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1 Introduction

Due to the continuous increase in transmission rates of digital communication systems, the
channel equalization community has recently given much attention to decision feedback equal-
ization. The main reason for this shift in focus from linear equalization to combined linear
and (nonlinear) decision feedback equalization (DFE) is due to the fact that DFEs offer inter-
symbol interference (ISI) cancellation with reduced noise enhancement, and may thus provide
significantly lower symbol error rates (SER) than a linear equalizer, which reduces ISI with po-
tentially greater amplification of noise. On the other hand, due to the nonlinear feedback nature
of DFEs, noise induced symbol errors may trigger bursts of errors which can lead to poor SER
performance. This phenomenon, called error propagation, is not well understood and mystifies
researchers and practitioners as to when it is a problem and when it is not.

Behavior of DFEs is quite distinct in two types of operating scenarios. In the first scenario,
the channel to be equalized has strong ISI but low noise power, or high signal to noise ratio
(SNR), as is the case in high data rates, microwave links. Here, the DFE has the job of providing
very low symbol error rates. Noise induced primary errors occur infrequently and may result
in short bursts of errors (and long bursts, which apparently occur infrequently in practice), but
which do not affect significantly the SER. In the second scenario, the DFE operates in a low
SNR environment in conjuction with a coding system. The DFE is used to reduce ISI enough
for the decoder to make sequence estimates with very low BERs. This equalization scheme has
been proposed for high definition television (HDTV) standards.

One must bare in mind that in practice, at startup, the receiver does not have knowledge
of the channel dynamics, and that it is also possible that the channel varies in time. Hence,
a DFE receiver must be implemented as an adaptive filter which can converge to a solution
that satisfactorily reduces SER and can also track time variations in this solution as the chan-
nel varies in time. When possible, a training sequence from the transmitter may be used to
adapt the receiver. In uncooperative or broadcast communication systems, however, adaptation
must be done without blindly, without the aid of the transmitter. Again, due to the nonlinear
feedback nature of the DFE, blind adaptation of DFEs is extremely difficult: if the DFE is not
properly initialized, a blind adaptive DFE algorithm may converge to unacceptable closed-eye
parametrizations.

This tutorial covers the basics of DFE including finite and infinite length filter design, joint
DFE and coding, error propagation analysis, and blind adaptation with the goal of providing
some background and intuition for dealing with the practical DFE problems described above.
Each section contains illustrative examples and points out to related papers in the literature.
The last section of the tutorial describes THE DFECATOR, a software package written as a tool
for DFE research and design.

2 DFE Structure

Let us begin by defining the communications model for studying the DFE. (refer to Figure 1).
We will also adopt the following assumptions:
e Source, channel, noise and equalizer are real-valued.
FEzlension Lo complez-valued communicalions is simple.
e Baud-spaced equalization.
The conversion lo fraclionally-spaced equalizalionis virlually accomplished by redefining
the channel convolulion malriz.
e (Linear) time invariant (LTI) channel.

Time-varialions of the channel are avoided for simplicily, bul they are a phenomenon of
importance which make analysis of DFE behavior very difficull.
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Figure 1: Baud rate DFE communications model.

A sequence {ay }rcz of symbols ai € A from a finite alphabet A is transmitted every T-seconds.

This source signal, with power 02, is transmitted over a linear, time-invariant (LTI) finite-

impulse response (FIR) channel ¢ = (cg,c1,. .. ,cn,)!, ¢ € R with additive white noise ny € R
of zero mean and variance o2. The received signal is then given by

Ne
TR = Zciak,i-#—nk.
i=0

Equalization is achieved via feedforward f = (fq,... ,fN!.)L7 fi € Rand feedback d = (di, ... ,dn,)’,
d; € R filters yielding soft estimates

Ny Ny
o= Y firk—i— Y ditn
=0 i=1
which are quantized by a decision device Q into hard decisions

ap = Q(z) = argarneigla — -



It will prove convenient to define the channel convolution matrix
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as well as the combined channel and equalizer impulse response

h=(ho,---,hn,)  =CFf.
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Figure 2: DFE model under key assumption.

We will now try to better understand the decision feedback equalization mechanism by using
the standard trick for analyzing DFEs, the key assumption of correcl feedback decisions (refer
to Figure 2), i.e. d = ak_g, for some 6 > 0. Under this key assumption

5-1 Ny Ny, Ny
zp = hoaks  + D hiaki + D (hips —ddaxsit D hiaki+ Y fink
X ~ i=0 i=1 i=0+Ng+1 i=0
information — ——
bearing residual modeled residual filtered
cursor precursor postcursor postcursor noise
IS1 IS1 ISI

Therefore, one way to equalize the channel effectively would be to use the feedforward filter to
e shape the combined channel-equalizer impulse response & so that it has a strong (unbiased,
meaning unity gain) cursor hs = 1,
e small residual ISI h; = 0 for 0 <i < dand 6§ + Ny < i < Np,
e while keeping the noise gain, 3", | fi|?, as small as possible,
and the feedback filter to
e exactly cancel the remaining ISI by matching DFE taps d; = h; 4, 1 <1 < Ng.

This is essentially what the optimal design in terms of MSE does, as will become apparent in
the next section.

3 MMSE-DFE: finite length filters

Let the mean square error (MSE) in recovering delayed source symbols (given some parametriza-
tion (f,d) of the DFE) be

02 = EB{(ax 5— =)}

We call e, = ag_s — zx the source recovery error, or soft decision error. OQur aim is to compute
the pair ( f}, d}) which minimizes 62. To do this, we define symbol regressors

Ap = (ar,-. - a6-n,)', Ap = (@x—r,. - ap-n,)'s Ni=(ng, ... ,np_n,)
Assuming correct past decisions, ax = ag_s
Ay = (ap—s-1,--- ak—s-n,)"-

We then find MSE is a quadratic cost function with respect to equalizer parameters f and d

of = B{( @ 5 —ALC]+ALd—NLJ)?}

NNy . L
desired equalized signal
which can be minimized by setting the gradient of o2 with respect to f and d to zero. First,
Vao? = E{-24,4Cf +244ALd - 24,Nif + 2aHAk} .
When the input and noise processes are mutually uncorrelated ! the expression simplifies to
Vol = —202MCf +202d
where we use E {Akfifc} =02, E {ak,,s/ik} =0,E {AkAfc} =02M and 2
M = (Ongxs INgxNy ONgxNo—Na-s) -
Hence, the MMSE feedback filter can be written as
di = mcy.
Similarly, for the feedforward parameters we have
Vo2 = 202CCf —202C'M'd — 202Cles + 202 f

wherees = (0,...,0,1,0,... ,0)! is the standard basis vector, with one at position §, 0 < § < Nj,.
Assuming mutually uncorrelated source and noise, substituting d} = MCf results in

Vo2 = 202CHI - M'M)Cf — 202Cles + 202 f
yielding the MMSE feedforward equalizer

o= (C'PC+ A1) Cles

'Both input and noise sequences are white processes and are uncorrelated with each other.

2Note that this formulation of M restricts the feedback filter length to Ng < Nj, — 4. This simply means that
additional feedback taps are not needed and should be set to zero. One could also extend our derivation to longer
feedback filters by zero-padding the combined channel-feedforward equalizer impulse response.



where A = ¢2 /02 and P = (I — M*M).
The problem of minimizing MSE for mutually uncorrelated source and noise and some fixed
delay 4 translates to

s =argmin |P(CS —e)|P+ AJIE b =argmin |la— Mg
[ ~— —— d

S——
residual amplified modelled
pre- and noise postcursor

postcursor ISI

IS8T

Note that MSE is also a function of delay é and that optimization of delay requires an exhaustive

search over the range 0 < § < Nj,.

3.1 Example

Using a simple example we will show the main design issues in DFE design. Our task is to
design an equalizer with at most Ny 4+ Ny = 64 parameters for the ISI channel shown in Figure
3, at 15 dB SNR. The constraint on the total number of parameters mimicks the problem of
limited hardware resources which is in practice complicated by other issues such as cost, ease of
implementation, and equalization requirements.

As designers, we will have to make two major choices. First: how do we partition the total
number of taps into the feedforward and feedback filters? Second: which overall system delay
do we pick? The brute force solution to these questions is to try every possible combination of
(Ng, Ng,6). Some useful guidelines, however, may help to make the search more focused:

o In practice, it is often the case that a channel has a strong cursor with some delay v > 0
(for the channel in Figure 3, v = 7), and possibly a few secondary rays occuring at later
(and less frequently at earlier) time delays. Symbols delayed by the channel cursor delay
have the most energy. Consequently, it makes sense to attempt to recover them by picking
the overall system delay ¢ to match the channel cursor delay, i.e. § = v. It also makes
sense to pick a larger system delay, i.e. § > v since the extra delay may be implemented
by the feedforward filter. This extra delay, however is limited by the feedforward equalizer
length, i.e. 6 < v+ Ny. Hence, the range of good delays is § € [v,v + Ny|.

As we have seen, the role of the feedback taps is to additively cancel ISI without introducing
noise gain. Therefore, one can think of placing a DFE window to cancel large channel
postcursor taps. In our sample channel the cursor is at delay index » = 7 and the portion
of the postcursor with significant ISI lies around delay index 8 to about delay index 25.
This gives us a general idea of how to partition the available parameters.

We use these two rules-of-thumb in our sample design. To match the channel postcursor, let
us use Ng = 32 feedback taps, leaving Ny = 32 feedforward taps. We choose an overall system
cursor § = 25 approximately in the center of the range of good delays [7,39]. For comparison,
we will also try a linear design with Ny = 64 feedback taps (and Ny = 0 feedback taps). MSE
versus system delay is shown in Figure 3. Notice the trough of low MSEs as predicted above,
i.e. [7,39] for the DFE design and [7, 71] for the linear design. Also notice that the DFE design
outperforms the linear design due to a clever tap partitioning.

Figure 3: (left) Channel impulse response, (right) MSE E {(sy 5 — 2;)?} versus delay choice &
for (solid) DFE design with Ny = 32 feedforward taps and Ny = 32 feedback taps and (dashed)
linear equalizer design with Ny = 64 feedforward taps.

3.2 Remarks

Extended Analysis A more general derivation for the finite length MMSE-DFE that in-
cludes fractionally-spaced feedforward filters and colored source and noise can be found in
[Al-Dhahir TIT 95a]. By making the assumption of a sufficiently long feedback filter, i.e.
Ny > Ny, this paper also gets a handle on delay optimization and statistics of the recovery
error €. Under this (strong) assumption a single matrix inversion provides the facility of
determining the optimal delay 6. The paper draws comparisons between residual errors for
the finite and infinite length DFEs. We briefly note that the residual error will in general
be correlated due to the filtering process through the feedforward filter and residual ISI
taps, and non-Gaussian due to residual ISI (unless the source is Gaussian).

Unbiased design [Al-Dhahir TIT 95a] also emphasizes the importance of having an unbiased
design, where MSE is minimized under the equality constraint hs = 1. Under this con-
straint MSE is higher than MSE achieved without the constraint. On the other hand, the
probability of error given by the unbiased design is lower the the probability of error from
the unconstrained design. Computing the unbiased MMSE-DFE (f§,d}) is easy
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where o = [Cf,;[]é,l is the 6" tap of the combined channel-(unconstrained, MMSE) feed-
forward filter impulse response. This fact can be proved using Lagrange mullipliers.

Practical design issues In the design example above we encountered to questions: how to
partition parameters between feedorward and feedback filters and how to select system
delay. At the current moment, the literature has no practical systematic way of answering
these questions, much less for the blind scenario. Schemes which aid the designer to
overcome these barriers would certainly be welcomed by the DFE community.



4 MMSE-DFE: infinite length filters

The finite-length MMSE-DFE was expressed as the solution to a finite system of linear equa-
tions. The infinite-length solution will be derived using rational transfer functions instead. Let
C(z) denote a stable, causal channel transfer function that is related to the impulse response
coefficients {¢;} through

our task is to design rational transfer functions representing the forward and feedback filters.
Since the feedback filter relies on past decisions, it must be strictly causal.

The IIR-DFE design can be motivated through consideration of IIR linear equalizer perfor-
mance. Consider the error system illustrated by Figure 4(a), where F(z) denotes the transfer
function of a baud-spaced forward equalizer. (As the overall system delay becomes inconsequen-
tial with IIR equalization, we assume zero delay on the reference path.) Assuming mutually
uncorrelated source and noise processes, the recovery error power spectrum Sg(ej“’) takes the
form

5.(e7) = |C(e)F(e) — 102 + | F(e/)) 02

Completing the square,

C*(ejw) 2 02

LWy n
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S.(e) = (ool +02)

where A = 02/02. Recalling that 02 = [ S.(e/“)dw, the IIR forward equalizer minimizing o2 is
given by

j C*(e)
Fe¥) = .
) = ToemE e
for which the error power spectrum becomes
2
: a,
Se(e?) = ——— =2 ——.
(") [C(e*)2 + A

Noting that the corresponding error sequence {ej } is (in general) not white, the theory of lin-
ear prediction tells that the error variance may be reduced by proper whitening of the sequence.
The filter which accomplishes this is referred to as a prediction error filter [Haykin Book 96] and
is illustrated by D(z) in Figure 4(a). Manipulation of the filtered-error-system block diagram
reveals its equivalence to the IIR DFE shown in Figure 4(b) [Lee Book 94]. We summarize key
properties of properly designed D(z):

o As a prediction error filter, D(z) is guaranteed to be monic® and causal, and thus 1 — D(z)
is an appropriate (i.e. strictly causal) DFE feedback filter.

e The IIR DFE error sequence ¢}, is white. This is advantageous for many detection schemes.

e The variance of E;c is less than or equal to the variance of €, implying a properly designed
IIR DFE is at least as good as an IIR linear equalizer.

(b) .
% o) - F@DE) - o |

Figure 4: Two equivalent error system models: (a) forward equalizer followed by prediction
error filter D(z) and (b) DFE (assuming correct decisions).

Next we derive the MMSE-optimal #'(z) and D(z). For any choice of F'(z), the prediction
error filter D(z) is completely determined by S.. Specifically, if a spectral decomposition * is
used to split S, into its minimum-phase and maximum-phase components:

S.(z) = 02Ge(2)GE(1/z),

where G.(z) is monic, causal, and (loosely) minimum phase, then the optimal prediction error
filter is given by

It can be shown that MMSE F(z) is designed just as in the linear case [Lee Book 94], so as
before
Cr(1/z")

Fe) = GaEex

For a more concise description of the DFE feedforward filter #'(z)D(z), we employ a spectral
decomposition of the received signal spectrum:

8:(2) = 0,|C(2)* + oy, = 02G. ()G (1/2")

3For a polynomial to be monic, its constant term must equal one. Monic rational transfer functions are
characterized by monic numerator and denominator polynomials.

1A non-negative real transfer function has complex conjugate pole pairs and zero pairs which may be split
evenly between (loosely) minimum phase and (loosely) maximum phase transfer functions. Pole/zero pairs on the
unit circle are split likewise.



to write

o202
() = GGy
D) = Gala),
I o )
e = gy
which implies
Pl = %.C0/)

o} Gi(1/z")
From Figure 4(a), the power spectrum of the whitened error is

2.2
940n

Sa(e’) = S.(e™)|DH(e)]* =

o’
from which it is apparent that the MMSE of the [IR-DFE

2 .2
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Note that the MMSE DFE feedforward filter is anti-causal stable, while the feedback filter 1—
D1(2) isstrictly causal stable. Though the anticausal ITR feedforward filter is not implementable,
it can be approximated by a causal FIR filters of sufficient length. In fact, the key properties
of the MMSE IIR DFE (such as a white soft-error sequence) are expected to well characterize
long FIR approximations.

5 Error Propagation

Up to this point, we have always relied on the key assumption of correct past decisions for study-
ing DFE performance. We will now break this assumption and learn about the shortcomings of
the DFE due to error propagation. To understand the error propagation mechanism, consider
Figure 5 showing error sequences for 4-PAM communication system (i.e. A = {=+1,+3}). This
figure compares the DFE under the correct past decision assumption, as shown in Figure 2 with
the regular DFE in 1.

The dashed line shows soft decision errors, € = ax_gs — zx for the correct past decision DFE.
Notice that when residual error is enough to cross the dolled decision boundary line, a hard
decision error e; = ay, 5 — ag, designated with a o, occurs. No subsequent errors occur until the
residual error is large enough again, about 100 symbols later.

When decision error feedback comes into play, the picture is slightly different. While there
are no decision errors both structures share the same error sequence. When a decision error
occurs, however, both soft and hard error sequences diverge. The first residual-induced decision
error called a primary error (shown in Figure 5 with overlapping o and * since this first decision
error is shared by both structures in Figures 2 and 1) is fed back by the DFE causing secondary
errors (denoted with x’s), creating an error burst. Notice the oscillating pattern of the soft
residual errors plotted with a solid line. The burst terminates when the residual errors add up
in the right way to flush out all decision errors in the feedback, so that the error sequences for
both structures converge again. The event repeats itself about 100 symbols later.

o 4

softthard errors

L L L
640 660 680 700 720 740

Figure 5: Error burst for regular DFE (Figure 1) and key assumplion DFE without error feedback
(Figure 2).

One way of studying error propagation is to analyze the finite state machine formed by the
overall communication system, with states formed by source symbols in the channel-equalizer
memory and symbol estimates in the feedback filter tap-delay line. This is apparent if we write

Ng
a, = Q (a;Hs + Z hivs(ag—s-i — ag—i) + ﬁk)

i=1

where we have used d; = hj; 5,1 <1 < Ng, and where ¢4, is the symbol recovery error, clumping
precursor 181, filtered noise and unmodeled postcursor ISI. The finite state machine structure is
described as follows: the state of the system

. . 2N,
Xy = (@k-s-1,-- 0p—5-NylGk_1,-.. ,Gx_nN,) € A

depends on the source symbols and their estimates, the transitions are brought about by the
joint input ax_s and ¢, and the system output consists of the hard decisions a;. To reduce
the complexity of the model, we will assume that the sequence ¢ is i.i.d and has zero-mean
Gaussian distribution with variance o2. The system can now be described as Markov chain.

Once all the possible states (there are a total of |A|*Ne states, wher |.A| is the cardinality
of the alphabet) and transition probabilities between states are determined, a transition matrix
for the Markov chain provides the steady state distribution of the system. In other words, the
transition matrix says how often a certain Xj will occur, so that one can simply pick out error
states (where dx—1 # ax—¢—1) to determine the error probability of the DFE accounting for error
propagation.

5.1 Example

We illustrate the concepts above with the following case:

Source BPSK, i.e. a5 € {£1}

10



Channel ¢ = (1,0.8)!, 5 dB SNR For this problem, we find

DFE f=1,d=08. = (0.46923,0.03077,0.03077,0.46923)"
Channel-equalizer response h = (1,0.8)"
Error probability P, = m; + m3 = 0.0615. Through simulation with 300,000 symbols we
Residual error ¢ = ny estimate an error probability of 0.0617. Compare this error probability with the lower
States X; = (ax_1]ax_1). We conveniently label the states as binary digits, i.c. error probability assuming correct past decisions, P, = Pr(1 +n; < 0) = 0.0375.
(-1,-1)=<0>, (-,1)=<1>, (I,-1)=<2>, (1,1)=<3> 5.2 Remarks

Bounds As the constellation size and the feedback filter length increases, the total number

of Markov states |.A|?N¢ becomes very large and application of the ideas described above
Output ay = sgn (a; + 0.8(ag—1 — ax-1)) is impractical. Some research has been done to simplify the analysis by clumping error
states and providing upper and lower bounds on the error probabilities given some or no
knowledge of the channel dynamics, as found in [Duttweiler TIT 74, Cantoni TCOM 76,

Input aj

Transition probabilities

Current State | Input | Soft Estimate | Hard Estimate | Next State Probability OReilly IEE 85, Oliveira IEE 85] for example. Other similar work based on Markov chain
X ag 2k ag Xii1 Pr(Xgi1| Xk, ax) Pr(ag) techniques classifies channel types and provides other error measures, such as time to re-
(-1,-1) 1 1.0 4+ ng -1 (1,-1) po/2 cover from a primary error [Kennedy ISSPA 87, Kennedy TCOM 87b, Kennedy TCOM 87c|.
1 1,1 1- 2
<0> 1 1.0 41y, 1 (_(1 _)1) El _22%2 Stability arguments It is also possible to study error propagation from a dynamical sys-
' 1 (_]7 1) P0/2 tems perspective. For instance, [Kennedy TCOM 87a] shows that a DFE equalizing a
’ noiseless exponentially decaying impulse response channel can recover in a finite time
(-L1) 1 —0.6 +ng -1 (1,-1) (1-p1)/2 O o . B
1 1) /2 from an error burst. The idea is extended for channels satisfying a passivity condition in
<1> _1 —2.6+ 14 1 (=1, —1) ~1/2 [Kennedy TCOM 89a].
1 (-L,1) =0 Countermeasures Little work has been done on detecting and reacting to error propaga-
(1,-1) 1 2.6 + ny -1 (1,-1) ~0 tion. [Dogancay TIT 97] proposes techniques for detecting decision errors in equalization
1 (1,1) ~1/2 schemes, including DFEs, while [Fertner TSP 98] introduces a scheme which attempts to
<2> -1 0.6 + 7y -1 (=1,-1) p1/2 prevent primary errors and error propagation.
1 (-1,1) (1—p1)/2
(1,1) 1 1.0 + ny -1 (1,-1) po/2 . .
1 a,1) (1= p)/2 6 Joint DFE and Coding
-1 —1. -1 -1,-1 1- 2
<3> 0+ 1 ((71 1)) ( ‘702)/ Consider the problem of adding a DFE to a coded communication system, as represented in
2 Po Figure 6. Ideally, one would like to ignore the behavior of the effective channel which is a

where pg = Pr(1 + ny < 0) = 0.0375, p; = Pr(0.6 + ny < 0) = 0.1436. combination of the communications channel and the equalization (DFE) scheme. In this case it
is possible to predict the performance of the coded scheme since the effective channel consists
solely of additive noise, n. When the DFE can perfectly cancel ISI and whitens the symbol
estimatation errors, as is the case of the IIR-DFE [Cioffi TCOM 95] (assuming that fedback

Transition matrix M has entries [M]; j representing the probabilily that a state < i> goes
to a stale < j >. Here,

(1 —po)/2 po/2 po/2 (1 —po)/2 decisions are correct) the effective channel continues to consist solely of additive white noise, and
M = 1/2 0 (1—p1)/2 p1/2 therefore performance is predictable. When the assumption of correct past decision is violated
p1/2 (1—m)/2 0 1/2 (while keeping the assumption of perfect ISI cancellation), the effective channel consists of the
(1 —po)/2 po/2 po/2 (1—po)/2 sum of channel noise n and unsiructured noise from DFE error bursts. Little is known of the
effects of error propagation on error correcting decoders. One would like to know for what
Steady-state To find steady state probabilities of a Markov chain one solves for the left eigen- types of channels result in error bursts which may significantly undermine the performance of
vector of M with unity eigenvalue, under the constrained that steady-state probabilities the decoder. We would also like to understand the structure of these error bursts, and to have

for each state sum to unity, i.e. schemes which improve SER/BER performance.

3
T = M, Zﬂ', =1
i=0

11 12
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Effective channel

Figure 6: Joint DFE and coding communication system. A convolutional code (CC) codes bits
by to symbols ay and transmitts these over the effective DFE channel. Soft estimates zj (or
hard symbol estimates dy) are fed to a Viterbi Decoder for decoding into bit estimates by.

6.1 Example

A simulation of a joint DFE and coding system will illustrate these concerns. The simulation
setup consists of a source, encoder, channel and equalizer followed by a viterbi decoder as shown
in Figure 6. The binary sequence was encoded using a [57] convolutional code and mapped to a
4-PAM constellation. This sequence is then transmitted through the channel and equalized by
the DFE. The probability of bit errors versus SNR is studied for low SNR values in the waterfall
curves in Figure 7 for

o the ideal feedback case, where we artifically feed back correct symbols through the feedback
filter,

e the non-ideal case, where symbol estimates are fed back and may cause error propagation.

The error bursts are coloured and hence damage viterbi decoder performance. This can be
improved to some extent by whitening the soft inputs to the viterbi decoder. One approach
is to interleave the encoded symbols, and to introduce a deinterleaver prior to the viterbi de-
coder. The performance curves corresponding to various interleaver lengths of 48, 96 and 192
are shown in the plot. The whitening of the soft decisions improves the performance of the
coded system to some extent, but there seems to be a limit to amount of reduction in error
probability since the variance of soft estimation errors due to error propagation is not affected
by interleaving/deinterleaving.

7 Adaptive DFEs

This section presents adaptive algorithms for implementing DFEs and discusses some of the the
difficulties encountered by these algorithms due to the nonlinear feedback nature of the DFE.
The algorithms are based on stochastic gradient descent schemes (SGA) where a cost function
J(6) is minimized over the parameters 6 = (... ,6;,...) by taking small steps in the direction
of the negative gradient, i.e.

Oi(k+1) = Gi(k)—uaiaiJ(G).

In terms of DFEs, parameters 6; consist of feedforward and feedback filter taps. For a more
detailed discussion of adaptive equalization see [Haykin Book 96, Johnson PROC 98].

13

P, vs SNR for h =[1.00.05 0.6 ~0.27 0.03 0.12 0.22]
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N
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Figure 7: Channel h = (1.0,0.05,0.6, —0.27,0.03,0.12,0.22), (x) BER of regular DFE, (o) BER
of ideal DFE, and successive improvement in BER for interleavers of length (...) 48, (——)96
and (—.) 192.

LMS with training When it is possible to transmit a training sequence, the receiver has
knowledge of a sequence of source symbols ax. In that case, it is possible to directly
minimize MSE for some given delay § by setting up the LMS-DFE cost function

Jims = E {(ak—ﬁ - zk)z}
(which is in fact equivalent to 02). The adaptive algorithm ensues

Jik +1) filk) + pri—i(ag—s — 2), 0<i< Ny
dj(k+1) = dj(k) — pag_s—jlag—s —2) 1 <5 < Ng.

It should be clear that the training symbols are not only used to update the algorithm,
but also to generate soft estimates zj (i.e. no feedback is actually used, i.e. ax = ag_s).

Since nonlinear feedback is unnecessary under this adaptive implementation with training
the LMS cost function is quadratic, unimodal and the adaptive algorithm is globally con-
vergent. All the standard techniques for analyzing transient and steady-state response are
valid for this algorithm. See [Haykin Book 96].

Decision-Direction When a training signal is not available, one can substitute delayed source
symbols ag_s by their estimates Gx so as to minimize the cluster variance cost Jzq =
E {(ax — 2)?}, a proxy to the true MSE. The DD-DFE algorithm

Jilk+1) = fi(k) + pry_i(ax — 2), 0<i <Ny
dj(k+1) = dj(k) —pay jlar—2) 1<j <Ny

is blind in the sense that it does not use a training signal for parameter updates.

14



The weakness of DD-DFE is that it relies on symbol estimates for its update. If DD-DFE
is initialized with a closed-eye it is very likely that it will get trapped in a bad minimum,
possibly closed-eye as well. Usually DD-DFE is used after some other blind algorithm
has opened the channel eye. One common scheme is to open the eye by adapting the
feedforward equalizer with the Constant Modulus Algorithm (CMA) and then switching
to DD-DFE, where the DFE is initialized at the origin (i.e. d; = 0,Vi. One can show
that in the absence of noise DD-DFE is globally convergent to the MMSE-DFE (for a
fixed delay) from an open-eye initialization. See [Kennedy IJACSP 93, Casas IJACSP 98,
Casas SPAWC 97]).

CMA In the same way that CM criterion is used for linear equalization, in CMA-DFE, the

cost function, Jome = E{(22 —7)?}, vy =E{a}} /E {a} is used as a proxy to MSE (refer
to [Johnson PROC 98]. The updates are given by

Jilk+1) = fuk) + pry_i(2f —7)zr, 0<i< Ny
di(k+1) = dj(k) - pax_j(z — 7z 1<j< Ny

Little is known about the properties of CMA-DFE. The algorithm is not globally conver-

gent [Casas ASIL 95] under the CMA-FSE perfect equalization conditions [Johnson PROC 98],

but can be shown to converge under these conditions to a perfect solution when ini-
tialized sufficiently close to it. Again, the main problem is the use of decision feed-
back right from a (possibly) closed-eye initial condition, where estimates are not reliable
[Papadias ASIL 95, Casas ASIL 95, Tong ASIL 96].

IIR-DFE Hybridization One way to avoid the problem of feedback of incorrect decisions at

startup is to adapt a linear IIR filter until it sufficiently opens the eye and then to switch
to decision-direction, using the IIR filter parameters to initialize the DFE.

Several such methods have been proposed [Labat ICC 96, Mottier ICC 97] based on IIR
equalization [da Rocha ICASSP 94]-[Cavalcanti SPAWC 97] where a linear prediction fil-
ter is used to whiten the received signal thereby correcting amplitude distortions from
the channel, so that the combined channel-predictor response is all-pass; this filter is then
followed by an IIR all-pass filter for correcting phase distortions. The idea uses a factor-
ization of a FIR channel as the product of a minimum phase filter Cy,, an all-pass filter
C, and a gain o

C(z) = aCn(z)Cu(z).

Cp, contains the minimum phase roots of C (i.e. roots inside the unit circle) and the
minimum phase relflection over the unit circle of the maximum phase roots of C (i.e.
roots outside the unit circle). The roots of the numerator of C, are the maximum phase
roots of C, which are the inverse of the roots of its denominator (thus cancelling the
artificially introduced inverse roots in Cp,). Note that we have assumed the channel has
no roots on the unit circle. Naturally, one way of equalizing C is to have three filters

In the absence of noise and when the order Ny of the filter matches the number of
roots of Cy, one expects the parameters to converge to an equilibrium yielding the
(stable) inverse of Cy,

1
1+ gz

This has the effect of whitening the received signal and giving a channel-predictor
combination equal to an all-pass filter. Note that the adaptive algorithm is minimizing
the output power J, = E{m%} of the predictor. Important questions to be resolved
are what happens when the prediction filter order is smaller that the order of Cp,,
and can the prediction filter become unstable? Partial answers to these questions are
probably found in the adaptive IIR literature.

=cL

2. Correct the amplitude with an Automatic Gain Control (AGC) to give a unity power
output. This can be done by minimizing the mean square difference between the
power at the output of the adaptive gain element and the desired (unity) power level

zp = VIBE)|zk
Blk+1) = pBk) — pay(af - 1).

3. Adaptation of an FIR approximation of the inverse C, via CMA

Yb = QoTp T aTk g+ ..+ aN TR,
ak+1) = k) +pzl_i (i — vk, 0<i< N,

This filter should converge to an approximate inverse of C,.

Once these stages are completed, the receiver reverts to DFE structure: the DFE feedback
coefficients are replaced by the predictor coefficients, i.e. d; = g;, 1 <4 < Ng = Ny, the
feedforward coefficients of the DFE are replaced the all-pass approximation coefficients
corrected by the gain, i.e. f; = B¢;, 1 <i < Ny = N,. Then, given this DFE initializa-
tion, both feedforward and feedback coefficients are adapted through decision-direction,
as described above (see Figure 8).

Convince yourself that the switch initializes the DD algorithm near MMSE DFE solution
by first noticing that in the IIR design the predictor and phase filters can trade positions
due to linearity and yield the same output. If each of the three stages of blind IIR
adaptation are successful, the output of of the linear IIR filter should be close to a delayed
version of the source sequence. Thus, the prediction filter will be operating on estimates
of the source, just like the feedback DFE filter. Then, the phase correcting filter acts as
the feedforward DFE filter.

7.1 Example
inverting Cp,, C, and « separately as shown in Figure 8. [Labat ICC 96, Mottier ICC 97] p
proposes blind adaptation of these elements in three separate stages We illustrate some of the properties of the adaptive algorithms discussed above in the following

. . . . . I example.
1. Take care of Cy, with a blind adaptive Auto Regressive (AR) linear prediction filter

Source BPSK, i.e. a5 € {£1}
zp = 1= g1(k)zK—1 — ... — gn, (K)zk—n, ’

gi(k+1) = gi(k) — pzp_jzy, 1<i<N,. Channel ¢ = (1,0.9,-0.8)%, no noise
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Figure 8: (top) IIR equalization converts to (bottom) DFE.

DFE [ =1 (fixed, non-adaptive), d = (d1(k), da2(k))
Channel-equalizer response h = (1,0.9,—0.8)"

Figure 9 shows the three cost functions associated with the first three adaptive DFE algorithms
presented. As explained, the LMS-DFE cost function is unimodal while the DD-DFE and CMA-
DFE cost functions have multiple local minima. All three cost functions have a global minimum
at (di,d2) = (0.9,—0.8) where channel ISI is perfectly cancelled. Because no knowledge of
the channel dynamics is available at start-up, a typical initialization of the adaptive DFE is
at the origin. The algorithm will then try to identify the channel postcursor as best as it can
to cancel ISI. If this is done, both DD-DFE and CMA-DFE get trapped at an undesired local
minimum near the origin, while LMS-DFE converges to the optimal solution. We make a note
that for DD-DFE and CMA-DFE, which rely on decision feedback (unlike LMS-DFE which does

Figure 9: (left) Jims, (middle) Juq, (right) Tema-
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not actually feed back decisions, but training symbols instead) the DFE quantizer, in this case
a signum function, partitions parameter space into various regions called polytopes where the
parameter adaptation behaves differently (refer to [Kennedy IJACSP 93, Casas IJACSP 98] for
a more detailed account of the convergence properties of these algorithms).

Next, we apply the hybrid IIR-DFE blind adaptive algorithm to this test channel. At the
first stage, a two-tap recursive predictor travels over the cost function shown in Figure 10, and
converges to what appears to be a unique minimum at (g1, g2) = (0.1378, —0.3798). Recall that
the linear predictor should converge to the inverse of the minimum phase roots of the channel
(factored into a minimum phase polynomial and an all-pass filter). This is exactly what it does
since the polynomial 1 + g1z~! + ga2z~2 has roots —0.6891 = 1/(—1.4512) and 0.5512 and the
channel has roots —1.4512 and 0.5512. The triangular region drawn in dashed lines represents
the region over which the polynomial 14 g;2~! 4 goz~2 has both roots inside the unit circle.
Note that outside the region the cost function 7, grows rapidly. When steady-state is reached,
adaptation of the linear predictor is turned off and the phase equalizer is adapted. Figure 10
shows the magnitude of the steady-state frequency response of this element, which seems to
approximate an all-pass filter. Finally, a switch to decision-direction tightens the eye, as can be
seen in the same figure.

Figure 10: (left) J,. (middle) Frequency response magnitude of steady-state phase equalizer
updated via CMA with 8 taps (solid) and 16 taps (dashed). (right) Eye diagram for adaptation
of 8 tap phase equalizer from k& = 0 to k& = 5000 and switch to decision-direction after & = 5000.

7.2 Remarks

Initialization It should be clear by now that the main problem in blindly adapting a DFE is
initialization, since feedback decisions at a cold start, where the channel eye may be closed,
are unreliable. Several schemes have been proposed [Papadias ASIL 95, Casas SPAWC 97,
Tong ASIL 96, Labat ICC 96] but they invariably fail in either speed, computational bur-
den, or global convergence. A robust blind adaptive DFE algorithm is still to be born.

Tap partitioning Another practical problem related to adaptive DFE design is tap partition-
ing. Again, reliable decisions are needed to update the feedback filter, thus, one could use
the feedforward filter to sufficiently open the channel eye. This filter, however, could end
up requiring more taps the feedforward filter in the desired MMSE-DFE. Thus, in order
to achieve a design with low complexity, one must resort to an intermediate design with
high complexity. Could this be avoided? Notice that the Hybrid IIR-DFE scheme has a
similar problem, where the predictor filter order must match the order of the channel. Is
this filter robust to undermodeling?

18



8 Simulation tools: THE DFECATOR

THE DFECATOR ((©1998 by R.A. Casas) is a simulation tool for designing and investigating
DFEs. This MATLAB based software package (work in progress) is publicly available at

http://wuw.backhoe.ee.cornell.edu/ raulc/research/DFEcator
Currently the software only deals with filter design. Future versions will include facilities for
studying adaptive DFE algorithms.
A brief example elucidates the various abilities of THE DFECATOR.
8.1 Example: design issues revisited...

Consider equalization of the fractionally-spaced channel shown in Figure 11 with 20 dB SNR
and a 64-QAM constellation.

Subchannel (a) IR (Re) Subchannel (@) IR (m)

005,

o0s
o

of
005,

B 0 15
Subchannel (b) IR (Re)

Subequalizer (2) Subequalizer (5) oFe

5 i s
‘Subchannel (b) IR (im)

LI 3N . ¢
T

5 10 15
‘Subchannels FR (Phase)

B 10 15
Subchannels FR (Mag)

Figure 11: (left) Fractionally-spaced channel impulse and frequency response, (middle) resulting
impulse response of fractionally-spaced feedforward filter, baud-spaced feedback filter, combina-
tion of channel-feedforward response and effective system response after feedback tap cancella-
tion.

As mentioned above, the first step in the design process is to select feedforward and feedback
filter lengths as well as an overall system delay. There is no straightforward method for this
selection process so we will constrain the total number of equalizer taps to Ny + Ng = 32
and look at all resulting MMSEs as a function of Ny and § (Ng = 32 — Ny), as shown in the
MSE surface in Figure 12. Observe that there is a region of delay and (fractionally-spaced)
feedforward filter lengths which provide low and similar performance. The best solution uses
Ny =19,N4 = 13,6 = 11, and is displayed in Figure 11, with eye-diagram in Figure 12.

The final step in the design procedure is to study robustness of the design. We compute
the watervall (SER vs. SNR) curve for this particular channel for a range of operating SNRs
as shown in Figure 13. Note that this calculation is done under the assumption of correct
past decisions. To have some idea of the severity of error propagation, THE DFECATOR also
simulates the achieved system and plots decision errors and soft estimation errors as shown in
Figure 13. In this case, it appears that error propagation effects are not crippling, which can
be account for by small taps in the feedfack DFE filter (which cancel small coefficients of the
combined channel-feedforward equalizer impulse response).
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Eye Diagram

Best N=19, N =13, 511

log MSE

Figure 12: (left) MSE versus feedforward equalizer length and choice of system delay, (right)
eye diagram for best solution.
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