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ABSTRACT

It is a well known fact that orthogonal frequency division multiplexing (OFDM)
provides a practical solution to counter the intersymbol interference (ISI) problem
imposed by the frequency-selective fading (FSF) channel. While the application of
OFDM in slow-FSF multipath channels is well understood, the application of OFDM
in fast-FSF multipath channels is fraught with several difficulties, many of which
have not been practically treated in the literature. We premise our work on the
claim that current trends in broadband wireless communication systems dictate that
channel time-variation will soon play an important role in OFDM systems. The
primary advantages of cyclic prefix OFDM in time-invariant FSF channels, i.e., the
absence of ISI and of intercarrier interference (ICI), do not carry over to time- and
frequency-selective, i.e., doubly-selective channels. As a result, the standard zero-
forcing (ZF), linear minimum mean-square error (LMMSE) and maximum likelihood
(ML) detection techniques become prohibitively complex.

An analytic study of the nature of ICI shows that it is most prominent among
nearby subcarriers. Further, incorporating the effects of distant-subcarrier-ICI might

improve the detection performance but would prevent practical implementation. As
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a practical suboptimal alternative, we propose a low-complexity linear receiver pre-
processing scheme that renders the ICI response sparse, thereby simplifying subse-
quent symbol detection. The ICI structure suggests pre-processing that strives to
limit the ICI to adjacent subcarriers.

Finally we propose computationally-efficient suboptimal decision-feedback strate-
gies to obtain reliable soft-symbol estimates which can be fed to a decoder. Simulation
results indicate good performance relative to the standard detectors but with signifi-

cant computational savings.
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CHAPTER 1

INTRODUCTION

Broadband wireless communication is an important component of the evolving
global information infrastructure. Current and future generation wireless links are
expected to provide high data rate transmission of multimedia services such as wire-
less video, wireless Internet access and mobile computing, and in some cases are
expected to do so in very high mobility situations [1]. At the same time, our limited
radio spectrum has become an increasingly precious resource, entailing high spectral
efficiency, the use of higher carrier frequencies and in some cases spectrum sharing
between different wireless users. In addition, consumer demands dictate that the cost
of wireless terminals be kept low and their sizes small. Thus wireless communication
technology of the future must operate at high data rates, at high carrier frequencies,
in high mobility situations and under high levels of spectral interference, all while
maintaining reliable data transmission using small and inexpensive components.
1.1 Problems Inherent to Broadband Wireless Communica-

tion

In wireless communication, an information signal with a particular bandwidth is

modulated to a designated frequency band for transmission. A digital communication



signal can be viewed as a sequence of pulses having period 7. High data rate appli-
cations necessitate the use of short pulses (e.g., ' < 1us) and hence large bandwidth
(B =1/T >1 MHz), or broadband signals.

Many modern broadband wireless systems employ carrier signals at frequencies
in the range of several GHz, leading to a transmitted-signal wavelength on the order
of millimeters. Such high frequencies are used because lower frequencies have been
reserved for pre-existing communication systems. Also, higher frequencies allow more
significant frequency re-use: because high frequency signals are easily attenuated by
buildings, trees and atmospheric impediments allowing the same frequency range to
be used by a sufficiently distant, different wireless system. A high-frequency carrier
coupled with a broadband information signal, poses significant challenges which can
be understood by considering the signal propagation path between the transmit and
receive antennas. Apart from a direct “line-of-sight” signal component between an-
tennas (which arises in certain special circumstances), the received signal consists
of a multitude of transmit-signal reflections from physical objects (or scatterers) in
the vicinity of the antennas. Typical scatterers are buildings, trees, cars and the
pavement. Each scattering path can be characterized by an attenuation, phase-shift
and delay. These values are a function of the reflectivity of the scatterer and the
total length of the reflected path. The reflected signals may combine constructively
or destructively at the receive antenna, depending on their relative phase, resulting
in an amplification or annihilation of the transmitted signal. (180° phase difference
yields complete cancellation.)

For signals in the GHz frequency range, path-length differences on the order of

millimeters can cause significant phase differences and thus major fluctuations in the



received signal level. This implies that even wind-induced antenna and/or tree-leaf
movements in “fixed” wireless applications can produce severe signal fades. This
“multipath-fading” makes it difficult to reliably recover the transmitted informa-
tion when the received signal level falls below the noise/interference level, and thus
presents a fundamental challenge to wireless data communication.

When the antennas or the dominant scatterers are mobile, the relative scatterer
locations may change drastically over short periods of time, leading to a rapid change
in signal level, or rapid fading. The “fading-rate” is then proportional to the relative
speed between scatterers and antennas.

The fading mechanism described above, called “flat-fading”, applies to any signal
(narrowband or broadband) that is transmitted at high frequencies. An additional
fading mechanism is inherent to broadband signals. Say 7" is small compared to the
path delay differences. Then the receive antenna might observe one pulse (or data
symbol) across a short-delay (e.g., line of sight) path and simultaneously observe
previously-transmitted pulses across long-delay (e.g., distant scatterer) paths. Thus
the received signal is not only plagued by the signal fading described above but also
by inter-symbol interference (ISI): Each symbol observation is corrupted by echos of
previously transmitted symbols. In fact, many broadband! applications have >100
different symbols interfering at any given time. Again, these symbols may combine
constructively or destructively, depending on the data values they represent, leading
to potential signal cancellation. The arrival of multiple delayed paths acts like a
filter on the transmitted symbol sequence, i.e., we expect some frequencies within the

L “Narrowband” signals are characterized by pulse (symbol) durations that are large compared to
the path delay differences, thus avoiding interference of pulses at the receiver.



transmitted-signal bandwidth to be attenuated more than others. For this reason,
this latter fading is known as “frequency-selective fading?”.

While at first ISI might seem as a serious impediment that wireless system design-
ers have to contend with, the presence of severe ISI actually offers the possibility of
frequency-diversity gain afforded by the seemingly random nature of multipath fad-
ing [2,3]. The optimal sequence detector (the maximum-likelihood detector) required
to fully exploit this diversity gain is prohibitively complex as its complexity is an
exponential function of the channel memory length. Thus, in practice, ISI-challenged
systems employ time-domain equalization [4] which, while suboptimal from a detec-
tion standpoint, reasonably exploits the diversity offered by the multipath channel.
The time-domain equalizer (TDE) attempts to adaptively invert the filtering action of
the channel. It should be noted that as ISI increases, computing the TDE coefficients
becomes computationally intensive making it an infeasible alternative. Realizing that
the time-domain filtering (convolution) mentioned above is equivalent to multiplica-
tion of the spectra of the signals involved, frequency-domain equalization (FDE) was
suggested in [5,6]. While FDE complexity is independent of the size of channel mem-
ory, it requires a block transmission of symbols with a sufficiently large guard interval

and also assumes the presence of a constant channel over the block duration.

1.2 OFDM, a Practical Alternative

A more practical solution to the severe ISI problem is given by a multicarrier mod-
ulation scheme known as orthogonal frequency division multiplexing (OFDM) [7-9].

2In contrast, flat fading affects all the frequency components within the transmitted-signal band
equally.
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Figure 1.1: Example of an OFDM symbol transmitted on a multipath channel

Here, broadband data is transmitted using a large number of parallel low-rate (nar-
rowband) streams called “subcarriers” whose symbol periods are large compared to
the channel delay spread. Thus the subcarriers experience flat (rather than frequency-
selective) fading, avoiding IST and hence greatly simplifying receiver design. Modu-
lation and demodulation of the subcarriers can be accomplished in a block-by-block
fashion using the computationally-efficient fast Fourier transform (FFT) algorithm,
making OFDM transceiver implementation practical. An important detail is that a
guard interval of duration greater than the channel delay spread must be inserted
between transmitted blocks to make them cyclic and ensure subcarrier orthogonality
which is the key to receiver simplicity. The OFDM guard interval leads to a slight

loss in efficiency, although this loss can be made negligible by increasing the size of



the OFDM block. Thus at first glance, OFDM seems to offer an efficient solution to
current broadband wireless communication problems.

The operation of OFDM described above requires that the fading rate is slow
enough (slow time variation over the OFDM block) to keep the subcarriers orthogo-
nal. As the fading rate increases, a subcarrier experiences a fading gain that varies
significantly along the OFDM block leading to an increase in the subcarrier band-
width which is proportional to the fading rate. This phenomenon, known as “Doppler-
spreading” causes OFDM subcarriers to interfere with one another, a phenomenon
called intercarrier interference (ICI) which can severely affect the receiver’s detec-
tion performance if neglected. In Section 2.2 we show that, for channels that exhibit
fast time-selective fading, the loss of subcarrier orthogonality manifests as significant
ICI. Thus, the primary advantage of OFDM in frequency-selective channels, namely
the absence of ISI and of ICI, does not carry over to time- and frequency-selective
channels.

Most current applications of OFDM operate under slow-fading conditions for
which intra-symbol channel variation can be ignored, so that the ICI problem does not
arise. However, time-selectivity cannot be ignored in the design of future broadband
wireless systems. As mentioned above, future systems are likely to operate at very
high carrier frequencies (i.e., > 1GHz) and Doppler spread, an indicator of fading
rate, is linearly proportional to carrier frequency [10]. In other words, effective rates
of channel variation for a fixed mobile speed increase. Secondly, future wireless sys-
tems are bound to operate in very high mobility situations (v > 200 km/h), such as
between high-speed cars/trains to “info-stations” placed along the vehicle’s path [11],

and Doppler spread is linearly proportional to vehicle speed [10]. Third, there is



a desire to minimize the capacity lost by insertion of the redundant OFDM guard
interval. As traditional OFDM design specifies a guard length of at least the chan-
nel delay spread, redundancy can diminished through an increase in OFDM symbol
duration. But, by increasing the OFDM symbol duration, the system becomes more
sensitive to intra-block channel variation. Thus we can conclude that future broad-
band wireless applications will face channels that are significantly time-selective as

well as frequency-selective.

1.3 Thesis Organization

This thesis has been organized into seven chapters. In Chapter 2 we provide
an overview of wireless channel models, describe the basic OFDM system, and give
a brief description of the existing work on OFDM in doubly-selective channels. In
Chapter 3 we analyze and quantify the effect of a doubly-selective fading channel
on OFDM, namely ICI, and in Chapter 4 we propose low-complexity linear receiver
pre-processing that renders the ICI response sparse®. In Chapter 5 we review possible
schemes for symbol detection and propose computationally-efficient decision-feedback
soft-symbol estimation strategies that exploit the sparse ICI response. Simulation re-
sults in Chapter 6 clearly indicate good performance of the proposed sub-optimal
schemes relative to the standard detection techniques but with significant computa-
tional savings. Finally in Chapter 7 we conclude our work and offer insights into the

avenues for future work.

3This can be regarded as the frequency-domain dual of ISI-channel shortening that has been
proposed to reduce the complexity of maximum likelihood sequence detection in single carrier systems
[12].



CHAPTER 2

BACKGROUND

2.1 Wireless Channel Models

The wireless channel can be viewed as a “black box” placed between the transmit-
ter and receiver of a communication system. Systems experiencing frequency-selective
fading channels, model this black box as a random linear time-invariant (LTI) filter
and summarize its characteristics by a discrete-time finite impulse response (FIR)
h(m), m=0,...,N,—1, where N, denotes the maximum delay spread of the chan-
nel in baud. As explained in Chapter 1, future broadband wireless applications will
face channels that are significantly time- and frequency-selective. Thus, in this thesis,
we adopt a more general approach to channel modeling and view the wireless channel
as a random linear time-variant (LTV) filter characterized by one of the following

four system models.

1. Time-lag model
The time-lag model, better known as the impulse response of a LTV channel,
can be denoted by hyy(n,m), n € Z,m = 0,...,N, — 1. Here hy(n,m)

specifies the output of the channel at time index-n to a Kronecker delta applied



at time index-(n—m). In an OFDM system we impose the additional constraint

n=0,..., N —1. More explanation will be given in Section 2.2.

. Time-frequency model
This is a time-varying frequency response parameterization of the LTV channel.

We denote it (non-sampled) by Hy ¢[n,w), n € Z,w € [0, 27) where,

H, ¢[n,w) == 1 Z hyi(n, m)e 7™, (2.1)
VN

Here N is the length of the observation interval in time (i.e., n =0,... ,N —
1, N > N,). We can also parameterize the system in terms of its sampled
time-varying frequency response h; s(n, k), k=0,... ,N —1

- 27k

hef(n, k) := 1 Z hi(n,m)e”? N ™. (2.2)
VN

. Doppler-lag model

This form of system parameterization is of particular interest for channels which
are both delay and Doppler-spread limited as it enables a sparse yet complete
representation of the channel. We denote the non-sampled Doppler-lag response

by Hyi(¢,m], ¢ €[0,2r), m=0,...,N,—1

Hay(,m] = \/LN S hug(n, m)eiom (2.3)

where again we have restricted n = 0,... , N —1. We can also parameterize the
system in terms of its sampled Doppler-lag response hq,(v,m), v =0,... ,N—1

- 2Ty

hay(v,m) == 1 Z hii(n,m)e 7~ " (2.4)
VN
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Figure 2.1: Example time-variant channel transmission functions
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4. Doppler-frequency model

This model is extensively used in this thesis to characterize the channel response
at the OFDM receiver. It is denoted (non-sampled) by Hgyf(¢,w), ¢,w €

[0, 27) where, using (2.1) and (2.3)
Hyf(p,w) = % ;Hd71(¢,m]ejwm

1 | |
— N Z Z ht,l(’n, m)e_]¢”e—me (25)

From (2.2) and (2.4) we can also define the sampled Doppler-frequency response

hd,f(l/,k), I/,k:O,... ,N—l

2k -2y
ha,f(v, k) : NZZh”nme]N ne=iTNm (2.6)

All the sampled transmission functions defined above are N-periodic in the Doppler

and frequency indices v and k. Note that the subscripts on each of the transmission

function are used to denote the time/lag and Doppler/frequency interpretation of its

two arguments. Fig. 2.1 gives an example of a time-varying channel represented by

the four transmission functions defined above.

2.2 The OFDM system model

bits

add | | : ! bits
code to IFFT noisy remove FET equal- decode
QAM prefix i channel i guard ize
transmitter e % receiver

Figure 2.2: OFDM block diagram
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To aid our discussion of OFDM behavior in fading wireless channels, we outline a
system model to convey the main concepts. See Fig. 2.2 for an illustration.

In an OFDM system, each block of data contains information from N-frequency-
domain symbols {sgf)},cN;O1 drawn from a M-QAM alphabet. Here i denotes the
OFDM block index and M denotes the size of the QAM alphabet. The k** frequency-
domain symbol is used to modulate a cyclically-prepended inverse Fourier transform
(IDFT) basis vector, so that a sampled version of the time-domain transmitted signal
{z® (n)}nN:__le for the ' block is given by

2@ (n) = L T s i "k (2.7)

Vit |

where N, (N, < N) denotes the length of the cyclic-prefix (guard interval). To
prevent inter-block interference at the receiver and to ensure a circular (rather than
linear) convolution with the channel response, the time-domain blocks are cyclically
prepended with a prefix length N, of at least the channel impulse response length.
The time-domain blocks are then serially transmitted through a multipath fading
channel.

Assume that the time-domain received signal r(*)(n) is a noise corrupted and
linearly distorted version of z((n) as a consequence of a LTV channel with impulse
response hgzl) (n,m). Here hgzl) (n, m) specifies the output of the system at time index n
within the " block to a Kronecker delta applied at time index (n —m). The channel
is assumed to change continuously within a block (i.e., over n) as well as between

blocks (i.e., over 7). This time-lag block-indexed channel response can be related to

12



the general time-lag channel response h;;(7, m) defined in Section 2.1 as

REETD

)

ht,l(ﬁ’: m) = <ﬁ’ + Np>N+Np - Np))m) ’ n ez

hgj’)(n,m) = hy(i(N+N,)+n,m), i€Z,ne{-N,,...,N—1}

If the channel is causal with a maximum impulse response duration N, where N;, <

N, < N, then
Nyl
r®(n) = Z hgll)(n, m)zW(n —m)+ o, nef0,...,N-1} (2.8)
m=0

The adequate length of the cyclic prefix enables the values of (¥ (n—m) in (2.8) to be
well defined. We assume that @\ are zero-mean white and Gaussian with variance

o2. At each block 7, the receiver drops the samples corresponding to the cyclic-prefix

and applies {r®(n)}N=! to a discrete Fourier transform (DFT), yielding {y} !

N-1

(6 — (3) —jrn

Yy, = Y " r(n)e (2.9)
v N p—

It is convenient to extend the definition of y,(,i) over all v € Z using the property

ygi)m =y, We can relate s,(ci) to y$” using the system equations (2.7), (2.8) & (2.9)

and the sampled transmission functions defined in Section 2.1

] N1l L N .
B = = h(i) n,m)—— s(i)e]‘%k _|_u~](i) e—jz%”n
Yu N v (n;) t,l( ’ ) N s k n
1 = - Z) 2wy
= —F= w,’e
N n=0
N—-1 1

k=0 m=0
N—-1 ' '

= wl + 3w — b E)sy (2.10)
k=0



Due to the orthonormality of the DFT basis vectors, the frequency-domain noise
samples w,(,i) are statistically equivalent to their time-domain counterparts namely
zero-mean, white and Gaussian with variance o2. From (2.10) it is evident that each
y,(,i) contains contributions from all the sg) transmitted in the 5 OFDM block. This
phenomenon is known as ICI. The extent of ICI is a function of the rate of channel
time-variation within the OFDM block. More explanation about it will be given
in Chapter 3. However, even if ICI spans just a few symbols, we clearly see that
neglecting it could severely affect the performance of symbol detection. Hence this
ICI needs to be explicitly addressed.

If the channel is LTI, ICT is absent (See Appendix A) and thus each s,(f) can
be obtained by simply scaling the corresponding y,(,i) followed by thresholding. This
simple detection is the original motivation for using cyclic-prefix OFDM in frequency-

selective fading channels.

Equation (2.10) can be written in vector form as

[yéi-l h%;;f(o,o) hf;})(—l,n h%@ N,N —1) [séﬂ [w%i]
Y| hd,f(l’o) hd,f(oa 1) hd,f(2 —N,N=1)[| s1 wy'
yw ] (RN = 1,0) ALV —2,1) R0, N —1) L] Lwd,
y(l) ,H‘(:)f s(i) w(®)
d,
(2.11)

From a detection standpoint, (2.11) clearly suggests that the basic zero forcing (ZF)
detector or the linear minimum mean square error (LMMSE) detector will require
a matrix inversion of the Doppler-frequency channel transfer function matrix ’H((;)f
Clearly ’H,(;)f is a non-diagonal N x N matrix and inverting such a matrix has O(N?)

complexity.
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Modern communication systems employing OFDM prefer large block lengths mo-
tivated by the desire to reduce capacity loss due to insertion of redundant guard
interval and to maintain narrow subcarrier spacing (to ensure flat fading per carrier)
as the system bandwidth increases. This means that the basic ZF and LMMSE de-
tectors will have prohibitive complexity and a new approach needs to be adopted to
ensure implementable symbol detection for OFDM in doubly-selective channels.

Since detection strategies often rely on knowledge of the channel coefficients,
computationally-efficient channel estimation algorithms are also essential. Presence
of significant time-variation increases both the number of channel parameters that
must be estimated as well as the difficulty of estimating these parameters.

Thus, clearly, OFDM in doubly-selective environments poses new challenges from
an implementation standpoint.

2.3 Existing Strategies for OFDM in Doubly-Selective Chan-
nels

With very few exceptions, the OFDM literature assumes channels that are con-
stant over the block interval, corresponding to the case in which the subcarriers
maintain orthogonality and ICI is avoided. Though intra-block channel-variation is
known to degrade performance when ignored (e.g., [13-16]) only a few techniques
have been proposed to cope with it. Moreover, none of these techniques appear to be
practical from a implementation standpoint.

For example, ICI-mitigating methods have been proposed for flat-fading [17, 18],
whereas, OFDM’s primary advantage concerns frequency-selective channels. Russell
and Stuber [19] have proposed error-control coding and antenna diversity to improve
performance. However, these techniques are intended to combat unstructured noise
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rather than structured ICI, and hence should be used in addition to explicit ICI
reduction. Armstrong et al. [20] have suggested polynomial cancellation coding (PCC)
[21] to suppress Doppler-induced ICI based on the fact that PCC is known to suppress
ICI resulting from carrier frequency offset. Carrier-offset-induced ICI, however, has a
special structure not shared by Doppler-induced ICI, making PCC ineffective. In fact,
[20] demonstrated advantages only with fades so flat and slow as to be approximated
by a fixed delay. Jeon et al. [22] attacked the problem of intra-block channel variation
assuming that the large-variance taps in ‘H4 s occur primarily along the main diagonal.
In Chapter 3 we will show that his assumption was far from accurate.

Linnartz and Gorokhov [23] used a two-term Taylor series expansion to linearly
approximate time-domain channel variations and from this designed a MMSE de-
tector. Choi et al. [24], proposed a more general model for the time-variation and
derived matched-filter, LS and MMSE detectors that incorporate decision-feedback
principles. Though [23,24] are interesting and well formulated, they require the inver-
sion of matrices with dimension equal to the OFDM block length N which is infeasible
for large block lengths.

In [25], Giannakis et al. derived a matched filter bound (MFB) for OFDM in
doubly-selective fading channels, and showed that channel variations introduce tem-
poral diversity, which has the potential to improve the bit error rate (BER) perfor-
mance if properly exploited. They also studied the ICI and energy leakage that are
caused by the time-varying channel. Next, based on the fact that, ICI power is sig-
nificant over nearby subcarriers they developed O(N?) complexity MMSE and DFE
receivers. While the MMSE receiver exhibits an error floor, the DFE receiver does

exploit the temporal diversity offered by the channel, and its BER performance comes
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close to the MFB for slow-fading channels. Even then, for large block length their
algorithms would be impractical to implement.

While channel estimation has been extensively treated in slowly-fading multicar-
rier systems (with no intra-block channel variation) very little has been proposed for
doubly-selective channels. Jeon et al. [22] proposed a simple technique whereby a
time-domain Kronecker delta pilot sequence is inserted every L OFDM blocks for
easy estimation, and the channel is assumed to change linearly over the L blocks.
Clearly this works only for very slowly varying channels. Recently Choi et al. [24]
proposed MMSE linear prediction of the LTV impulse response using periodic pilot
frames. Specifically, LN pilot observations, collected over a period of K LN samples,
are linearly processed to yield joint estimates of NK values of h;;(n, m), with n cen-
tered in the observation period. Requiring K LN? multiplies and a long processing

delay, this is not practical for large V.

2.4 Owur Proposal

Our claim is that the practical application of multicarrier modulation in doubly-
selective environments requires a fundamentally new approach to system design and
analysis. Traditional cyclic-prefix OFDM has been designed explicitly for the case of
non-time-selective fading, and no practical methods have been proposed to handle the
challenging combination of time-selectivity and large block length that is expected in
future broadband wireless applications. If we accept the fact that interference in the
form of ICI and/or ISI is an unavoidable consequence of bandwidth-efficient commu-
nication over doubly-selective channels, then we should design multicarrier systems

capable of handling this interference in an efficient manner. While ICI increases the
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complexity of the standard ZF and LMMSE detectors, it also affords diversity which
can be leveraged to increase performance in fading channels. Intuitively speaking, the
off-diagonal elements of H4 f may provide important information about the unknown
symbols, when the main diagonal contains small values.

In this thesis, we outline a set of signal processing strategies that constitute a
new framework for communication over significantly doubly-selective channels. We
focus on practically implementable solutions that offer good performance. A more
thorough description of the proposed work will be given in Chapter 4 and Chapter 5.
In Chapter 4 we suggest low-complexity linear pre-processing which truncates the ICI
response yielding a sparse ’H((;)f and in Chapter 5 we propose computationally-efficient
suboptimal decision-feedback estimation schemes (exploiting the sparse structure of
”H((;)f) which offer good performance relative to the standard detectors but with sig-

nificant computational savings.
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CHAPTER 3

THE EFFECT OF A DOUBLY-SELECTIVE FADING
CHANNEL ON OFDM

In Chapter 1 we stressed the fact that future wireless applications will face chan-
nels that are fairly time- and frequency selective. In Section 2.2 we showed how
OFDM in time-selective channels falls prey to ICI. This chapter attempts to quantify
this Doppler induced ICI as a function of various system parameters namely, (i) the
normalized Doppler frequency, (i7) the variances of the m™ lag channel coefficients
and (i7) the OFDM block length N. In Section 3.1 we describe the basic time-lag
channel model that we use in our analysis and simulations. In Section 3.2 we de-
rive the 27¢ order statistics for the non-sampled Doppler-lag channel taps H (gfl)(¢, m).
Finally in Section 3.3 we use the results from Section 3.2 to derive the 2"? order
statistics for the sampled Doppler-frequency channel taps hff,)f(z/, k). From (2.11), we
know that h((;;)f(y, k) is the element in the £ column and v** diagonal (v = 0 denotes
the main diagonal) of the Doppler-frequency channel transfer function matrix ’Hg)f

Thus the results from Section 3.3 will help us better understand the general structure

of Hgq,¢ which is an indicator of the extent of ICI in the OFDM system.
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3.1 Time-Lag Channel Statistics

We assume a wide-sense stationary uncorrelated scattering (WSSUS) channel
where the time-lag channel coefficients hgzl) (n,m) are correlated over time-n and are

independent over lag-m so that,

*

0 140

E{h} (n, m)h{ (n—p,m—l)}={ o2 Jo@rfap) 1 =0

I

(3.1)

where Jy(+) is zero-order Bessel function of first kind, and f; is the (maximum) nor-

malized Doppler frequency* defined by

chTs
C

fa=

where f. is the carrier frequency, v the mobile velocity, 7T the sampling interval and

c the speed of light. Henceforth we define the autocorrelation for the m® lag as

ria(p,m) = E{A{) (n,m)R) (n — p,m)}

I

As mentioned in Section 2.2 the channel is assumed to change continuously over n as

well as over 3.

3.2 Doppler-Lag Channel Statistics

From (2.3) we know that the non-sampled Doppler-lag response is given by
Hyi(p,m) = thlnmemn
where the limits on n are due to the finite OFDM block length N. We have
E{(H) (¢, m)Hy} (6~ A m)}

1 N-1 1 N1
=E {— hi (n, m)e*j"’"ﬁ > hl) (l,m)ej(¢A)l}

4Observe f; is unitless.
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1 < . .
=~ E{h{) (n,m)R) (I, m)}e99mel@=2)
n=0 (=0
| NN
=% Z reg(n —1,m)e %= e=iAl (3.2)
n=0 1=0
| NIN-1p —N+1 N—-1 ' '
=N rei(p,m)e %e A 4+ Z Z rei(p,m)e %e IR
p=0 1=0 p—fl I=-p
| N ]¢pN—1—p i —N+1 s N—l4p i
=5 2 TP me e T+ Z r1(p, m)e Z e
p=0 =0 p=-1

Using the Dirichlet sinc function

L-1
s sm(A/?) '
we have
EW&@)&@ A,m)}
N—
1 _igpSIN(A(N )/2) _
— = jop 35 (N—-p-1)
N ;Tt’l(p’ m)e sin(A/2)
~N+1
Z roi(p, m)e=i6=p Sln(A(N+p)/2)e_j§(N+p—1)
p4—1 ’ sin(A/2)
N-1
1 —ito- 2 SIAWN = p)/2) _jan-
- = J(é—3)p jg(N-1)
N ;0 ’rt,l(pa m)e SIH(A/2)
—N+1 .
_j(¢_%)p51n(A(N+p)/2) —j&(N-1)
+ pz_l Tt,l(pa m)e sin(A/2) €

1 = o arsin(AN — [p])/2) _agx_
- = j(o—5)p j5(N=-1)
> rulpm)e sin(A/2)

=—N+1
We can interpret the previous expression using a A-parameterized lag-domain

window

) = S e A0 Dl )
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via the indicator function

1 e0o,N -1
I[O,N—l](|p|) :{ 0 Lll)le [ ]
so that
E{HS)(6,m)HS (6 —A,m)} = 3 ry(p,m)w(A, p)ei® (3.4)
p=—00

Two interesting properties of the window function are

N e LT ()

. 1 A=0
am w(A.p) = {0 Ao PEZ

implying that

. i i)” ’ A=
i U6 6 amy) = { Sl 4=

where Sq;(¢, m) denotes the Doppler spectrum of the lag-m channel coefficient:

Sai(¢,m) = Z 711 (p, m)e %P
p=—o
0.2
— { (QWf;n)z_qg ‘¢‘ S 27rfd
0 else

The window function can be expressed in the frequency domain as

o0

W(A,¢) = Y wApei”

p=—00

= E{H{)(¢,m)H) (¢ — A,m)}

r,1(pm)=1 Vp

1 3~ =J nNil J(p—A)l
= ¥ n:Oe ¢ > PRI (3.5)
1sin(@N/2) oy 1ysin((¢ — AJN/2) jiemy 56)
N sin(¢/2) sin((¢ — A)/2) '
_ 1sin(@N/2)sin((¢ — A)N/2) oy
N sin(¢/2) sin((¢ - A)/2)
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where (3.5) and (3.6) follow from (3.2) and (3.3) respectively. Some properties of the

frequency-domain version of the window function are

1 (sin(¢N/2) ’
W(A, §)laeg = N(W)
1 A=¢=0

N—00 0 else

1
lim —W(A =
m WA = {
This frequency-domain description is useful in that (3.4) can be rewritten as

B{H) (6, m)HS) (6 — A,m)} = / Sua(0,m)W (A, 6 — 0)df

= Sai(d,m)* W(A, )

Wy ”

where “x” denotes convolution as defined above. Finally, we note that

S\ %

E{H{)(¢,m)H) (6 — Aym—p)} =0, Vp#0

il

3.3 Doppler-Frequency Channel Statistics

From (2.5) we know that the non-sampled Doppler-frequency response is denoted

by
1 e
Haflow) = o 3 Haleme
VN =~
] N1
= —=p  Ha(p,m)e ™"
VN =,
we have
B{H) (6, @)} (6 — A w =)}
1 = 1 Nl
= E{— H(i)((b, m)e JUm—— H(i)*(gb_A’q)ej(wﬂp)q
VN = 7 2
| No1N-l | | o
B N E{H‘gl)(qb’ m)Htgfl) (¢ - A,q)}eﬁ‘*’me](wfw)q
m=0 ¢=0
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where Sg (¢, 1) denotes the Doppler-frequency spectrum:

s o2 ey 6l <2
) T =2t
Sd:f(¢7 w) - { 0 (2 fd) ¢ else

The sampled Doppler-frequency statistics are then

i ) 1 2wl 27
B = k= 0) = 50y (0.5 ) o (0.57)
¢

_ 27v

Hence the variance equals
O (21— [ om0 Om (sin(¢N/2)>2
E{|h) (v, k)| }—( = fd32_¢21[0,2wfd)(|¢|>) (V) | @0

As mentioned before, hgf(v,k) represents the element in the k™ column and
v diagonal ((v)y = v) of Hyy. Equation (3.7) suggests that |hg (v, k)| will have
reasonably large values for small values of v, which correspond to the terms that
significantly contribute towards the system ICI power. On the other hand |hg ¢ (v, k)|
will have relatively small values for large values of v, which correspond to the terms
that have a very small contribution towards the system ICI power.

Clearly the extent of ICI is proportional to the fading rate (characterized by fy)
exhibited by the channel. For channels that do not exhibit time-selectivity (f; = 0),
|ha f(v, k)| = 0 for v # 0. In Fig. 3.1 we evaluate (3.7) for block length N = 64, unit

variance lag coefficients and various f;.
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Figure 3.1: Variance of elements in 4 s vs. Doppler spread
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Figure 3.2: A close up of Fig. 3.1
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Observe that even relatively slow channels: channels for which the Doppler spread
is much less than the intercarrier spacing (i.e., fy < 1/N) exhibit significant ICI

power.
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CHAPTER 4

DOPPLER-CHANNEL SHORTENING VIA LINEAR
RECEIVER PROCESSING

4.1 Motivation

The OFDM receiver observes the output of the noisy linear channel and discards
the samples corresponding to the prefix, after which the time-domain observation

sequence for the " OFDM block can be written in vector form as (See (2.8))
rl) = HOFTs@ 4 % (4.1)

In (4.1), s®) denotes a vector of frequency-domain QAM symbols transmitted in the
i'" OFDM block, F# a unitary matrix representing the inverse N-FFT operation

defined elementwise as

1 ox,
[F)i = —=e/ ¥k,

”ngl) is the time-lag channel transfer function matrix representing the time-domain

effect of the channel and W a vector of zero-mean white and Gaussian noise samples

2
w*

with variance ;. Performing an N-point FFT at the receiver (denoted by F), we
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obtain the frequency-domain observation vector (See (2.9))

v = Pl
= FHF7s0) + Fw

= s 4w (4.2)

where ’Hg)f is the Doppler-frequency transfer function matrix that represents the
frequency-domain effect of the channel and w( is a vector containing frequency-
domain noise samples.

For LTI channels (no Doppler spread), H:; is a circulant matrix and Hq; is
diagonal. Here, optimal detection of the k** element in s can be accomplished using
only the k' element of y and the k™ diagonal element of H, ;. When the Doppler
spread is non-trivial (LTV channels), #;; loses its circulant structure, preventing #,
from being diagonal (See (2.11)) which causes ICI and complicates the detection of s.
While standard detection strategies (e.g., ZF, LMMSE and MLSD [26]) are easy to
formulate, they are impractical to implement when the dimension of H, s (given by
the OFDM block length, which may be > 8000) is large. In Chapter 3 we derived an
expression for the variance of the elements in H4 y which suggests that, on average, the
magnitudes of the off-diagonal elements decay slowly with increasing distance from
the main-diagonal (See Fig. 3.2), i.e., ICI is worst among “nearby” subcarriers. Thus,
incorporating the effects of distant-ICI might improve the detection performance but
prevents practical implementation.

In this chapter, we propose low-complexity linear receiver pre-processing to trun-
cate the off-diagonal (i.e., ICI) response of Hg4 . While H4 s could obviously be di-

agonalized through the “zero-forcing” linear transformation 7{;}, this has two major
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disadvantages: (i) the O(N?®) complexity of matrix inversion, and (iz) the potential
for noise gain: H(;’}y =s+ ”H;}W where ”H;}w may be large. Instead, we propose
to “shorten the ICI response”, resulting in so-called “controlled ICI” that can be effi-
ciently handled with appropriate detection algorithms (discussed in Chapter 5). This
is analogous to ISI-channel shortening employed in single-carrier systems to reduce
the complexity of maximum likelihood sequence detection (MLSD) [12,27].

While single-carrier systems typically accomplish ISI-shortening using convolutive
filtering, we propose ICI-shortening using “fast convolution” [28] in order to leverage
the FF'T operation already being performed by the OFDM receiver. The simplest
approach would involve “windowing” the N-point time-domain received signal r(®
prior to the FFT. Windowing has been proposed as a computationally-efficient means
of increasing the decay rate of the resulting ICI terms (e.g., [29-33]). In those papers,
the time-domain transmitted and/or received signals were multiplied by a sequence of
window coeflicients typically chosen from the well-known Hann, Kaiser, or Blackman
shapes [34]. While these particular windows have been shown to reduce ICI, they are
not optimal for this application, leaving room for significant improvement.

In this chapter we propose the design of statistically-optimal windows based on
appropriate statistical fading models [35]. While it would be possible to design these
windows to minimize the variance of all ICI, this may be foolish from a “diversity”
standpoint: In the event that the diagonal elements were very small (i.e. faded),
off-diagonal elements may contain critical information for symbol detection. For this
reason, we propose windows which allow controlled ICI and where the “target I1C1”

is optimized jointly with the window.
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Ideally, the ICI-shortening window should be optimized to maximize symbol detec-
tion performance. If we assume an OFDM system employing powerful error-control
coding, then the final detection performance is proportional to the average signal
to interference-plus-noise ratio (SINR) across carriers [36], and “SINR optimization”
becomes the optimal criterion. Here, interference refers to the contributions from the
non-controlled ICI.

In fact, one could take the windowing concept further: recall, that r(¥ has been
rectangularly windowed in the guard removal step to prevent inter-block interference
(IBI). Given that multipath channels typically exhibit an exponentially decaying delay
profile [35], it is likely that a small amount of IBI can be traded for a larger reduction
in ICI. Thus, an improved strategy would involve windowing an N + N, + N,-point
segment of the received signal, where N, denotes the cyclic prefix length and N,
the maximum channel delay spread in baud. In addition, viewing these windowing
operations as diagonal matrix multiplications, a banded matrix multiplication, or
“super-windowing” may offer yet improved performance at a relatively small com-
plexity increase.

In this thesis, we focus on the basic N-point window designed to maximize SINR.
Section 4.2 explains the effect of time-domain windowing on OFDM and provides
the set up required for the optimal-window design. In Section 4.3 we derive an
expression for the coefficients of the window that maximizes the SINR in terms of
the channel response hy;(n, m), AWGN variance o2, and the desired ICI-spread D.
Finally, for channels with significant delay spread, we can show that the SINR-optimal

window is well approximated by a function of only channel and noise statistics (i.e.,
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not realizations), which is very advantageous from an implementation standpoint.

Specifics are provided in Section 4.4.

4.2 Effect of Time-Domain Windowing

A “windowing” receiver applies a time-domain window with coefficients b(n) before

taking the DFT, yielding the output {g(»} !

]_ , s 2TV
7 = —= > b(n) r(n)e I F (4.3)

These windowed frequency-domain received samples can be related to their non-

windowed counterparts from (2.9) as

N—-1N-1

I/Z)_ Zzb n 1€ ]27”’

nOlO

where d;, is a Dirac-delta function function defined as

1 k=0
6k_{0 else

So,
| NN LN
W o= =3 > ) (NZW v ) eI
n=0 [=0 p=0
N-1 N-1 N-1
- b <_1 b(l)e—ﬂ}{,”l) ( 1 r® (n)e= %" )
N p=0 N =0 N n=0
;| N
= = By (4.4)
p=0

This can be derived using the N x N DFT matrix F, defined elementwise as

1 —j%Fik

[F]z’,k = \/—Ne )
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the vector-to-diagonal matrix operator D(-), the vector-to-circulant matrix operator

C(), and the DFT property [37]

FD(b)F¥ = C(¥b) (4.5)

as follows

1 () G i
= 5C®) (1) +wl?) (4.6)

The aim of windowing is to make the matrix C(B)Hg)f sparse, which reduces the num-
ber of significant channel coefficients to be handled by the receiver, thereby reducing
the complexity of the symbol detection.

In fact, as detection concerns, the receiver assumes that the windowed channel
matrix C (B) ’H((;)f has many zero-valued elements, and any elements wrongfully as-
sumed to be zero will contribute to the overall level of interference. The interference
level can be quantified with the aid of a mask operator M(:) which nulls any matrix
elements assumed zero by the receiver and the complementary masking operator M(-)
which nulls the elements assumed non-zero by the receiver. The effective “signal” and

“noise + interference” components are then

“signal” =

“noise + interference” =



yielding the following “signal” and “noise+interference” energies (assuming E{s(i)s(i)H} =

I, BE{wOw®"} = 52T and E{sOw®"} = 0)

& = TlIM(c®n)) I

2
— (@) 2 9w 2
b = M (CBHS) I+ Z2le®):

where || - || denotes the Frobenius norm.

4.3 Max-SINR Window Design

From equation (3.7) and Fig. 3.1, we are motivated to choose an “adjacent-carrier”
desired ICI region, i.e., C(B)Hfi)f with a banded structure (including the top-right
and bottom-left corners). Equivalently, the mask operator M(-) nulls the v** diagonal
for each v in the range D +1 < (v)y < N — D — 1, where v = 0 corresponds to

the main diagonal. ~The parameter D controls the target level of ICI shortening:

N\e

N N\\

D+1

Figure 4.1: Choosing the mask

smaller D corresponds to a shorter ICI span and thus reduced detection complexity.
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While technically we require 0 < D < % — 1, we have observed that, for good window
performance, D must be chosen in accordance with the Doppler spread.

Our definition of M(-) allows the simplification

M (€ (B)HE) ) 115 = P (B)HE I3

where
Ip;1 O O
P = 0 0 O
0 0 Ip

and Hf;)f is a re-arrangement of ’Hg)f defined elementwise by
[ e = gy (v )
Similarly we have
1M (¢ (B)#S)) IIF = IPc (B)HE) |17
where P+ = Iy — P. Noting that

lcB)z = N|b]?
lcBYHY, |2 = N|FD(b)FTHY,F3
= N|D(b)H|3
= NbdiagEHHO" )b
IPCB)HY, |2 = N|PFD(b)H)|3

where

[H ] = b7 (n,m)
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and that

lcBHYZ = [(P+PHe(BHY |
= ||PCc(B)HY|% + |PLc(B)HY |
so that
IPreB)HL, 2 = [CcB)HE % — ||PC(BYHY) 1%
_ H 3: OFTTOLAY (i) )12
= Nb dlag(Ht,lHt,l )b N”PFD(b)Ht,l“F

Maximizing SINR &,/&,; is accomplished by

- IPC(B)HE) |7

x T arg max @) 1|12 2 2
b ||PLe(B)HY % + a2C(B)|1%
IPED(b)HY|2

b# diag(o21 + H{H{) )b — |PFD(b)H{, |12

= arg max

This can be solved in closed form through

~ H 1
b = diag(o2I+HH}) )zb

P IPFD(b)H]
« = arg max -— ~ @
b [[bl[2 - [IPFD(B)H) I

:

using

~ . N H .
Hy) = diag(op T+ HH)") *H}j (4.7)

)

Noting that the SINR is invariant to the scaling of b, we can assume without any

loss of generality that ||b|| = 1, in which case

b, = arg max ||PFD(b)HY |2
|Ib||=1 ’
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It helps to write the above norm as

Np—1 N-1
= (i 1 T _semko s
IPEDOIELE = >0 37 | > b Frhg (0, m)
m=0 |k\<D n=0
]_ % 27r(n—l)k Ml ~ (Z) ~ (Z)*
= —anbl Z e ITN hy) (n,m)hy} (1,m)
n,l |k|<D m=0
= bAb

Np—1
1 _2m(n=1) > (3 7 (2)*
A= XY mA] (m (49
k<D m=0
A, 1 sin(F (2D+1)(n—0))
n— N

= A ®A, for ’ (R ) (4.9)
Ao ()

since from (3.3) we know that

_jak _ sin(A(2D +1) /2)
Z ‘ B sin (A/2) '

|k|<D

Thus b, is the principle eigenvector of A and
E “H -
b, = diag(c2I+ H{/H{) )b, (4.10)

Fig. 4.2 illustrates the effect of N-point max-SINR windowing on a representative

realization of H4 s where the dot size is proportional to the coefficient log-magnitude.

4.4 Max-SINR Window: Approximation in Large-N; Case

The optimal window coefficients b, from (4.10), require the knowledge of the cur-
rent channel coefficients (See (4.9)). The computational burden essentially lies in
calculating the elements of matrix A;. We now seek a channel-independent approxi-

mation to (4.10). From (4.7) and (4.9), we see that Ay can be expanded into

1

A, = diag (o201 + HIHY)" ) 7 (HHY") diag (o21+ HH[)")

1
2

)
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pre-window post-window

Figure 4.2: Typical effect of N-point max-SINR windowing on #4 s coefficient magnitudes.

For channels that exhibit a large delay-spread (i.e., large Nj), we can approximate
the summation in ngl) H?EZZ)H using an expectations:
Nh_l . .
E{ > m (n,m)RS) (1 m)}
m=0
Np—1

= > onJo(2rfa(n —1))

| —— |
e
T
=
| I
3
2

where we used the property of E{hgll) (n, m)hi’l) (I,m)} given by (3.1). The max-SINR
window quantities then become
N -
b, =~ (ofv + z an) b,
th:02

~ Zm:O Om
[As],,, = S U%JO (27 fa(n — 1))

As desired, an approximate max-SINR window can be constructed using channel and

M

noise statistics rather than channel realizations. Furthermore, o2 and o2, only act
to scale the window (and hence do not affect the resulting SINR). Thus the window
coeflicients essentially depend only on f;, D and N. This proves very beneficial from
an implementation standpoint.
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Figure 4.3: Example of the effects of windowing
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Fig. 4.3 provides an example to observe the effects of windowing. We consider an
OFDM system with N = 64, N, = 16 and f; = 0.005. We design the max-SINR
window and the approximate max-SINR window for D = 1 at SNR = 30 dB and
assume the mask operator preserves diagonals {—D,...,D}. We use dotted lines
to indicate the coefficients that are wrongfully assumed to be zero by the receiver
(due to the masking operation). Note, these coefficients will contribute to the overall
level of interference in the system. In Fig. 4.3 (a) we consider an OFDM system
that does not incorporate windowing. Observe, the magnitudes of the interference
coefficients are significant and leads to a very low SINR value. In Fig. 4.3 (b) we
incorporate a Hamming window and observe that windowing manages to significantly
reduce the extent of the ICI response. However, its not the best we can do as far
as maximizing the SINR. In Fig. 4.3 (¢) & (d) we incorporate max-SINR windowing
and its realization-independent approximation respectively. The max-SINR window
provides the highest value of SINR and its encouraging to observe a near-optimal
performance by the approximate max-SINR window.

In Fig. 4.4, we plot SINR (&,/&,;) versus symbol-to-noise power ratio for an OFDM
system with N = 128, N, = 32, and various values of f;. The benefits of window-
ing are clear. Observe that the max-SINR window and its realization-independent
approximation have nearly identical performance.

In Fig. 4.5, we plot SINR (&;/&,;) versus the normalized Doppler spread for an
OFDM system with N = 128, N;, = 32, and various values of SNR. For a given signal
to noise ratio, the average SINR of the OFDM system decreases with increase in
channel time variation (characterized by f;). Observe that, the max-SINR windowed

system has the highest SINR.
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CHAPTER 5

SCHEMES FOR COHERENT ESTIMATION, DECODING
& DETECTION IN OFDM

The process of detecting the transmitted symbols assuming perfect channel knowl-
edge is called coherent detection. Since the end result we want to achieve is reliable
data transmission, bit error rate (BER) minimization becomes the criterion for opti-
mality of detection. In uncoded OFDM systems with i.i.d. symbols and noise, BER
can be optimally minimized by maximum likelihood sequence detection (MLSD). The
main drawback of MLSD is its exponential complexity. Suboptimal linear detection
schemes involve generation of least-squares (LS) or linear minimum mean square error
(LMMSE) soft-estimates for individual symbols followed by thresholding to produce
hard symbol estimates. Though suboptimal, these techniques can be implemented
with polynomial complexity. A major drawback of uncoded OFDM systems is their
inability to exploit the diversity offered by the fading multipath channel since they will
not reliably detect symbols transmitted on subcarriers that experience severe fading.
Since OFDM is primarily used with channels that are fairly frequency-selective, we
expect to encounter deep spectral nulls quite often. Thus practical OFDM systems
must incorporate error control coding to exploit multipath diversity and overcome

these drawbacks.
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Figure 5.1: Overview of detection schemes for OFDM
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In coded OFDM systems, usually, an estimation technique is used to obtain soft-
estimates of the individual transmitted symbols. These soft-estimates are then fed to
a decoder which outputs the hard symbol decisions. If we assume an OFDM system
employing powerful error-control coding, then the final BER performance is propor-
tional to the average SINR across carriers [36]. In Section 5.1 we review detection
schemes for uncoded OFDM systems while in Section 5.2 we propose techniques to

obtain soft-symbol-estimates for OFDM systems employing powerful coding.

5.1 Detection Schemes for Uncoded OFDM

From (2.11) we know that each block of an OFDM system can be expressed by

the vector equation

y=Has+WwW (5.1)

When the transmitted symbols (s) and the noise (w) are i.i.d. (i.e., the uncoded
AWGN case), optimal detection of s from the observation vector y can be accom-
plished by maximum likelihood sequence detection (MLSD) (See Section 5.1.1). If
windowing in employed to give H, s a sparse (banded) structure, then MLSD can be
efficiently accomplished by the Viterbi algorithm [38] using path metrics determined
by the non zero entries of H; ;. However, in general, if some sort of coding is em-
ployed (i.e., s is no longer i.i.d.) and/or windowing is employed (i.e., w is no longer
i.i.d.), the Viterbi algorithm is no longer MLSD. Even so, the Viterbi algorithm may
provide relatively good performance®, especially if the complexity of a combined chan-
nel/code trellis can be tolerated. When the channel is LTI, 4 s becomes diagonal

In single-carrier systems, for example, noise correlation induced by ISI-shortening does not
preclude the application of the Viterbi algorithm [12].
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and MLSD reduces to a simple O(N) complexity zero-forcing equalization followed

by thresholding (See Section 5.1.2)
5.1.1 General H;; (Brute-Force MLSD)

From (51), if Hd’f is known, the conditional probablhty density function of y
given s is
( | )_ > ! ( ” || ) ( 2)
ply|s exp Yy — Hq ¢S 5.
( 2)N 2% 2 d,f

Here we have assumed that s and w are uncorrelated and, in addition, w ~ N (0, 021).

The MLSD rule is given by,

§ = arg max p(yls)
= arg min|ly — Hays|’ (5.3)

where S denotes the set of all possible valid symbol vectors and (5.3) follows from
(5.2). Thus MLSD involves a brute-force search over all possible s € S and the one
that satisfies (5.3) is the solution. Clearly the complexity of detection is exponential

in the length of s (i.e., V) making this technique highly impractical.
5.1.2 Diagonal H,

For LTI channels, H4 is diagonal and the (5.1) can be expressed as a set of

decoupled equations
Yi = hisi + w;, 1=0,..., N—-1

Next we can rewrite (5.2) as

1
PYR) = e ( 202Z|yz hsz|)

2
2rof,

= HNO p(yz|31)
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since

1 1
p(yilsi) = exp (——2|yi _ hisiv) |
\2mo2 20,

Observe, the joint likelihood function is a product of marginal likelihood functions,
thus finding the ML solution for s is equivalent to finding the ML solution for each

s; individually. Clearly,

5i = arg max p(yilsi)

= arg g?eig|yi—hi5i|2

where Q is the set of QAM symbols. Clearly the ML solution for s; is obtained
by thresholding v;/h,. With diagonal H, s, the ML solution reduces to an element-
by-element thresholding of ’H,;}y. Thus for the LTI channel case, ML detection is

equivalent to a O(N) complexity zero-forcing equalization followed by thresholding.

5.2 Estimation Schemes for Coded OFDM

In coded single-carrier systems that face ISI, it is typical to employ time-domain
equalization whose soft symbol estimates are then used for subsequent decoding.
Typically, the IST channels in single-carrier systems are slowly-varying from symbol
to symbol, so that a fixed or tracking linear filter is effective for equalization. In
our scenario, we obtain the soft symbol estimates through frequency-domain Doppler
equalization of the ICI response. Since the ICI responses vary significantly from
subcarrier to subcarrier (as in Fig. 3.1), we cannot rely on a similar filtering approach.

In Section 5.2.1 and Section 5.2.2 we formulate schemes to obtain soft symbol es-

timates which are optimal in the least-squares and minimum mean square error sense
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respectively. Though easy to formulate these are highly impractical to implement due
to their O(N?) complexity.

As alternatives, we propose two computationally efficient schemes for soft symbol
estimation which exploit the structure of the sparse post-windowed channel matrix.
In Section 5.2.3 we outline a simple diversity exploiting QR-based decision-directed
estimation scheme having O(D?N) complexity (D < N) and in Section 5.2.4 we
outline a MMSE-based decision-directed estimation scheme having a much better

performance though at an increased O(D3N) complexity.
5.2.1 Least-Squares Estimation

Recall from (2.11), each block of an OFDM system can be expressed by the vector
equation y = H, s + w. The least-squares (LS) estimate for the unknown symbols

in s is given by
S1s = arg min [(y — Hass)" (v — Has5)]

Let G = (y — Hass)? (y — Ha,ss), minimizing with respect to s

oG

and the LS estimate (assuming invertible 4 f) is

Sis = Hapy
Thus, the LS estimator is equivalent to a zero-forcing (ZF) equalizer. These soft
estimates are then fed to the decoder for subsequent decoding after which the hard
symbol estimates are obtained. Clearly the main drawback of this estimation tech-
nique is the O(N?) complexity of inverting the non-diagonal N x N channel matrix

Ha,f-
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5.2.2 Linear Minimum Mean-Square Error Estimation

The linear minimum mean-square error (LMMSE) estimate for the unknown sym-

bols in s is given by [39]
§lmmse = RsyR;;y

where s is uncorrelated with noise w ( E{sw?} = 0) and Hg ; is known. Ry denotes
the cross-covariance matrix between s and y and Ryy denotes the auto-covariance

matrix of y. Thus,

Ry, = E{sy”}

= Hiy
where we assume E{ss”} =T and

Ryy = E{yyH}

where o2 denotes the variance of the elements in w. Thus the LMMSE estimate is

given by
Stmmse = Hgf(,Hd,f%gf + Jil)ily (54)

and these soft estimates are used for subsequent decoding. The estimates obtained
from the LMMSE estimator are more reliable than the LS estimator due to absence
of noise enhancement inherent to ZF equalizers. However again, the main drawback

of this estimation scheme is the O(N?) complexity of matrix inversion in (5.4).
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5.2.3 Diversity Exploiting QR-Estimation

QR-Decomposition of a Matrix

Every m x n matrix (m > n) H can be expressed as the product of an m x m

unitary matrix ) and an m X n upper triangular matrix R

[H]an = [Q]mxm [R]mxn

This principle is known as the QR-decomposition of a matrix. More specifically,

[laull (@, ha) (@i,hs) ... (@n,hy)]
lazll  (@2,h3) ... (G2 hy)
[T T T-I [T T T-I N :
h; hy h,i = a Q@ . am )
1L IR V] o
7 Q | Omfnxn _
R
where (a,b) = bfa, || - || denotes the vector norm, h; € C™ and
q1 = hla
k-1
qQr = hk_Z<QZahk>QZa k:2a T
i=1
G - G
Z 1]

Solving Algebraic Equations

A system of linear equations can be written in vector form as

[y]mxl = [H]mxn [x]nxl

Using the QR-decomposition technique explained above we have

[Y]mxt = [Qlmsm[Rlmxn[X]nx1
y = Q'y =Rx (5.5)
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We now proceed to solve for the elements in x from y, R. The structure of R makes
it possible to solve for the n'* element in x using only the n'* element in y and
[R]nn- Knowing the n'" element of x and the elements [R], 1, and [R], 1, 1 we
can then solve for the (n — 1) element of x. Proceeding in this fashion we can
solve for all the elements in x. This procedure is computationally-efficient because
it did not require an O(n®) complexity matrix inversion to solve for elements in
x (x = Hl'y, H' = (H¥H)"'H®). However, we need to feedback the value of
each detected element in x in order to solve for subsequent elements. Any wrong
decisions fed back would jeopardize future decisions leading to the possibility of error-

propagation; this is the main drawback of the decision-directed feedback technique.

QR /Givens Decision-Directed Estimation

In a nutshell, the goal of the signal processing described in Chapter 4 was to
render an accurate “parsimonious” representation of the doubly-selective channel.
Accuracy is ensured by max-SINR receiver pre-processing that yields an effectively
sparse Doppler-frequency channel transfer function matrix H4 . If we window the
time-domain received signal prior to taking the FF'T, the equivalent system can be

expressed as (See (4.6))

Y = C(B) (Hauys+w)

Using the max-SINR technique suggested in Section 4.3 we can design the time-
domain window coefficients b such that the matrix C(B)H,, is sparse. Specifically
we design the window to squeeze all the energy in the diagonals {—D, ..., D}. Next
we apply the mask operator defined in Section 4.2 on C(B)H4 to preserve only the

diagonals {—D,...,D}. We call this new matrix H4; and its general structure is
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seen in Fig. 5.2(a) where the shaded portion indicates the elements preserved by the

mask operator M(-). Thus the windowed OFDM system can be written in terms of

Figure 5.2: General structure of (a) the Doppler-frequency channel matrix after windowing
and masking, (b) the Doppler-frequency channel matrix after windowing, masking and
column deletion.

signal and noise-plus-interference components as

Y =Has+W (5.6)
where
_ 1
Hay = \/—NM(C(B)Hd,f)
1 _
w = — (M(C(B)’Hd,f)s + W) .

VN

If the first D and the last D elements of s are known or suppressed pilots, the
relationship between the unknown symbols s, and the windowed frequency-domain

observation vector 3" (after pilot removal) can be written
() — 77 wV)
Y =H s +W (5.7)
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where ﬁg} has the banded structure as seen in Fig. 5.2(b).

The general structure of ﬁf}} makes it possible to obtain a soft-estimate of the
last element in s, using only the last element in ¥%). After thresholding, the resulting
hard symbol estimate could be fed back and used to detect the second-to-last element
in s,, and so on.

However, if the lower diagonal entries in ﬁg} are small, the decisions made while
detecting the last few elements in s, would be unreliable. Any wrong decisions fed
back could cause errors while detecting subsequent symbols. Leveraging diversity, we
propose a QR-decomposition that annihilates the lowest diagonal in ’Hg}, producing

a new system of equations given by
_ (2 _
v = Hys, + w2,

where,

Continuing in this manner, we can remove the diagonals one at a time from the

bottom, yielding a set of causal diversity models

v = HYs +wO,  i=1,...,2D+1
A = QY. i=1,...,2D

Fi+) = Q(i)Hy(i)’ 1=1,...,2D

The structure of {ﬁs)f 2D actually enables us to perform each QR-decomposition via

~ (N — 2D) “Givens rotations” with a total of ~ 4N D multiplies.

52



(a) remove pilots (b) after first QR (c) after second QR

Figure 5.3: QR/Givens decision-directed diversity estimation

Fig. 5.3 illustrates the QR/Givens decision-directed diversity estimation strategy
for D = 1. Fig. 5.3 (a) shows the general structure of ﬂg}. Fig. 5.3 (b), (c) show
the general structure of ﬁf} and ﬁf} obtained after the QR/Givens decomposition
of ﬁg} and ﬁg} respectively.

These (2D + 1) diversity models can be coherently combined to obtain the soft
estimate of the last symbol in s,. This (tentative) decision can then be fed back so
that the second-to-last symbol can be coherently estimated, and so on. Finally, all
soft estimates would be sent to the decoder to obtain the hard symbol estimates.

Thus we observe that each symbol in s, is estimated from a coherent combination

of (2D + 1) channel coefficients thereby exploiting diversity®.
5.2.4 MMSE-based Decision-Directed Estimation

Assuming the same setup as in Section 5.2.3, from (5.7) we have

Y= ﬁd, fSut+W
6The windowing followed by masking leads to a length (2D + 1) ICI response.
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where the superscript has been dropped for convenience and W is a vector containing
correlated Gaussian noise samples (W ~ N(0,02CCH), C = (C(B)).

The structure of H, s (See Fig. 5.2(b)) suggests that all information about the
last element in s, is contained in the (2D + 1) last elements of ¥. Thus we can set

up the relation

7 = g&}sg) Lw
where now 3V, sq(}), w() are the (2D +1) last entries of ¥, s,,, W respectively and ﬁg}

is the (2D + 1) x (2D + 1) upper triangular matrix formed by the last (2D + 1) rows

and columns of Hg,;.

(@ (o) (c) (d)

Figure 5.4: MMSE-based decision-directed estimation

Fig. 5.4(a) shows the basic structure of H4 ; for D = 1 with the dashed region iden-
tifying the upper triangular matrix ﬁg}. With channel knowledge, we can perform

linear-MMSE estimation of the last element in s’ using an O(D?) matrix inverse:

. —(1)F —1)==(1)7 1
[Sulonsr = el Hyy (Hy Hy) +02C0CH")~1y0
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Above we used the fact that W) ~ A(0,02CHCH™), where C® is a matrix con-
taining the (2D + 1) last rows of C and esp1 is a length (2D + 1) unit vector given
by e2pi1 =10,...,0,1]".

Having estimated the last element in s,, a tentative decision can be fed back to re-
move the influence of this symbol. This involves canceling the symbol’s contributions
to ¥ using the last column of H4; as shown in Fig. 5.4(b). Now the second-to-last
element of s,, can be MMSE estimated using the same procedure. This process can be
repeated until only the first (2D + 1) elements of s, remain as shown in Fig. 5.4(d).
These symbols can be jointly estimated using a linear MMSE scheme as follows: First

we set up the relation
? = ﬁd,fgu +wW

where ¥ is a vector containing the (4D + 1) first elements of ¥ after canceling the
contributions of the already detected symbols, ﬁd, 7 the (4D + 1) x (2D + 1) matrix
indicated by the dashed region in Fig. 5.4(d) and W a vector containing correlated
noise samples with W ~ N (0, aﬁ)ﬁ EH), where C is a matrix containing the (4D +1)

first rows of C. The joint MMSE estimate of the unknown symbols is

Su=Hy; HayHy;+0,CC )7y

Here again, the MMSE estimates (soft-decisions) are saved at each step for subse-
quent decoding. This decision-directed MMSE scheme is expected to outperform the
decision directed QR scheme from Section 5.2.3, though with an increased complexity
of O(D?N) relative to O(D?N) multiplies. There are several ways to generalize this
scheme. For example, incorporating more observations at each MMSE step would
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generate better estimates but require larger matrix inverses. In addition iteration
may prove worthwhile, for example, it is possible to re-compute the symbol estimates
as soon as the first decoded version is available leading to a significant improvement

in the estimates of the initial elements in s,,.
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CHAPTER 6

SIMULATION RESULTS

In Fig. 6.1 we plot the approximate BER performance for coded and uncoded
OFDM in an LTI channel. We know that each OFDM block can be represented by
the system of equations y; = h;s; +w; where i = {0,... N} and w; ~ N'(0,02). Thus

for an uncoded OFDM system employing QPSK we have

1 hi?
P(elh;) = 3 erfc ( |20|2 ) (6.1)

and we can approximate the BER for a block P(e|H)

| V-1
P(e|H) = N Z P(e|h;) (6.2)
=0

where H = diag(h;). Next this BER can be averaged over a large number of blocks

to yield the average BER of the system

P(e) = E[P(e|H)] = { Zpem} (6.3)

Observe that the BER for an OFDM system is a function of the individual subcarrier
SINRs. Any nulls in the channel spectrum would correspond to a low subcarrier
SINR. From (6.1) we see that a low subcarrier SINR would translate to a high P(e|h;).

These terms would dominate the sum in (6.2) and lead to an overall high system BER.
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Thus for uncoded OFDM systems, the BER performance is dictated by the lowest
subcarrier SINR. In general, for channels that are fairly frequency-selective, uncoded
OFDM offers a poor BER performance.

For an OFDM system employing powerful coding, we can assume that the BER

is a function of the average SINR across subcarriers [36] and so (6.2) becomes

|
I
— T
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E
810 ..............................................................................................
o
o
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Figure 6.1: Uncoded versus coded OFDM in LTI channels

1 Yirg |hif?
P(e|H) ~ éerfc 2}%7 (6.4)
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and the average BER can be calculated as in (6.3). Observe that the BER, though
still a function of the individual subcarrier SINRs, is no longer dominated by the
worst subcarrier SINR. This can be understood by the fact that, even though, some
subcarriers have a low SINR, the average SINR over all the subcarriers is high enough,

leading to a good BER performance. Further, since,
E [erfe(:)] > erfe (E[-])

we can be sure that the BER obtained from (6.4) will always be less than or equal
to that obtained from (6.2). With increase in channel delay spread N, there is
diversity offered by the multipath channel. Simulation results show that BER for the
coded OFDM system improves with the increase in channel delay spread Nj, thus
exploiting diversity. This is the primary motivation for the use of channel coding in
OFDM systems.

In Fig. 6.2 we plot the approximate BER performance of the detection schemes
described in Section 5.2. The OFDM system employed QPSK and block length N =
128. The channel was WSSUS Rayleigh with delay spread N, = 32 and normalized
Doppler f; = 0.01 in (a) and fy = 0.001 in (b). Bit error probability was calculated as
follows. First Jakes’ method was used to generate fading channel realizations over a
span of many blocks. For each block, the SINRs of symbol estimates were computed
at each subcarrier using the different estimation techniques discussed in Section 5.2.
Next the SINRs were averaged over the N subcarriers, and then converted to BER

assuming Gaussian interference and a QPSK decision mechanism

1 E[SINR
P(e|Hay) ~ 3 erfc ( g) .

2
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Figure 6.2: Comparison of different detection schemes for coded OFDM
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Finally, these BERs were averaged over a large number of blocks. As discussed
previously, carrier-averaging of SINR was employed to mimic the use of powerful
coding. The “LTI channel” traces in Fig. 6.2 were included as a reference; they
reflect the case where the channel remains fixed throughout each block but changes
between blocks. The LTI channel trace indicates the best BER performance that
can be expected from the coded OFDM system in a LTI multipath channel with
delay spread N, = 32. It is encouraging to observe that the low-complexity schemes
described in Section 5.2.3 and Section 5.2.4 offer good performance relative to the
optimal LTI channel trace.

Next, we proceed to take a closer look at some of the traces from Fig. 6.2 to
support the claims we made in Chapter 5. In Section 5.2.3 we argued that the soft-
symbol estimates obtained by the QR diversity exploiting technique were more reliable
than the simple decision feedback technique. In Fig. 6.3 we plot the approximate
BER performance of the two for an OFDM system employing QPSK with block
length NV = 128. The channel was WSSUS Rayleigh with delay spread N, = 32 and
normalized Doppler f; = 0.01 in (a) and f; = 0.001 in (b). Max-SINR windowing
was employed with D = 2 in (a) and D = 1 in (b). Fig. 6.3 demonstrates that the
O(D?*N) complexity QR technique outperforms the O(N) simple decision technique
when f; = 0.001 while they both provide the same performance at f; = 0.01.

In Fig. 6.4 we plot the BER performance of the QR-based decision feedback esti-
mator and the MMSE-based decision feedback estimator for an OFDM system em-
ploying QPSK with block length N = 128. The channel was WSSUS Rayleigh with
delay spread Nj, = 32 and normalized Doppler f; = 0.01 in (a) and f; = 0.001 in (b).

Max-SINR windowing was employed to shorten the ICI responses to D = 2 in (a) and
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Figure 6.3: QR diversity decision feedback versus simple decision feedback
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D =11in (b). Fig. 6.4 demonstrates that the MMSE-based scheme far outperforms
the QR-based scheme at a modest increase in complexity of O(D3N) as opposed to

O(D?N) multiplies.
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Figure 6.5: BER performance of the LMMSE detector versus normalized Doppler spread
fa

In Fig. 6.5 and Fig. 6.6 we plot the performance of the O(N?) linear MMSE

detector (Section 5.2.2) and the O(D*N) MMSE-based decision-feedback detector
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(Section 5.2.4) respectively for various Doppler spread f;. The trend suggests a

performance degradation with increase in channel time-variation.

LTI channél
-2 O(N®) Linear-MMSE
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Figure 6.7: Comparison of the LMMSE detector and the MMSE-based decision feedback
detector

Fig. 6.7 demonstrates that the MMSE-based decision-feedback scheme offers good
performance relative to the linear MMSE detector. When f; = 0.001, as seen in (b),
the O(N?) linear detector outperforms the O(D?N) decision-feedback detector at
the cost of a much greater complexity. When f; = 0.01, as seen in (a), however, the
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decision-feedback detector outperforms the linear detector even though the former is
simpler to implement! This can be understood by the fact that the decision-feedback
detector employs non-linear processing to leverage receiver knowledge of the finite-

alphabet constellation.
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CHAPTER 7

CONCLUSIONS & FUTURE WORK

In this thesis, we have addressed problems faced by OFDM systems in channels
that are time- and frequency-selective. Perhaps the single largest impediment to
reliable communication in a doubly-selective channel is interference in the form of
ICI and/or ISI. In Chapter 3 we derived expressions to quantify the extent of ICI
power as a function of other system parameters. These results suggested that, ICI
power was prominent over nearby subcarriers and not so significant as we moved to
distant subcarriers. Even then, neglecting distant-subcarrier ICI was detrimental to
system performance while incorporating its effects lead to problems with implementa-
tion. As an alternative, we suggested a low-complexity linear receiver pre-processing
strategy (i.e., max-SINR windowing) that optimally reduced the extent of ICI in
the system. Finally we proposed low-complexity estimation schemes that exploit the
post-windowed sparse ICI response to obtain reliable soft-symbol estimates. Simula-
tion results clearly indicate good performance relative to standard detection schemes
but with significant computational savings. As this thesis summarizes preliminary

research in this area there are a number of avenues for future work.
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Enhanced Receiver Pre-processing

In Chapter 4 we proposed the design of a basic N-point max-SINR window to
optimally reduce the extent of ICI power. Given that multipath channels typically
exhibit an exponentially decaying delay profile [35], it is likely that a small amount of
interblock interference (IBI) can be traded for a larger reduction in ICI. Thus, an im-
proved strategy would involve windowing a N + N, + Nj,-point segment of the received
signal, where N, denotes the cyclic-prefix length and N} the channel delay spread.
Furthermore, viewing these windowing operations as diagonal matrix multiplication,
we presume that banded matrix multiplication, or super-windowing, may offer yet
improved performance at a relatively small increase in complexity. As future work,
we could derive expressions for > N-point max-SINR windows, super-windows, and
their realization-independent approximations. The extension to multiple transmit
and/or receive antennas could be also considered.

In practice, max-SINR window coefficients may be inconvenient to compute be-
cause, e.g., the channel coefficients H;; might be unavailable or the computation
of the principle eigenvector (See Section 4.3) may be too expensive. Furthermore,
if the channel does not satisfy the Rayleigh assumption or the noise variance and
Doppler spread are unknown, then direct computation of the realization-independent
approximation will not be possible either. In these cases, it should still be feasible to
determine the max-SINR window coefficients automatically using decision-directed
or even blind adaptive techniques. Thus as future work it would be interesting to
investigate adaptive algorithms to design schemes for max-SINR window coefficient

adaptation.
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Low-Complexity Channel Estimation Algorithms

Since detection strategies often rely on knowledge of the channel coefficients,
computationally-efficient channel estimation algorithms should be investigated. For
OFDM in doubly-dispersive channels, significant time-variation increases both the
number of channel parameters that must be estimated as well as the difficulty of
estimating these parameters. As mentioned before, there exists relatively little work
on doubly-selective channel estimation in a multicarrier context, and the existing ap-
proaches are not not practical for typical block lengths. As future work, it would be
interesting to investigate pilot-based/blind LTV channel estimation, including per-
formance analysis and extensions to multiple-antenna systems for the parsimonious
channel representations used in this thesis. Note that blind multicarrier algorithms
have recently been derived for the LTI case based on finite-alphabet [40], subspace [41]

and cyclostationarity [42] ideas.

Coding for Diversity Gain

From Fig. 6.1 it is evident that OFDM systems must employ some sort of channel
coding techniques in order to exploit the diversity offered by the multipath fading
channel. In this thesis we generated BER plots under the assumption that for coded
OFDM systems the BER is a function of the average SINR across subcarriers. As
future work, the effect of practical coding schemes that go hand-in-hand with more
sophisticated detection algorithms (e.g., “turbo” methods) could be studied. In single
carrier systems coding techniques are known to exploit the frequency-diversity offered

by the ISI channel to improve BER performance. Thus coding schemes should be
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derived that can exploit both the frequency- and temporal-diversity diversity that

the doubly-selective channel has to offer.

Differential Detection

Differential detection (DD) [10] is useful when coherent detection, with its re-
liance on channel knowledge, becomes impractical. DD has been applied to OFDM
under time-domain differential modulation (TDDM), where information is coded into
each subcarrier’s inter-block differences, or frequency-domain differential modulation
(FDDM), where information is coded into each block’s inter-carrier differences [43].
To our knowledge, DD-OFDM has been proposed only for the slowly-fading case,
i.e., where intra-block channel variation is negligible. There its has been shown that
TDDM performs better than FDDM when channel variation across blocks is less than
channel variation across carriers, and vice-versa [44].

In doubly-selective channels, DD-OFDM is complicated by the presence of ICI.
As future work it would be interesting to investigate DD-OFDM algorithms for this
case that leverage work on DD for single-carrier ISI channels (e.g., [45,46]). The hope
is that the increased detection complexity (relative to coherent) would be offset by

avoidance of channel estimation.
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APPENDIX A

OFDM IN LTI CHANNELS

Assume that the time-domain received signal r{*)(n) is a noise corrupted and
linearly distorted version of (¥ (n) as a consequence of a LTI channel with impulse
response A (m). The channel is assumed constant over the 5** block. If the channel

is causal with a maximum impulse response duration NV, where N, < N, < NN, then

Np—1

Zh )2 (n—m) +a%, ne{o,...,N—-1} (A1)

The adequate length of the cyclic prefix enables the values of () (n —m) in (A.1) to
be well defined. We assume that u?g) are zero-mean white and Gaussian with variance

o2. At each block 7, the receiver drops the samples corresponding to the cyclic-prefix

and applies {r®(n)}=! to a discrete Fourier transform (DFT), yielding {y{’}Y~

s Zr

() using the system equations (2.7), (A.1)

We can relate s;;” to y,

1 Nl Np—1 e
o = 33 (B [ Eopo

(1)




The w are statistically equivalent to their time-domain counterparts. Each y,(,i) in
the i block contains information about only the corresponding sl(,i), i.e., ICI is absent.

In vector form (A.2) can be written as
y(i) = HDg) 4 5@

where H® is a diagonal matrix that represents the frequency-domain effect of the
channel and has H" as its individual entries. Knowing y® and H®, MMSE detection
of the unit variance QAM symbols in s is accomplished by element-by-element

thresholding of the vector

§®

mmse

= HOT (qOYOT 4 521)-150

Since H® is diagonal, the matrix inversion required in the MMSE detection is trivial.

This is the classical motivation for cyclic-prefix OFDM.
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