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Abstract: The objective of this paper is to add analytical tools to an evolving theory on fractionally-spaced equalizer (FSE)

design®.

The work examines minimum mean square error design (MMSE-FSE) for channels perturbed by additive noise in

two scenarios: when the equalizer is finite, but is at least as long as the channel, and when the equalizer has an infinite
impulse response (IIR). Mean square error (MSE) expressions in terms of channel parameters, roots, and spectra are derived
as analytical tools for understanding the intricacies of fractionally-spaced equalization and for developing guidelines towards

design.

1. MOTIVATION

Recent results [10] have shown that under the zero &
length conditions (see §2.2), a finite impulse response
(FIR) FSE can be used for perfect equalization in the ab-
sence of noise. In [6], it is shown that the MMSE-FSE is
an IIR filter. The IIR solution can be viewed as the classi-
cal components of matched (numerator) and whitening (de-
nominator) filters. Practical considerations dictate that an
FIR filter be used for the equalizer, especially in an adaptive
application. The variations in the FIR solutions between
the noiseless condition and that of typical SNRs present
in digital communications (e.g., SNR > 20dB) merit the
analysis we present. Also, at high SNRs a sufficiently long
FIR MMSE-FSE can almost achieve ideal ITR FSE-MMSE
performance. Further motivation for our research lies in
the recent wealth of analysis pertaining to blind adaptive
equalizers [8] and FIR length choice [7, 11] for FSE equal-
izers. Although the most common justification for FSEs
has been the improved timing recovery property [12], these
recent results show improved performance by an FSE with
respect to a solution space and adaptive behavior. How-
ever, the performance prediction versus length, delay and
SNR remains unclear in the literature.

Our intent in this paper is to present new findings on
MMSE-FSE (T'/2-spaced)’ designs that can be used to ad-
dress this admissibility question. In particular, we (i) de-
rive an approximation to the achieved MSE of an (FIR)
equalizer matching the channel length for a particular SNR
in terms of the channel roots, (ii) find closed form expres-
sions for the perfect length FSE zero forcing solution and
for (iii) the infinite impulse response Wiener receiver (IIR
MMSE-FSE) [6] and (iv) using this expression for the solu-
tion, compute bounds on the achieved MSE of finite length
FSEs longer than the channel time span.

2. FIR MMSE-FSE DESIGN

2.1. Communication system model

We are interested in the multichannel communication sys-
tem model for fractionally-spaced equalization [9] shown
in Figure 1. A T-spaced symbol sequence {s(k)}rez,
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'We will not be considering the general T'/ L design, and hence
will be referring to the T'/2-spaced equalizers as fractionally-
spaced equalizers.
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Figure 1. FSE communications model.

s(k) € R ii.d., is transmitted over a FIR, real-valued, T-
spaced subchannels (here z~' corresponds to a T-spaced

delay)
Z W71 ep(z) = chi)z—i_
=0

The channel model includes additive white Gaussian noise
(AWGN) {na(k)}rez, {ns(k)}rez, with ne,ny € R uncor-
related with each other and uncorrelated with the symbols
s(k). Each T-spaced subchannel c,(z) and c(z) is con-
nected to T-spaced subfilters
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Let us define a symbol vector S(k) = (s(k),s(k —
1),...,8(k — p))%, with p = n 4+ m, a noise vector N(l? =
(na(k),ne(k—1),...,n0(k—m), np(k),np(k—1),...,mp(k—
m))?, and the equalizer column vector of coefficients f =

fa
Iy

We also define the fractionally-spaced convolution matrix
in Sylvester form
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The receiver output is given by
y(k) = S'(k)Cf+N'(k)f.

Our assumptions are:

A1l The channel is assumed to be (linear) FIR, time-
invariant, real, and have an even number of taps.

A2 The input is real and i.i.d.

A3 The noise is AWGN and uncorrelated with the source.
Subchannel noise sequences are uncorrelated. SNR is
always greater than unity (or 0 dB).

A4 The fractionally-spaced equalizer is FIR.

2.2. MSE expressions

Recall that our initial goal was to analyze the achieved MSE
of MMSE-FSE designs. In this section we study an ap-
proximation to the MSE for the FIR, high SNR case. The
requirements on SNR are discussed later.

Define the symbol recovery error e(k) = s(k — d) — y(k).
The MSE is then given by

ol(f,8) = Efe(k)} (1)

for some delay 0 < § < p. Assume (w.l.o.g.) that the

symbol sequence power is o2 = 1, let the noise power be
2

o2, and define the ratio v = 7% as the inverse of the SNR.

By defining ts = (0,...,0,1,0...,0)" with the 1 at position

4, 0 < 4§ < p, one can show [7] using A1-A4 that that

o2(f,6) is minimized by the Weiner, or FIR MMSE-FSE
receiver

fi = (C'c+qI)Cs (2)

for some fixed delay é. In order to minimize (1) over §, one
can substitute (2) into (1), and obtain a different expression
for the MSE

ol(f3,0) = ti(I-cc'C+~I) "C")ts.  (3)

Note that the MSE for a certain delay ¢ in (3) is given by
the diagonal entries of the matrix in large parentheses. We
will attempt to extract from this last expression an approx-
imation which provides insight to the problem.

To do this, we follow the analysis in [5], and make the
zero & length assumption:

A5 (zero & length) The subchannels have no common
roots and the equalizer is sufficiently long. More pre-
cisely, (zero or disparity) gcd(ce(2),cs(2)) = 1 and
(length) m >n —1.

Using the matrix inversion lemma® and a power series
expansion® in v as done in [5], we find

al(f5,8) = ~t5(CC") s + o(y).

which is valid when < is small, more precisely when v <
Amin(CC?).* This suggests the approximation o2 ~ 62 =
¥ [(CCt)_l] 55 which is relatively simple, but does not pro-
vide immediate intuition.

2(BCD+ A=A - A"1B(DA"'B+Cc~ 1) "1pA—?
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4Notation: Amin(A) and Amax(A) are the minimum and max-
imum eigenvalues of (square) matrix A respectively. A(A) is any
eigenvalue of matrix A.

The approximation of the MSE is related to the prod-
uct of the difference of all possible subchannel pairs. [5]
proposes as a measure of channel disparity the function

$ = 7(Hlfa(ﬂi)lﬂlfb(aj)lﬂlai—ﬂﬂ)

where {«;} are the roots of c,(z) and {3} are the roots
of ¢y(z). The measure assumes the value +oco when the
subchannels exactly share a root. Apparently, a large value
of the performance measure 1 flags a problematic channel.
For example, this measure assumes a large value for channel
A(z) in [4] which discusses robustness concerns for channel
identification using second order statistics of the received
signal.

One can also derive useful bounds on o2:

v 2 ox v
- L < < — .
Y+ Aman(CCH) = ¢ (£,9) < 5 + Amin(CC?) “)

2.3. Factoring the Sylvester matrix

In this section, we will take advantage of the approxima-
tion &2 to develop an understanding of the influence of the
subchannel roots on MSE. In T-spaced equalizer design one
expects channels with roots close to the unit circle to ren-
der high MSEs for fixed SNRs. In the fractionally-spaced
case, this translates to nearly common roots close to the
unit circle. By deriving an expression for 62 as a function
of the subchannel roots we will make this relationship more
precise.

A4’ The fractionally-spaced equalizer length perfectly
matches the length of the channel, i.e., m =n — 1.

Theorem 1 Let {a1,as,...,an} be the roots of cq(z) and
{B1,B2,-..,Bn} be the roots of cp(2). Assume there are no
common subchannel roots, i.e. o; # B;, Vi,j and no mul-
tiple subchannel roots, i.e. a; # aj, Vi # j. Furthermore,
assume that the equalizer has length m = n—1 (A4’). Then,
the (square,invertible) matriz C can be factored as

cC = uU'wy
where
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ca(B1)
ca(B2)
Ws =

ca(Bn)

(Va, Wa similarly defined), and has determinant

det(C) = Hca(ﬁi)ch(ai)H(ai_ﬂj)_l'

i i
Using the theorem above (due to length restrictions the

proof is not included®) and the fact that C is invertible we
observe that

528) =~ [ e ], = [FD)'F] =2 I

where F' is a matrix composed of column vectors fg. Each
vector f(;r is a zero-forcing FSE such that

Cfl=ts for 0<d<2n—1.

Hence, to find an approximation to the MSE achieved by
f5, we must compute the noise gain, or squared norm, of
the zero forcing solution f(;r .

Due to the invertibility of &/ and W, solving the equation
Cf =ts for f (with solution f = f(;r ) is equivalent to solv-
ing Vf = W~ Uts, which can be viewed as a polynomial
interpolation problem [3]. This problem is solved using
the Lagrange Interpolation Formula, which gives

t n ﬂ_‘s_l cp(2)
— i b
fa,(;(z) - Zi:l Ca(ﬂi)cé(ﬁi) (1-B;2—1)
—5—1
T — n o, a(2)
Fos(®) = Xt Ganeiten Goa D

where c,(8;) = £ cb(2)|.=p;, and likewise for c/, (ax).
Thus we have derived the perfect length, zero forcing FSE
solution in subfilter polynomial form. The next step is to

compute its noise gain, which can be expressed as || f(;r |2 =
||f;f,6||2 + ||f,j,5||2. This can be crudely approximated by
62 =~ 52, with

n

ﬂ»_s_l 2
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2.4. Example
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A simple example will serve to illustrate the approximations
&2 and &2. For the T /2-spaced channel in Figure 2 the true
MSE and the approximations are plotted as functions of
delay for SNRs of 30 dB and 60 dB in Figure 3. Notice
that the channel is mixed phase; 2,52 are proportional to
weighted sums of the subchannel roots raised to 4, indicat-
ing that the best MSE delay should be somewhere in the
middle of the overall channel-FSE impulse response. Also
observe that as v — 0, 02 = 62; at 60 dB, for instance, the
curves for the true MSE and 672 are very close. It should be
clear that &2 is only good for showing a trend in MSE as a
function of delay for a particular channel.

5The proof is available on request to the 1%¢ author at
raulc@ee.cornell.edu
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Figure 2. (a) T/2-spaced channel impulse response
¢, and (b) roots of subchannels ¢, (0) and ¢, (X).

MSE and Approximations vs. Delay

delta

Figure 3. MSE and approximations versus § for
30 and 60 dB SNR: true MSE o2 (solid), noise gain
approximation &2 (dash-dot), and crude approxima-

tion &2 (dashed). Upper and lower bounds (4) (dot-
ted).

3. IIR MMSE-FSE DESIGN

In this section we derive the MMSE-FSE without constrain-
ing the equalizer to be FIR. Aside from the MMSE-FSE cal-
culation, we extract information from this result to classify
a channel’s severity with respect to the T/2 FIR equalizer.
The proposed classification is justified through the applica-
tion of Frame Theory [2] to Filter Banks [1], of which
Figure 1 is a special case.

3.1. Filter bank structure

In deriving the MMSE-FSE, we do not restrict the structure
to be FIR (A4), nor the matched filter to be a component
forced on the solution [6].

A4” The fractionally-spaced equalizer can be IIR.

Theorem 2 The MMSE-FSE s given by the IIR
subfilters®

Fi(2) = Sl () = e (5)
~ >0 with MSE
1 27 ’)’
2 *
[ = — —dw 6
) 2w/0 T (6)

where Q(2) = ¢ca(2)éa(2) + ¢v(2)é(2). For v =0, the addi-
tional requirement that Q(w) # 0 Yw is needed®.

SNotation: for a real polynomial p(z), the adjoint p(z) =
p(=~1) and p(w) = p(e/¥).



Observe the simple structure that arises in the solution:
each subfilter in (5) is composed of a T-spaced matched

filter (i.e., éa, &) and a T-spaced whitening filter (i.e., =)

Let Ac = min, Q(w) +7, B. = max, @(w)+ . Using
(6) and A., B. we can redefine MSE bounds for the IIR case

Y 2/ px 0i
—-— < < —.
E <o)<
3.2. The matched filter MSE bound
Let the truncated series

j
w9 (z) = 1B j—B Zri, withr =1— 72(3(? ;7) (7)
C c i—0 C C

be the j** order approximation of the whitening filter Q;-i-'y
This follows from the application of Frame Theory [2] to Fil-
ter Banks [1], and its extension to the noise-present case.
Now consider a FSE f(j ) which uses matched filters &q, &,

but replaces the whitening filter 53— with WY, We com-

pare the MSE achieved by £ to the MMSE via the dif-

ference o2(fY)) — 62(f*) as an indicator of how MSE is
mitigated by increasing FSE length.

For the first order approximation (5 = 0) this difference
is bounded by

ﬁw“b—oﬁﬂ)5nm“E%§%i%- (8)

which is the expression also obtained for a noiseless frame
operator in [2]. We call ¢2(f(*)) the matched filter MSE
(MF-MSE) bound, since it is in fact an upper bound on the
MSE achieved by any FSE longer than the channel.

Utilizing the bounds A., B., we can produce a bound on
the MSE increase for any j as

G2(fD) = 02(f*) < rhan (BofA)(A = hay) +1)°

This result suggests correlation between the MSE and
B./A. for a fixed MSE performance. That is, an increase
in B./A: may correspond to an increase in the length of

w),
3.3. Channel classification via MF-MSE bound

In effect, B./A. categorizes the channel severity in terms
of the solution synthesis ability of MMSE-FSE. The pro-
posed bounds are valid for an IIR equalizer, but can be ap-
plied to FIR equalizers, calculated via (2) when the SNR is
low enough. Empirically, we have determined the validity
of the MF-MSE bound/indicator applied to FIR MMSE-
FSE for the channels in Table 1 when the SNR is 47 dB or
less. Within this range, it is observed that the calculation
fafa + fofe obeys the property of its maximum and mini-
mum falling between 1/B. and 1/A. (which is strictly the
case for the IIR solution).

Table 1 lists 13 terrestrial microwave channels (from
the Applied Signal Technology database available at
http://spib.rice.edu/spib.html) classified using the MF-MSE
bound.

4. CONCLUSION

This paper has provided solutions for both FIR (under A4°)
and ITR MMSE-FSE designs as well as expressions and ap-
proximations to the achieved MSE. These results, expressed
in terms of subchannel parameters, roots and spectra can
be used as analytical tools for understanding the various
open issues involved in MMSE-FSE design.

To complete the theory on MMSE-FSE design, however,
additional work remains. Some unresolved items follow:

Actual MF-MSE | MMSE | MMSE

Label || rmax | MF-MSE | Bound 350 100

(dB) (dB) taps taps
chanl 0.34 -12.43 -4.68 -46.7 -39.4
chan2 0.56 -7.76 -2.51 -46.3 -42.3
chan4 0.84 -6.25 -0.78 -44.8 -28.8
chanb 0.62 -9.95 -2.11 -46.5 -37.7
chan6 0.33 -12.82 -4.80 -46.8 -41.1
chan8 0.44 -12.00 -3.52 -46.7 -37.2
chan9 0.85 -5.77 -0.69 -44.5 -41.9
chanl0 || 0.88 -4.09 -0.57 -44.1 -36.0
chanll || 0.77 -7.84 -1.14 -45.7 -33.3
chanl2 || 0.24 -17.31 -6.20 -46.9 -40.7
chanl3 || 0.31 -14.70 -5.02 -46.8 -44.9

Table 1. Microwave channel classification and mea-
surements with regards to the MF-MSE Bound.
Tests performed at SNR=47 dB. Channel lengths
vary between 200 and 300 T'/2-spaced taps.

e Expressions and bounds for MSE when the equalizer
is shorter than the channel as function of the channel
parameters, SNR, and equalizer length. Ultimately, a
simple scheme for deriving FSE length for a particular
channel, SNR and a target SER.

e The best suited method for modeling channels as au-
toregressive moving average (ARMA) filters from em-
pirical data.

e Simple design rule for determining optimum MSE delay
¢ from channel parameters and equalizer length.
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