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Abstract— Orthogonal frequency division multiplexing
(OFDM) systems may experience significant inter-carrier
interference (ICI) when used in time- and frequency-selective,
or doubly-selective, channels. In such cases, the classical symbol
estimation schemes, e.g., minimum mean-squared error (MMSE)
and zero-forcing (ZF) estimation, require matrix inversion
that is prohibitively complex for large symbol lengths. An
analysis of the ICI generation mechanism leads us to propose
a novel two-stage equalizer whose complexity (apart from the
FFT) is linear in the OFDM symbol length. The first stage
applies optimal linear pre-processing to restrict ICI support and
the second stage uses iterative MMSE estimation to estimate
finite-alphabet frequency-domain symbols. Simulation results
indicate that our equalizer has significant performance and
complexity advantages over the classical linear MMSE estimator
in doubly-selective channels.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) [1]
has emerged as one of the most practical techniques for data
communication over frequency-selective fading channels. In
OFDM, the computationally-efficient fast Fourier transform
(FFT) is used to transmit data in parallel over a large num-
ber of orthogonal subcarriers. When an adequate number of
subcarriers are used in conjunction with a cyclic prefix of
adequate length, subcarrier orthogonality is maintained even
in the presence of frequency-selective fading. Orthogonality
implies a lack of subcarrier interference and permits simple,
high-performance data detection.

In time- and frequency-selective—or doubly-selective—
fading, however, the orthogonality of OFDM is lost, leading to
subcarrier interference which greatly complicates optimal data
detection. Historically, OFDM has been applied to scenarios
in which time-selectivity can be effectively ignored. But future
wireless applications are expected to operate at high transmit-
frequencies, at high levels of mobility, and at high capacities,
resulting in fading that is doubly-selective. Thus, the primary
advantage of classical OFDM—interference-free operation—
will not carry over to important future applications.

While the vast majority of OFDM literature ignores intra-
symbol channel variation, a few OFDM modifications have
been proposed to cope with the resulting inter-carrier in-
terference (ICI) [2]–[6]. These schemes require

���������
	
complexity, however, where

�
denotes the OFDM symbol

length, making them impractical for large
�

. Note that symbol
lengths of 4096 and 8192 have been adopted by the 802.16
and DVB-T standards, respectively.

In this paper, we propose
�����
	

-complexity symbol estima-
tion strategies for OFDM systems in the presence of doubly-
selective fading. Rather than simply ignoring small-valued
ICI coefficients (as in [2], [5]) we use signal-to-interference-
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Fig. 1. OFDM system model.

plus-noise ratio (SINR)-optimal low-complexity linear pre-
processing to squeeze ICI into a few coefficients. Then we
propose low-complexity iterative symbol estimation schemes
that leverage the ICI-shortened channel representation. Full
channel knowledge is assumed throughout; low-complexity
doubly-selective channel estimation is treated elsewhere (see,
e.g., [2], [4], [6]–[8]).

Notation: We use
�)( 	+*

to denote transpose,
�+( 	-,

conjugate,
and

�)( 	).
conjugate transpose. / �102	

denotes the circulant
matrix with first column

0
, 3 �104	

the diagonal matrix created
from the vector

0
, 576!8:9 ��;�	

the diagonal matrix with the
same diagonal terms as matrix

;
, and < the identity matrix.= ( =?>

denotes the Frobenius norm and @ element-wise
multiplication. Expectation is denoted by ACB (�D

and covariance
by EGF�HIB 0KJMLNDPO�Q ARB 02L . DTS ARB 0�D ACB L . D

. Finally, U �+( 	
de-

notes the Kronecker delta, V ( WMX
the modulo-

�
operation, Y

convolution, Z the field of reals, and [ the set of integers.

II. SYSTEM MODEL

The OFDM system model is illustrated in Fig. 1. At each
index \^]_[ , a set of

�
coded QAM “frequency-domain”

symbols B
`ba c�de D
is collected to form an OFDM symbol f a�c�d Qg `
a�c�dh J?i?iji?J `
a�c�dXlknmMo * . The OFDM symbol is converted into the

time-domain samples Bjp a c!dq D
according the (norm-preserving)�

-point inverse DFT operation

p a c!dq Q rs �
Xlktmu
ewv h `�a�c�deyx?z4{1|} e q J~S�������������J

(1)

which are then serially transmitted over a noisy multipath
channel. Note that B�p a c�dq D

incorporates a cyclic prefix of length� � ���
. The multipath channel is modeled by the time-

variant discrete impulse response � tl
����JM�1	

, defined as the time-�
response to an impulse applied at time

��S��
. The channel

response during the \ *��
OFDM symbol interval is ��a�c�dtl

����J-��	GO Q
� tl

� \ ��� \ ��������JM�1	
for

S������������
. Assuming a causal

channel with maximum delay spread
� � �����

, the received



samples collected during the \ *��
OFDM symbol interval are� a c!dq Q

X��bktmu ��v h ��a c!dtl
����JM��	 pMa c!dq k � ��� a c!dq J�� ��������J

(2)

where
� a�c�dq are samples of white Gaussian noise (AWGN) with

variance � �
. Note that � a c�dq contains contributions from only

the \ *�� transmitted symbol; this is a consequence of assuming
that the multipath-corrupted cyclic prefix is discarded by the
receiver. The receiver then computes an

�
-point DFT of B � a�c�dq D

	 a�c�d
 Q rs �
Xlknmu
q v h � a c!dq x k z {1|} 
 q i

(3)

Using � to denote the
�

-point unitary DFT matrix, � a c!dtl
to denote a (time-variant, circular) convolution matrix such
that

g � a c!dtl
o q�
 � O�Q � a c!dtl

� ��J V � S_��W X��
, and defining � a�c�d O Qg � a c!dh Jji?iji?J � a�c�dXlktm-o * and � a c!d O�Q g � a c�dh J?iji?i?J�� a c!dXlktm o * , equation (2)

can be written in vector form as follows.� a c!d Q � a�c�dtl � a c�d � � a c!d Q � a c!dtl � . f a c�d � � a c!d (4)

Defining � a c!d O Q g 	 a c!dh Jji?i?ijJ 	 a c�dX�knm-o * and the subcarrier coupling
matrix ��a c!ddf

O Q ����a�c�dtl � .
, equation (3) can be written� a c!d Q ��� a c�d Q ��a c�ddf f a c�d ��� a�c�d (5)

where
� a c�d Q ��� a�c�d . It is straightforward to show thatg ��a�c�ddf

o 
 
 e Q ��a c!ddf
���TS���J��7	

, where

��a c�ddf
� � J��7	�O�Q r�

Xlknmu
q v h

Xlktmu ��v h �Ia�c�dtl
����JM�1	 x k z {1|}"! ��e$#%
 q'& i

(6)

Note that B
��a�c�ddf
���7JjO 	wD

appear on the main diagonal of �^a c�ddf ,B
� a c�ddf
� r J?O 	 D

on the first sub-diagonal, B�� a c�ddf
�+S r J?O 	 D

on the first
super-diagonal, and so on. This implies that �ta�c�ddf

� � J��7	
can be

interpreted as the response, at subcarrier
� ���

, to a frequency-
domain impulse centered at subcarrier

�
.

We assume the typical wide-sense stationary uncorrelated
scattering (WSSUS) model [9] such that

A�B
� tl
����JM��	 � ,

tl
��� S)(�JM��S+*�	wD�Q �

t
� (b	 � �� U �,*�	wi

(7)

In (7), �
t
��(b	

denotes the normalized tap autocorrelation (where�
t
���2	 Q r ) and � �� denotes the variance of the

� *��
tap.

III. ICI-GENERATING MECHANISM

A non-diagonal subcarrier coupling matrix introduces inter-
carrier interference (ICI), complicating the symbol estimation
task. The variance of the subcarrier coupling coefficientsB
��a c�ddf

� � J��7	wD
can be written [10]

ARB�- � df
� � J?( 	 - � D^Q �/. �/0�	 Y21 �/0I	 �433 5 v {1|} 
 ( u � � �� (8)

where
. ��0�	�O Q7698 �

t
� (b	 x k z 5 8

denotes the Doppler spectrum

for
0 ]�Z and 1 ��0�	CO�Q �;:,< = ! 5 X?> � &X :,< = ! 5 > � & � �

the Dirichlet sinc.
Equation (8) interprets the ICI-generating mechanism: the

Doppler spectrum
. ��0�	

is convolved with the Dirichlet sinc1 ��0�	
and then sampled on the regular grid B 0^O@0�Q �BAX �KJ�� ][ D

. With a linear time-invariant (LTI) channel, i.e., zero
Doppler spread, the nulls of

. �/0�	 Y�1 �/0�	
fall on the grid,
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implying ACB�- � df
���KJj( 	 - �:D Q U � V ��W+X�	 6 � � �� i

With a linear time-
variant (LTV) channel, i.e., non-zero Doppler spread, the nulls
of

. ��0�	 Y21 �/0�	
no longer fall on the grid, implying ICI.

In the case of Rayleigh fading [9], �
t
� (b	GQ\[ h ��]'^%_

d
(b	

and. �/0I	 Qa` ms ! ��Acb
d
& { k 5 { - 0 - �d]e^%_

d� - 0 -gf ]e^%_
d

where
[ h �)( 	

denotes the zeroth-order Bessel function of the
first kind and

_
d denotes the maximum Doppler frequency

normalized to the signaling rate (rather than the OFDM
symbol rate). Figure 2 plots ARBg- � df

� � J?( 	 - �bD
as a function of

�
assuming

� Q r ]'h
, Rayleigh fading, and various

_
d. Here we

see that even a Doppler frequency equal to approximately one
DFT bin width (i.e.,

_
d

Qi�7i � r�j rek �
) induces widespread

ICI. We will see that ignoring this residual ICI can have
serious consequences. Thus the finite-duration nature of the
observation plays a critical role; the time-frequency uncertainty
principle strikes again.

IV. SYMBOL ESTIMATION

From the observation � a�c�d in (5), the receiver attempts to
detect the true symbol f a�c�d . We assume a detection procedure
which consists of an estimation (i.e., equalization) stage fol-
lowing by a decoding stage. Decoding is outside the scope of
this paper and so we focus on symbol estimation. Since the
decoding performance is expected to be proportional to the
subcarrier-averaged SINR [11], we employ this criterion in
the design of our estimators.

A. Classical Methods

The linear MMSE estimate [4] is given in (9) assumingACBbf D�Qml�Q ACB �^D
, ACBbf a c�d f a c�d .�D�Q < , ARB�f a c!d � a c�d .�D�Qnl

,ACB � a c!d � a�c�d . DlQ � � < , and knowledge of the channel.of4a�c�dmmse
Q � ��a c!d .df ��a c!ddf

� � � < � knm ��a c�d .df � a�c�d (9)

With an LTI channel, � df is diagonal and MMSE estimation
can be implemented in

������	
operations; this is the principle

motivation for OFDM. With an LTV channel, (9) requires
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non-trivial matrix inversion, making linear MMSE estimation
impractical for large

�
.

B. Linear Pre-processing

In place of
�����
��	

matrix multiplication, we propose low-
complexity

�����
	
linear pre-processing that renders the ICI

response sparse, thereby simplifying subsequent symbol esti-
mation. The ICI-generating mechanism described in Sec. III
suggests pre-processing that “squeezes” the significant co-
efficients of � df into the shaded regions in Fig. 3. This
might be interpreted as the frequency-domain dual of inter-
symbol interference (ISI)-response shortening [12]. The pa-
rameter � ] B �7Jji?iji J X

� S r D
controls the target ICI-response

length: larger � corresponds to a longer ICI span and thus
increased estimation complexity. In Sec. V we confirm that� Q�� _

d
��� � r is appropriate for Rayleigh fading.

1) Time-Domain Windowing: While single-carrier systems
typically achieve ISI-shortening via convolutive linear filter-
ing, we leverage the receiver’s FFT operation to achieve ICI-
shortening via fast convolution. Using � as the shortening
filter’s impulse response, the shortened observation becomes�� a c�d Q / � � 	 � a c!d Q / � � 	 � a c!ddf f a�c�d � / � � 	 � a�c�d J (10)

where we desire that / � � 	 �^a c�ddf has the structure illustrated
in Fig. 3. Defining

0 O�Q s � � . � , the property / ��� 	�Q��3 � s � � . � � � .
implies / � � 	 Q ��3 ��04	 � .

and so�� a c�d Q � 3 � 0 � � a�c�d i
(11)

Thus ICI-shortening can be accomplished through application
of the

�
-point window

0
to the time-domain observation � a c�d .

2) Max-SINR Window Design: The coefficients
0

are de-
signed to maximize the subcarrier-averaged SINR. Using the
assumptions on f a c!d and

� a c!d from Sec. IV-A, signal energy� a c!d� and noise-plus-interference energy
� a�c�dq�� become� a c!d� Q����� � � / � � 	 ��a�c�ddf

�!�� �> (12)� a c!dq�� Q �� � � � / � � 	 � a�c�ddf
�!�� �> � � � = / � � 	 = �>

(13)

where �"� �+( 	
is a mask-operator that preserves the shaded

region in Fig. 3 and �#� �)( 	
is its complement. The window

coefficients
0 a�c�d$ which maximize SINR a c�d O�Q � a c�d� k � a c�dq�� are

derived in [10]. There it is found that0 a c�d$ Q�% $ �'& @ o( a c�d , J 5N6 8b9 � o( a c�d � � � < 	 S & @ o( a c!d , �
where

% $ �1;�J*)�	
denotes the principle generalized eigenvalue

of the matrix pencil
��;�J*) 	

,
g + a�c�dtl

o q�
 � O�Q ��a c�dtl
����J-��	

,
o( a c!d O Q

+ a c�dtl

+ a c�d .tl , and
g & o
, 
 q O�Q :,< = � |} ! �*- # m & ! q k , & �X :,< = � |} ! q k , & � .

As a function of the channel realization, design of
0 a�c�d$ may

be impractical. Maximization of SINR
O Q ACB � a�c�d� D k A B � a c!dq.� D

instead leads to realization-independent coefficients /0 $ given
by (14) with

o( a�c�d replaced by
( O�Q �

t
� * S�� 	;6 � � �� . Design

of /0 $ requires knowledge of only �
t
�+( 	

and � k � 6 � � �� .

C. Iterative MMSE Symbol Estimation

Here we propose two high-performance low-complexity
estimators of f a c�d from

�� a c!d that leverage the ICI-shortened
structure of / � � 	 � a c!ddf . Both schemes are iterative in that
previously-estimated interference (and/or pilots) are used as
priors for the current estimate. In the sequel, we use

�� a c�d O Q
/ � � 	 ��a�c�ddf and omit the symbol-index superscript ! � & , turning
(10) into

�� Q ���f � / � � 	 �
. All indexing is taken modulo-

�
.

1) MMSE Estimation Using Priors: The structure of
��

(recall Fig. 3) implies that ` e contributes primarily to the ob-
servation elements

�� e O�Q10 �	 e k - (j(?( �	 eR# -32 * . Then defining�� q�
 , O Q g �� o qg
 , , f e O Q 0 ` e k �*- (?(j( ` eR# �4- 2 * , and

�� e O�Q
56
7
�� e k - 
 e k �4- (?(j( �� e k - 
 e

. . .
...

. . .�� eR# - 
 e (?(?( �� e$# - 
 eR# �*-
8:9
;

) e O�Q
566
7
< e k - < e k - ktm
(j(?( < e k - kIX # m< e k - # m < e k - (j(?( < e k - kIX # �

. . .
. . .

. . .
. . .< eR# - < e$# - ktm
(j(?( < eR# - k�X # m

8:99
; J

(14) will be exact in the case of perfect-ICI shortening:�� e j �� e f e �=) e �
(14)

Note that, as a consequence of modulo-
�

indexing, the
elements of

�� from the top-right and bottom-left shaded
triangles in Fig. 3 are included in

�� e .
The MMSE linear estimate of ` e given

�� e iso` e Q ACB�` e D � EGF�H � f e J �� e 	 EGF�H � �� e J �� e 	 knm � �� e S A�B �� e DL�bi
If we assume ARB ��D�Q l

, A�B ��� . D�Q � � < , ACB�f � . D�Ql
, and independence among B�` e D

, and if we define /` e O Q
ACB�` e D

, > e O�Q EGF�H � ` e J ` e 	
, /f e O�Q g /` e k �*- J?iji?i J /` eR# �*- o * , % e O Q

g > e k �*- J?iji?ijJ > eR# �*- o * , and
�? e O Q 0 �� e k - 
 e (j(?( �� e$# - 
 e 2 * then

it is straightforward to show that the estimate can be re-written@ e Q � � � ) e ) . e � �� e 3 �A% e 	 �� .e � knm �? e > e (15)o` e Q /` e � @�.e � �� e S �� e /f e 	 i
(16)

We choose to use only extrinsic information, i.e., only the
priors from B�` 
 JB�CBQ9�ID

when estimating ` e . Henceforth, then,
we always set /` e Qd�

and > e Q r when using (15)-(16).
2) Updating the Priors: The symbol estimate

o` e can be
used to update /` e and > e . For simplicity, we consider only
i.i.d. BPSK symbols ` e ]ED O�Q B S r J � r D

; QAM extensions
are straightforward. Defining F e � ` 	�O Q ARB o` e - ` e Q ` D

and� �e � ` 	 O�Q EGF�H � o` e J o` e - ` e Q ` 	
, and assuming a conditionally

Gaussian model for the estimates:G � o` e - ` e Q ` 	 j 0 � � o` e S F e � ` 	)	 k � e � ` 	 � k � e � ` 	wJ



where
0 ���l	�O Q x k�� { k s ^

is the proper complex Gaussian
density, it can be shown that F e � ` 	TQ @�.e �? e ` and � �e � ` 	TQ@ . e �? e � r S �? . e @ e 	

. If we define the prior and posterior
log-likelihood ratios (LLR) as

� � ` e 	 O Q����
	 ! ��� v # m &
	 ! ��� v ktm & and� � ` e - o` e 	RO�Q
����	 ! ��� v # m������� &

	 ! ��� v knm�������R& , respectively, their difference can
be expressed as

� � � o` e 	yO�Q � � ` e - o` e 	 S � � ` e 	
Q���� G � o` e - ` e Q�� r 	G � o` e - ` e Q S r 	 Q ����� � o` e 	

r S �? . e @ e
i

(17)

The posterior LLR leads to an update of the priors:

/` e 
 new
Q �1� r 	 (��y� ` e Q�� r - o` e 	 � �+S r 	 (��y� ` e Q S r - o` e 	
Q x�� �

x � � � r
S rx � � � r

Q � 8 �"! � � e k ]2	
(18)

> e 
 new
Q u
�$#&% � ` S ACB
` e - o` e D � � �y� ` e Q `�- o` e 	�Q r S /` � e 
 new

(19)�
new

� ` e 	 Q � � ` e 	 � � � � o` e 	
(20)

which, in turn, can be used to estimate B
` 
('v e D
via (15)-(16).

3) Iterative Joint Estimators: To initialize the first stage of
the iteration, we set /` e Q �

and > e Q r for indices
�

that
do not correspond to pilots. For

�
corresponding to pilots, /` e

are assigned the pilot amplitudes and > e Q �
. Two methods

of iterative OFDM-symbol estimation are proposed below.
In block iterative estimation (BIE), we calculate the entire

batch of estimates B o` e J�� Q9�7Jji?iji JM��S r D
via (15)-(16) before

updating the priors via (17)-(19). Using updated priors, a new
batch of estimates can be computed via (15)-(16), and so on.
The algorithm terminates when the LLRs surpass a threshold
or a specified number of iterations elapse.

In sequential iterative estimation (SIE), we calculate
o` h via

(15)-(16) and then immediately update the priors /` h and > h via
(17)-(19). Next, we calculate

o` m
and then immediately update/` m

and > m . This continues until
o` Xlknm
J /` Xlktm 
 new, and > Xlknm 
 new

have been computed, then repeats again, starting with
o` h . The

algorithm terminates when the LLRs surpass a threshold or a
specified number of iterations elapse.

4) Computational Complexity: The implementation com-
plexity of the BIE and SIE algorithms is dominated by the��] � � r 	*)���] � � r 	

Hermitian matrix inversion in (15).
As this requires only

��� � �j	
operations, a total of

��� � �j��	
operations is needed per iteration. It should be noted that) e ) . e is fixed for all

�
and equal to a sub-block of/ � � ��0 @ 02	 k s � �

, the latter of which can be pre-computed
for realization-independent

0
.

5) Relation to Other Known Schemes: The iterative algo-
rithms proposed in Sec. IV-C are related to, yet different from,
a number of existing algorithms. SIE is perhaps closest to the
estimation stage in the “turbo equalization” scheme of Tüchler
et al. [13]. Unlike our approach, however, [13] assumes a
LTI channel in white noise and inserts a decoding iteration
after each equalization iteration. BIE bears some similarity
to the “probabilistic data association” (PDA). method for
synchronous CDMA detection proposed by Luo et al. [14].
The latter scheme, however, requires

�����,+�	
operations per

iteration and a special symbol pre-ordering since their channel

and noise are structured differently than ours.

V. NUMERICAL RESULTS AND DISCUSSION

Here we discuss the proposed algorithms and study the
results of numerical simulations. All experiments employed� Q r ]'h

i.i.d., unit-variance BPSK symbols per OFDM sym-
bol, SNR

ktm
-variance circular AWGN noise, and an energy-

preserving WSSUS Rayleigh-fading channel with � �� Q�� ktm
�

(for
� � �l� � � ) and

� � Q � k � . Channel knowledge was
assumed and so no pilots were employed.

As a benchmark, consider symbol estimation given perfect
knowledge of interfering symbols. This generates the so-
called matched filter bound (MFB). The MFB does not use
assume perfect ICI-shortening; it makes use of all coefficients
in
�� . We also consider the approximate MFB (AMFB) in

which the estimates are calculated assuming perfect knowledge
of interference and perfect-ICI-shortening (although the data
is generated as usual). The AMFB lower bounds the MSE
performance of our algorithms since they were also designed
assuming perfectly-shortened ICI [as a result of (14)].

Figures 4 and 5 investigate the subcarrier-averaged SINR
performance of various windows averaged over 1000 channel
realizations. Figure 4 supports the rule � � � _

d
����� r and

verifies that, while complexity increase discourages larger � ,
performance does not. Figure 5 shows that, with max-SINR
windowing and proper selection of � , SINR j SNR over the
expected operating region. This suggests that the interference
is dominated by channel noise and not residual ICI, i.e., that
max-SINR windowing does indeed suppress the undesired ICI.

Both Fig. 4 and Fig. 5 show that there is little difference
between the performance of the max-SINR window

0 a c�d$ and
its channel-realization-independent approximation /0 $ . In fact,
for typical SNRs and a conservative choice of � , there is little
difference between

0 a�c�d$ and the Hamming window. For high
SNR or � � � _

d
���T� r , however, the Hamming window

is suboptimal. The rectangular window is clearly suboptimal
for all but the lowest SNR; receivers designed around “basis
expansion models” that ignore small ICI-coefficients (as in [2],
[5]) can suffer serious losses for all but the lowest SNRs.

Figure 6 compares the subcarrier-averaged MSE perfor-
mance of the SIE and BIE iterative symbol estimation
algorithms—after three iterations—to the MFB, the AMFB,
and the classical linear MMSE estimation (9). For each trace,
the estimations were performed on /0 $ -windowed data and
averaged over 5000 channel/data realizations.

We see in Fig. 6 that the SIE and BIE algorithms have,
for all practical purposes, reached the AMFB. Recall that the
AMFB lower bounds the MSE of our iterative algorithms since
they were designed around a sparse approximation (14) of the
windowed subcarrier coupling matrix. The difference between
the AMFB and the true MFB can be attributed to this low-
complexity-enabling sparse approximation. It is interesting
to note that, since equalization alone reaches the AMFB,
incorporating symbol reliability information from a decoder
(i.e., turbo equalization) would not improve our estimates.

Linear MMSE equalization using the full (i.e., non-sparse)
subcarrier coupling matrix performs equivalently to our itera-
tive estimation algorithms (and the AMFB) only in the case
of very low Doppler and SNR; at higher Dopplers and SNRs,
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iterative estimation significantly outperforms linear MMSE
equalization. This is especially meaningful given the fact that
the complexity of our iterative estimators is far less than that
of the linear MMSE estimator (9).

VI. CONCLUSIONS

Equalization of OFDM in doubly-selective channels is
complicated by the existence of ICI: the classical frequency-
domain equalizer—a simple scaling of each sub-carrier—is no
longer sufficient. Previously proposed doubly-selective OFDM
equalizers either approximate the linear MMSE estimator with
an

�����
	
scheme [2], resulting in relatively poor performance,

or require at least
�����
��	

operations per OFDM symbol [3]–
[6], making them infeasible for large symbol length

�
. In

response, we proposed a low-complexity two-stage equalizer
whose performance far surpasses the linear MMSE estimator.
The first stage, requiring

�����
	
operations, applies SINR-
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Fig. 6. MSE versus SNR after 3 iterations for S�T VNXRY , WSSUS Rayleigh
fading, and approximately-max-SINR windowing.

optimal windowing to squeeze ICI into a range of
] � � r

subcarrier intervals. The second stage, requiring
��� � � �
	

operations, uses iterative soft ICI-cancellation to estimate
the frequency-domain symbols. Simulations indicate that our
equalizer performs close to the MFB after only two iterations.
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