Recent Advances in Approximate Message Passing J

Phil Schniter

THE OHIO STATE UNIVERSITY

Supported in part by NSF grant CCF-1716388.

July 5, 2019



Overview

@ Linear Regression

© Approximate Message Passing (AMP)

© Vector AMP (VAMP)

@ Unfolding AMP and VAMP into Deep Neural Networks

© Extensions: GLMs, Parameter Learning, Bilinear Problems

Phil Schniter (Ohio State Univ.) July'19 2/52



Outline

@ Linear Regression

Phil Schniter (Ohio State Univ.) July’19 3/52



Linear Regression

The Linear Regression Problem

Consider the following linear regression problem:

Recover x, from .
x, € R™  unknown signal
y=Ax,+w with A € R™ ™ known linear operator
w € R™  white Gaussian noise.

Typical methodologies:

Optimization (or MAP estimation):

~ . 1
Z = argmin {2Aa: —yl2+ R(:c)}

Approximate MMSE:

T =~ E{z|y} for =~ p(x

Plug-and-play:! iteratively apply a denoising algorithm like BM3D

), Yl ~N(Az,v,I)

Train a deep network to recover x, from y.

1Venkatakrishnan,Bouman,Wotherg'13
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Approximate Message Passing (AMP)
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Approximate Message Passing (AMP)

The AMP Methodology

m All of the aforementioned methodologies can be addressed using the
Approximate Message Passing (AMP) framework.

m AMP tackles these problems via iterative denoising.
m We will write the iteration-t denoiser as n*(+) : R™ — R™.

m Each method defines the denoiser n'(-) differently:
m Optimization: n'(r) = argmin, {R(x) + 5| — 7|3} £ “proxp,:(r)"
= MMSE: n'(r) =E{z|r =2+ N(0,0")}
m Plug-and-play: n*(r) = BM3D(r, ")

m Deep network: n'(r) is learned from training data.

Phil Schniter (Ohio State Univ.) July’19
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Approximate Message Passing (AMP)

The AMP Algorithm

initialize 2°=0, v™1=0
fort=0,1,2,...
vt =y — Az' + Dot div(n' (@' + AT%"")) corrected residual
't =@ + AT denoising
where 1 on'(r)
div(n'(r)) £ Etr ( 5 > “divergence.”
Note:

m Original version proposed by Donoho, Maleki, and Montanari in 20009.
m They considered “scalar’ denoisers, such that [n(r)]; = n'(r;) Vj

m For scalar denoisers, div(n'(r)) = & P n' (r;)

m Can be recognized as iterative shrinkage/thresholding? plus “Onsager
correction.”

m Can be derived using Gaussian & Taylor-series approximations of loopy
belief-propagation (hence “"AMP").

2Chambolle,DeVore,Lee, Lucier'98
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Approximate Message Passing (AMP)

AMP’s Denoising Property

Original AMP Assumptions

m A c R™*" is drawn i.i.d. Gaussian

mm,n—oost T — e (0,00) ... "large-system limit”
m [n'(r)]; = n'(r;) with Lipschitz n(-) ... "scalar denoising”

Under these assumptions, the denoiser's input rt £ '+ AT obeys?

75 =205+ N(0,17)

m That is, 7! is a Gaussian-noise corrupted version of the true signal x,,.
m It should now be clear why we think of n’(-) as a “denoiser.”

Furthermore, the effective noise variance can be consistently estimated:

e L2 — L

3Bayati,Montanari'l1

Phil Schniter (Ohio State Univ.) July’19

8/52



Approximate Message Passing (AMP)

AMP’s State Evolution

m Assume that the measurements y were generated via
y= Az, +N(0,v,I)

where x, empirically converges to some random variable X, as n — oo.

m Define the iteration-t mean-squared error (MSE)

£ 2 13" — x|

m Under above assumptions, AMP obeys the following state evolution (SE):*

fort=0,1,2,...
VE =, + 2E°

£ = B { [ (X, + N(0,4)) — X,]*}

4Bayati,Montanari'11
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Approximate Message Passing (AMP)
Achievability Analysis via the AMP SE

m AMP’s SE can be applied to analyze achievability in various problems.

m E.g., it yields a closed-form expression® for the sparsity/sampling region where
£1-penalized regression is equivalent to {y-penalized regression:

1—26(1 +c*)®(—c) — co(c)]
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Approximate Message Passing (AMP)

MMSE Optimality of AMP

m Now suppose that the AMP Assumptions hold, and that
y=Azx,+N(0,v,I),

where the elements of x, are i.i.d. draws of some random variable X,.

m Suppose also that n'() is the MMSE denoiser, i.e.,
n'(R) =E{X,|R=X,+N(0,v})}

m Then, if the state evolution has a unique fixed point, the MSE of Z' converges®
to the replica prediction of the MMSE as t — cc.

m Under the AMP Assumptions, the replica prediction of the MMSE was shown
to be correct.”®

6Bayati,Montanari'll, "Reeves, Pfister'16, 8Barbier,Dia,Macris,Krzakala'16
Phil Schniter (Ohio State Univ.) July'19 11/52



Approximate Message Passing (AMP)

Universality of AMP State Evolution

m Until now, it was assumed that A is drawn i.i.d. Gaussian.

m The state evolution also holds when A is drawn from i.i.d. A;; such that
E{A;;} =0
2y _
E{Aj;} =1/m
6 _ .
E{A4;;} = C/m for some fixed C' > 0.

often abbreviated as “sub-Gaussian A;;."

m The proof® assumes polynomial scalar denoising 7(+) of bounded order.

9Bayati,Lelarge, Montanari'15
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Approximate Message Passing (AMP)

Deriving AMP via Loopy BP (e.g., sum-product alg)

P> ( ) 1

1(Z1
AN

N(y1; [Az]1, v) flz1)
il Message from y; node to z; node:
H & Yi J N(ys; [Az]2, 1) F2)
~ N via CLT
——
Pisy (i) o< | N(yis > auay, vw) [,z Pici(@1)
{ohizg N o Al ve) e flaa)
Pm—nTn
~ [ Nz N (s, v ) ~ N
To compute Z;(z;), v7(x;), the means and variances of {p;;}ix; suffice,
implying Gaussian message passing, similar to expectation-propagation.
Remaining problem: we have 2mn messages to compute (too many!).
Exploiting similarity among the messages poa(mn)
D : N ysi [Aals, ) fa)
{pi;}721, AMP employs a Taylor-series
approximation of their difference whose N (y2; [Ax]2, vu) fa2)
error vanishes as m — oo for dense A (and
similar for {p;.;}}_; asn—o0).  Finally,
need to compute only O(m+n) messages! — N(m:[Azln. 1) flan)

Pimen(Tn)
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Approximate Message Passing (AMP)

Understanding AMP

m The belief-propagation derivation of AMP provides very little insight!
m Loopy BP is suboptimal, even if implemented exactly
m The i.i.d. property of A is never used in the derivation

m And the rigorous proofs of AMP's state evolution are very technical!
m As a middle ground, we suggest an alternate derivation that gives insight into
how and why AMP works.

m Based on the idea of “first-order cancellation”
m We will assume equiprobable Bernoulli a;; € +1/+/m and polynomial 7(-)

Phil Schniter (Ohio State Univ.) July'19 14 /52



Approximate Message Passing (AMP)

AMP as First-Order Cancellation

Recall the AMP recursion:
vl =y — AZ' + 2ot div(n(rt))

St st Tt
T =nxE + A
————

A

Notice that -

[AZ"); = al (3" + 3, @wi ) where a] is the ith row of A

= aiTn(ﬁtfl + D aw] " +avl )
£ rﬁ_l which removes the direct contribution of a; from r*~!
=a] [n(ri")+ %( “Ya;v;~' +O(1/m)] using a Taylor expansion
= aln(ri") + v o ai (i) + O(1/ym)
— aln(r ) + 2ol LY () + O(1/Vm) since a2, = 1/m Vi
N

dlv( (r; = 1))

which uncovers the Onsager correction.
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Approximate Message Passing (AMP)

AMP as First-Order Cancellation (cont.)

Now use [AZ']; to study jth component of denoiser input error et £ rt — x,:

6 - § al]E Q4 xol § Q5 W5
i l#j

£ [ mel T div(n(rt ) = el div(n(ri )|+ 00/ Vim)

where the divergence difference can be absorbed into the O(1/y/m) term. ..

= Za” Zazl Iol fl 1)] + Zaijw,; + O(l/\/ﬁ)
i 1#£] %’_’ i
~ N0, 7 325 w)

K2

= E’Ll

~ N(O’ # i Zl;ﬁj(egl)z)

using the CLT and assuming independence of {a;}j; and {rf; '},

~N(0, 2E® + 1) +O(1//m) ...the AMP state evolution
where £() & %Z?Zl (20,5 — 55;”]2 and v, £ L3 w?

Phil Schniter (Ohio State Univ.) July'19 16 /52



Approximate Message Passing (AMP)

AMP with Non-Separable Denoisers

m Until now, we have focused on separable denoisers, i.e., [n'(r)]; = n'(r;) Vj

m Can we use sophisticated non-separable 7(-) with AMP?

m Yes! Many examples. ..

m Markov chain,® Markov field,*?> Markov tree,'? denoisers in 2010
m Blockwise & TV denoising considered by Donoho, Johnstone, Montanari in 2011
m BM3D denoising considered by Metzler, Maleki, Baraniuk in 2015

m Rigorous state-evolution proven by Berthier, Montanari, Nguyen in 2017.
m Assumes A drawn i.i.d. Gaussian
m Assumes 7} is Lipschitz and “convergent under Gaussian inputs”

105'10, 1Som,S'11, 12Som,S'12
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Approximate Message Passing (AMP)

AMP at Large but Finite Dimensions

m Until now, we have focused on the large-system limit m,n — oo with
m/n — 6 € (0,00)
m The non-asymptotic case was analyzed by Rush and Venkataramanan.!3

m They showed that probability of e-deviation between the finite and limiting SE
falls exponentially in m, as long as the number of iterations ¢ < 0(1023{%32")

13Rush,Venkataramanan'18
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Approximate Message Passing (AMP)

AMP Summary: The good, the bad, and the ugly

The good:

m With large i.i.d. sub-Gaussian A, AMP is rigorously characterized by a scalar
state-evolution whose fixed points, when unique, are MMSE optimal under
proper choice of denoiser.

m Empirically, AMP behaves well with many other “sufficiently random” A
(e.g., randomly sub-sampled Fourier A & i.i.d. sparse x).

The bad:
m With general A, AMP gives no guarantees.

The ugly:

m With some A, AMP may fail to converge!
(e.g., ill-conditioned or non-zero-mean A)

Phil Schniter (Ohio State Univ.)

July'19  19/52



Outline

© Vector AMP (VAMP)

Phil Schniter (Ohio State Univ.) July’19 20 /52



Vector AMP (VAMP)

m Recall goal is linear regression: Recover x, from y = Az, + N(0,1/v,).
m Now it will be easier to work with inverse variances, i.e., precisions

m VAMP is like AMP in many ways, but supports a larger class of random
matrices.

m VAMP yields a precise analysis for right-orthogonally invariant A:

U: deterministic orthogonal

svd(A) = USVT for { S: deterministic diagonal
V: "Haar;" uniform on set of orthogonal matrices

of which i.i.d. Gaussian is a special case.

. N(y; Axy, I /7, & —
m Can be derived as a form of message e 1) (win) pﬁ>
passing on a vector-valued factor graph. z, P

Phil Schniter (Ohio State Univ.) July'19 21/52



VAMP: The Algorithm

With SVD A = U Diag(s)V", damping ¢ € (0,1], and Lipschitz n%(:) : R® — R™.

Initialize 71, 1.

Fort=1,2,3,...
T < my(r1) denoising of 11 = z, + N(0,1/v1)
&1/ div(ni(r))
re — (G121 — ) /(& — ) Onsager correction
Y2 &1 —m
To < My(7T2;72) LMMSE estimate of & ~ N (72, I/72)
& <—’72/diV(772(1°2;’72)) from y = Az + N (0,1/7vy)
r1 4 ((§2@2 — 12r2) /(&2 — 72) + (1= Onsager correction
M6 —72)+1-0On damping

where  m,(7r2;72) = (*ywATA + 'ygI)_l('ywiley + v2r2)
= V (vw Diag(s)® +72I)" (yw Diag(s)U 'y + 72V 'r2)

& =[1 Z?Zl(yws? R I two mat-vec mults per iteration!

Phil Schniter (Ohio State Univ.) July'19 22 /52



VAMP's Denoising Property

Original VAMP Assumptions
m A € R™*" is right-orthogonally invariant

mm,n— oo s.t.m/n— 6 € (0,00) ... "large-system limit"

m [ni(r)]; = ni(r;) with Lipschitz 7} (") ... “separable denoising”

Under Assumption 2, the elements of the denoiser’s input ¢ obey!*

Ti,j = Zo,j +N(O7V§)

m That is, 7} is a Gaussian-noise corrupted version of the true signal x,.

m As with AMP, we can interpret ), (-) as a “denoiser.”

14Rangan,S,Fletcher'16
Phil Schniter (Ohio State Univ.) July’19
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VAMP's State Evolution

Assume empirical convergence of {s;} —S and {(r} ;,z0;)} — (R},

& & L@] — ao|® fori=1,2.

X,), and define

Then under the VAMP Assumptions, VAMP obeys the following state-evolution:

fort=0,1,2,...
=E{[n} (X, + N(0,1})) - X,]*}
al—E{n (Xo+N(0,0]))}
Vs = Vflai”, vy = mmanz |61 — (0 )vi]
—E{[r5"+] '}
ab = HE{[vwS? +74] "'}

7{*‘1’1 — ,yé 1a042 , I/§+1 (1 a{ )2 [62 ( )21/5]

MSE

divergence

MSE

divergence

Note: Above equations assume 1), () uses true noise precision 7.
If not, there are more complicated expressions for £% and ob.

Phil Schniter (Ohio State Univ.)
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MMSE Optimality of VAMP

m Now suppose that the VAMP Assumptions hold, and that
y=Azx, +N(0,1I/vy),

where the elements of @, are i.i.d. draws of some random variable X,.
m Suppose also that 7} (-) is the MMSE denoiser, i.e.,

i (R1) =E{X,|Ri = X, + N(0,v})}

m Then, if the state evolution has a unique fixed point, the MSE of E’i
converges'® to the replica prediction'® of the MMSE as t — cc.

15Rangan,S,Fletcher'16, ©Tulino,Caire,Verdu,Shamai'13
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Experiment with MMSE Denoising

Comparison of several algorithms!” with MMSE denoising.

i [aaes. n = 1024
-5 | |—w—S-AMP m/n =0.5
o —4— damped GAMP
‘2-10 r |—+— VAMP
= = replica MMSE
& 15 1 A = U Diag(s)V"
E 20 ] U,V ~ Haar
5 | $j/sj-1 =0 Vj
g ¢ determines x(A)
5 -30 1
=
5% 1 X, ~Bernoulli-Gaussian
o
g o 1 Pr{Xo #0} = 0.1
-45 4
-50 : : : : : SNR = 40dB
10° 10" 102 10° 10* 10° 10°

condition number k(A)

VAMP achieves the replica MMSE over a wide range of condition numbers.

75 AMP: Cakmak,Fleury,Winther'14, damped GAMP: Vila,S,Rangan,Krzakala,Zdeborovd'l5
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Vector AMP (VAMP)

Experiment with MMSE Denoising (cont.)

Comparison of several algorithms with priors matched to data.

=)
>
P
b

condition number=1

AMP

10 —»—S-AMP
—&— damped GAMP
—+—VAMP
30 - — — VAMP SE

-40 -

median NMSE [dB]
. o -
o

10° 10' 102 10°
condition number=1000

a AMP
w10t —»—S-AMP
7] —A— damped GAMP
S 20! —+— VAMP
= - — VAMP SE
©
E -30 -
£

-40 :

10° 10’ 102 10°

iterations

VAMP is relative fast even when A is ill-conditioned.

Phil Schniter (Ohio State Univ.)

n = 1024
m/n=0.5

A = U Diag(s)V"
U,V ~ Haar
$j/8j-1=¢ Vj

¢ determines k(A)

X, ~Bernoulli-Gaussian
Pr{X, # 0} = 0.1

SNR = 40dB

July’19
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VAMP for Optimization

m Consider the optimization problem

# = argmin { || Az — y|® + R(z)}
where R(-) is strictly convex and A is arbitrary (e.g., not necessarily RRI).

m If we choose the denoiser
t

. g
ni(r) = arg min {R(:Jc) + ?1Hoc — r2} = proxp i ()
and the damping parameter
2min{y;,v2}
Y1+ 72
then a double-loop version of VAMP converges'® to  from above.

¢<

m Furthermore, if the v and 5 variables are fixed over the iterations, then
VAMP reduces to the Peaceman-Rachford variant of ADMM.

18F|etcher,Sahraee,Rangan,S'16
Phil Schniter (Ohio State Univ.) July’19
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Example of AMP & VAMP on the LASSO Problem

iid Gaussian A matrix column-correlated (0.99) A matrix

0
—— VAMP
5 —— AMP
Chambolle-Pock
A0 f ——FISTA -5 — Xﬁ."f B
Chambolle-Pock
— 15} 10 ——FISTA |
oQ )
Sl j=H
L L 15 1
D oot 0
= =
Z 30} Z ]
35
N 25 B
-40 b -V
45 30 . . .
10° 10’ 10? 10° 10° 10’ 102 10° 10*
iterations iterations

Solving LASSO to reconstruct 40-sparse & € R'%%0 from noisy y € R400.

~ . 1
Z = argmin {2“?! — Az|3 + )\||ac|1} )
x

Phil Schniter (Ohio State Univ.) July’19
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Deriving VAMP from EC

m |deally, we would like to compute the exact posterior density

_ p(@)(z;y) a ,
plaly) = P qor 2(y) £ [ pla)t(ay) da.

but the high-dimensional integral in Z(y) is difficult to compute.

m We might try to circumvent Z(y) through variational optimization:

p(x|y) = argmin D (b(z)||p(z|y)) where D(-||-) is KL divergence
b

= argbminD(b(m)Hp(w)) + D(b(x)||((x;y)) + H (b(x))

Gibbs free energy

= a;gFZnD(bl(w)Hp(az)) + D(ba()||(x;y)) + H(q(x))

sit. by =by =g, £ Jaibbs(b1, b2, q)
but the density constraint keeps the problem difficult.

Phil Schniter (Ohio State Univ.) July’19
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Deriving VAMP from EC (cont.)

m In expectation-consistent approximation (EC)'9, the density constraint is
relaxed to moment-matching constraints:

p(x|y) ~ arg min Jgipbs (b1, b2, q)
b1,ba,q

oi {Elaln) ~Elab) —Elol)
' tr(Cov{x|b1 }) = tr(Cov{x|bz}) = tr(Cov{z|q}).

m The stationary points of EC are the densities

by () o p(x)N (71, I/ 1) E{x|b} = E{x|b,} =2
ba(x) oc L(z; y)N (2372, I /72) sit. . > _
W) = N (o3 1)) { wtr(Covialb,}) = Ltr(Cov{wlb}) = ¢

m VAMP iteratively solves for the quantities 71,71, 72,72, Z, £ above.
m Leads to 1! () being the MMSE denoiser of 1 = x, + N (0, I/7})
m In this setting, VAMP is simply an instance of expectation propagation (EP)%.
m But VAMP is more general than EP, in that it allows non-MMSE denoisers 7.

190pper,Winther'04, 2°Minka’'01
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Plug-and-play VAMP

m Recall the scalar denoising step of VAMP (or AMP):
1 =nl(ry) where ry =z, +N(0,1/4})

m For many signal classes (e.g., images), very sophisticated non-separable
denoisers 77, (+) have been developed (e.g., BM3D, DnCNN).

m These non-separable denoisers can be “plugged into” VAMP!

m Their divergence can be approximated via Monte Carlo?!

K ol nt(r+ep,) — HEE
div (' (1)) ~ %Zpk (7' ( +5€k) ' (r)]
k=1

with random vectors p, € {£1}"™ and small ¢ > 0. Empirically, K =1 suffices.

m A rigorous state-evolution has been established for plug-and-play VAMP.??

21Ramani,Blu,Unser'08, 22Fletcher,Rangan,Sarkar,S'18
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Experiment: Compressive Image Recovery with BM3D

Plug-and-play versions of VAMP and AMP behave similarly with i.i.d. Gaussian A
is i.i.d., but VAMP can handle a larger class of random matrices A.

2 iid G 1 A %0 spread spectrum A (M/N =0.2)
—VAMP-BM3D
- - AMP-BM3D
35 VAMP-L1 25
- - AMP-L1
20,
30
z c Y — VAMP-BM3D
3 . Z150 — VAMP-L1
& 25 — o . AMP-BM3D
" 10 i - - AMP-L1
" - \\
20 Iy 5 Y
L \
\
15 0 .
0.1 0.2 0.3 0.4 05 10° 10’ 10? 10° 10°
sampling rate M/N condition number

Results above are averaged over 128 x 128 versions of
lena, barbara, boat, fingerprint, house, peppers
and 10 random realizations of A, w.

Phil Schniter (Ohio State Univ.) July'19 33 /52
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Unfolding AMP and VAMP into Deep Neural Networks

Deep learning for sparse reconstruction

m Until now we've focused on designing algorithms to recover x, ~ p(x) from

measurements y = Ax, + w.

/

Y —| algorithm

= 2

model p(xz), A

m What about training deep networks to predict x, from y?
Can we increase accuracy and/or decreas; computation?

deep

Y= network

= 7

training data {(z4,y4) 5,

m Are there connections between these approaches?

Phil Schniter (Ohio State Univ.)
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Unfolding Algorithms into Networks

Consider, e.g., the classical sparse-reconstruction algorithm, ISTA.2

~t
'UI =Yy — Ax §t+1
~t ~t
T =n@'+ AT

S271-A"TA

n(Sz' + By) with BA AT

Gregor & LeCun®* proposed to “unfold” it into a deep net and “learn” improved
parameters using training data, y|eId|ng ‘learned ISTA" (LISTA):

“

The same “unfolding & learning” idea can be used to improve AMP, yielding
“learned AMP" (LAMP).%

23Chambolle,DeVore,Lee,Lucier'98.  2*Gregor,LeCun’10.  2®Borgerding,S'16.
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Onsager-Corrected Deep Networks

" LISTA layer:
§t+1

v tH1

Y
to exploit low-rank B* A’ in linear stage S' = I — B'A".

tth LAMP layer:

z! > T
Yy Yy

Onsager correction now aims to decouple errors across layers.

Phil Schniter (Ohio State Univ.) July’19
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LAMP performance with soft-threshold denoising

LISTA beats AMP,FISTA,ISTA . .
LAMP beats LISTA " convergence speed and asymptotic MSE.

ceq ‘ ‘
L $ 280 o
54 e :—t Seeeeesey
* o .

B | ¢
= 10 e ISTA b . QQplot of LAMP
= . —e- FISTA * N 4
w 1e e —e— AMP ] s ¢
2 . —— LISTA tied g
= 20¢ ® o | 7% LISTA untied 1 il
o e —&— LAMP tied 2"

80 05 | —%— LAMP untied :
@ -30 B o
> ©
35 Tu
3
¥ ol
-40 ¢ ¥ " “Standard Normal Quantiles

5 10 15 20
layers / iterations
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LAMP beyond soft-thresholding

So far, we used soft-thresholding to isolate the effects of Onsager correction.

What happens with more sophisticated (learned) denoisers?

average NMSE [dB]

0t —%—LISTA
—8— LAMP-I1

45k —A— L AMP-bg
—v— LAMP-expo

20 | —O— LAMP-pwlin

-20 —+— LAMP-spline

support oracle

25

-30 -

-35 1

-40

45t ; ; 7

26Guo,Davies'15.  2"Kamilov,Mansour’16.
Phil Schniter (Ohio State Univ.)

Here we learned the parameters of
these denoiser families:

m scaled soft-thresholding
m conditional mean under BG

m Exponential kernel®®

m Piecewise Linear?®
m Spline*’

Big improvement!

July’19
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LAMP versus VAMP

How does our best Learned AMP compare to MMSE VAMP?

—O— LAMP-pwlin
—A— VAMP-bg
support oracle

VAMP wins!

average NMSE [dB]

2 4 6 8 10 12 14
layers / iterations

So what about “learned VAMP"?

Phil Schniter (Ohio State Univ.) July’19 40 /52



Unfolding AMP and VAMP into Deep Neural Networks
Learned VAMP

m Suppose we unfold VAMP and learn (via backprop) the parameters {S* n'}~_,
that minimize the training MSE.

| o+ N(0,1/44) z, +N(0,I/7%)

0}10+N01/72 z, +N(0,I/7%)

Onsager

st =

L o)

Onsager

N

st =

()

m Remarkably, backpropagation learns the parameters prescribed by VAMP!

Theory explains the deep network!

m Onsager correction decouples the design of {S*,n*(-)}L;:

Layer-wise optimal S*, n’(-)

Phil Schniter (Ohio State Univ.)
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Extensions: GLMs, Parameter Learning, Bilinear Problems

Generalized linear models

m Until now we have considered the standard linear model: y = Az, + w.

m One may also consider the generalized linear model (GLM), where
y ~ p(y|z) with hidden z = Az,
which supports, e.g.,

®m y; = z; + w;: additive, possibly non-Gaussian noise
® y; = Q(2z; + w;): quantization

m y; = sgn(z; + w;): binary classification

® y; = |z; + w;|: phase retrieval

m Poisson y;: photon-limited imaging

m For this, there is a Generalized AMP? with a rigorous state evolution.3°

m There is also a Generalized VAMP3! with a rigorous state evolution.3?

29Rangan’11, 39Javanmard,Montanari'12, 3!S Fletcher,Rangan’16.

32FIetcher,Rangan,S'lS.
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Parameter learning

m Consider inference under prior p(x;601) and likelihood ¢(x;y, 02), where the
hyperparameters 8 = [0, 85] are unknown.
m 0, might specify sparsity rate, or all parameters of a GMM
m 0 might specify the measurement noise variance, or forward model A

m EM-inspired extensions of (G)AMP and (G)VAMP that simultaneously estimate
x and learn 6 from y have been developed.

m Have rigorous state evolutions>>3*
m "“Adaptive VAMP" yields asymptotically consistent® estimates of 8

m SURE-based auto-tuning AMP algorithms have also been proposed
m for LASSO by Mousavi, Maleki, and Baraniuk
m for parametric separable denoisers by Guo and Davies

33Kamilov,Rangan,Fletcher,Unser'12, 3*Fletcher,Sahraee,Rangan,S'17
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Bilinear problems

m So far we have considered (generalized) linear models.
m AMP has also been applied to (generalized) bilinear models.

m The typical problem is to recover B € R™** and C € R**" from ...
Y = BC + W (standard bilinear model)
Y ~p(Y|Z) for Z = BC (generalized bilinear model)
m The case where m,n — oo for fixed k is well understood.*® (See Jean's talk)

m With m,n, k — oo, algorithms work (e.g., BIGAMP>®) but are not well understood.

m A more general bilinear problem is to recover b € R and ¢ € R"™ from
Yi :bTAic—o—wi, i=1...m

{ yi ~ p(yi|z:) for z; = b"Aic,i=1...m

m Algorithms®” and replica analyses® (for m,n,k — oo and i.i.d. A;) exist.

where {A;} are known matrices

35Montanari,Venkataramanan'17, 3®Parker,S,Cevher'14, 3Parker,5'16, 38Schulke,S,Zdeborova'16
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Conclusions

m AMP and VAMP are a computationally efficient algorithms for (generalized)
linear regression.

m With large random A, the ensemble behaviors of AMP and VAMP obey
rigorous state evolutions whose fixed-points, when unique, agree with the
replica predictions of the MMSE.

m AMP and VAMP support nonseparable (i.e., “plug-in") denoisers, also with
rigorous state evolutions.

m For convex optimization problems, VAMP is provably convergent for any A.

m Extensions of AMP and VAMP cover . ..
m unfolded deep networks

m the learning of unknown prior/likelihood parameters
m bilinear problems

m Not discussed: multilayer versions of AMP & VAMP.
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