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Image Recovery

m In image recovery, we want to

m recover a image € CV
m from corrupted measurements y € CM
m of hidden linear transform outputs z = ®x € CM.

m The measurement corruption mechanism might be
m additive noise: y; = z; + w;
m phase-less: y; = |z; + w;]|
m one-bit: y; = sgn(z; + w;)
m photon-limited (Poisson), etc...

m The image is structured in that Qz € CP is . ..

m sparse (sufficiently few nonzeros)
m co-sparse (sufficiently many zeros),
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Statistical Approach to Image Recovery

In the statistical approach to image recovery. ..

m measurements modeled via likelihood p(y|x) x exp(—g(®x))

m image modeled via prior distribution p(x) o exp(—f(Qx))

m The posterior
p(xly) = p(yle)p(z)/p(y),

tells all we can learn about @ from y, but is expensive to compute.

m Instead, one usually settles for point estimates like the
m MAP estimate: &umap = arg max, p(z|y)
m MMSE estimate: Zumse = E{z|y} = [~ p(x|y)dz

and perhaps marginal uncertainty information like var{z;|y}.
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MAP Estimation

m MAP estimation can be reformulated as
Tmap = arg mgxp($|y)
— argmin{— Inp(z|y)} = arg min{— In p(y[z) — Inp(z)}
€T €T
=argmin g(®x) + [f(Qx)
T - ~——
data fidelity  regularization

and thus viewed from a “non-statistical” perspective.

m We often choose g and f that are convex and separable

9(2) =2, 9i(%)
f(u) =32, fa(ua)

to facilitate efficient algorithms (e.g., g(2)=|ly — 2|3, f(u)=|ul1).
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Prototypical Optimization Algorithms

Iterative soft thresholding (g(2) = 72> ly — 23, = I):
fort=1,2,3,...
vy=1y — Pxy residual
T41 = ProxX;y (@ + @Hvt) component-wise thresholding

Forward-backward primal-dual® (Q = I):

fort=1,2,3,...
8141 = ProX, g« (8t + oPxy,) proximal gradient ascent
S8t41 =081+ (1 —0)s; relaxation, 6 > 0
&yy1 = prox, (o, — T¢H§t+1) proximal gradient descent
Tiy1| _ g | Tt _ T :
l:st—i-l] =05 [§t+1:| + (1= 5) [St} relaxation, By > 0

m [prox, ;(r)]q £ argmin, fq(x) + 5= — rq|? often in closed-form.
m No matrix inversions. Can leverage fast ® & ®" (e.g., FFT).
1Komodakis,Pesquet—arXiv:1406.5429
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Questions

How to choose stepsizes 7,0 and relaxation parameters like 5.7
How to “tune” g and f to the data (e.g., noise variance, sparsity)?
Is there a sacrifice in restricting g and f to be convex?

Is there a sacrifice in pursuing MAP rather than MMSE?
If so, how do we efficiently solve the MMSE problem?

ﬁCMMSEZ/ x p(x|y)dx
(CN

m How do we get marginal uncertainty information like var{xz;|y}?

Next, | will describe a fast method that addresses all of these questions.
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The 21st Century Approach: Crowd-Source It!

1) Factor the posterior, exposing the statistical structure of the problem:
M D
p(zly) o H o gi(¢lx) H e~ falwiz)
i=1 d=1

H — L1 iz
Can visualize using the factor graph € (#1®) e~fiten)
(drawn here for @ = I, D=N): . o Fale2)
(White circles are random variables
and black boxes are factors.) |
e*gM((ﬁME) — e_fN(-TN)

2) Inference algorithm: Pass messages (pdfs) between nodes until they
agree. In MMSE case, gives full marginal posteriors p(z;|y).

Next, suppose €2 = I (canonical sparsity) and rename ® — A. ..
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The Blessings of Dimensionality

In general, loops in the factor graph are bad!

But in the large-system limit, if A is i.i.d. sub-Gaussian then ...

®m messages can be approximated as Gaussian due to CLT,

m differences between messages approximated via Taylor's expansion,?
— Approximate Message Passing (AMP) algorithm

m per-iteration behavior characterized by a scalar state-evolution (SE),

m if SE has unique fixed point, it is MMSE/MAP optimal.3

In fact, AMP’s SE can be used to characterize fundamental performance.

2 Donoho,Maleki,Montanari-PNAS'09
3 Bayati,Montanari—IT'11
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Example Application of AMP State-Evolution Analysis

AMP SE yields a closed-form expression* for weak £1//y equivalence:

12071+ ) @(—c) — cg(c)]
Pl = T ol + @)D (c) — cole)]

1

o8
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=
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Q 0.2 —— MMSE reconstruct ||
—— empirical AMP
—— weak /1 /£y equiv
0

02 04 0.6 08
0 = M/N (undersampling)

4Donoh0, Maleki,Montanari-PNAS'09
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AMP for Quadratic data-fidelity (i.e., AWGN)

MAP version of AMP (g(z) = 52 ||ly — 23,2 = I):

fort=1,2,3,...
v=y— Az + %%m,l Onsager-corrected residual
=02+ %Vf or 17/lvell3 error-variance of prox input
Tyl = proxﬂf(:ct + AHvt) component-wise thresholding

Vi, = avg{ Ty prox’mc (:ct + A, )} error-variance of prox output

— var{z;|y} marginal uncertainty

m Onsager correction ~» prox input an AWGN-corrupted version of true «
(with error variance 7). Thus, prox becomes the scalar MAP denoiser!

m For MMSE-AMP, simply replace prox with scalar MMSE denoiser.
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Generalized® AMP: Possibly non-quadratic data fidelity

Damped MAP GAMP (2 = I):

fort=1,2,3,...

/o= V| Al2/M stepsize adaptation
8t4+1= ProX,, « (st + o1 Axy) proximal gradient
vy = avg{oy proxﬁ,/,g* (st + 0tAx,)} sensitivity
1/ =vi || Al|%/N stepsize adaptation
Zty1 = Prox,, s (:Bt — TtAH§t+1) proximal gradient (6 = 1)
Vi = an{Tt prox’th (.’Bt — TtAH§t+1)} sensitivity

ool g [Balsa-m %] dmping e 1)

m Step-sizes oy and 7; are adapted.
m Onsager correction term now equals —st/ot.

m For MMSE, replace prox with scalar MMSE denoiser.

5 Rangan—arXiv:1010:5141
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How fast is (G)AMP?

Pretty fast, at least for i.i.d. Gaussian A:

—FISTA I
—— Chambolle-Pock
—GAMP

NMSE (dB)
&
o

-40
-50
-60
0 200 400 600 800 1000 1200
iteration

Above: LASSO recovery of a 40-sparse 1000-length Bernoulli-Gaussian
signal from 400 AWGN-corrupted measurements.
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What about generic matrices A?

Here is what we know about GAMP:
m It may diverge! But...

m MAP case: if it converges, then it converges to a local minimum of the
MAP cost function.®

m MMSE case: if it converges, then it converges to a local minimum of
the large-system-limit Bethe free energy (LSL-BFE):®

J(bz,b.) = D(bglle™) + D(b.|le™9) + h( var(z|b,), var(z|b.))
by, b, : separable posteriors pdfs s.t. E{ Ax|b,} = E{z|b.}

m Gaussian case: convergence is determined by the peak-to-average ratio
of the squared singular-values in A. For any A, possible to find fixed
damping coefficient 3; = 3 that guarantees global convergence.”

6 Rangan,Schniter,Riegler,Fletcher,Cevher—arXiv:1301.6295
7 Rangan,Schniter,Fletcher—arXiv:1402.3210
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Improving GAMP convergence under generic A

Heuristic approaches:
® mean removal®
m adaptive damping®

m serial updating®

On right:

Recovery of a
200-sparse 1000-length
BG signal from 500
AWGN-corrupted
measurements.
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8ViIa,Schniter,Rangan,Krzakala,Zdeborova—arXiv: 1412.2005
K Manoel,Krzakala, Tramel,Zdeborova—arXiv:1406.4311
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ADMM-GAMP: A Provably Convergent Alternative

Idea: direct minimization of MMSE-GAMP cost function:

argmin ~ D(bg|le™) + D(b.|le79) + h(var(x|by), var(z[b.))
separable pdfs b.,b. s.t. E{Asc|bx} — E{Z‘bz}
Challenge: h(var(b)) is neither convex nor concave in b 2 (b, b.).

m Solution: a double loop algorithm:*°
m Outer loop: linearize h about current guess — convex + concave

D(bx”e*f) + D(b.]le7?) + %T var(x|b,) + %Tvar(z|bz).
m Inner loop: Minimize linearized LSL-BFE using ADMM under constraints
E(x|b,) = v, E(z|b,) = Av using penalty vectors % and &, respectively.
m Result is basically GAMP plus one additional LS step for v.

Can prove global linear convergence under strongly convex f and g.

m MAP case obtained as "zero-temperature” limit of MMSE case.

10 Rangan,Fletcher,Schniter, Kamilov—arXiv:1501.01797
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Example of ADMM-GAMP

Recovery of 200-sparse 1000-length BG signal from m = 600

AWGN-corrupted measurements, versus squared-singular-value ratio.
0 *

NMSE (dB)

=36/ [—genie - - LASSO - % - GAWP SwAMP —S— ADMM-GAMP) |
1 5 9
Peak-to-average ratio (k)

m ADMM-GAMP does not break down like other variants of GAMP.
m ADMM-GAMP outperforms LASSO since MMSE is better than MAP.
Statistical Image Recovery
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Generalized AMP for Analysis CS (GrAMPA)

m Until now we've focused on the canonical sparsity basis 2 = I.

m What about generic analysis operators © (e.g., TV, SARA)?

m Can handle this in GAMP framework by!! ...

P
Q

m setting penalties {g;}}, to observation log-likelihoods

m stacking matrices: A =

m setting penalties {gi}f\g\“ﬁrl to co-sparsity log-priors.

m For the co-sparsity penalties . ..
m {y-like works better when € is highly overcomplete.

m we propose the “sparse non-informative parameter estimator (SNIPE)”
~» MMSE denoiser for Bernoulli-x prior in the limit of infinite-variance .

11Borgerding,Schniter,Rangan—arXiv:1312.3968
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m 2: total variation
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2Carrillo,McEwen,VanDeVille, Thiran,Wiaux—SPL'13
13Nam,Davies, Elad, Gribonval-CAMSAP'11
Statistical Image Recovery Duke — Apr'ls 18 /27



-
GrAMPA 4] meets Lena [Jgf and SARA 251

512 x 512 Lena

m : Dbl-8 ‘ :
(SARA) o |
L[| —8— L1 !
m P: spread @40
spectrum g ll
= SNR = 40dB 2%
g 34+
§ 32t
Avg Runtime: 0
220s: GrAMPA iy
225s: L1 E®[
2687s: RW-L1 26y
2%.1 012 0.‘3 0‘.4 015 0.‘6 0‘.7 018 0.9

sampling ratio M /N
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Tuning the Hyperparameters

m The log-prior f often has tunable parameters (e.g., sparsity).
How to choose them?
m The input to (G)AMP’s denoiser input is an AWGN corrupted version of the
truth with known noise variance. Thus,
learn prior via EM™ (deconvolution of blurred pdf), or
apply Stein’s Unbiased Risk Estimator.®®
m Can learn entire f by tuning a many-term Gaussian-mixture (GM).

m The log-likelihood ¢ also has tunable parameters (e.g., noise variance).
How to choose them?

m The LSL-BFE gives an approximate upper bound on the —log-likelihood.
The AWGN case results in simple closed-form tuning.’® For the non-AWGN

case, we proposed a Newton-based algorithm.'”

%Vila,Schniter—SAHD'11 & TSP'13
15Mousavi,Maleki,Baraniuk—arXiv:1311.0035 / Guo,Davies—arXiv:1409.0440
16Krzakala,Mezard,Sausset,Sun,Zdeborova—JSM'12
17Schniter,Rangan—arXiv:1405.5618
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Compressive Phase Retrieval

m Problem: Reconstruct a sparse signal from intensity-only measurements
of a complex measurement operator (e.g., Fourier transform).

m Applications: X-ray imaging, optics, microscopy, acoustics, etc.
m M = 4K measurements are necessary & sufficient.

m “Lifting” based convex algorithms work with M > O(K?%log N) and
complexity O(N?3), which is not practical.

m We proposed to use MMSE-GAMP with Rician likelihood

2y; y2 4z 2 2|2
exp (= uziv) = Sy (= ) ()1,

and Bernoulli-Gaussian signal prior.18

18Schniter,Rangan—arXiv:1405.5618
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Phase-transition curves

2048

| e

m N =512, BG =
m iid Gaussian A =

£
= SNR = 100 dB g
» NMSE < 10-¢ 2

above PTC
2 3 4 6 8 1 16 S;aarsiiiZtyAr‘:KEA 91 128 181 256 362 512

m For K < N, PTC suggests M > 2K log,(N/K) suffices.

m Phase-retrieval GAMP requires =~ 4x the number of measurements as
phase-oracle GAMP. (Very interesting!)
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Accuracy of Noise-Variance Learning

The estimated noise
variance, averaged
over 10 realizations,
at several
measurement lengths
M, for signal length
N =512 and
sparsity K = 4:

estimated SNR [dB]

5 I I I I I I

true SNR [dB]

m The LSL-BFE-based likelihood-tuning method is accurate across a wide
SNR range.
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Accuracy of Sparsity-Rate Learning

70

60

estimated sparsity K

The average
estimated sparsity for
M = 512 over 10
realizations:

10

—— PR-GAMP
— — —true
0 L L L L L

0 10 20 30 40 50 60 70
signal sparsity K

m The EM-based prior-tuning method is accurate across a wide sparsity
range.
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Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:

original image PR-GAMP

50

100

150

200

250

100 150

100 150 200 250 50

NMSE = -37.5 dB, runtime = 1.8 sec.
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Conclusions

Approximate message passing . ..

m is IST / primal-dual, but with carefully adapted stepsizes,

m provides posterior uncertainty information (not just point estimates),
m is Bayes-optimal in the large-system limit with i.i.d. sub-Gaussian A,
m can diverge with generic A, but robustified by damping / direct-min,
m can be used in synthesis-CS or analysis-CS settings,

m leads to easy tuning of hyperparameters,

m often leads to state-of-the-art accuracy and runtime.
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Thanks for listening!
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