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Summary. In phase retrieval, the goal is to recover a signal x ∈ C
N from the

magnitudes of linear measurements Ax ∈ C
M . While recent theory has established

that M ≈ 4N intensity measurements are necessary and sufficient to recover generic
x, there is great interest in reducing the number of measurements through the ex-
ploitation of sparse x, which is known as compressive phase retrieval. In this work,
we detail a novel, probabilistic approach to compressive phase retrieval based on
the generalized approximate message passing (GAMP) algorithm. We then present
a numerical study of the proposed PR-GAMP algorithm, demonstrating its ex-
cellent phase-transition behavior, robustness to noise, and runtime. For example,
to successfully recover K-sparse signals, approximately M ≥ 2K log2(N/K) inten-
sity measurements suffice when K ≪ N and A has i.i.d Gaussian entries. When
recovering a 6k-sparse 65k-pixel grayscale image from 32k randomly masked and
blurred Fourier intensity measurements, PR-GAMP achieved 99% success rate with
a median runtime of only 12.6 seconds. Compared to the recently proposed CPRL,
sparse-Fienup, and GESPAR algorithms, experiments show that PR-GAMP has a
superior phase transition and orders-of-magnitude faster runtimes as the problem
dimensions increase.

Key words: phase retrieval, compressed sensing, sparsity, belief propagation, mes-
sage passing

1 Introduction

1.1 Phase retrieval

In phase retrieval, the goal is to recover a signal x ∈ C
N from the magni-

tudes ym = |um| of possibly noisy linear measurements u = [u1, . . . , uM ]T =
Ax +w ∈ C

M . This problem is motivated by the fact that it is often easier
to build detectors (e.g., photographic plates or CCDs) that measure intensity
rather than phase [1, 2]. Imaging applications of phase retrieval include X-ray
diffraction imaging [3], X-ray crystallography [4, 5], array imaging [6], optics
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[7], speckle imaging in astronomy [8], and microscopy [9]. Non-imaging ap-
plications include acoustics [10], interferometry [11], and quantum mechanics
[12].

To reconstruct x ∈ C
N (up to a global phase uncertainty), it has been

recently established that M ≥ 4N − o(N) intensity measurements are neces-
sary [13] and M ≥ 4N − 4 are sufficient [14] through appropriate design of
the linear transform A. Meanwhile, to reconstruct x ∈ R

N (up to a global
sign uncertainty), it has been shown thatM ≥ 2N−1 measurements are both
necessary and sufficient [10]. However, there exist applications where far fewer
measurements are available, such as sub-wavelength imaging [15, 16], Bragg
sampling from periodic crystalline structures [17], and waveguide-based pho-
tonic devices [18]. To facilitate these compressive phase retrieval tasks, it has
been proposed to exploit sparsity3 in x. In fact, very recent theory confirms
the potential of this approach: to reconstruct K-sparse N -length x using a
generic (e.g., i.i.d Gaussian) A, onlyM ≥ 4K−2 intensity measurements suf-
fice in the complex case and M ≥ 2K suffice in the real case (where M ≥ 2K
is also necessary) when K < N [19]. While these bounds are extremely en-
couraging, achieving them with a practical algorithm remains elusive.

To our knowledge, the first algorithm for compressive phase retrieval was
proposed by Moravec, Romberg, and Baraniuk in [20] and worked by incor-
porating an ℓ1-norm constraint into a traditional Fienup-style [1] iterative
algorithm. However, this approach requires that the ℓ1 norm of the true sig-
nal is known, which is rarely the case in practice. Recently, a more practical
sparse-Fienup algorithm was proposed by Mukherjee and Seelamantula [21],
which requires knowledge of only the signal sparsity K but is applicable only
to measurement matrices A for which AHA = I. Although this algorithm
guarantees that the residual error ‖y − |Ax̂(t)|‖22 is non-increasing over the
iterations t, it succumbs to local minima and, as we show in Section 4.4, is
competitive only in the highly sparse regime.

To circumvent the local minima problem, Ohlsson, Yang, Dong, and Sastry
proposed the convex relaxation known as Compressive Phase Retrieval via
Lifting (CPRL) [22], which adds ℓ1 regularization to the well-known PhaseLift
algorithm [6, 23]. Both CPRL and PhaseLift “lift” the unknown vector x ∈ C

N

into the space of N×N rank-one matrices and solve a semidefinite program in
the lifted space, requiring O(N3) complexity, which is impractical for practical
image sizes N . Subsequent theoretical analysis [19] revealed that, while M &
O(K2 logN) intensity measurements suffice for CPRL when x ∈ R

N , M &
O(K2/ log2N) measurements are necessary, which is disappointing because
this greatly exceeds the 2K measurements that suffice for the optimal solver
[19]. More recently, a cleverly initialized alternating minimization (AltMin)
approach was proposed by Natrapalli, Jain, and Sanghavi in [24] that gives

3x may represent the sparse transform coefficients of a non-sparse signal-of-
interest s = Ψx in a sparsifying basis (or frame) Ψ , in which case the intensity
measurements would be y = |Φs+w| and A , ΦΨ .
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CPRL-like guarantees/performance with only O(NK3) complexity, but this
is still too complex for practical sparsities K (which tend to grow linearly
with image size N).

Recently, Shechtman, Beck, and Eldar proposed the GrEedy Sparse PhAse
Retrieval (GESPAR) algorithm [25], which applies fast 2-opt local search [26]
to a sparsity constrained non-linear optimization formulation of the phase-
retrieval problem. Numerical experiments (see Section 4.4) show that GES-
PAR handles higher sparsities K than the sparse-Fienup technique from [21],
but at the cost of significantly increased runtime. In fact, due to the combina-
torial nature of GESPAR’s support optimization, its complexity scales rapidly
in K, making it impractical for many problems of interest.

In this work, we describe a novel4 approach to compressive retrieval that is
based on loopy belief propagation and, in particular, the generalized approxi-

mate message passing (GAMP) algorithm from [29]. In addition to describing
and deriving our phase-retrieval GAMP (PR-GAMP) algorithm, we present
a detailed numerical study of its performance. For i.i.d Gaussian, Fourier,
and masked-Fourier matrices A, we demonstrate that PR-GAMP performs
far better than existing compressive phase-retrieval algorithms in terms of
both success rate and runtime for large values K and N . Interestingly, we
find that PR-GAMP requires approximately 4× the number of measurements
as phase-oracle GAMP (i.e., GAMP given the magnitude-and-phase measure-
ments u = Ax +w), which generalizes what is known about phase retrieval
of non-sparse signals in C

N , where the ratio of magnitude-only to magnitude-
and-phase measurements necessary and sufficient for perfect recovery is also 4
for large N [13, 14]. We also find that PR-GAMP is robust to additive noise,
giving mean-squared error that is only 3 dB worse than phase-oracle GAMP
over a wide SNR range.

Notation: For matrices, we use boldface capital letters like A, and we
use AT, AH, and ‖A‖F to denote the transpose, Hermitian transpose, and
Frobenius norm, respectively. For vectors, we use boldface small letters like
x, and we use ‖x‖p = (

∑
n |xn|p)1/p to denote the ℓp norm, with xn = [x]n

representing the nth element of x. For random variable X, we write the pdf
as pX(x), the expectation as E{X}, and the variance as var{X}. In some
cases where it does not cause confusion, we drop the subscript on pX(x)
and write the pdf simply as p(x). For a circular-Gaussian random variable
X with mean m and variance v, we write the pdf as pX(x) = N (x;m, v) ,
1
πv exp(−|x − m|2/v). For the point mass at x = 0, we use the Dirac delta
distribution δ(x). Finally, we use R for the real field, C for the complex field,
Re{x} and Im{x} for the real and imaginary parts of x, and x∗ for the complex
conjugate of x.

4We previously described PR-GAMP in the conference paper [27] and the work-
shop presentation [28].
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2 Background on GAMP

The approximate message passing (AMP) algorithm was recently proposed by
Donoho, Maleki, and Montanari [30, 31] for the task estimating a signal vector
x ∈ R

N from linearly transformed and additive-Gaussian-noise corrupted
measurements5

y = Ax+w ∈ C
M . (1)

The Generalized-AMP (GAMP) algorithm proposed by Rangan [29] then ex-
tends the methodology of AMP to the generalized linear measurement model

y = q(Ax+w) ∈ C
M , (2)

where q(·) is a component-wise nonlinearity. This nonlinearity affords the
application of AMP to phase retrieval.

Both AMP and GAMP can be derived from the perspective of belief prop-
agation [32], a Bayesian inference strategy that is based on a factorization of
the signal posterior pdf p(x|y) into a product of simpler pdfs that, together,
reveal the probabilistic structure in the problem. Concretely, if we model the
signal coefficients in x and noise samples in w from (1)-(2) as statistically

independent, so that p(x) =
∏N
n=1 pXn

(xn) and p(y|z) =
∏M
m=1 pY |Z(ym|zm)

for z , Ax, then we can factor the posterior pdf as

p(x|y) ∝ p(y|x)p(x) (3)

=

M∏

m=1

pY |Z

(
ym

∣∣[Ax]m
) N∏

n=1

pXn
(xn),

(4)

yielding the factor graph in Fig. 2.
In belief propagation [32], beliefs about the unknown variables are passed

among the nodes of the factor graph until all agree on a common set of beliefs.
The set of beliefs passed into a given variable node are then used to determine
the posterior pdf of that variable, or an approximation thereof. The sum-
product algorithm [33] is perhaps the most well-known incarnation of belief
propagation, wherein the messages take the form of pdfs and exact posteriors
are guaranteed whenever the graph does not have loops. For graphs with loops,
exact inference is known to be NP hard, and so loopy belief propagation (LBP)
is not guaranteed to produce correct posteriors. Still, LBP has shown state-
of-the-art performance on many problems in, e.g., decoding, computer vision,
and compressive sensing [34].

The conventional wisdom surrounding LBP says that accurate inference is
possible only when the circumference of the loops are relatively large. With

5Here and elsewhere, we use y when referring to the M measurements that are
available for signal reconstruction. In the canonical (noisy) compressive sensing prob-
lem, the measurements take the form y = Ax+w, but in the (noisy) compressive
phase retrieval problem, the measurements instead take the form y = |Ax+w|.
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pY |Z(ym|
∑

n
amnxn) pXn(xn)xn

Fig. 1. GAMP factor graph, with white circles denoting random variables and black
squares denoting pdf factors, for the case M = 3 and N = 4.

(1)-(2), this would require that A is a sparse matrix, which precludes most in-
teresting cases of compressive inference, including compressive phase retrieval.
Hence, the recent realization by Donoho, Maleki, Montanari, and Bayati that
LBP-based compressive sensing is not only feasible [30] for dense matrices
A, but provably accurate [35, 36], was a breakthrough. In particular, they
established that, in the large-system limit (i.e., as M,N → ∞ with M/N
fixed) and under i.i.d sub-Gaussian A, the iterations of AMP are governed by
a state-evolution whose fixed points describe the algorithm’s performance. To
derive the AMP algorithm, [30] proposed an ingenious set of message-passing
approximations that become exact in the limit of large sub-Gaussian A.

Remarkably, the “approximate message passing” (AMP) principles in
[30]—including the state evolution—can be extended from the linear model
(1) to the generalized linear model in (2), as established in [29]. The GAMP
algorithm from [29] is summarized in Table 2, where N (z; ẑ, νz) is used to
denote the circular-Gaussian pdf in variable z with mean ẑ and variance νz.
In the sequel, we detail how GAMP, and some extensions of GAMP, allow us
to tackle the phase retrieval problem.

3 Phase Retrieval GAMP

To apply the GAMP algorithm outlined in Table 2 to compressive phase
retrieval, we specify a measurement likelihood function pY |Z(ym|·) that models
the lack of phase information in the observations ym and a signal prior pdf
pXn

(·) that facilitates measurement compression, e.g., a sparsity-inducing pdf.
In addition, we propose several modifications to the GAMP algorithm that
aim to improve its robustness, and we propose an expectation-maximization
method to learn the noise variance that parameterizes pY |Z(ym|·).

3.1 Likelihood function

Before deriving the likelihood function pY |Z(ym|·), we introduce some nota-
tion. First, we will denote the noiseless transform outputs by
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input A, {pXn(·), x̂n(1), ν
x
n(1)}

N
n=1, {pY |Z(ym|·), ŝm(0)}Mm=1

define

pZ|Y,P (z|y, p̂; ν
p) =

pY |Z(y|z)N (z;p̂,νp)
∫
z′ pY |Z(y|z′)N (z′;p̂,νp)

(D1)

gout,m(p̂, νp) = 1
νp

(
EZ|Y,P {Z|ym, p̂; νp} − p̂

)
(D2)

g′out,m(p̂, νp) = 1
νp

(
varZ|Y,P {Z|ym,p̂;νp}

νp − 1
)

(D3)

pXn|Rn
(x|r̂; νr) =

pXn
(x)N (x;r̂,νr)∫

x′ pXn
(x′)N (x′;r̂,νr)

(D4)

gin,n(r̂, ν
r) = EXn|Rn

{Xn|r̂; ν
r} (D5)

g′in,n(r̂, ν
r) = varXn|Rn

{Xn|r̂; ν
r} (D6)

for t = 1, 2, 3, . . . , Tmax

∀m : νp
m(t) =

∑N

n=1 |amn|
2νx

n(t) (R1)

∀m : p̂m(t) =
∑N

n=1amnx̂n(t)− νp
m(t) ŝm(t−1) (R2)

∀m : ŝm(t) = gout,m(p̂m(t), νp
m(t)) (R3)

∀m : νs
m(t) = −g′out,m(p̂m(t), νp

m(t)) (R4)

∀n : νr
n(t) =

(∑M

m=1 |amn|
2νs

m(t)
)−1

(R5)

∀n : r̂n(t) = x̂n(t) + νr
n(t)

∑M

m=1a
∗
mnŝm(t) (R6)

∀n : νx
n(t+1) = νr

n(t)g
′
in,n(r̂n(t), ν

r
n(t)) (R7)

∀n : x̂n(t+1) = gin,n(r̂n(t), ν
r
n(t)) (R8)

end

output {x̂n(Tmax+1), νx
n(Tmax+1)}Nn=1, {ŝm(Tmax)}

M
m=1

Table 1. The GAMP Algorithm from [29] with Tmax iterations.

zm , aH
mx = |zm|ejφm with φm ∈ [0, 2π), (5)

where aH
m is the mth row of A and j ,

√
−1. Next, we will assume the

presence of additive noise wm and denote the noisy transform outputs by

um , zm + wm = |um|ejθm with θm ∈ [0, 2π). (6)

Our (noisy) intensity measurements are then

ym = |um| for m = 1, . . . ,M, (7)

Henceforth, we assume additive white circular-Gaussian noise (AWGN)
wm ∼ N (0, νw). Thus, if we condition on zm, then um is circular Gaussian
with mean zm and variance νw, and ym is Rician with pdf [37]

pY |Z(ym|zm; νw) =
2ym
νw

exp

(
− y2m + |zm|2

νw

)
I0

(
2ym|zm|
νw

)
1ym≥0, (8)

where I0(·) is the 0th-order modified Bessel function of the first kind.
The functions gout,m(·, ·) and g′out,m(·, ·) defined in steps (D1)-(D3) of Ta-

ble 2 can be computed using the expressions
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EZ|Y,P {Z|ym, p̂m; νpm} =

∫
C
z pY |Z(ym|z; νw)N (z; p̂m, ν

p
m)dz∫

C
pY |Z(ym|z′; νw)N (z′; p̂m, ν

p
m)dz′

(9)

=

(
ym

1 + νw/νpm
R0(̺m) +

|p̂m|
νpm/νw + 1

)
p̂m
|p̂m| (10)

and

varZ|Y,P {Z|ym, p̂m; νpm}

=

∫
C
|z|2 pY |Z(ym|z; νw)N (z; p̂m, ν

p
m)dz∫

C
pY |Z(ym|z′; νw)N (z′; p̂m, ν

p
m)dz′

− |EZ|Y,P {Z|ym, p̂m; νpm}|2 (11)

=
y2m

(1 + νw/νpm)2
+

|p̂m|2
(νpm/νw + 1)2

+
1 + ̺mR0(̺m)

1/νw + 1/νpm

− |EZ|Y,P {Z|ym, p̂m; νpm}|2, (12)

where

R0(̺m) ,
I1(̺m)

I0(̺m)
and ̺m ,

2ym |p̂m|
νw + νpm

, (13)

as shown in Appendix A.

3.2 EM update of the noise variance

Above, the noise variance νw was treated as a known parameter. In practice,
however, νw may be unknown, in which case it is not clear what value to use in
(10) and (12). To address this problem, we now describe how νw can be learned
using an expectation-maximization (EM) [38] procedure. The methodology is
similar to that proposed in [39] for the case of a Gaussian pY |Z(ym|·), but the
details differ due to the form of pY |Z(ym|·) in (8).

Choosing x as the hidden data, the ith iteration EM update of the νw

estimate is [38]

ν̂w[i+1] = arg max
νw≥0

E
{
ln p(y,x; νw)

∣∣y; ν̂w[i]
}
, (14)

where square brackets are used to distinguish EM iterations from GAMP
iterations (recall Table 2). After a somewhat lengthy derivation, Appendix B
shows that the EM update can be approximated as

ν̂w[i+1] ≈ 2

M

M∑

m=1

(
ym − |aH

mx̂[i]|
)2
, (15)

where x̂[i] denotes the posterior mean of x under the hypothesis νw = ν̂w[i].
In practice, we use GAMP’s estimate of the posterior mean (i.e., the GAMP
output x̂(t) from Table 2 after the final GAMP iteration t = Tmax) in place
of the true one, because computation of the latter is NP-hard in general [40].
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3.3 Signal prior distributino

GAMP offers great flexibility with respect to the choice of prior distribution on
the signal vector x. In this work, we focus on separable priors, which have the
form p(x) =

∏N
n=1 pXn

(xn) with arbitrary pXn
(·) (recalling (4)), but we note

that various forms of non-separable priors can be supported using the “turbo
GAMP” formulation proposed in [41] or the “analysis GAMP” formulation
proposed in [42].

For separable priors, pXn
(·) should be chosen to reflect whatever form of

probabilistic structure is known about coefficient xn. For example, if x ∈ C
N

is known to be K-sparse, but nothing is know about the support, then it is
typical to choose the Bernoulli-Gaussian (BG) model

pXn
(xn) = (1− λ)δ(xn) + λN (xn; 0, ϕ), (16)

with sparsity rate λ = K
N and non-zero-coefficient variance ϕ that, if unknown,

can be estimated from the observations via [39, eqn. (71)]

ϕ =
‖y‖22 −Mνw

λ‖A‖2F
, (17)

where ‖ · ‖F denotes the Frobenius norm. For this BG prior, expressions for
the thresholding functions gin,n(·, ·) and g′in,n(·, ·) defined in steps (D5)-(D6)
of Table 2 were given in [41]. When the sparsity rate λ in (16) is unknown, it
can be learned using the EM-BG procedure described in [39]. In most cases,
improved performance is obtained when a Gaussian mixture (GM) pdf is used
in place of the Gaussian pdf in (16) [39].

Various extensions of the above are possible. For example, when all co-
efficients xn are known to be real-valued or positive, the circular-Gaussian
pdf in (16) should be replaced by a real-Gaussian or truncated-Gaussian pdf,
respectively, or even a truncated-GM [43]. Furthermore, when certain coeffi-
cient subsets are known to be more or less sparse than others, a non-uniform
sparsity [44] rate λn should be used in (16).

3.4 GAMP normalization and damping

To increase the numerical robustness of GAMP, it helps to normalize certain
internal GAMP variables. To do this, we define α(t) , 1

M

∑M
m=1 ν

p
m(t) (which

tends to grow very small with t at high SNR), normalize both ŝm(t) and νsm(t)
(which tend to grow very large) by 1/α(t), and normalize νrn(t) (which tends
to grow very small) by α(t). The resulting GAMP iterations are shown in
Table 3.4, with normalized quantities denoted by underbars. We note that,
under infinite precision, these normalizations would cancel each other out and
have no effect.

To reduce the chance of GAMP misconvergence, we find that it helps to
“damp” the iterations. Damping helps to slow the algorithm using a stepsize
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for t=1, 2, 3, . . . , Tmax

∀m : νp
m(t)=β

∑N

n=1 |amn|
2νx

n(t) + (1− β)νp
m(t−1) (S1)

α(t)= 1
M

∑M

m=1 ν
p
m(t) (S2)

∀m : p̂m(t)=
∑N

n=1amnx̂n(t)−
νp
m(t)

α(t)
ŝm(t−1) (S3)

∀m : ŝm(t)=βα(t)gout,m(p̂m(t), νp
m(t)) + (1−β)ŝm(t−1) (S4)

∀m : νs
m(t)=−βα(t)g′out,m(p̂m(t), νp

m(t))+(1−β)νs
m(t−1) (S5)

∀n : νr
n(t)=

(∑M

m=1 |amn|
2νs

m(t)
)−1

(S6)
∀n : x̄n(t)=βx̂n(t) + (1−β)x̄n(t−1) (S7)

∀n : r̂n(t)=x̄n(t) + νr
n(t)

∑M

m=1a
∗
mnŝm(t) (S8)

∀n : νx
n(t+1)=α(t)νr

n(t)g
′
in,n

(
r̂n(t), α(t)ν

r
n(t)

)
(S9)

∀n : x̂n(t+1)=gin,n
(
r̂n(t), α(t)ν

r
n(t)

)
(S10)

end

Table 2. GAMP steps with variance normalization α(t) and damping parameter
β ∈ (0, 1].

β ∈ (0, 1] that is incorporated into GAMP as shown in Table 3.4. Based on
our experiments, the value β = 0.25 seems to work well for phase retrieval.
One consequence of the damping modification is the existence of additional
state variables like x̄n(t). To avoid the need to initialize these variables, we
use β = 1 during the first iteration. We note that the damping modifications
described here are the ones included in the public domain GAMPmatlab im-
plementation,6 which differ slightly from the ones described in [45].

3.5 Avoiding bad local minima

As is well known, the compressive phase retrieval problem is plagued by bad
local minima. We now propose methods to initialize and restart PR-GAMP
that aims to avoid these local minima. Based on our experience (see Section 4),
these methods are much more important for Fourier A than randomized (e.g.,
i.i.d Gaussian or masked-Fourier) A.

GAMP initialization

The GAMP algorithm in Table 2 requires an initialization of the signal coef-
ficient estimates {x̂n(1)}Nn=1, their variances {νxn(1)}Nn=1, and the state vari-
ables {ŝm(0)}Mm=1 (which can be interpreted as Lagrange multipliers [45]).
As recommended in [29], the standard procedure uses the fixed choices
x̂n(1) = E{Xn}, νxn(1) = var{Xn}, ŝm(0) = 0. For phase retrieval, we in-
stead suggest to set each x̂n(1) using an independent draw of the random

variable Xn and to set νxn(1) = 1
N

∑N
k=1 |x̂k(1) − E{Xk}|2 ∀n. This initial-

ization, however, only applies to the first EM iteration; for subsequent EM

6http://sourceforge.net/projects/gampmatlab/
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iterations, GAMP should be warm-started using the outputs of the previous
EM iteration.

EM initialization

For the EM algorithm described in Section 3.2, we must choose the initial
noise-variance estimate ν̂w[0]. Even when accurate knowledge of νw is avail-
able, we find that setting ν̂w[0] at a large value helps to avoid bad local min-
ima. In particular, our empirical experience leads us to suggest setting ν̂w[0]

in correspondence with an initial SNR estimate of 10, i.e., ν̂w[0] =
‖y‖2

2

M(SNRinit+1)

with SNRinit = 10.

Multiple restarts

To further facilitate the avoidance of bad local minima, we propose to run
multiple attempts of EM-GAMP, each using a different random GAMP initial-
ization (constructed as above). The attempt leading to the lowest normalized
residual (NR , ‖y − |Ax̂|‖22/‖y‖22) is then selected as the algorithm output.
The efficacy of multiple attempts is numerically investigated in Section 4.

Furthermore, to avoid unnecessary restarts, we allow the algorithm to
be stopped as soon as the NR drops below a user-defined stopping toler-
ance of NRstop. When the true SNR is known, we suggest setting NRstopdB =
−(SNRtruedB+ 2).

Algorithm summary

The PR-GAMP algorithm is summarized in Table 3.5, where Amax controls
the number of attempts, SNRinit controls the initial SNR, and NRstop controls
the stopping tolerance.

4 Numerical Results

In this section we numerically investigate the performance of PR-GAMP7 un-
der various scenarios and in comparison to several existing algorithms: Com-
pressive Phase Retrieval via Lifting (CPRL) [22], GrEedy Sparse PhAse Re-
trieval (GESPAR) from [25], and the sparse Fienup technique from [21], As
a benchmark, we also compare to “phase oracle” (PO) GAMP, i.e., GAMP
operating on the magnitude-and-phase measurements u = Ax + w rather
than on the intensity measurements y = |u|.

Unless otherwise noted, we generated random realizations the true signal
vector x as K-sparse length-N with support chosen uniformly at random and

7PR-GAMP is part of the GAMPmatlab package at http://sourceforge.net/
projects/gampmatlab/.
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input y,A, {pXn(·)}
N
n=1, SNRinit,NRstop

ν̂w[0] =
‖y‖22

M(SNRinit + 1)
∀m : ŝm[0] = 0
NRbest = ∞

for a = 1, 2, 3, . . . , Amax,

draw random x̂[0]
∀n : νx

n[0] = ‖x̂[0]‖22/N
for i = 1, 2, 3, . . . , Imax(

x̂[i], ν̂x[i], ŝ[i]
)
= GAMP

(
A, {pXn(·)}

N
n=1,

{pY |Z(ym|·; ν̂w[i−1])}Mm=1,
x̂[i−1], ν̂x[i−1], ŝ[i−1]

)

ν̂w[i] = 2
M
‖y − |Ax̂[i]|‖22

end

NR = ‖y − |Ax̂[i]|‖22/‖y‖
2
2

if NR < NRbest

x̂best = x̂[Imax]
NRbest = NR

end

if NR < NRstop

stop

end

end

output x̂best

Table 3. The proposed PR-GAMP algorithm with Amax attempts, SNR initializa-
tion SNRinit, and stopping residual NRstop.

with nonzero coefficients drawn i.i.d zero-mean circular-Gaussian. Then, for a
given matrix A, we generatedM noisy intensity measurements y = |Ax+w|,
where w was i.i.d circular-Gaussian with variance selected to achieve a tar-
get signal-to-noise ratio of SNR , ‖Ax‖22/E{‖w‖22}. Finally, each algorithm
computed an estimate x̂ from (y,A) in an attempt to best match x up to
a tolerated ambiguity. For A with i.i.d random entries, we tolerate only a
phase rotation on x̂, while for Fourier A and real-valued x, we tolerate a flip,
circular shift, and phase rotation on x̂. Performance was then assessed using
normalized mean-squared error on the disambiguated estimate:

NMSE(x̂) , min
Θ

‖x− disambig(x̂,Θ)‖22
‖x‖22

, (18)

where Θ are the ambiguity parameters. When computing empirical phase-
transition curves, we defined a “successful” recovery as one that produced
NMSE < 10−6.
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4.1 Empirical phase transitions: i.i.d Gaussian A

First we investigated the phase-transition performance of PR-GAMP with
i.i.d circular-Gaussian sensing matrices A. Figure 4.1 plots the empirical suc-
cess rate (averaged over 100 independent problem realizations) as a function
of signal sparsity K and measurement length M for a fixed signal length of
N = 512. Here we used SNR = 100 dB, which makes the observations essen-
tially “noiseless,” and we allowed PR-GAMP up to 10 attempts from random
initializations (i.e., Amax = 10 in Table 3.5). The figure shows a “phase tran-
sition” behavior that separates the (K,M) plane into two regions: perfect
recovery in the top-left and failure in the bottom-right. Moreover, the figure
shows that, for K ≪ N , approximately M ≥ 2K log2(N/K) measurements
suffice for PR-GAMP.

To see how well (versus how often) PR-GAMP recovers the signal, we plot
the median NMSE over the same problem realizations in Fig.4.1. There we see
that the signal estimates are extremely accurate throughout the region above
the phase transition.

To investigate the effect of number-of-attempts Amax, we extracted the
50%-success contour (i.e., the phase-transition curve) from Fig. 4.1 and plotted
it in Fig. 4.1, along with the corresponding contours obtained under different
choices of Amax. Figure 4.1 shows that, in the case of i.i.d A, there is relatively
little to gain from multiple restarts from random realizations. With Fourier A,
however, we will see in the sequel that multiple restarts are indeed important.

Figure 4.1 also plots the phase-transition curve of phase-oracle (PO)-
GAMP calculated from the same problem realizations. Comparing the PO-
GAMP phase transition to that of PR-GAMP, we conclude that PR-GAMP
requires approximately 4× the number of measurements as PO-GAMP, re-
gardless of sparsity rate K. Remarkably, this “4×” rule generalizes what is
known about the recovery of non-sparse signals in C

N , where the ratio of (nec-
essary and sufficient) magnitude-only to magnitude-and-phase measurements
is also 4 (as N → ∞) [13, 14].

Overall, Figures 4.1–4.1 demonstrate that PR-GAMP is indeed capable of
compressive phase retrieval, i.e., successful CN -signal recovery from M ≪ 4N
intensity measurements, when the signal is sufficiently sparse. Moreover, to
our knowledge, these phase transitions are far better than those of any other
algorithm reported in the literature.

4.2 Robustness to noise

We now demonstrate the robustness of PR-GAMP to non-trivial levels of
additive white circular-Gaussian noise w in the M intensity measurements
y = |Ax+w|. As before, we use an N = 512-length K-sparse signal with an
i.i.d Gaussian A, but now we focus on the case (K,M) = (4, 256), which is
on the good side of the phase-transition in Fig. 4.1. Figure 4.2 shows median
NMSE performance over 200 independent problem realizations as a function of
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Fig. 2. Empirical probability of successful PR-GAMP recovery of an N = 512-
length signal, versus signal sparsity K and number of intensity measurements M ,
using i.i.d Gaussian A at SNR = 100 dB. Here, PR-GAMP was allowed up to 10
attempts from different random initializations.
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Fig. 3. Median NMSE for PR-GAMP recovery of an N =512-length signal, versus
signal sparsity K and number of intensity measurements M , using i.i.d Gaussian A

at SNR= 100 dB. Here, PR-GAMP was allowed up to 10 attempts from different
random initializations.

SNR , ‖Ax‖22/‖w‖22. At larger values of SNR (i.e., SNR ≥ 30 dB), There we
see that, throughout the tested SNR range, PR-GAMP performs only about
3 dB worse than PO-GAMP. The existence of a 3 dB gap can be explained
by the fact that PO-GAMP is able to average the noise over twice as many
real-valued measurements as PR-GAMP (i.e., {Re{um}, Im{um}}Mm=1 versus
{|um|}Mm=1).
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512-length K =4-sparse signal, versus SNR, from M =256 measurements and i.i.d
Gaussian A.

4.3 Comparison to CPRL

In this section, we present compare PR-GAMP to the state-of-the-art convex-
relaxation approach to compressive phase retrieval, CPRL [22]. To implement
CPRL, we used the authors’ CVX-based matlab code8 under default algorith-

8http://users.isy.liu.se/rt/ohlsson/code/CPRL.zip
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(M,N) = (20, 32) (M,N) = (30, 48) (M,N) = (40, 64)

CPRL 1.00 (3.4 sec) 1.00 (37 sec) 1.00 (434 sec)
PR-GAMP 1.00 (0.22 sec) 1.00 (0.20 sec) 1.00 (0.18 sec)

Table 4. Empirical success rate and median runtime over 100 problem realizations
for several combinations of signal length N , measurement length M , and signal
sparsity K = 1.

(M,N) = (20, 32) (M,N) = (30, 48) (M,N) = (40, 64)

CPRL 0.55 (4.1 sec) 0.65 (42 sec) 0.66 (496 sec)
PR-GAMP 0.99 (0.28 sec) 0.99 (0.24 sec) 1.00 (0.22 sec)

Table 5. Empirical success rate and median runtime over 100 problem realizations
for several combinations of signal length N , measurement length M , and signal
sparsity K = 2.

mic settings. We also tried the authors’ ADMM implementation, but found
that it gave significantly worse performance. As before, we examine the recov-
ery of a K-sparse signal in C

N fromM intensity measurements y = |Ax+w|,
but now we use A = ΦF with i.i.d circular-Gaussian Φ and discrete Fourier
transform (DFT) F , to be consistent with the setup assumed in [22].

Table 4.3 shows empirical success9 rate and runtime (on a standard per-
sonal computer) for a problem with sparsity K = 1, signal lengths N ∈
{32, 48, 64}, and compressive measurement lengths M ∈ {20, 30, 40}. The ta-
ble shows that, over 100 problem realizations, both algorithms were 100%
successful in recovering the signal at all tested combinations of (M,N). But
the table also shows that CPRL’s runtime increases rapidly with the signal
dimensions, whereas that of PR-GAMP remains orders-of-magnitude smaller
and independent of (M,N) over the tested range.10

Table 4.3 repeats the experiment carried out in Table 4.3, but at the spar-
sityK = 2. For this more difficult problem, the table shows that CPRL is much
less successful at recovering the signal than PR-GAMP. Meanwhile, the run-
times reported in Table 4.3 again show CPRL complexity scaling rapidly with
the problem dimension, whereas GAMP complexity stays orders-of-magnitude
smaller and constant over the tested problem dimensions. In fact, the com-
parisons conducted in this section were restricted to very small problem di-
mensions precisely due to the poor complexity scaling of CPRL.

9Since CPRL rarely gave NMSE < 10−6, we reduced the definition of “success”
to NMSE < 10−4 for this subsection only.

10Although the complexity of GAMP is known to scale as O(MN) for this type of
A, the values of M and N in Table 4.3 are too small for this scaling law to manifest.
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4.4 Comparison to sparse-Fienup and GESPAR: Fourier A

In this section, we compare PR-GAMP to the sparse-Fienup [21] and GES-
PAR11 [25] algorithms, which requires12 us to restrict our attention to Fourier-
based A and real-valued sparse vectors x. For the experiments below, we gen-
erated realizations of x the same was as above, but with the non-zero elements
drawn from a real-Gaussian distribution. Also, we used ITER = 6400 in GES-
PAR as recommended by the authors in [25], and we allowed sparse-Fienup
1000 attempts from random initializations.

We first consider 2D Fourier A, which is especially important for imaging
applications. In particular, we repeat an experiment from [25], where the
measurement and signal lengths were fixed at M = N and the signal sparsity
K was varied. For N = 1024, Fig. 4.4 shows the empirical success rate (over
200 realizations) for PR-GAMP, GESPAR, and sparse Fienup. Meanwhile,
Fig. 4.4 shows the corresponding median runtime for each algorithm, where
all algorithms leveraged fast Fourier transform (FFT) implementations of A.
From Fig. 4.4, we can see that PR-GAMP yields a significantly better phase-
transition than GESPAR and sparse Fienup. Meanwhile, from Fig. 4.4 we see
that, for the challenging case of K ≥ 40, PR-GAMP-10 has uniformly better
runtime and success rate than GESPAR and sparse Fienup.

Next we consider 1D Fourier A. Again, we repeat an experiment from [25],
where the measurement and signal lengths were fixed atM = 2N and the sig-
nal sparsity K was varied. For N = 1024, Fig. 4.4 shows the empirical success
rate (over 200 realizations) for PR-GAMP, GESPAR, and sparse Fienup, and
Fig. 4.4 shows the corresponding median runtimes. From Fig. 4.4, we can see
that PR-GAMP yields a significantly better phase-transition than GESPAR
and sparse Fienup. Meanwhile, from Fig. 4.4 we see that, for the challenging
case of K ≥ 40, PR-GAMP-20 has uniformly better runtime and success rate
than GESPAR and sparse Fienup.

Comparing the results in this section to those in Section 4.1, we conclude
that compressive phase retrieval is much more difficult with Fourier matrices
A than with i.i.d matrices A. This phenomenon has been noticed by other
authors as well, which has led to proposals for randomized Fourier-based phase
retrieval (e.g., using binary masks [46]). Also, we notice that the use of multiple
restarts in PR-GAMP is much more important with Fourier A than it is with
i.i.d A.

11For GESPAR, we used the November 2013 version of the Matlab code provided
by the authors at https://sites.google.com/site/yoavshechtman/resources/

software.
12The sparse Fienup from [21] requires AHA to be a (scaled) identity matrix.

Although GESPAR can in principle handle generic A, the implementation provided
by the authors is based on 1D and 2D Fourier A and is not easily modified.
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Fig. 6. Empirical success rate versus sparsity K in the recovery of an N = 1024-
length real-valued signal from M = 1024 2D-Fourier intensities at SNR = 100dB.
PR-GAMP-A denotes PR-GAMP under a maximum of A attempts.
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Fig. 7. Median runtime versus sparsityK in the recovery of an N=1024-length real-
valued signal from M=1024 2D-Fourier intensities at SNR = 100dB. PR-GAMP-A
denotes PR-GAMP under a maximum of A attempts.

4.5 Practical image recovery with masked Fourier A

Finally, we demonstrate practical image recovery from compressed intensity
measurements. For this experiment, the signal x was the N = 65536-pixel
grayscale image shown on the left of Fig. 10, which has a sparsity ofK = 6678.
Since this image is real and non-negative, we ran PR-GAMP with a non-
negative-real-BG prior [43], as opposed to the BG prior (16) used in previous
experiments.
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Fig. 8. Empirical success rate versus sparsity K in the recovery of an N = 512-
length real-valued signal from M = 1024 1D-Fourier intensities at SNR = 100dB.
PR-GAMP-A denotes PR-GAMP under a maximum of A attempts.
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Fig. 9. Median runtime versus sparsity K in the recovery of an N=512-length real-
valued signal from M=1024 1D-Fourier intensities at SNR = 100dB. PR-GAMP-A
denotes PR-GAMP under a maximum of A attempts.

For the first set of experiments, we used a “masked” Fourier transformation
A ∈ C

M×N of the form

A =




J1FD1

J2FD2

J3FD3

J4FD4


 , (19)
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where F was a 2D DFT matrix of size N ×N , Di were diagonal “masking”
matrices of size N×N with diagonal entries drawn uniformly at random from
{0, 1}, and J i were “selection” matrices of size M

4 ×N constructed from rows
of the identity matrix drawn uniformly at random. The matrices Di and J i
help to “randomize” the DFT, and they circumvent unicity issues such as shift
and flip ambiguities. For phase retrieval, the use of image masks was discussed
in [46]. Note that, because Di and J i are sparse and F has a fast FFT-based
implementation, the overall matrix A has a fast implementation.

To eliminate the need for the expensive matrix multiplications with the
elementwise-squared versions of A and AH, as specified in steps (S1) and
(S6) of Table 3.4, GAMP was run in “uniform variance” mode, meaning that

{νpm(t)}Mm=1 were approximated by νp(t) , 1
M

∑M
m′=1 ν

p
m′(t); similar was done

with {νsm(t)}Mm=1, {νrn(t)}Nn=1, and {νxn(t)}Nn=1. The result is that lines (S1)-
(S2) in Table 3.4 become νp(t) = β‖A‖2F νx(t)/M + (1 − β)νp(t−1) = α(t)

and line (S6) becomes νr(t) =
(
‖A‖2F νs(t)/N

)−1
.

As before, the observations took the form y = |Ax+w|, but now the noise
variance was adjusted to yield a nontrivial SNR = 30 dB. To demonstrate
compressive phase retrieval, only M = N = 65536 intensity measurements
were used. Running PR-GAMP on 100 problem realizations (each with dif-
ferent random A and w, and allowing at most 10 restarts per realization), a
99% success rate was observed, where for this noisy problem “success” was
defined as NMSE < SNR−1 = −30 dB. Furthermore, PR-GAMP’s median
runtime over these realizations was only 8.4 seconds. The right subplot in
Fig. 10 shows a typical PR-GAMP recovery.
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Fig. 10. Original image (left) and a typical PR-GAMP-recovery (right) from M=N
masked-Fourier intensity measurements at SNR=30 dB, which took 2.2 seconds.
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For the second set of experiments, we “blurred” the masked-Fourier out-
puts to further randomize A, which allowed us to achieve similar recovery
performance using half the intensity measurements, i.e., M = N/2 = 32768.
In particular, we used a linear transformation A ∈ C

M×N of the form

A =

[
B1FD1

B2FD2

]
, (20)

where F and Di were as before13 and Bi were banded14 matrices of size
M
2 × N with 10 nonzero i.i.d circular-Gaussian entries per column. The use
of blurring to enhance phase retrieval was discussed in [47]. As with (19), the
A in (20) has a fast implementation. Running PR-GAMP as before on 100
problem realizations at SNR = 30 dB, a 99% success rate was observed
with a median runtime of only 12.6 seconds.

To our knowledge, no existing algorithms are able to perform compres-
sive phase retrieval on images of this size and sparsity with such high speed
and accuracy. To put our results in perspective, we recall the image recov-
ery experiment in [25], which shows an example of GESPAR taking 80 sec-
onds to recover a K = 15-sparse image whose support was effectively con-
strained to N = 225 pixels from M = 38025 2D Fourier intensity measure-
ments. In contrast, Fig. 10 shows PR-GAMP taking 2.2 seconds to recover a
K = 6678-sparse image whose support was constrained to N = 65536 pixels
from M = 65536 masked 2D Fourier intensity measurements.

5 Conclusions

In this paper, we proposed a novel approach to compressive phase retrieval
based on the generalized approximate message passing (GAMP) algorithm.
Numerical results showed that the proposed PR-GAMP algorithm has excel-
lent phase transition behavior, noise robustness, and runtime. In particular,
for successful recovery of synthetic K-sparse signals PR-GAMP requires ap-
proximately 4 times the number of measurements as phase-oracle GAMP and
achieves NMSE that is only 3 dB worse than phase-oracle GAMP. For recovery
of a real-valued 65532-pixel image from 32768 pre-masked and post-blurred
Fourier intensities, PR-GAMP was successful 99% of the time with a median
runtime of only 12.6 seconds. Comparison to the recently proposed CPRL,
sparse-Fienup, and GESPAR algorithms revealed PR-GAMP’s superior phase
transitions and orders-of-magnitude faster runtimes at large K.

13Here, since we used only two masks, we ensured invertibility by constructing the
diagonal ofD1 using exactlyN/2 unit-valued entries positioned uniformly at random
and constructing the diagonal of D2 as its complement, so that D1 +D2 = I.

14Since each Bi was a wide matrix, its nonzero band was wrapped from bottom
to top when necessary.
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A Output Thresholding Rules

In this appendix, we derive the expressions (10) and (12) that are used to
compute the functions gout,m and g′out,m defined in lines (D2) and (D3) of
Table 2.

To facilitate the derivations in this appendix,15 we first rewrite pY |Z(y|z)
in a form different from (8). In particular, recalling that—under our AWGN
assumption—the noisy transform outputs u = z + w are conditionally dis-
tributed as p(u|z) = N (u; z, νw), we first transform u = yejθ from rectangular
to polar coordinates to obtain

p(y, θ|z) = 1y≥01θ∈[0,2π) N (yejθ; z, νw) y (21)

where y is the Jacobian of the transformation, and then integrate out the
unobserved phase θ to obtain

pY |Z(y|z) = 1y≥0 y

∫ 2π

0

N (yejθ; z, νw) dθ, (22)

We begin by deriving the integration constant

C(y, νw, p̂, νp) ,

∫

C

pY |Z(y|z)N (z; p̂, νp)dz

= y 1y≥0

∫ 2π

0

∫

C

N (yejθ; z, νw)N (z; p̂, νp)dzdθ (23)

= y 1y≥0

∫ 2π

0

N (yejθ; p̂, νw + νp)dθ, (24)

where we used the Gaussian-pdf multiplication rule16 in (24). Noting the
similarity between (24) and (22), the equivalence between (22) and (8) implies
that

C(y, νw, p̂, νp) =
2y

νw + νp
exp

(
− y2 + |p̂|2
νw + νp

)
I0

(
2y|p̂|

νw + νp

)
1y≥0. (25)

In the sequel, we make the practical assumption that y > 0, allowing us to
drop the indicator “1y≥0” and invert C.

Next, we derive the conditional mean

EZ|Y,P {Z|y, p̂; νp} = C(y, νw, p̂, νp)−1

∫

C

z pY |Z(y|z; νw)N (z; p̂, νp)dz. (26)

Plugging (22) into (26) and applying the Gaussian-pdf multiplication rule,

15For notational brevity, the subscript “m” is omitted throughout this appendix
for brevity.

16N (z; a,A)N (z; b, B)=N
(
z;

a
A

+ b
B

1

A
+ 1

B

, 1
1

A
+ 1

B

)
N (a; b, A+B).
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EZ|Y,P {Z|y, p̂; νp}

= C−1y

∫ 2π

0

∫

C

zN (z; yejθ, νw)N (z; p̂, νp)dzdθ (27)

= C−1y

∫ 2π

0

∫

C

zN
(
z;
yejθ/νw + p̂/νp

1/νw + 1/νp
,

1

1/νw + 1/νp

)

×N (yejθ; p̂, νw+νp)dzdθ (28)

= C−1y

∫ 2π

0

yejθ/νw + p̂/νp

1/νw + 1/νp
N (yejθ; p̂, νw+νp)dθ (29)

=
y/νw

1/νw + 1/νp
C−1y

∫ 2π

0

ejθN (yejθ; p̂, νw+νp)dθ

+
p̂/νp

1/νw + 1/νp
C−1y

∫ 2π

0

N (yejθ; p̂, νw+νp)dθ (30)

=
y

νw/νp + 1
C−1y

∫ 2π

0

ejθN (yejθ; p̂, νw+νp)dθ +
p̂

νp/νw + 1
. (31)

Expanding the N term, the integral in (31) becomes

∫ 2π

0

ejθN (yejθ; p̂, νw+νp)dθ

=
1

π(νw + νp)
exp

(
− y2 + |p̂|2
νw + νp

)∫ 2π

0

ejθ exp

(
2y|p̂|

νw + νp
cos(θ − ψ)

)
dθ

(32)

=
1

π(νw + νp)
exp

(
− y2 + |p̂|2
νw + νp

)
ejψ

∫ 2π

0

ejθ
′

exp

(
2y|p̂|

νw + νp
cos(θ′)

)
dθ′

(33)

=
2ejψ

νw + νp
exp

(
− y2 + |p̂|2
νw + νp

)
I1

(
2y|p̂|

νw + νp

)
(34)

where ψ denotes the phase of p̂, and where the integral in (33) was resolved
using the expression in [48, 9.6.19]. Plugging (34) into (31) gives

EZ|Y,P {Z|y, p̂; νp} =
p̂

νp/νw + 1
+

yejψ

νw/νp + 1

I1
( 2y|p̂|
νw+νp

)

I0
( 2y|p̂|
νw+νp

) , (35)

which agrees with (10).
Finally, we derive the conditional covariance

varZ|Y,P {Z|y, p̂; νp} = C(y, νw, p̂, νp)−1

∫

C

|z|2 pY |Z(y|z; νw)N (z; p̂, νp)dz

− |EZ|Y,P {Z|y, p̂; νp}|2. (36)
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Focusing on the first term in (36), if we plug in (22) and apply the Gaussian-
pdf multiplication rule, we get

C(y, νw, p̂, νp)−1

∫

C

|z|2 pY |Z(y|z; νw)N (z; p̂, νp)dz

= C−1y

∫ 2π

0

∫

C

|z|2 N
(
z;
yejθ/νw + p̂/νp

1/νw + 1/νp
,

1

1/νw + 1/νp

)
dz

×N (yejθ; p̂, νw+νp)dθ (37)

= C−1y

∫ 2π

0

(∣∣ye
jθ/νw + p̂/νp

1/νw + 1/νp
∣∣2 + 1

1/νw + 1/νp

)
N (yejθ; p̂, νw+νp)dθ

(38)

= C−1y

∫ 2π

0

|y|2/(νw)2 + |p̂|2/(νp)2 + 2y|p̂|/(νwνp)Re{ej(θ−ψ)}
(1/νw + 1/νp)2

×N (yejθ; p̂, νw+νp)dθ +
1

1/νw + 1/νp
(39)

=
|y|2/(νw)2 + |p̂|2/(νp)2

(1/νw + 1/νp)2
+

1

1/νw + 1/νp

+
2y|p̂|/(νwνp)

(1/νw + 1/νp)2
C−1yRe

{
e−jψ

∫ 2π

0

ejθN (yejθ; p̂, νw+νp)dθ

}
(40)

=
|y|2/(νw)2 + |p̂|2/(νp)2

(1/νw + 1/νp)2
+

1

1/νw + 1/νp

+
2y|p̂|/(νwνp)

(1/νw + 1/νp)2
C−1y

2

νw + νp
exp

(
− y2 + |p̂|2
νw + νp

)
I1

(
2y|p̂|

νw + νp

)
(41)

=
|y|2/(νw)2 + |p̂|2/(νp)2

(1/νw + 1/νp)2
+

1

1/νw + 1/νp
+

2y|p̂|/(νwνp)
(1/νw + 1/νp)2

I1
( 2y|p̂|
νw+νp

)

I0
( 2y|p̂|
νw+νp

)

(42)

where (41) used (34) and (42) used (25). By plugging (42) back into (36), we
obtain the expression given in (12).

B EM Update for Noise Variance

Noting that

ln p(y,x; νw) = ln p(y|x; νw) + ln p(x; νw) (43)

=

M∑

m=1

ln pY |Z(ym|aH
mx; νw) + const (44)

=

M∑

m=1

ln
(
ym

∫ 2π

0

N (yme
jθm ;aH

mx, νw)dθm

)
+ const, (45)
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where (45) used the expression for pY |Z from (22), we have

E
{
ln p(y,x; νw)

∣∣y; ν̂w[i]
}

=

∫

CN

p(x|y; ν̂w[i])
M∑

m=1

ln
(∫ 2π

0

N (yme
jθm ;aH

mx, νw)dθm

)
dx. (46)

To circumvent the high-dimensional integral in (46), we use the same large-
system-limit approximation used in the derivation of GAMP [29]: for suffi-
ciently dense A, as N → ∞, the central limit theorem (CLT) suggests that
aH
mx = zm is well becomes Gaussian. In particular, when x ∼ p(x|y; ν̂w[i]),

the CLT suggests that aH
mx ∼ N (ẑm, ν

z
m), where

ẑm[i] ,
N∑

n=1

amnx̂n[i] (47)

νzm[i] ,
N∑

n=1

|amn|2νxn[i], (48)

such that x̂n[i] and ν
x
n[i] are the mean and variance of the marginal posterior

pdf p(xn|y; ν̂w[i]). In this case,

E
{
ln p(y,x; νw)

∣∣y; ν̂w[i]
}

=
M∑

m=1

∫

C

N (zm; ẑm[i], νzm[i]) ln

∫ 2π

0

N (yme
jθm ; zm, ν

w)dθmdzm. (49)

From (14), we see that any solution ν̂w[i+1] > 0 is necessarily a value of νw

that zeros the derivative of the expected log-pdf. Thus, using the expected-
log-pdf expression from (49),

0 =
M∑

m=1

∫

C

N (zm; ẑm[i], νzm[i])

∫ 2π

0
∂
∂νwN (yme

jθm ; zm, ν̂w[i+1])dθm∫ 2π

0
N (ymejθ

′
m ; zm, ν̂w[i+1])dθ′m

dzm.

(50)

Plugging the derivative expression (see [39])

∂

∂νw
N (yme

jθm ; zm, ν̂w[i+1])

=
N (yme

jθm ; zm, ν̂w[i+1])

ν̂w[i+1]2

(
|ymejθm − zm|2 − ν̂w[i+1]

)
, (51)

into (50) and multiplying both sides by ν̂w[i+1]2, we find
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ν̂w[i+1] =
1

M

M∑

m=1

∫

C

N (zm; ẑm[i], νzm[i])

×
∫ 2π

0
|ymejθm − zm|2N (yme

jθm ; zm, ν̂w[i+1])dθm∫ 2π

0
N (ymejθ

′
m ; zm, ν̂w[i+1])dθ′m

dzm (52)

=
1

M

M∑

m=1

∫

C

N (zm; ẑm[i], νzm[i])

×
∫ 2π

0

|ymejθm − zm|2p(θm; zm, ν̂w[i+1])dθmdzm (53)

with the newly defined pdf

p(θm; zm, ν̂w[i+1]) ,
N (yme

jθm ; zm, ν̂w[i+1])∫ 2π

0
N (ymejθ

′
m ; zm, ν̂w[i+1])dθ′m

(54)

∝ exp
(
− |zm − yme

jθm |2
ν̂w[i+1]

)
(55)

∝ exp
(
κm cos(θm − φm)

)
for κm ,

2|zm|ym
ν̂w[i+1]

, (56)

where φm is the phase of zm (recall (5)). The proportionality (56) identifies
this pdf as a von Mises distribution [49], which can be stated in normalized
form as

p(θm; zm, ν̂w[i+1]) =
exp(κm cos(θm − φm))

2πI0(κm)
. (57)

Expanding the quadratic in (53) and plugging in (57), we get

ν̂w[i+1] =
1

M

M∑

m=1

∫

C

N (zm; ẑm[i], νzm[i])

(
y2m + |zm|2

− 2ym|zm|
∫ 2π

0

cos(θm − φm)
exp(κm cos(θm − φm))

2πI0(κm)
dθm

)
dzm

(58)

=
1

M

M∑

m=1

∫

C

N (zm; ẑm[i], νzm[i])

×
(
y2m + |zm|2 − 2ym|zm|R0

(
2|zm|ym
ν̂w[i+1]

))
dzm (59)

where R0(·) is the modified Bessel function ratio defined in (13) and (59)
follows from [48, 9.6.19]. To proceed further, we make use of the expansion
R0(κ) = 1− 1

2κ− 1
8κ2 − 1

8κ3 +o(κ
−3) from [50, Lemma 5] to justify the high-SNR

approximation
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R0(κ) ≈ 1− 1

2κ
, (60)

which, when applied to (59), yields

ν̂w[i+1] ≈ 2

M

M∑

m=1

∫

C

(
ym − |zm|

)2N (zm; ẑm[i], νzm[i])dzm. (61)

Although (61) can be reduced to an expression that involves the mean of a
Rician distribution, our empirical experience suggests that it suffices to assume
νzm[i] ≈ 0 in (61), after which we obtain the much simpler expression given in
(15).
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