musicology to quantify digital audio features. My research investigates how these metrics

can be used to look for patterns in music, identify common procedures in music

production, and then automate the procedures to create original music. I hypothesize that

unwritten algorithms already exist in music production, and that the creative process can

be better understood if its procedures are identified in the form of software. There are

millions of musicians worldwide, and this work may not only shed light on how music is

already being produced, but also inspire a new approach to music production entirely.

 My pursuit of this study stems from an interest in music composition that far

precedes my knowledge of Music Information Retrieval. My experience in composing

and recording original works fostered my understanding of music theory and inspired me

to take a novel look at music production. My undergraduate coursework in computer

10	
 	

engineering laid the foundation to view digital audio as an enhanced musical format that

can harness computational power to catalyze and improve musicological analysis.

1.2 Past Research in Music Information Retrieval

Prior MIR research has already advanced considerably toward the goal of

quantifying specific audio features, some of which are described in the next chapter in

greater detail. The Music Information Retrieval Evaluation Exchange (MIREX)1 is an

annual event organized to test the effectiveness of new MIR algorithms, which also

motivates research to improve the accuracy of existing algorithms. The Echo Nest, Inc.

implements this work to make data metrics available to software developers through its

public music analysis API2. Companies like Spotify3 and iHeartRadio4 have partnered

with The Echo Nest to improve their music services by gaining greater understanding of

their users’ listening tastes. Some of the existing successful applications of MIR classify

songs based on their metadata, such as artist or genre, while others rely on deeper

analysis of intrinsic song content. 	

There are examples of MIR research that leverage quantified audio features to

solve problems having to do with song similarity. Ellis and Poliner (2007) propose a

method for using musical data metrics to identify different artist renditions of the same

song. Tsai et al. (2005) present another methodology for querying music databases for

songs with a specific melody. Bertin-Mahieux et al. (2010) investigate the development

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 http://www.music-ir.org/mirex/wiki/MIREX_HOME
2 https://github.com/echonest/remix
3 https://www.spotify.com/us/for-music/
4 http://www.iheart.com/	

11	
 	

of a “codebook” of common song features to be used to identify similar features in large

collections of music. These research efforts yielded helpful ideas when solving problems

that involved the analysis and comparison of musical features.

Example Python modules exist that demonstrate the capabilities of The Echo

Nest’s public music analysis API. One project5 uses analysis data to pull ten-second

audio clips from multiple songs and concatenate them together into one track. Another

program6 uses any song’s data metrics to find patterns and similarities within its

structure, and then rearrange the structure into an extended version of the song. Existing

software projects like these7 share useful methods for leveraging The Echo Nest’s

development features to complete project objectives like those defined for this project.

1.3 Project Objectives

The objectives of this project are to investigate another application of MIR

research that uses The Echo Nest’s metrics and machine learning techniques to automate

two specific music production tasks currently performed by human disk jockeys. The

first, “mixing,” aims to create seamless transitions between songs in a playlist. The

second, “mashup” creation, aims to overlay multiple similar tracks to create a euphonious

combined song. Each application is written as a separate software program in Python, and

uses The Echo Nest’s Analysis API to obtain audio analysis data, and their Remix API to

modify or edit the audio.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5	
 https://github.com/echonest/remix/tree/master/examples/capsule
6 https://github.com/echonest/remix/tree/master/examples/earworm
7 https://github.com/echonest/remix/tree/master/examples	

12	
 	

The first program is called Automatic DJ, and is designed to imitate the

performance of a live DJ. Existing software programs like MIXXX8 and Ultramixer 49

include features that automatically transition between songs, but besides automatically

fading volumes between songs, they do not imitate the mixing work of a real DJ. My

program analyzes the musical content of every song in a playlist, reorders and modifies

the audio files, and transitions between them with a beat-matched crossfade.

The second program, Automatic MashUp, uses song features of two input tracks

to find compatible song sections to overlay and combine into a new mashup. No other

software program like this has been developed successfully, and although the software

from this project produces some capable output, I show how inaccurate analysis data has

a large impact on the development of a successful algorithm.

 Some additional software applications provide support as DJ tools during this

project. Audacity10 is a free application that was used to shift the tempo and pitch for

audio files. Apple’s GarageBand11 was purchased from Apple’s App Store to edit audio

files further, and to mix together new audio files.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

8 http://www.mixxx.org/
9 http://www.ultramixer.com/
10 http://audacity.sourceforge.net/copyright
11 http://www.apple.com/ilife/garageband/

13	
 	

1.4 Thesis Objectives

 This thesis uses digital audio analysis data to explore its application in software

programs that imitate music production tasks. I demonstrate how MIR techniques as

implemented by The Echo Nest can be used to automate music creation, and reveal

instances where the software’s efficacy is ultimately limited by the occasional

unreliability of analysis data. This thesis also explores the feasibility of automating music

production, and identifies challenges associated with programming music production

processes. The document closes with recommendations for future work based on

subjective human listening tests and my own conclusions from this project.

	
 14	

Chapter 2: Literature Review

2.1 Glossary of Musical Terms

 Music theory concepts and vocabulary from Randel (2003) are referenced

throughout the text. The following is a brief review of some definitions and concepts. The

next section in this chapter explains how The Echo Nest quantifies these items as

concrete analysis data12.

• Beat: A beat is a rhythmic unit of time. In a song with a constant tempo, all of the

beats are the same duration.

• Bar: A bar is a sequence of beats that begin with an emphasized beat. This

document only refers to bars with a length of four beats.

• Chroma: The chroma, or chromatic content, is the strength of the twelve different

pitches {C, C#, D, Eb, E, F, F#, G, Ab, A, Bb, B}.

• Chord Progression: A chord progression is a repeating pattern of changing

chromatic content prescribed to a specific sequence of bars.

• Timbre: Timbre is the quality that differentiates sounds with the same pitch and

loudness.

• Rhythm: Rhythm is characterized by timing patterns in a musical piece, and is

described in this document using timbre information.

• Dynamics: Dynamics is the term used to describe how the loudness of a song

changes. It’s commonly positively correlated with a song’s intensity or energy.

• Key: A song usually only uses a subset of the twelve notes in the chromatic

spectrum. A specific subset of pitches is defined as a Key.

• Tempo: The Tempo is the speed of the song in beats-per-minute (BPM).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

12	
 http://echonest.github.com/remix/apidocs/	

15	
 	

• Section: A song section is a subset of beats that share some kind of commonality

in their attributes. The musical works explored in this paper are commonly

composed of three types of sections:

o Verse: A verse is a section of a song typically characterized by softer

dynamics, lower energy, and more thoughtful lyrics.

o Chorus: Also known as a refrain, a chorus is a song section that is

typically characterized by louder dynamics, higher energy, and repeating,

catchy lyrics.

o Bridge: The bridge is a section of the song that usually follows a chorus,

and is similar to the chorus in that it is typically characterized by louder

dynamics and higher energy. The bridge is usually just a variation of the

chorus.

• Song Structure: A song’s structure is the holistic representation of all of its

sections.

2.2 Echo Nest Data Representation

 The Echo Nest quantifies all of the terms in their Analysis API. The following

analysis terms connect these concrete representations with their abstract meanings.

• Analysis data: This term is used later in the paper, and refers to the analysis data

returned by The Echo Nest’s Analysis API to describe abstract song attributes like

chroma, timbre, loudness, and more.

• Segments: Segments are short audio clips of musical “events” or notes, for each

of which The Echo Nest uses to calculate analysis data. If a larger time quantifier,

like beats or bars, is referenced as having analysis data, the analysis data is

actually an average of the segments that comprise the beat or bar.

• Confidence: Each analysis metric is accompanied by a confidence value to

express the confidence with which The Echo Nest estimates that specific

musicological quantity. In my experience, however, confidence values do not

accurately indicate the correctness of a value.

16	
 	

• Sections: The Echo Nest calculates and provides a list of demarcated sections for

a song. The specification for how these sections are calculated is not clearly

provided, however, so I do not use this feature in the Automatic DJ development

phase when deeper analysis is necessary. The abstract definition and this concrete

list definition are both used in the paper, so it is important to understand the

difference between the definitions.

• Beats, Bars, and Sections Lists: All three of these time markers are represented as

sequences of tuples. Each tuple contains a start time, a duration time, and a

confidence value.

• Local Context: The local context of a beat is its index within its respective bar.

For example, the local context of beat 1 is 0, and the local context of beat 4 is 3.

The local context values for a sequence of four bars is {{0,1,2,3}, {0,1,2,3},

{0,1,2,3}, {0,1,2,3}}.

2.3 Image Processing with Scikit-Image
	

	

	
 Chapter 4 briefly presents song attributes in the format of two-dimensional

images. This section cites a previous application of image processing to a song-similarity

problem, and provides additional information about the Scikit-Image python module’s

template matching procedure13 is used to find similarity between songs.

 The image processing methodology used in this document is based on a

technique used by Bartsche & Wakefield (2001) to locate the refrains in an audio

recording. A two-dimensional similarity matrix of the song recording with itself reveals

similar song sections as dark diagonal lines in the image. The figure below shows an

example of such a similarity matrix.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

13 http://scikit-image.org/docs/dev/auto_examples/plot_template.html	

17	
 	

	

Figure 1: The similarity matrix for Jimmy Buffet's Margaritaville.

The dark diagonal line specified on the image shows where the chromatic similarity

between regions of approximately 30 to 70 seconds and 100 to 140 seconds is strong

enough to indicate that a refrain occurs during those times. The template matching

procedure used in this project also calculates similarity in a two-dimensional fashion, but

differs in that it first breaks song sections into smaller sized “template” images before

calculating similarity between two recordings.

 Scikit-Image provides a match_template function based on a method by Lewis

(1995) that calculates normalized cross-correlation to find instances of a smaller,

“template” image within a larger image. In these example photos from Sci-kit Image

18	
 	

(2013), the location of a single coin is shown within a larger image of many coins as the

result of such a template matching procedure. The pixel with the highest correlation

value, designated by the red circle in the picture, specifies the smaller coins location in

the larger image.

	

Figure 2: Coin template

 Figure 3: Larger image of many different coins

Figure 4: Match_template result

 This method is referenced again in the text when finding similarity between song

sections and their attributes.

	
 19	

Chapter 3: Automatic DJ

3.1 Development

 In this section, program specifications for Automatic DJ are defined, and then

certain design decisions are explained. The complete Python script is included in

Appendix A, and a visual workflow the program’s operation is included in Appendix B.

 The specifications for this program are first determined by defining basic

characteristics common to disk jockey performances. A typical DJ playlist promotes a

certain mood or atmosphere, such as that of a high-energy dance venue. The individual

tracks are also deliberately arranged and mixed together to create seamless transitions

that make the playlist a unified whole. Four basic considerations outlined by Smidansky

(2012) most commonly determine the arrangement:

• Tempo – Songs of similar tempo are grouped together in order to preserve a

steady pulse when transitioning between tracks.

• Beat Location/Beat Matching – Overlapping incoming and outgoing tracks must

have their beats aligned to preserve rhythmic similarity between tracks.

• Local Context – Songs transitions match the local context of the outgoing and

incoming tracks to preserve the number of beats in a bar. For example, the last

four beats of the outgoing song must match the first four beats of the incoming

song, 1-to-1, 2-to-2, 3-to-3, 4-to-4.

• Song Structure – Song transitions typically happen at the end or beginning of

sections to preserve one song’s structural identity into the next.

The Analysis API returns specific values for a song’s tempo, so playlist items of

similar speed can be easily grouped together after the program’s initialization. Beat

20	
 	

location and local context attributes are also pre-calculated by the Analysis API, but

specifying a song structure’s significance to the DJ mixing process is more a complicated

task.

To determine how transition points are chosen in the context of song structure, I

made a twenty song DJ mix of my own to train an algorithm that automatically chooses

transition points. I selected contemporary tracks with strong, high-energy dance rhythms

to further define the program’s input and mitigate the amount of variability between

songs of different genre. I recorded the times where each individual song fades in and

fades out of the mix in the following table. Each row is a separate audio file that partially

comprises the entire mix, and the times recorded are specific to the audio file, not the

duration of the entire twenty-song mix.

Song	
 Name	
 Start	
 Time	
 End	
 Time	

Spectrum	
 2:27.876	
 5:25.127	

Somebody	
 Told	
 Me	
 0:21.150	
 3:13.356	

Bangarang	
 0:26.516	
 2:11.312	

When	
 Love	
 Takes	
 Over	
 0:37.282	
 2:05.899	

Believer	
 0:00.000	
 4:32.304	

Feel	
 So	
 Close	
 0:37.785	
 3:15.357	

I	
 Remember	
 0:15.230	
 3:15.357	

We	
 Are	
 The	
 People	
 1:22.312	
 2:55.997	

Call	
 On	
 Me	
 0:30.887	
 2:02.294	

Pins	
 0:14.775	
 3:12.008	

Downforce	
 3:33.437	
 4:58.800	

Dreamcatcher	
 3:58.297	
 4:54.371	

Hearts	
 On	
 Fire	
 0:15.370	
 0:46.003	

Move	
 Your	
 Feet	
 0:04.746	
 2:52.450	

Le7els	
 1:07.721	
 2:37.716	

Til	
 Death	
 0:37.539	
 2:52.498	

Lights	
 0:41.044	
 3:21.012	

What	
 You	
 Know	
 0:41.625	
 2:18.350	

Cry	
 2:02.042	
 3:33.469	

Sandstorm	
 0:29.553	
 1:26.022	

Table 1: Training Set of manually selected demarcations

21	
 	

Using the data above, I graphed each song to look for relationships between its

musical attributes and my transition location choices, and found that loudness data

sufficiently indicates a relationship between song dynamics and my transition points. I

low-pass filtered the loudness with a moving average to suppress any distracting outlier

values and found the relationships shown in following graph. The x-axis is a sequence of

the audio file’s individual analysis segments, and the y-axis corresponds to each

segment’s maximum loudness attribute. The red vertical lines mark where I made my

manual selections.

	

Figure 5: Loudness data for When Love Takes Over by David Guetta

The graphs show how most songs have a unique average loudness for different structural

sections. A song chorus is typically louder than the verse, and looks like a plateau in the

image above. I typically made my selection where there was a “beat-drop,” or the sudden

22	
 	

increase in dynamics before a chorus or other section of high energy. My selections were

motivated by the goal of preserving a high-energy dance atmosphere, and this goal is

indicated in the graphs as plateaus, or regions of consistent loudness.

The code responsible for choosing transition points analyzes a song’s loudness

data, and then demarcates it similar to the graphs above. I compared the computer-

generated and human-generated demarcations graphically on the training songs, and

changed the following four key system parameters to match the algorithm’s output with

my own selections as closely as possible.

• Window length – This determined how much smoothing was done to the loudness

data. A small window length does less smoothing and makes consistently loud

regions less apparent, but consequently also preserves possibly indicative changes

in dynamics. A large window length does more smoothing and does the opposite,

making song sections more distinct, but stifling possibly important sudden

changes in dynamics. I set this value to a16 beat long approximation of segments

by default, as this length was the best balance the two conflicting interests.

• Loudness Ceiling – This metric defined when the loudness data was “loud

enough” to be considered the beginning of a chorus. It is determined as a multiple

of the mean loudness of the entire song (a negative number of decibels). I set this

parameter to .8 by default, because songs typically rose to this loudness level

where I made my demarcation selections.

• Loudness Floor – This metric defined when the loudness data was “quiet enough”

to indicate that the consistently loud region of the song was over. It is also

determined as a multiple of the mean loudness of the entire song. I set this value

to 1.2 by default, because my manually chosen song regions were typically cut off

once they fell below this amount of loudness.

• Minimum Duration – This parameter defined the minimum duration for the

chosen region. A typical mix plays each song for at least one minute, so this

parameter was assigned a value of 60.0 seconds.

23	
 	

If the algorithm is unable to find a region that fits these parameters, then the Loudness

Ceiling and Loudness Floor values are slightly increased by .05 to include more song

segments in the chosen regions until the Minimum Duration parameter is satisfied.

The graphs in Appendix C compare the program’s selections with my own for

every item in the training set. The picture below is one example, where my manual

selections in red compare to the program’s selections in green.

	

Figure 6: Manual and automatic demarcations based on loudness data

Next, I ran the choosing algorithm on a validation set of ten more songs and modified the

system parameters as needed to increase the accuracy of the automatically chosen

demarcations.

24	
 	

In addition to selecting the most consistently high-energy region of the song, the

software includes functionality for automatically transitioning between the songs. The

Remix API has helpful methods for analyzing a track’s beat information, and then cross

fading from one song to the next. I converted the chosen analysis segments to their

corresponding sequence of bars within the song, to ensure that each song in the playlist

starts and ends on beat 1 to satisfy the Local Context consideration from above. Finally, I

transitioned between the beat lists using the Crossmatch method included in the

echonest.action module. Crossmatch lengthens or shortens the ends of audio files of

different tempo so that their overlapping beats are synchronized. I used Crossmatch to

overlap the last four beats of the outgoing song with the first four beats of the incoming

song, and simultaneously cross fade between the two songs.

After completing the entire system’s code, I completed some functional testing on

a test set of 20 new songs with similar characteristics to those selected for the traning and

validation sets. The testing showed that there were common attributes of songs for which

the program performed well, and of songs for which the program performed poorly. As

expected, high-energy dance songs with sections characterized by significant changes in

average loudness performed best. The graph below is an example of such a song, and the

“plateaus” in its graph represent the ideal case of when song sections clearly differ in

their average loudness.

25	
 	

	

Figure 7: Loudness data for LE7ELS by Aviici

These are the kinds of songs that trained the section-choosing algorithm, so it makes

sense that this genre of random input generated the best output. Alternatively, the

algorithm performed less reliably on input songs with loudness values that varied more

during song sections, or varied very little throughout the entire song. Loudness values for

Michael Jackson’s “Don’t Stop ‘Til You Get Enough” do not reveal any distinct sections,

so the choosing algorithm did not demarcate this song as accurately.

26	
 	

	

Figure 8: Loudness data for Don't Stop Til' You Get Enough by Michael Jackson

In addition to the choosing algorithm’s imperfections, inaccuracy in The Echo

Nest’s analysis data was another occasional source of error. Loudness data was

consistently accurate, but local context and beat detection information was less reliable,

and resulted in less seamless transitions between songs. The code responsible for calling

Crossmatch assumes that the two overlapping lists of four beats both have a local context

of {1,2,3,4}. If the local context data returned by the Remix API is inaccurate, then two

lists with local context {1,2,3,4} and {4,1,2,3} may be mixed together, and the listener

hears an arrhythmic sequence such as {1,2,3,4,4,1,2,3,…} instead of the correct sequence

of {1,2,3,4,1,2,3,4,…}. A song’s tempo estimation was almost always very accurate, but

was sometimes incorrectly estimated at half-time or double-time. This issue sometimes

resulted in awkward Crossmatches, because actually only 2 beats of one song would

overlap with 4 of the other. This issue often resulted, however, in an interesting transition

27	
 	

between two songs with tempos that proved to still sound compatible. Using the results of

the functional testing and the criteria for good input cases, I selected a playlist of songs

for formal testing on human subjects.

3.2 Testing

Human listeners ultimately decide a DJ’s performance, so this test procedure

gathers feedback from individuals and quantifies the program’s ability to produce output

similar to that of a human DJ. Twenty volunteers listened to ten audio clips and

completed the questionnaire in Appendix D. Each clip is approximately forty seconds in

length, and consists of a transition from one song to the next. The questionnaire asks

subjects to guess if individual transitions were generated automatically by a computer or

manually by a human. Listeners also rated on a 1-10 scale the compatibility, or

seamlessness, of each transition and how well the transitions were located within the

song’s structure.

To generate the ten audio clips, I used the ideal input characteristics defined after

functional testing to choose the following eleven input songs.

28	
 	

Name	
 Artist	

Payphone	
 Maroon	
 5	
 Feat.	
 Wiz	
 Khalifa	

There	
 She	
 Goes	
 Taio	
 Cruz	

Greyhound	
 Swedish	
 House	
 Mafia	

Euphoria	
 Loreen	

30	
 Days	
 The	
 Saturdays	

Chasing	
 The	
 Sun	
 The	
 Wanted	

LaserLight	
 Jessie	
 J	
 Featuring	
 David	

Guetta	

Turn	
 Up	
 The	
 Music	
 Chris	
 Brown	

Scream	
 Usher	

Let’s	
 Go	
 Calvin	
 Harris	
 Feat.	
 Ne-­‐Yo	

Feel	
 The	
 Love	
 Rudimental	
 Feat.	
 John	

Newman	

Table 2: Automatic DJ test input

After running the program and generating the mixed output playlist, I manually created

the ten audio clips to better feature the transitions between the eleven input songs. Each

clip includes about ten to twenty seconds of audio before and after the transition point to

give listeners context about where the transitions occurs within the two songs’ structures.

I then used a random number generator to pick four of the ten transitions, and replaced

them with my own manually generated transitions. These test cases comprised the

“Playlist 1” referenced on the survey sheet, and are included in the following table.

29	
 	

Name Duration (secs) Generated By…
Feel The Love to Payphone 47 Human
Payphone to Greyhound 50 Computer
Greyhound to Laserlight 46 Human
Laserlight to Scream 37 Computer
Scream to Let’s Go 44 Human
Let’s Go to There She Goes 45 Computer
There She Goes to Chasing The Sun 47 Human
Chasing the Sun to Turn Up The Music 48 Computer
Turn Up The Music to 30 Days 47 Computer
30 Days to Euphoria 44 Computer

Table 3: Audio clips of transitions used for human testing

The full results from the study are included in Appendix E, and briefly summarized in the

table below.

Origin	
 Compatibility	
 Location	
 %	
 Marked	
 Human	
 	

Computer	
 5.92	
 6.03	
 34.16	

Human	
 6.94	
 7.38	
 50	

Total	
 6.33	
 6.57	
 40.5	

Table 4: Average test results for Automatic DJ

The table shows average ratings for compatibility and location, and the percentage of

responses that believed a transition type to be human. The twenty responses are broken

down into two categories based on whether the transition type was truly human-

generated, or actually computer-generated. The table shows that human-generated

transitions were on average rated higher than computer-generated transitions in both the

compatibility and location categories. Also presented above is that human-generated

transitions were typically perceived to be human-generated more often than computer-

generated transitions.

30	
 	

3.2.1 Statistical Results
	

The following ANOVA tests use a significance threshold of .05 to determine

which variables impacted the listeners’ responses. Each test answers the following

questions for different combinations of Factor 1, Factor 2, and Result variables:

1. Does the independent variable Factor 1 have a significant impact on the

dependent Response variable?

2. Does the independent variable Factor 2 have a significant impact on the

dependent Response variable?

3. Is there an interaction between independent variables Factor 1 and Factor 2 that

significantly impacts the dependent Response variable?

Each unique combination of factors is placed into its own test group, and each test group

is comprised of three tests against three different response variables. The variables used

in the table are defined as follows:

• Listener #: Listener number is the unique integer used to identify one of the

twenty listeners.

• Song #: Song number is the unique integer used to identify one of the ten audio

clips used in each of the listening tests.

• isHumanTruth: A Boolean value used to declare whether an audio clip is human-

generated (isHumanTruth = 1) or computer-generated (isHumanTruth = 0).

• isHumanChoice: A Boolean value used to declare whether an audio clip was

perceived to be human-generated (isHumanChoice = 1) or computer-generated

(isHumanChoice = 0).

31	
 	

Group Test Factor 1 Factor 2 Response
1 Listener # isHumanTruth isHumanChoice
2 Listener # isHumanTruth compatibility A
3 Listener # isHumanTruth location
4 Listener # isHumanChoice isHumanTruth
5 Listener # isHumanChoice compatibility B
6 Listener # isHumanChoice location
10 Song # isHumanChoice isHumanTruth
11 Song # isHumanChoice compatibility C
12 Song # isHumanChoice location

Table 5: Automatic DJ ANOVA tests

The hypotheses and results for each ground of tests are summarized below. For each test,

the two factors and their interaction are each evaluated as sources of variance, and

considered to have a significant impact on the response if the significance value (p) is

less than the significance threshold of .05. Conclusions for each group summarize the

software’s ability to produce human-quality output.

Group A

Hypotheses:

1. Listener number has no significant impact on listeners’ perceptions of which

transitions are human or computer-generated, or how the listeners rate

compatibility or location.

2. The factor of whether a transition was generated by a human or by a computer has

no significant impact on listeners’ perceptions of which transitions were human or

computer-generated, or how the listeners rate compatibility or location.

3. The interaction between listener number and whether a transition was generated

by a human or by a computer has no significant impact on listeners’ perceptions

32	
 	

of which transitions were human or computer-generated, or how the listeners rate

compatibility or location.

Significance Values (p):

Source of Variation isHumanChoice Compatibility Location
Listener # 0.999 0.024 0.310
isHumanTruth 0.028 0.045 0.003
Listener #*isHumanTruth 0.113 0.099 0.154

Conclusions:

1. Listener number has no significant impact on the listeners’ perceptions of which

transitions were human or computer-generated, or how the listeners rate location.

Listener number does, however, have a significant impact on how listeners rate

compatibility.

2. The factor of whether a transition was generated by a human or by a computer has

a significant impact on listeners’ perceptions of which transitions were human or

computer-generated, and how the listeners rate compatibility and location.

3. The interaction between listener number and whether a transition was generated

by a human or by a computer has no significant impact on listeners’ perceptions

of which transitions were human or computer-generated, or how the listeners rate

compatibility or location.

Group B

Hypotheses:

1. Listener number has no significant impact on whether transitions were human or

computer-generated, or how the listeners rate compatibility or location.

33	
 	

2. Listeners’ perceptions of whether a transition was generated by a human or by a

computer have no significant impact on which transitions were human or

computer-generated, but do have a significant impact on how the listeners rate

compatibility and location.

3. The interaction between listener number and listeners’ perceptions of whether a

transition was generated by a human or by a computer has no significant impact

on which transitions were human or computer-generated, or how the listeners rate

compatibility or location.

Significance Values (p):

Source of Variation isHumanTruth Compatibility Location
Listener # 1.000 0.009 0.338
isHumanChoice 0.030 0.000 0.002
Listener #*isHumanChoice 0.126 0.745 0.422

Conclusions:

1. Listener number has no significant impact on whether transitions were human or

computer-generated, or how the listeners rate location. Listener number does,

however, have a significant impact on how listeners rate compatibility.

2. Listeners’ perceptions of whether a transition was generated by a human or by a

computer have a significant impact on which transitions were human or

computer-generated, and how the listeners rate compatibility and location.

3. The interaction between listener number and listeners’ perceptions of whether a

transition was generated by a human or by a computer has no significant impact

on which transitions were human or computer-generated, or how the listeners rate

compatibility or location.

34	
 	

Group C

Hypotheses:

1. Song number has no significant impact on how listeners rate compatibility or

location, and is completely related to whether a transition was generated by a

human or by a computer.

2. Listeners’ perceptions of whether a transition was generated by a human or by a

computer have no significant impact on which transitions were human or

computer-generated, but do have a significant impact on how the listeners rate

compatibility and location.

3. The interaction between song number and listeners’ perceptions of whether a

transition was generated by a human or by a computer has no significant impact

on which transitions were human or computer-generated, or how the listeners rate

compatibility or location.

Significance Values (p):

Source of Variation isHumanTruth Compatibility Location
Song # - 0.009 0.015
isHumanChoice .041 0.000 0.000
Song #*isHumanChoice .529 0.176 0.141

Conclusions:

1. Song number has a significant impact on how the listeners rate compatibility or

location.

2. Listeners’ perceptions of whether a transition was generated by a human or by a

computer have a significant impact on which transitions were human or

computer-generated, and how the listeners rate compatibility or location.

35	
 	

3. The interaction between song number and listeners’ perceptions of whether a

transition was generated by a human or by a computer has no significant impact

on which transitions were human or computer-generated, or how the listeners rate

compatibility or location.

The following table summarizes key conclusions drawn from the test procedures.

Source of Variation Variables affected
Listener # compatibility
Song # compatibility, location
isHumanTruth isHumanChoice, compatibility, location
isHumanChoice isHumanTruth14, compatibility, location

Table 6: Automatic DJ ANOVA key conclusions

The general hypothesis that precedes all of the ANOVA tests asserts that human

listeners respond to transitions generated by the Automatic DJ similarly to those

generated by a human DJ. The test conclusions, however, prove that listeners’ reactions

(as measured by the compatibility, location, and isHumanChoice quantifiers) are

significantly impacted by whether or not the transition is generated by a human or in

computer software. Because listeners react to the two transition types so differently, it

can be concluded that the current version of the Automatic DJ program cannot accurately

imitate human-quality DJ mixing.

3.2.2 General Listener Feedback

 This section summarizes common feedback collected from the free-response

questions included in the questionnaire.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

14 Although this effect is statistically significant, it is incorrect to conclude that listeners’ perceptions
actually affect whether or not a transition was generated by a human.	

36	
 	

1. In your own words, how well do the computer-generated transitions imitate those of a

real DJ? Responses to this question indicated the importance of context when judging the

effectiveness of automatically mixed DJ playlists. Listeners noted that they scrutinize DJ

performances less when they are outside of a testing environment. A more thorough

listening test process would vary the amount of distraction during the testing process to

see if setting and context affect the listeners’ reactions to the song transitions. Although

as one survey responder pointed out, however, perhaps the most prized feature of the

Automatic DJ program is that

2. Imagine hearing these computer generated transitions in a mix at a venue or club.

Could they pass for DJ quality, or is it apparent that they were generated by a computer?

Does anything specific compromise their credibility? Listeners cited the repetition of the

same transition technique as the strongest indicator of a computer-generated transition.

Feedback for this question also argued that one awkward transition amongst ten smooth

transitions is enough to draw attention and compromise the quality of a mix.

3. Do you have any suggestions to improve this program? The	
 most	
 popular	
 response	

to	
 this	
 question	
 recommended	
 increased	
 precision	
 when	
 choosing	
 transition	
 points.	

Similar	
 to	
 answers	
 for	
 the	
 previous	
 question,	
 some	
 responses	
 also	
 called	
 for	

increased	
 variety	
 in	
 how	
 the	
 program	
 transitions	
 from	
 one	
 song	
 to	
 the	
 next.	
 	
 	
 	
 	

The statistical test results and listener feedback contributed to the following list of

enhancements that may be used to improve upon the existing Automatic DJ code.

37	
 	

3.3 Enhancements

 This section identifies specific program enhancements that still need to be

addressed, and offers possible solutions.

1. Variety in Transition Techniques – The program currently uses a 4 beat beat-

matched crossfade to transition between songs, whereas a professional DJ uses a

variety of techniques to produce multiple creative transitions in a mix. I first

recommend replacing the hardcoded 4 beat default for Crossmatching with a

randomly selected number from the set {2,4,8,12}. This simple change will allow

for quick transitions that occur over a short amount of time, as well as more

gradual transitions that allow for more overlap between songs.

2. More Intelligent Choosing Algorithm – Testing has revealed that the section

choosing algorithm is effective at identifying significant changes in song

dynamics, but less robust at noticing gradual increases or decreases in loudness

common to pre-chorus build-ups or fade-outs. I recommend using multiple filters

on the loudness data to not only accentuate areas of consistent loudness, but to

also accentuate areas of consistent change in loudness. Whereas a moving average

was already used in the former case, I believe some form of a moving derivative

would be a sufficient way to highlight these build-up and fade-out regions in the

loudness data.

3. Using Sections in Choosing Algorithm – The sections analysis data returned by

the Analysis API may provide additional insight when further developing the

choosing algorithm. One could try comparing demarcations produced by the

38	
 	

choosing algorithm with those of the sections list, to either verify or discredit the

performance of the algorithm. During the development stage of the Automatic

MashUp program, the average loudness of a section seemed to be very relevant to

how the sections were demarcated. I touch on how section loudness is used to

understand compatibility between different song structures in the following

section.

	
 39	

Chapter 4: Automatic MashUp

4.1 Development

 The Automatic MashUp program builds on the Automatic DJ by investigating a

more complicated music production task of layering multiple tracks. I begin this section

by first defining the criteria for a successful mashup, and then detail my software

development methodology. I finish the section with a summary of the feedback from

human listening tests, and then recommend feasible enhancements to improve the

program’s performance. The complete Python script of this application is included in

Appendix F and a visual summary of how the program operates is included in Appendix

G.

 A professional mashup producer not only adheres to basic requirements rooted in

music theory, but as Hoffner (2013) explains, also makes deliberate stylistic choices to

create successful mashups. The former group of basic considerations is common to all

mashups, and is described in detail below.

• Key – Every song in the mashup must have the same chromatic scale, or else

dissonance will occur.

• Tempo – Every song in the mashup must have a compatible tempo, or else the

tracks will become out of sync and sound arrhythmic. The tempo values can be

identical, or they can be multiples of each other and still sound compatible.

• Track Separation – Fully mixed tracks cannot be overlaid to create a mashup,

because the combination of their instrumental content is almost always too great,

and will result in distortion or artifacts. The combination of multiple vocal parts is

40	
 	

usually permissible, but the combination of two entire instrumentals is often

inconsistent. Separate acapella and instrumental “component” tracks are instead

mixed together to preserve the number of instrumental parts in a song.

Since the Analysis API returns estimates for song key and tempo, I write code that uses

the modify module to modify the audio files as necessary to ensure that the first two items

are upheld. The algorithm calculates the average key and tempo for the two songs, and

then calls modify functions that shift the pitch and speed of the audio files to their new

key and tempo values. The third item cannot be feasibly automated, because track

isolation is a very complicated procedure that produces only imperfect results when done

manually. I decided to leave the responsibility of collecting component tracks to the user,

since they cannot be automatically extracted, but can be found online from websites like

YouTube and MP3PoolOnline.

Matching key and tempo is a common sense first step to automatic mashup

creation, but determining how to automatically overlay the songs requires more

investigation. To gain a better understanding of how component tracks are aligned with

each other, I investigated the mashup creation process by manually producing my own set

of mashups. I first collected a large number of acapella and instrumental component

tracks, and determined the key and tempo for their corresponding fully mixed tracks in

my library. I then grouped together songs of similar tempo and key, as shown in the table

below.

41	
 	

Mashup
Group

Name Artist Key Tempo

1 Just Dance Lady Gaga E 119
 In My Head Jason Derulo Eb 110
2 Paradise Coldplay F 70
 Wide Awake Katy Perry F 80
 Day n Nite Kid Cudi D 69
3 Good Feeling Flo Rida E 128
 Dynamite Taio Cruz E 120
 Just Dance Lady Gaga E 119
4 Titanium David Guetta Feat. Sia Eb 126
 Who’s That Chick? Rihanna D 128
 Disturbia Rihanna D 125
 Parallel Universe The Red Hot Chili Peppers Eb 124
5 Don’t Stop The Music Rihanna A 123
 Every Teardrop Is A Waterfall Coldplay A 118
 What I’ve Done Linkin Park Bb 120
6 Firework Katy Perry Ab 124
 Paparazzi Lady Gaga Ab 115
 Feel So Close Calvin Harris G 128
7 When You Were Young The Killers B 130
 When Love Takes Over David Guetta Feat. Kelly

Rowland
B 130

 We Run The Night Havana Brown C 127
 Lights Ellie Goulding B 120
8 Feel So Close Calvin Harris G 128
 Last Friday Night Katy Perry F# 126
 Please Don’t Go Mike Posner G 120
9 Burn It Down Linkin Park C 110
 Pumped Up Kicks Foster The People Eb 128
 I Miss You Blink-182 B 110

Table 7: Groups of component tracks used for mashup creation

I used the modify module and my written python code to match the tempo and

key of the grouped component tracks, and then imported them into GarageBand to be

aligned and manipulated manually to gain insight into mashup production. I found that I

typically overlaid two songs where their chord progressions were most similar. I

subsequently aligned the tracks to match their 4 beat local contexts, and found consistent

structural commonality between chord progressions, rhythmic information, and loudness

42	
 	

levels. I decided to include three data sources in my analysis for compatibility in the

software.

• Chromatic Content – The chromatic content of a song reveals chord progression

patterns, and governs harmonic compatibility between songs.

• Timbre Content – The timbre content of a song best describes its rhythmic

patterns, and signifies rhythmic compatibility between songs.

• Loudness Content – The loudness content of a song, as shown in the Automatic

DJ program, reveals information about song structure and how energy changes in

a song.

These attributes can be more easily visualized as a two-dimensional image. The

picture below is as many pixels tall as the number of beats in the song, and thirty pixels

wide for each beat. The thirty pixels are comprised of twelve chroma values, twelve

timbre values, and six identical loudness values. The loudness data on the far right are

black, because they are mainly negative values, but they become more relevant when

processing the image later.

43	
 	

Figure 9: Chroma, timbre, and loudness per beat

I used these matrices to calculate compatibility between two songs. Since the goal of a

mashup is to combine compatible sections from different tracks, I used template

matching to find the best match for each section, or template, in one song within the

entirety of the other song. The following diagram shows how four different analysis

sections of one song are compared to the entirety of the other song in four separate

template matching procedures.

CHROMA TIMBRE LOUDNESS

44	
 	

	

Figure 10: High-level visual depiction of template matching.

I placed the result of each template matching procedure in the same image, and then

designated the pixel with the highest correlation as the center of the best-matched

template. The image below shows the actual results for all four of the template matching

processes depicted in the above diagram.

45	
 	

	

Figure 11: Four analysis section templates matched with another song

Each is pixel is a correlation value that signifies how well matched the section is with a

specific position in the other song. The sections are of different length, but are all 30

values wide and therefore separated by 30 on the x-axis. The red circle designates the

best correlation value, or the location of the best-matched template, and its pixel location

derives the section number and corresponding best-matched beats.

After determining the best matching sections, their comprising beat lists were

further aligned so that their local context values were in the same sequence. This measure

ensured that beat 1 of one song matched with beat 1 of the other song I then mixed

together the corresponding sections of the two tracks’ respective vocal and/or

instrumental tracks. The vocal version of the new song (labeled “Song 2” in the figure

46	
 	

below) is combined with the instrumental version of the original song (labeled “Song 1”

in the figure below) for the entirety of their best-matched sections. The combination is

then given context by a few seconds of the original vocal track before and after fading to

the new vocal.

	

Figure 12: Automatic MashUp output audio clip.

The result of the procedure is a short audio clip used to demonstrate the software’s ability

to complete its original program requirements.

Functional testing produced some successful mashup pairs, but because the

program relies on accurate analysis data from the Remix API, it suffered from frequent

inaccuracies in this data. Estimations for the song key were sometimes incorrect, which

stopped the program from correctly matching the key of the component songs. Analysis

data for beat location and local context was also unreliable, so song sections could not

always be aligned perfectly. The two images below show four beats of two different

tracks being aligned according to beat number. The program’s attempt to properly align

the two tracks (left) is compromised by incorrectly assigned beat numbers for Song 2,

yielding an awkwardly aligned combination of the two different songs.

47	
 	

To eliminate these sources of error, input tracks were verified for correctness in

their beat and key analysis data before being used as program input. To pick test cases for

human listening tests, I manually analyzed 72 possible input tracks, and found that only

five had fully reliable analysis information.

Name	
 Artist	

Fallin	
 K.	
 Michelle	

Louboutins	
 Jennifer	
 Lopez	

Please	
 Don’t	
 Go	
 Michael	
 Posner	

Titanium	
 David	
 Guetta	
 Feat.	
 Sia	

Good	
 Girls	
 Like	
 Bad	

Boys	

Jadyn	
 Maria	
 ft.	
 Flo	

Rida	

Table 8: Test cases with fully verified beat and key information

I used the five tracks to automatically generate ten mashups for human listening tests.

4.2 Testing

Similar to the Automatic DJ testing procedure, human test subjects rated a ten-

item playlist of computer and human-generated audio clips. The survey is included in

Appendix D, and the table below shows the mashups used in the study. The notation

“Song1 X Song2” means that Song1 served as the instrumental track upon which the

acapella track of Song2 was overlaid.

48	
 	

Name Duration (secs) Generated By…

Fallin X Louboutins 31 Human

Fallin X Please Don’t Go 30 Computer

Titanium X Good Girls Like Bad Boys 22 Computer

Titanium X Louboutins 34 Computer

Please Don’t Go X Titanium 24 Computer

Please Don’t Go X Fallin 16 Human

Louboutins X Fallin 26 Human

Louboutins X Good Girls Like Bad Boys 30 Computer

Good Girls Like Bad Boys X Please Don’t Go 47 Human

Good Girls Like Bad Boys X Titanium 25 Computer

Table 9: Mashup audio clips used in human testing

The full test results are included in Appendix H, and briefly summarized in the table

below. Listeners guessed whether a mashup was created by a human or by software, and

rated how well the rhythm, harmony, dynamics, and structure of the two songs combined

on a scale from 1 to 10.

Origin	
 Rhythm	
 Harmony	
 Dynamics	
 Structure	
 %	
 Marked	
 Human	
 	

Computer	
 6.10	
 6.19	
 6.49	
 5.68	
 36.14	

Human	
 8.00	
 7.78	
 7.95	
 7.51	
 68.75	

Total	
 6.87	
 6.83	
 7.08	
 6.415	
 47.08	

Table 10: Average test results for Automatic MashUp

The table shows average ratings and the percentage of responses that believed a mashup

type to be human. The twenty responses are broken down into two categories based on

whether the mashup was truly human-generated, or actually computer-generated. The

49	
 	

table shows that human-generated mashups were on average rated higher than computer-

generated mashups in all four categories categories. Also presented above is that human-

generated mashups were typically perceived to be human-generated more often than

computer-generated transitions.

Testing reveals a clearly more positive response for human-generated mashups, as

well as interesting relationships between variables that significantly affect results.

Statistical testing procedures used in section 3.2.1 are applied to draw conclusions from

the survey responses.

4.2.1 Statistical Results

The following ANOVA tests use a significance threshold of .05 to determine

which variables impacted the listeners’ responses. Each test answers the following

questions for different combinations of Factor 1, Factor 2, and Result variables:

1. Does the independent variable Factor 1 have a significant impact on the

dependent Response variable?

2. Does the independent variable Factor 2 have a significant impact on the

dependent Response variable?

3. Is there an interaction between independent variables Factor 1 and Factor 2 that

significantly impacts the dependent Response variable?

Each unique combination of factors is placed into its own test group, and each test group

is comprised of three tests against three different response variables. The variables used

in the table are defined as follows:

50	
 	

• Listener #: Listener number is the unique integer used to identify one of the

twenty listeners.

• Song #: Song number is the unique integer used to identify one of the ten audio

clips used in each of the listening tests.

• isHumanTruth: A Boolean value used to declare whether an audio clip is human-

generated (isHumanTruth = 1) or computer-generated (isHumanTruth = 0).

• isHumanChoice: A Boolean value used to declare whether an audio clip was

perceived to be human-generated (isHumanChoice = 1) or computer-generated

(isHumanChoice = 0).

• Rhythmic compatibility (Rcomp): A measure of how well the rhythmic attributes

of two different tracks combine to make a mashup.

• Harmonic compatibility (Hcomp): A measure of how well the harmonic or

chromatic attributes of two different tracks combine to make a mashup.

• Dynamic compatibility (Dcomp): A measure of how well the dynamic

characteristics of two different tracks combine to make a mashup.

• Structural compatibility (Scomp): A measure of how well the structures of two

different tracks combine to make a mashup.

51	
 	

Group Test Factor 1 Factor 2 Response
1 Listener # isHumanTruth isHumanChoice
2 Listener # isHumanTruth Rcomp
3 Listener # isHumanTruth Hcomp
4 Listener # isHumanTruth Dcomp

A

5 Listener # isHumanTruth Scomp
6 Listener # isHumanChoice isHumanTruth
7 Listener # isHumanChoice Rcomp
8 Listener # isHumanChoice Hcomp
9 Listener # isHumanChoice Dcomp

B

10 Listener # isHumanChoice Scomp
11 Song # isHumanChoice isHumanTruth
12 Song # isHumanChoice Rcomp
13 Song # isHumanChoice Hcomp
14 Song # isHumanChoice Dcomp

C

15 Song # isHumanChoice Scomp
Figure 13: Automatic MashUp ANOVA tests.

The hypotheses and results for each group of tests are summarized below. For each test,

the two factors and their interaction are each evaluated as sources of variance, and

considered to have a significant impact on the response if the significance value (p) is

less than the significance threshold of .05. Conclusions for each group summarize the

software’s ability to produce human-quality output.

Group A

Hypotheses:

1. Listener number has no significant impact on listeners’ perceptions of which

mashups are human or computer-generated, or how the listeners rate rhythmic,

harmonic, dynamic, or structural compatibility.

2. The factor of whether a mashup was generated by a human or by a computer has

no significant impact on listeners’ perceptions of which mashups were human or

52	
 	

computer-generated, or how the listeners rate rhythmic, harmonic, dynamic, or

structural compatibility.

3. The interaction between listener number and whether a mashup was generated by

a human or by a computer has no significant impact on listeners’ perceptions of

which mashups were human or computer-generated, or how the listeners rate

rhythmic, harmonic, dynamic, or structural compatibility.

Significance Values (p):

Source of Variation isHumanChoice Rcomp Hcomp Dcomp Scomp
Listener # 0.818 0.243 0.000 0.000 0.000
isHumanTruth 0.000 0.000 0.000 0.000 0.000
Listener #*isHumanTruth 0.117 0.018 0.030 0.204 0.004

Conclusions:

1. Listener number has no significant impact on the listeners’ perceptions of which

mashups were human or computer-generated, or how the listeners rate rhythmic

compatibility. Listener number does, however, have a significant impact on how

listeners rate harmonic, dynamic, and structural compatibility.

2. The factor of whether a mashup was generated by a human or by a computer has a

significant impact on listeners’ perceptions of which mashups were human or

computer-generated, and how the listeners rate rhythmic, harmonic, dynamic, and

structural compatibility.

3. The interaction between listener number and whether a mashup was generated by

a human or by a computer has no significant impact on listeners’ perceptions of

which mashups were human or computer-generated, or how the listeners rate

dynamic compatibility. The interaction does, however, impact how listeners rate

rhythmic, harmonic, and structural compatibility.

53	
 	

Group B

Hypotheses:

1. Listener number has no significant impact on whether mashups were human or

computer-generated, or how the listeners rate rhythmic, harmonic, dynamic, or

structural compatibility.

2. Listeners’ perceptions of whether a mashup was generated by a human or by a

computer have no significant impact on which mashups were human or computer-

generated, but do have a significant impact on how the listeners rate rhythmic,

harmonic, dynamic, or structural compatibility.

3. The interaction between listener number and listeners’ perceptions of whether a

mashup was generated by a human or by a computer has no significant impact on

which mashups were human or computer-generated, or how the listeners rate

rhythmic, harmonic, dynamic, or structural compatibility.

Significance Values (p):

Source of Variation isHumanTruth Rcomp Hcomp Dcomp Scomp
Listener # 1.000 0.094 0.000 0.000 0.000
isHumanChoice 0.000 0.000 0.000 0.000 0.000
Listener #*isHumanChoice 0.075 0.000 0.007 0.020 0.001

Conclusions:

1. Listener number has no significant impact on whether mashups were human or

computer-generated, or how the listeners rate rhythmic compatibility. Listener

number does, however, have a significant impact on how listeners rate harmonic,

dynamic, and structural compatibility.

54	
 	

2. Listeners’ perceptions of whether a mashup was generated by a human or by a

computer have a significant impact on which mashups were human or computer-

generated, and how the listeners rate rhythmic, harmonic, dynamic, and structural

compatibility.

3. The interaction between listener number and listeners’ perceptions of whether a

mashup was generated by a human or by a computer has no significant impact on

which mashups were human or computer-generated, but does have a significant

impact on how listeners rate rhythmic, harmonic, dynamic, and structural

compatibility.

Group C

Hypotheses:

1. Song number has no significant impact on how the listeners rate rhythmic,

harmonic, dynamic, or structural compatibility, and is completely related to

whether or not a mashup is computer or human generated.

2. Listeners’ perceptions of whether a mashup was generated by a human or by a

computer have no significant impact on which mashups were human or computer-

generated, but do have a significant impact on how the listeners rate rhythmic,

harmonic, dynamic, or structural compatibility.

3. The interaction between song number and listeners’ perceptions of whether a

mashup was generated by a human or by a computer has no significant impact on

which mashups were human or computer-generated, or how the listeners rate

rhythmic, harmonic, dynamic, or structural compatibility.

55	
 	

Significance Values (p):

Source of Variation isHumanTruth Rcomp Hcomp Dcomp Scomp
Song # - 0.000 0.000 0.003 0.000
isHumanChoice 0.000 0.000 0.000 0.000 0.000
Song #*isHumanChoice 0.081 0.000 0.000 0.009 0.000

Conclusions:

1. Song number has a significant impact on how the listeners rate rhythmic,

harmonic, dynamic, and structural compatibility.

2. Listeners’ perceptions of whether a mashup was generated by a human or by a

computer have a significant impact on which mashups were human or computer-

generated, and how the listeners rate rhythmic, harmonic, dynamic, and structural

compatibility.

3. The interaction between song number and listeners’ perceptions of whether a

mashup was generated by a human or by a computer has no significant impact on

which mashups were human or computer-generated, but does have a significant

impact on how listeners rate rhythmic, harmonic, dynamic, and structural

compatibility.

56	
 	

The following table summarizes key conclusions drawn from the test procedures.

Source of Variation Variables affected
Listener # Hcomp, Dcomp, Scomp
Song # Rcomp, Hcomp, Dcomp, Scomp
isHumanTruth isHumanChoice, Rcomp, Hcomp, Dcomp, Scomp
isHumanChoice isHumanTruth15, Rcomp, Hcomp, Dcomp, Scomp
Listener #*isHumanTruth Rcomp, Hcomp, Scomp
Listener #*isHumanChoice Rcomp, Hcomp, Dcomp, Scomp
Song #*isHumanTruth Rcomp, Hcomp, Dcomp, Scomp

Table 11: Automatic MashUp ANOVA key conclusions

The general hypothesis that precedes all of the ANOVA tests asserts that human

listeners respond to mashups generated by the Automatic MashUp similarly to those

generated by a human mashup artist. The test conclusions, however, prove that listeners’

reactions (as measured by the Rcomp, Hcomp, Dcomp, Scomp, and isHumanChoice

quantifiers) are significantly affected by whether or not the transition is generated by a

human or by computer software. Because listeners react to the two mashup types so

differently, it can be concluded that the current version of the Automatic MashUp

program cannot accurately imitate human-quality DJ mixing.

The test results also reveal that variation between listeners and interactions

between factors affected all five of the response variables. The human listeners were

therefore less reliable judges of mashups than they were of transitions in the previous

chapter. Future testing may require human listeners with a stronger understanding of

music production.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

15	
 Although this effect is statistically significant, it is incorrect to conclude that listeners’ perceptions
actually affect whether or not a mashup was generated by a human.	

57	
 	

4.2.2 General Listener Feedback

This section summarizes common feedback collected from the free-response

questions included in the questionnaire.

1. How well do the computer-generated mashups replicate the quality of a human music

artist? The collective answer to this question indicated that the software is incapable of

imitating human output, but responses differed in their reasoning. Some listeners

divulged that they tended to focus on just one or two of the four musical attributes

defined in the study (rhythm, harmony, dynamics, and structure) to judge the overall

quality of a mashup. The responses suggest that a mashup with well-rounded

compatibility scores may not be as effective as a mashup that has one strong

compatibility score tailored to a subset of listeners with similar taste.

2. Can you identify anything specific about the computer-generated mashups that

compromise their credibility? Listeners answered that human-generated mashups seemed

to have more deliberate section combinations, especially in terms of rhythmic and

structural compatibility.

3. Do you have any suggestions to improve this program? The most popular response to

this question recommended more precise track alignment. Many responses also called for

better compatibility in one of the four attributes.

4.3 Enhancements

This section identifies specific program enhancements that still need to be

addressed, and offers possible solutions.

58	
 	

1. Local Context Alignment – Because the software aligns songs based on unreliable

local context analysis data, the output will sometimes sound euphonious, but often

sound awkwardly arrhythmic. Although I am not confident such a simple change

would totally ameliorate the issue, I would first recommend testing the program

without any local context alignment, and only rely on the template matching

procedure to align the data correctly.

2. More Precise Track Mixing – The instrumental and acapella tracks are currently

mixed together using a 50/50 loudness ratio. Some tracks include artifacts from

loudness values going above the audio codec’s maximum loudness threshold. I

recommend comparing instrumental and acapella tracks to their full studio mix to

better identify the correct mixing ratio for both tracks, and also include a measure

to normalize audio data before encoding.

3. Key and Tempo Matching – The software calculates average key and tempo

values to shift the pitch and speed of the mashup component songs. Although the

current method achieves its intended purpose of harmonic and temporal

compatibility, testing revealed that shifting both the instrumental and acapella

tracks by an equal amount is overly simplistic. Acapella tracks were more robust

to pitch and tempo shifting procedures, whereas instrumental tracks easily

degraded in sound quality. Instead of averaging the songs’ key and tempo

attributes, I recommend shifting the acapella track to match the instrumental

track’s key and tempo.

4. User-defined Matching Parameters – Song sections are currently compared and

matched using a fixed weighting of timbre, chroma, and loudness attributes. I

59	
 	

recommend further defining the relationship between how different weightings of

these metrics in the software affect how listeners rate the rhythmic, harmonic,

dynamic, and structural compatibility of the mashups. I also recommend

considering how weighting differs between listeners to allow users to customize

software parameters according to their specific listening tastes.

	
 60	

Chapter 5: Conclusion

The results of this project yield some successful application of prior MIR research

in both software programs, and some examples of where imperfect data metrics limit the

performance of the applications. Because the Automatic DJ program relied mainly on

consistently accurate loudness data, its performance was more reliable, and showed

promise in its ability to model the output of a human DJ. Even when a song’s beat

information was inaccurate, the Crossmatch method used to transition between songs was

often sufficient in covering up the unaligned beats. The Automatic MashUp program

produced some examples of success, but ultimately fell short in its ability to produce

human-quality mashups. The software’s success relied heavily on accurate analysis data,

and its development was thwarted by the challenge of finding songs with correct key and

beat predictions. If an application such as this is to be developed in the future, it must be

preceded by techniques for more robust key estimation and beat detection. Ultimately, an

inaccurate library of data limited the success of the The Automatic MashUp program.

 The progress made with this software also shows that music production

algorithms can be identified and automated, but that the variability in the output of the

imitated work must be matched by the algorithm’s complexity. For both programs, a few

basic considerations were identified as common to the entire production process, and

played an important role in guiding both development phases. These limited sets of

variables were sufficient for making basic programs, but music production will always

contain an infinite amount of things that can be unexpectedly altered, so there will always

be a need to make these automatic algorithms even more complex.

61	
 	

The criticisms for the programs that were raised during human listening tests all

call for an increase in variability. The programs may need to be more robust in

understanding input songs of greater variability, as demonstrated by the Automatic DJ’s

ability to identify sudden changes in loudness, and its inability to identify gradual build-

ups in loudness. The programs may also require greater variability in how they generate

output, like the enhancement that calls for random transition durations between songs in

the Automatic DJ.

Finally, the greatest enhancement for these programs would be to combine their

functionality and build upon their ability to produce music. The tasks of mixing and

matching are often used by DJs simultaneously in a performance, so a combination of

both programs could serve as a useful application for professional disk jockeys. One

could even try using studio samples from multiple different instrument and vocal tracks

as input to the Automatic MashUp program to fabricate “multi-track mashups,” or

ultimately, original music.

The results of this project will hopefully provide new insight to the millions of

active musicians in the digital age. Written music has taken on a new, digital format, and

has gained the powerful capability of computational analysis. By furthering MIR research

and applying its findings, music composers will be able to expand their creativity, and

music admirers will acquire greater understanding.

	

	

62	
 	

References
	

	

Bartsch, M. A., & Wakefield, G. H. (2001). To catch a chorus: Using chroma-based
representations for audio thumbnailing. In Applications of Signal Processing to Audio
and Acoustics, 2001 IEEE Workshop on the (pp. 15-18). IEEE.

Bertin-Mahieux, T., Weiss, R. J., & Ellis, D. P. (2010). Clustering beat-chroma patterns
in a large music database. In ISMIR 2010: Proceedings of the 11th International Society
for Music Information Retrieval Conference, August 9-13, 2010, Utrecht,
Netherlands (pp. 111-116). International Society for Music Information Retrieval.

Tsai, W. H., Yu, H. M., & Wang, H. M. (2005). A query-by-example technique for
retrieving cover versions of popular songs with similar melodies. In Int. Symp. on Music
Information Retrieval (ISMIR) (pp. 183-190).

Ellis, D. P., & Poliner, G. E. (2007, April). Identifying cover songs' with chroma features
and dynamic programming beat tracking. In Acoustics, Speech and Signal Processing,
2007. ICASSP 2007. IEEE International Conference on(Vol. 4, pp. IV-1429). IEEE.
	

Randel, D. M. (2003). The Harvard dictionary of music. Belknap Press.
	

Lewis, J. P. (1995, May). Fast normalized cross-correlation. In Vision interface(Vol. 10,
No. 1, pp. 120-123).
	

Smidansky, M. (2012, October 20). Personal Interview.	

	

Hoffner, K. (2013, January 3). Personal Interview.

Template image of a coin. Digital image. Scikit-Image: Image Processing in Python.
N.p., n.d. Web. 27 Mar. 2013. <http://scikit-
image.org/docs/dev/auto_examples/plot_template.html>.

Large image of many coins. Digital image. Scikit-Image: Image Processing in Python.
N.p., n.d. Web. 27 Mar. 2013. <http://scikit-
image.org/docs/dev/auto_examples/plot_template.html>.

Match_template result. Digital image. Scikit-Image: Image Processing in Python. N.p.,
n.d. Web. 27 Mar. 2013. <http://scikit-
image.org/docs/dev/auto_examples/plot_template.html>.

	
 63	

Appendix A: Automatic DJ Python Script
#!/usr/bin/env python
encoding: utf=8
'''
Created on Oct 15, 2012
@author: jordanhawkins
'''
import echonest.audio as audio
import echonest.action as action
import echonest.selection as selection
import os
import plistlib
import shutil
import urllib
import numpy.matlib as matlib
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as pyplot

workingDirectory = '/Users/jordanhawkins/Documents/workspace/Automatic DJ/src/root/nested'
programFiles = ['__init__.py','Main.py','AutoMashUp.py']
lib = plistlib.readPlist('/Users/jordanhawkins/Music/iTunes/iTunes Music Library.xml')
LOUDNESS_THRESH = -8 # per capsule_support module
MIX_LENGTH = 4 # defines the length, in beats, of fades between songs
"""
Remove any old audio files from the project directory.
"""
def flushDirectory():
 for filename in os.listdir(workingDirectory):
 if programFiles.count(filename) == 0:
 os.remove(filename)

"""
Copy audio files listed in the "Automatic DJ Input" iTunes playlist
into the project directory.
"""
def getAudioFiles():
 for count in range(len(lib['Playlists'])):
 if lib['Playlists'][count]['Name'] == 'Automatic DJ Input':
 playlistItems = lib['Playlists'][count]['Playlist Items']
 trackIDs = [i['Track ID'] for i in playlistItems]
 for i in range(len(trackIDs)):
 location = lib['Tracks'][str(trackIDs[i])]['Location']
 location = urllib.unquote(location)
 try:
 shutil.copy(location[16:], workingDirectory)
 except:
 print "exception in getAudioFiles"
 break

"""
Find the longest consistently loud region of the song.
window is the approximate number of segments in a 16 beat span.

64	
 	

lpf is a 16-beat-long rectangular window convolved with the loudness
values to smoothen them the while loop tries to find a loud region
of the song that's at least 60 seconds long. If such a region cannot
be found the first time, the LOUDNESS_FLOOR value is increased to
tolerate slightly softer loud regions for the sake of a longer
song duration.
*To better understand the mathematics involved, note that loudness
is measured in negative decibels, so a small negative number is
louder than a large negative number.
"""
def findLoudestRegion(segments,tempos):
 segmentMarkers = []
 for segs,tempo in zip(segments,tempos):
 LOUDNESS_CEILING = .8
 LOUDNESS_FLOOR = 1.2
 window = int((16.0/tempo)*60.0/(matlib.mean(matlib.array(segs.durations))))
 lpf = np.convolve(segs.loudness_max,np.ones(window)/window)[window/2:-(window/2)]
 lpf[0:window/2] = lpf[window/2]
 lpf[-(window/2):] = lpf[-(window/2)]
 mean = matlib.mean(matlib.array(lpf))
 marker1 = 0
 finalMarkers = (0,0)
 foundFirstMarker = 0
 while((sum([s.duration for s in segs[finalMarkers[0]:finalMarkers[1]]]) < 60.0)
 and LOUDNESS_FLOOR < 2.0):
 for i,l in enumerate(lpf):
 if(foundFirstMarker):
 if l < mean*LOUDNESS_FLOOR or i == len(lpf)-1:
 foundFirstMarker = 0
 if((i-marker1) > (finalMarkers[1]-finalMarkers[0])):
 finalMarkers = (marker1,i)
 elif l > mean*LOUDNESS_CEILING:
 foundFirstMarker = 1
 marker1 = i
 # adjust thresholds to allow for longer region to be chosen, if necessary
 LOUDNESS_FLOOR = LOUDNESS_FLOOR + .05
 LOUDNESS_CEILING = LOUDNESS_CEILING + .05
 segmentMarkers.append(finalMarkers)
 return segmentMarkers

"""
Collects the names of the audio files in the project directory,
then creates a list of LocalAudioFile objects, which gets returned
along with key analysis objects.
"""
def getInput():
 filenames = []
 for filename in os.listdir(workingDirectory):
 if programFiles.count(filename) == 0:
 filenames.append(filename)
 inputList = []
 for filename in filenames:
 try:
 inputList.append((audio.LocalAudioFile(filename).analysis.tempo['value'],
 audio.LocalAudioFile(filename),filename))

65	
 	

 except: print "Exception in getInput for filename: ", filename
 inputList.sort()
 localAudioFiles = [t[1] for t in inputList]
 return [f.analysis.segments for f in localAudioFiles], [t[2] for t in inputList],[f.analysis.tempo['value'] for
f in localAudioFiles], localAudioFiles, [f.analysis.beats for f in localAudioFiles]
"""
I copied this method from capsule_support. It equalizes the volume of the input tracks.
"""
def equalize_tracks(tracks):
 def db_2_volume(loudness):
 return (1.0 - LOUDNESS_THRESH * (LOUDNESS_THRESH - loudness) / 100.0)
 for track in tracks:
 loudness = track.analysis.loudness
 track.gain = db_2_volume(loudness)

"""
This method deletes the original input songs from the directory so they don't
get copied into iTunes.
"""
def deleteOldSongs(filenames):
 for filename in os.listdir(workingDirectory):
 if filename in filenames:
 os.remove(filename)

"""
This method generates 4-beat Crossmatch objects, then renders them attached
to the end of Playback objects.
"""
def generateCrossmatch(localAudioFiles, beatMarkers, filenames, beats):
 actions = []
 for i in range(len(beatMarkers)-1):
 cm = action.Crossmatch((localAudioFiles[i], localAudioFiles[i+1]),
 ([(b.start, b.duration) for b in beats[i][beatMarkers[i][1] -
 MIX_LENGTH:beatMarkers[i][1]]],[(b.start, b.duration)
 for b in beats[i+1][beatMarkers[i+1][0]:beatMarkers[i+1][0]+
 MIX_LENGTH]]))
 actions.append(cm)
 for i in range(len(beatMarkers)):
 startBeat = beats[i][beatMarkers[i][0]+MIX_LENGTH]
 endBeat = beats[i][beatMarkers[i][1]-MIX_LENGTH]
 actions.insert(2*i, action.Playback(localAudioFiles[i],
 startBeat.start, endBeat.start-startBeat.start))
 action.render([action.Fadein(localAudioFiles[0],beats[0]
 [beatMarkers[0][0]].start,beats[0][beatMarkers[0][0]+MIX_LENGTH].
 start-beats[0][beatMarkers[0][0]].start)],"000 fade in")
 for i in range(len(actions)/2):
 index = str(i+1)
 while(len(index) < 3): index = "0" + index
 try:
 action.render([actions[2*i],actions[2*i+1]], index + " " + filenames[i])
 except: print filenames[i]
 index = str(len(filenames))
 while(len(index) < 3): index = "0" + index
 action.render([actions[-1]], index + " " + filenames[-1])
 action.render([action.Fadeout(localAudioFiles[-1],beats[-1][beatMarkers[-1][1]-
 MIX_LENGTH].start,beats[-1][beatMarkers[-1][1]].start-beats[-1]

66	
 	

 [beatMarkers[-1][1]-MIX_LENGTH].start)], "999 fade out")

"""
This method finds the closest beat to my designated segments for Crossmatching.
I had some trouble with this method, which is why it is so fragmented. I may resolve
this later.
"""
def getBeatMarkers(loudnessMarkers,segments,beats):
 return [(b.index(b.that(selection.overlap(segments[i][loudnessMarkers[i][0]]))[0]),
 b.index(b.that(selection.overlap(segments[i][loudnessMarkers[i][1]]))[0]))
 for i,b in enumerate(beats)]

"""
This method probably won't be used as much as Crossmatch.
It immediately transitions between songs, without any kind of mix.
"""
def generateFaderSlam(localAudioFiles, beatMarkers, filenames):
 actions = [action.Playback(laf, b[0].start, (b[1].start-b[0].start)) for laf,b in
zip(localAudioFiles,beatMarkers)]
 for i in range(len(actions)):
 action.render([actions[i]],str(i) + " " + filenames[i])

def main():
 flushDirectory()
 getAudioFiles()
 segments, filenames, tempos, localAudioFiles, beats = getInput()
 equalize_tracks(localAudioFiles)
 loudnessMarkers = findLoudestRegion(segments,tempos)
 beatMarkers = getBeatMarkers(loudnessMarkers,segments,beats)
 generateCrossmatch(localAudioFiles,beatMarkers,filenames,beats)
 deleteOldSongs(filenames)
 os.system('automator /Users/jordanhawkins/Documents/workspace/'
 + 'Automatic\ DJ/import.workflow/')

if __name__ == '__main__':
 main()
	

