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ABSTRACT

There is a growing demand for higher data rate systems that can function in a highly

mobile environment. This mandates the design of communication systems that can func-

tion in doubly selective channels. Pulse-shaped multi-carrier modulation schemes prove

to be an attractive option for transmission over doubly-dispersive channels. The pulse

shapes are designed to yield an inter-symbol/inter-carrier interference profile matching a

given target response. The receiver relies on high-performance/low-complexity equaliz-

ers that can reliably extract the transmitted symbols from the observations in the presence

of controlled amounts of interference in the target response.This thesis presents two such

high-performance/low-complexity iterative equalizers.Specifically, the two iterative equal-

ization algorithms are based on minimum mean squared error and maximum likelihood cri-

teria, respectively. In order to protect the transmitted information against sub-carrier nulls,

an error control code is used at the transmitter. The equalizers exchange soft information

with a maximuma-posteriori probability (MAP) optimal decoder in a turbo-like fashion

at the receiver. Simulations suggest that turbo-equalization with linear complexity iterative

equalizers offer significant performance enhancements over standard techniques.
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CHAPTER 1

Introduction

Broadband wireless communication has proved to be a cornerstone of today’s global

information infrastructure. Successful communication over a wireless link entails over-

coming two main hurdles.

The first is posed by the effects of multi-path propagation [1]. In simple terms, reflec-

tions from physical objects produce multiple versions of the same signal at the receiver. The

cumulative effect at the receiver is a signal composed of various time and phase delayed

echoes. When the delay spread of this received signal exceeds the duration of transmit-

ted signals, energy from each transmitted symbol spills over and contaminates neighboring

symbols. This effect is commonly known as inter-symbol interference (ISI). Such channels

are referred to as frequency selective channels, since the channel response is not uniform

over the bandwidth of the transmitted signal.

The second hurdle to be overcome in a wireless communicationsystem is induced by

mobility of the communicating devices. As a result of motion, time variations are intro-

duced in the wireless communication channel. Motion results in Doppler shifts in fre-

quency of the transmitted signal at the receiver. For instance, when a pure tone is transmit-

ted through a time varying channel, the observed signal at the receiver is composed of a
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band of frequencies. Such a channel is termed time selective, since its characteristics vary

with time.

Channels that are frequency as well as time selective are referred to as “doubly selec-

tive”.

There is a growing demand for higher data rate (smaller symbol duration) systems that

can function in a highly mobile environment. This mandates the design of communication

systems that can function in doubly selective channels.

Leveraging computationally efficient FFT operations at both receiver and transmitter,

orthogonal frequency division multiplexing (OFDM) [2–4] is an attractive alternative for

frequency selective channels. The key idea in OFDM to transmit in parallel over the set of

orthogonal discrete Fourier basis vectors as sub-carriers, effectively increasing the symbol

interval. By the insertion of a guard interval(proportional to the maximum delay spread

of the channel) between symbols, ISI is completely avoided.However, when channels

in question are doubly selective, the OFDM sub-carriers areno longer orthogonal due

to Doppler spreading. The energy from symbols transmitted on a particular sub-carrier

corrupt neighboring sub-carriers [5]. This phenomena is termed inter-carrier interference

(ICI). A number of different approaches to make OFDM robust to ICI exist [5–8]. An al-

ternative approach is to consider the more general set of modulation techniques (of which

OFDM is a subset) known as Multi-carrier Modulation (MCM). One such approach to

use MCM over doubly selective channels, is using pulse shaped MCM (PS-MCM) [9,10].

PS-MCM is based on the realization that trying to mitigate both ISI and ICI in a doubly

selective channel might be over ambitious. Instead, time domain pulses are used toshape

the channel profile so that it meets a target specification. Itrelies on a high performance

2



low complexity equalizer to reliably extract the transmitted symbols in the presence of this

controlled amount of interference in the target specification.

This design philosophy serves as a premise for this thesis. Specifically, this thesis

attempts to design suitable equalizers for a PS-MCM system.

Classical equalizers can be classified into two broad classes. The first class is based

on linear combining of the observation,viz., linear equalizers (LE). LE have low com-

putational complexity, but suffer from poor performance due to noise enhancement. The

other class of equalizers are those that exploit the trellisstructure introduced by the chan-

nel,viz., trellis based equalizers (TBE). Commonly used TBE such as aViterbi Algorithm

based equalizer [11] outperform LE but suffer from enormouscomputational complexity

for long channels. The aim is to design equalizers that outperform linear equalizers, and

have affordable low complexity.

Iterative approaches to interference suppression have been suggested for various sys-

tems. Most of these methods use soft decisions to cancel interference [12]. The advantage

lies in the fact that soft decisions quantify the reliability of the decision in addition to the

decision itself. Thus the interference canceled corresponds to symbols with highly reliable

estimates only. Interference cancellation using feed backof soft decisions, such as in [12],

are popularly called soft interference cancellation (SIC). SIC is more robust to error propa-

gation than decision feedback equalizers [13]. Motivated by this, both an iterative structure

and use of SIC is incorporated in the designs presented.

Finally, the bit error rate (BER) performance of an MCM system is severely ham-

pered by sub-carrier nulls. Thus coding is employed at the transmitter. Decoding and

interference-cancellation are coupled at the receiver.
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Specifically, we propose two receiver schemes, both of whichpass soft bit estimates

between an iterative equalizer and soft-input soft-output(SISO) decoder in a turbo-like

fashion [14, 15]. The first scheme, based on a LE using the minimum mean-squared error

(MMSE) criterion, builds on the work of [15,16].

The second scheme is based on a maximum likelihood (ML) equalization stage which

is related to the probabilistic data association (PDA) algorithms in [17, 18]. However, in

contrast to [15] and [17, 18], our algorithms are specifically tailored to the structure of the

ICI/ISI-shaped channel.

1.1 Organization of Thesis

This thesis has been organized into6 chapters. The ensuing chapter introduces the

system model used and the key components of the iterative equalizers. The following two

chapters present detailed discussions on the two designed equalizers. The next chapter

presents a short discussion on the coding aspect of the problem. The final chapter presents

experimental results and conclusions along with possible future research directions.

1.2 Notation Used

We use(·)t to denote transpose,(·)∗ conjugate, and(·)H conjugate transpose.C(b)

denotes the circulant matrix with first columnb, D(b) the diagonal matrix created from

vectorb, andIK theK ×K identity matrix. We use[B]m,n to denote the element in the

mth row andnth column ofB, where row/column indices begin with zero. Expectation is

denoted byE{·}, cross-covariance byΣb,c := E{bcH}−E{b}E{cH} and auto-covariance

by Σb := E{bbH} − E{b}E{bH}. ⊕ denotes modulo-2 addition over{0, 1}. Finally, R

the field of reals, andZ the set of integers.
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CHAPTER 2

Iterative Equalization

This chapter introduces the iterative equalization algorithms that form the core of this

thesis. First, an appropriate model for a generic MCM schemeincorporating pulse shapes

is explained. Then a suitable decision metric is introduced. Finally, the key ideas behind

the iterative equalization algorithms are elucidated based on the given system model and

decision metric. This chapter also presents two receiver configurations incorporating these

iterative equalizers, addressing the issue of coupling theequalizers with decoders for error

control coding.

2.1 System Model

In a MCM system, at each multi carrier symbol indexi ∈ Z, a vector of uncorrelated1

bitsc(i) = [c(i)

0
t
, c(i)

1
t
, · · · , c(i)

N−1

t
]t, wherec(i)

k =
[
c(i)

k,0, c
(i)

k,1, · · · , c
(i)

k,M−1

]t
andc(i)

k,m ∈ {0, 1},

is mapped to a vector of symbols,s(i) = [s(i)

0 , s
(i)

1 , · · · , s(i)

N−1]
t, s(i)

k ∈ S by the symbol

mappingψ : {0, 1}M → S, whereS is theconstellation of size|S| = 2M . In this thesis,S

is restricted to a Gray-coded PSK constellation, for simplicity. This set ofN coded PSK

symbols{s(i)

k } is collected to form a multi-carrier symbols(i) = [s(i)

0 , . . . , s
(i)

N−1]
t. These

1If coding is employed, thenc(i) is an interleaved vector of coded bits.
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symbols are used to modulate pulsed carriers as follows:

tn =
∞∑

i=−∞
an−iNs

1√
N

N−1∑

k=0

s(i)

k e
j 2π

N
(n−iNs−No)k (2.1)

In (2.1),{an} is the transmit pulse sequence,Ns is the multi-carrier symbol interval, and

No ∈ {0, . . . , N − 1} delays the carrier origin relative to the pulse origin. The multi-path

channel is described by its time-variant discrete impulse responsehtl(n, l), defined as the

time-n response to an impulse applied at timen− l. We assume a causal impulse response

of lengthNh. The signal observed by the receiver is then

rn = νn +

Nh−1∑

l=0

htl(n, l)tn−l (2.2)

whereνn denotes samples of circular white Gaussian noise (CWGN) with varianceσ2.

Defining r(i)
n := riNs+n, ν(i)

n := νiNs+n, andh(i)

tl (n, l) := htl(iNs + n, l), it can be shown

that

r(i)

n = ν(i)

n +

Nh−1∑

l=0

h(i)

tl (n, l)
∞∑

ℓ=−∞
aℓNs+n−l

1√
N

N−1∑

k=0

s(i−ℓ)

k ej 2π
N

(n−l+ℓNs−No)k (2.3)

To estimate the multi-carrier symbols(i), the receiver employs the pulse{bn} as follows:

x(i)

d =
1√
N

∑

n

r(i)

n bne
−j 2π

N
d(n−No) (2.4)

Here againNo delays the carrier origin relative to the pulse origin. Notethat this system

reduces to CP-OFDM withNo = Ns − N , {an}Ns−1
n=0 = 1, and{bn}Ns−1

n=No
= 1 (elsean =

bn = 0). Note also thatNg := Ns −N is analogous to CP-OFDM guard interval.

Plugging (2.3) into (2.4), we find

x(i)

d = w(i)

d +
∑

ℓ

N−1∑

k=0

h(i,ℓ)

df (d− k, k) s(i−ℓ)

k (2.5)
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where

w(i)

d :=
1√
N

∑

n

bnν
(i)

n e
−j 2π

N
d(n−No) (2.6)

h(i,ℓ)

df (d, k) :=
1

N

∑

n

Nh−1∑

l=0

h(i)

tl (n, l)bnaℓNs+n−l e
−j 2π

N
d(n−No)e−j 2π

N
k(l−ℓNs) (2.7)

Equation (2.5) indicates thath(i,ℓ)

df (d, k) can be interpreted as the response, at timei and

sub-carrierk + d, to a frequency-domain impulse applied at timei− ℓ and sub-carrierk.

In practice we implement finite-duration causal pulses{an} and{bn} of lengthNa and

Nb, respectively, implying that only a finite number of terms inthe set{h(i,ℓ)

df (d, k), ℓ ∈ Z}

will be non-zero. Specifically, (2.7) implies that non-zeroterms result from indicesℓ which

satisfy0 ≤ ℓNs +n− l ≤ Na−1 for somen ∈ {0, . . . , Nb−1} and somel ∈ {0, . . . , Nh−

1}. It is straightforward to show thath(i,ℓ)

df (d, k) is non-zero forℓ ∈ {−Lpre, . . . , Lpst}where

Lpre = −⌊Nb−1
Ns

⌋ andLpst = ⌊Na+Nh−2
Ns

⌋.

With the definitionsx(i) := [x(i)

0 , . . . , x
(i)

N−1]
t, w(i) := [w(i)

0 , . . . , w
(i)

N−1]
t, and[H (i,ℓ)]d,k :=

h(i,ℓ)

df (d − k, k), (2.5) implies the linear time-varying (LTV) multiple-input multiple-output

(MIMO) system

x(i) = w(i) +

Lpst∑

ℓ=−Lpre

H (i,ℓ)s(i−ℓ). (2.8)

In the sequel we assume wide-sense stationary uncorrelatedscattering (WSSUS) [13]

so thatE{htl(n, l)h
∗
tl(n − q, l − m)} = rt(q)σ

2
l δ(m). Here,rt(q) denotes the normalized

autocorrelation (i.e.,rt(0) = 1) andσ2
l the variance of thelth lag.

2.2 Pulse Shape Design: An Aside

Even though, the design of suitable pulse shapes{an} and{bn} is not the focus of this

thesis, they are a key component of a MCM system. Hence, this short section presents a

7



terse qualitative discussion on pulse shape design. For details on pulse shape design, the

reader is referred to [9,10,16].

It is well known that unlike the class of LTI systems, there isno common set of eigen

vectors for LTV systems. Therefore, use of the discrete Fourier basis to modulate frequency

domain symbols is not justified. In the approach adopted in [9,10], the symbols are modu-

lated by complex exponentials that are shaped by time domainpulses{an} and{bn} at the

transmitter and receiver, respectively as in (2.3) and (2.4).

The problem can be viewed from another perspective. There are two classes of inter-

ference to be countered,viz., inter-symbol interference (ISI) and inter-carrier interference

(ICI). Use of narrow time domain pulses allows for the suppression of ISI at the expense of

introduced ICI. On the other hand, use of wide time domain pulses helps suppress ICI at the

expense of the ISI introduced in the absence of guard intervals. Even if this were possible

using linear processing, the noise enhancement would impair the performance significantly.

Instead, the attempt is to shape the channel profile to allow for a “tolerable” amount of ISI

and/or ICI that has to be countered by a suitably designed equalizer.

In [9,16], the pulse shapes are designed to allow forD taps of ICI on either side of a sub-

carrier, whereD depends on the maximum Doppler frequencyfd for the system. Fig. 2.1

shows a typical desired channel profile. Three types of pulseshapes can be designed using

this approach,viz.,

• Transmitter Pulses: Design optimal{an} for a fixed (rectangular) pulse shape{bn}

at the receiver.

• Jointly Optimized Pulses: Design optimal pair of transmitter and receiver pulses{an}

and{bn}.

8



• Receiver Pulses: Design optimal receiver pulse shape{bn} for a fixed CP-OFDM

(rectangular) transmitter pulse shape.

2.3 Decision Metric

The bit error rate optimal MAP detection strategy [19] for bit c(i)

k,m of a given multi-

carrier symbolx(i), is based on a comparison of thea posteriori probabilities{P (c(i)

k,m =

γ|x(i))}1
γ=0. Our equalizer uses the observationx(i) and knowledge ofH(i,0) to update

theith multi-carrier symbol’s bit reliability metric{L(i)(k,m), ∀m}N−1
k=0 , also referred to as

L-values (LVs).

L(i)(k,m) := ln
P (c(i)

k,m = 0|x(i))

P (c(i)

k,m = 1|x(i))
(2.9)

Since all quantities pertain to theith multi-carrier symbol, superscript indices are omitted

for the remainder of the thesis without loss of generality. They are only re-introduced when

multiple multicarrier symbols have to be distinguished. Here, it is pointed out that when

subscripts are omitted,H refers toH (i,0). Note that the sign ofL(k,m) is the uncoded

MAP bit decision, the magnitude ofL(k,m) indicates the reliability of this decision and

that thea posteriori probabilities for each bit can be written as (2.10).

P (ck,m = γ|x) =







eL(k,m)

1+eL(k,m) γ = 0

e−L(k,m)

1+e−L(k,m) γ = 1.

(2.10)

In fact, this decision statistic is very popular and often seen in algorithms for both

equalization [17, 20] and decoding [21, 22]. Using Bayes’ rule andassuming independent

bits,2 L(k,m) can be rewritten as the sum of the prior LV,Lold(k,m), and the extrinsic LV,

2As a consequence of, e.g., interleaving, in the presence of error control coding.
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∆L(k,m), defined in (2.11).

L(k,m) = ln

∑

γ∈GNM
kN+m,0

p(x|c = γ)
∏

(k′,m′)6=(k,m) P (ck′,m′ = γk′N+m′)
∑

γ∈GNM
kN+m,1

p(x|c = γ)
∏

(k′,m′)6=(k,m) P (ck′,m′ = γk′N+m′)
︸ ︷︷ ︸

∆L(k,m)

+ ln
P (ck,m = 0)

P (ck,m = 1)
︸ ︷︷ ︸

Lold(k,m)

. (2.11)

Here,Gk1
k2,α denotes the set of all length-k1 bit vectors in which thekth

2 bit has been set to

α ∈ {0, 1}. Intuitively, 2.11 says that the LV can be calculated by taking the ratio of the

sum ofa posteriori probabilities of all length-NM bit sequences in which the(kM +m)th

bit is fixed asγ ∈ {0, 1}. Another important issue is the decoupling of∆L(k,m) and

Lold(k,m). The algorithms assume that the extrinsic LV∆L(k,m) is independent of the

prior LV Lold(k,m). Even though this is not completely true of the presented algorithms,

we ensure thatLold(k,m) is not directly used in the calculation of∆L(k,m). However,

from the algorithms, it can be deduced that, throughLold(k,m
′) wherem′ 6= m, Lold(k,m)

does influence the value of∆L(k,m) to a small extent.

2.4 Iterative Equalization: Key Ideas

Given the observationx, the channel informationH, and the statistics of the additive

zero-mean complex Gaussian noiseΣw, classical equalizers use various algorithms to com-

pute an estimatêx. In addition to these available quantities, by virtue of itsiterative nature,

an iterative equalizer has prior informationLold available to it. The task of the iterative

equalizer is to update the LV for each bit sequentially using(2.11). In essence, this entails

computing the extrinsic LV,∆L. We see in (2.11) that the numerator and denominator for

∆L are summations of2MN−1 terms each. Hence, the computation of∆L isO
(
2MN

)
per

10



LV update and its exact computation is generally infeasible. The algorithms proposed in

this thesis are sub-optimal strategies based on approximations of∆L(k,m) by

∆L(k,m) ≈ ln

∑

γ∈GM
m,0

p(x|ck = γ)
∏

m′ 6=m P (ck,m′ = γm′)
∑

γ∈GM
m,1

p(x|ck = γ)
∏

m′ 6=m P (ck,m′ = γm′)
. (2.12)

In (2.12), the extrinsic LV is approximately computed by considering all possible values

of symbolxk for which ck,m = γ ∈ {0, 1}. This brings down the complexity of the

algorithm toO
(
2M

)
per LV update. For simple constellations,viz., BPSK and QPSK, it

will be shown that this update can be greatly simplified. The next two chapters provide

alternative approaches to compute∆L(k,m) via (2.12).

The information present in the LVs can be further exploited in equalization. Using these

a posteriori probabilities and the symbol mapping functionψ, the symbol means{µk} and

variances{vk} are defined in (2.13)-(2.14).

µk =
∑

β∈S

βP (sk = β|x) (2.13)

vk =
∑

β∈S

|β|2P (sk = β|x) − |µk|2 (2.14)

Recall that, forβ andγ related byψ(γ) = β, we have

P (sk = β|x) = P (ck = γ|x)

= ΠM
i=1P (ck,m = γm|x).

Also note that, since Gray-mapping is assumed, the real and imaginary components of each

symbol are independent and thus the variancesvk,R := var(Re sk) andvk,I := var(Im sk)

can be written

vk,R =
∑

β∈S

(Reβ)2P (sk = β|x) − (Reµk)
2 (2.15)

vk,I =
∑

β∈S

(Im β)2P (sk = β|x) − (Imµk)
2. (2.16)

11



Now, these estimated symbol meansµk can be used for interference cancellation, in

place of quantized hard decisions. Note that this kind of interference cancellation is com-

monly termed in literature as soft interference cancellation (SIC). SIC is less prone to error

propagation as compared to feeding back hard decisions. This is because symbol estimates

that are unreliable will have small LVs and small symbol means as a consequence. Thus the

interference due to an unreliable symbol remains almost unaltered and only the interference

arising from reliably estimated symbols is canceled.

These are the pivotal ideas behind the iterative equalizersdetailed in the subsequent

chapters. The equalization algorithms discussed are sequential in nature. We begin with

symbol indexk = 0 and sequentially perform the three steps mentioned below for each

symbol.

• Use current symbol means {µk} for SIC.

• Update the LV using (2.12) and {vk}.

• Re-estimate {µk} and {vk} using updated LVs.

The exact iteration structure for each algorithm is explained after a description of the

algorithms in subsequent chapters.

2.5 Receiver Configurations

In order to compare the efficacy of turbo equalization, we consider two receiver config-

urations: serial equalization/decoding, shown in Fig. 2.2, and turbo equalization/decoding,

shown in Fig. 2.3. The equalizer block is same in either configuration; it uses the ob-

servationx(i) to update LVs of bits mapping to theith multi-carrier symbol. In serial

equalization/decoding, the equalizer’s input LVs are initialized to zero and its output LVs

12



are passed to a soft-input decoder which generates final bit decisions. Turbo equaliza-

tion/decoding starts out this way, but, instead of generating final bit decisions, the decoder

updates the LVs and passes them back to the equalizer. The equalizer then updates the LVs

and passes them back to the decoder, and this process repeatsseveral times before the de-

coder generates final bit decisions. The equalizer block itself is iterative in that its LVs are

updated internally several times before being passed to thedecoder. Note that the equalizer

does not use the code structure directly; it assumes the bitsare independent and calculates

their prior probabilities from the input LVs.

As for the notation in Figs. 2.2 and 2.3,Leq, Ldc, andLc denote equalizer, decoder,

and coder LVs, respectively, on which the superscriptsi, e, ando label input, extrinsic,

and output versions, respectively. The switch(sa, s
′
a) is set to positions′a to initialize the

decoder.

13
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Figure 2.1: Desired structure of MIMO cursor coefficientH (i,0).
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Figure 2.3: Turbo receiver configuration.
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CHAPTER 3

Iterative Maximum Likelihood Equalizer (IMLE)

This technique derives its name from the fact that∆L(k,m) is the maximum likelihood

(ML) decision statistic for bitck,m. However, as discussed earlier, computing the exact ML

decision metric is computationally infeasible. Here∆L(k,m) is approximated to reduce

computational complexity. In this chapter, first a generic expression for the extrinsic LV is

derived. Then a simplified system model, exploiting the structure of the channel matrices,

is presented and the extrinsic LV are computed on the basis ofthis simplified system model.

This results in substantial reduction in complexity. Finally, the extrinsic LV is simplified

for BPSK and Gray mapped QPSK constellations.

3.1 Derivation of the Extrinsic LV

The key idea is to first perform a soft interference cancellation (SIC) using the symbol

means{µk}, then to apply a Gaussian model to the residual interferenceand noise.The

resulting∆L(k,m) approximation, denoted by∆LIMLE (k,m), is much easier to compute.

We defineµk as

µk := [µ0, . . . , µk−1, 0, µk+1, . . . , µN−1]
t. (3.1)

and use it for SIC. Notice that the mean for thekth symbol has been set to zero. This

ensures that the contribution of thekth symbol is not suppressed fromyk. Specifically, the

15



observation after SIC is written

yk = x − Hµk (3.2)

= hksk +

N−1∑

j=0
j 6=k

hj(sj − µj) + w

︸ ︷︷ ︸

qk

(3.3)

wherehk denotes thekth column ofH.

The residual interference vectorqk is modeled as Gaussian, independent ofsk. The

mean ofqk is

E{qk} =
N−1∑

j=0
j 6=k

hj(E{sj} − µj) + E{w}

= 0.

The covarianceΣqk
is

Σqk
= E{qkq

H
k }

=
N−1∑

j=0
j 6=k

hjE {(sj − µj) (sj − µj)
∗}hH

j + Σw

=
N−1∑

j=0
j 6=k

vjhjh
H
j + Σw. (3.4)

= H D(vk)H
H + Σw (3.5)

where

vk := [v0, . . . , vk−1, 0, vk+1, . . . , vN−1]
t. (3.6)

Replacingp(x|c = γ) in (2.12) withp(yk|sk = ψ(γ)), the extrinsic LV becomes

∆LIMLE (k,m) = ln

∑

γ∈GM
m,0

p (yk|sk = ψ(γ))
∏

m′ 6=m P (ck,m′ = γm′)
∑

γ∈GM
m,1

p (yk|sk = ψ(γ))
∏

m′ 6=m P (ck,m′ = γm′)
(3.7)
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Expandingp(yk|sk = ψ(γ)) using (3.3):

p(yk|sk = ψ(γ)) = C exp

[

−1

2
(yk − ψ(γ)hk)

H
Σ

−1
qk

(yk − ψ(γ)hk)

]

(3.8)

= C exp

[

−1

2
yH

k Σ
−1
qk

yk −
1

2
|ψ(γ)|2hH

k Σ
−1
qk

hk)

]

exp [Re (ψ(γ)gk)]

(3.9)

Since the first exponential in (3.9) is invariant toγ (recalling the PSK assumption), its

contributions to the numerator and denominator of (3.7) cancel. From (2.10), we find

P (ck,m′ = 0) =
eLold(k,m′)/2

2 cosh(Lold(k,m′)/2)
(3.10)

P (ck,m′ = 1) =
e−Lold(k,m′)/2

2 cosh(Lold(k,m′)/2)
. (3.11)

Together,

P (ck,m′ = γm′) =
exp [(−1)γm′Lold(k,m

′)/2]

2 cosh(Lold(k,m′)/2)
(3.12)

Sincecosh(Lold(k,m
′)/2) is invariant toγm′ , its contributions to the numerator and denom-

inator of (3.7) cancel. The remaining terms yield

∆LIMLE (k,m) = ln

∑

γ∈GM
m,0

exp
[

Re
(
ψ(γ)gk

)
+ 1

2

∑

m′ 6=m(−1)γm′Lold(k,m
′)
]

∑

γ∈GM
m,1

exp
[

Re
(
ψ(γ)gk

)
+ 1

2

∑

m′ 6=m(−1)γm′Lold(k,m′)
] ,

(3.13)

wheregk := yH
k Σ

−1
qk

hk.

Calculation of (3.13) can be implemented in two stages. First we producegk from

yk using the linear combinerΣ−1
qk

hk. Next we compute the extrinsic LVs usinggk and

{Lold(k,m
′)}m′ 6=m. Also note that, as emphasized,Lold(k,m) is not used when computing

∆LIMLE (k,m).
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This completes the derivation ofLIMLE (k,m). In Sec. 3.5, expressions forLIMLE (k,m),

µk andvk for specific constellations,viz., BPSK and QPSK, are derived.

3.2 Structure of Iterations

The IMLE algorithm proceeds as follows. Prior to the first iteration,{Lold(k,m) ∀k,m}

are obtained from the output of a soft decoder, if available,or otherwise set to zero. These

LVs are then used to initialize{µk}N−1
k=0 and {vk}N−1

k=0 . We begin the first iteration by

working on symbol indexk = 0. The meansµ0 and variancesv0 are used to calcu-

late y0 andΣq0
, which in turn are used to computeg0. From g0 and{Lold(0, m)}M−1

m=0 ,

{∆LIMLE (0, m)}M−1
m=0 are calculated and used to compute{L(0, m)}M−1

m=0 . Finally,{L(0, m)}M−1
m=0

are used to updateµ0 andv0. Moving on tok = 1, the vectorsµ1 andv1 are used to cal-

culatey1 andΣq1
, and laterg1. This allows the computation of{∆LIMLE (1, m)}M−1

m=0 , the

computation of{L(1, m)}M−1
m=0 , and the update ofµ1 andv1. Thek = 2 case is tackled

next, thenk = 3, and so on, untilk = N − 1. Finally, {L(k,m) ∀k,m} are copied to

{Lold(k,m) ∀k,m}. This concludes the first iteration. The next (e.g., second)iteration

begins again at symbol indexk = 0 and proceeds throughk = N − 1. The algorithm

terminates after a specified number of iterations.

The computationally expensive step of the algorithm is the computation ofΣqk
for each

k. In order to reduce the complexity,Σqk
is computed as an update ofΣqk−1

. First,ΣQk

is defined as:

ΣQk
= Σqk

+ vkhkh
H
k ∀k (3.14)
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Oncevk−1 is recomputed using updated LVs,Σ
−1
Qk−1

is updated toΣ−1
Qk

using the matrix

inversion lemma as:

Σ
−1
Qk

= Σ
−1
Qk−1

−
∆vk−1Σ

−1
Qk−1

hk−1h
H
k−1Σ

−1
Qk−1

1 + ∆vk−1h
H
k−1Σ

−1
Qk−1

hk−1

(3.15)

where,∆vk−1 = vupdated
k−1 − vk−1.

Finally, the matrix inversion lemma is used again to compute

Σ
−1
qk

= Σ
−1
Qk

+
vkΣ

−1
Qk

hkh
H
k Σ

−1
Qk

1 − vkh
H
k Σ

−1
Qk

hk

(3.16)

This reduces the complexity of computingΣqk
fromO (N3) toO (N2). In spite of this

update process, theO (N2) update can prove to be very expensive for largeN . Thus with

the aim of substantially reducing the complexity, a simplified system model is presented

in Sec. 3.3. This simplified system model exploits the bandedstructure of the channel

matricesH (i,0). Equalization based on this system model helps reduce the complexity to

approximatelyO (N) without a substantial performance degradation.

3.3 Simplified System Model

With proper application of the pulse shapes described in [9,16], the MIMO channel

{H (i,ℓ)}Lpst

ℓ=−Lpre
has negligible3 pre- and post-cursor ISI and a cursor coefficientH with the

banded structure shown in Fig. 2.14. This implies thatsk will contribute primarily to the ob-

servation elements{xd}k+D
d=k−D, where all indexing in this section is taken modulo-N . Thus,

good “local” estimates ofsk can be generated usingxk := [xk−D, · · · , xk+D]t. If we define

sk := [sk−2D, · · · , sk+2D]t, wk := [wk−D, · · · , wk+D]t, andεk := [εk−D, · · · , εk+D]t, then

3When the delay spread is long relative to the multi-carrier symbol interval, it may be necessary to sup-
press post-cursor ISI using block decision feedback, as discussed in [9]. We assume that this is not the case
here.

4As stated earlier,H refers toH (i,0).
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we can write

xk = Hksk + εk, (3.17)

whereHk is the sub-matrix ofH built from rows {k − D, . . . , k + D} and columns

{k − 2D, . . . , k + 2D}, and whereεk denotes noise plus residual ICI and ISI. Numerical

studies have shown that, when pulse shapes are designed as in[9,16],ε(i)

k is dominated by

the noise component and hence can be modeled as zero-mean Gaussian with covariance

Σεk
. Note that, as a consequence of modulo-N indexing, the elements ofH from the

top-right and bottom-left shaded triangles in Fig. 2.1 willbe included in{Hk}N−1
k=0 .

Now, we usexk andHk to compute∆LIMLE (k,m). We use the process described in

Sec. 3.1. For SIC, we defineµk as:

µk := [µk−2D, . . . , µk−1, 0, µk+1, . . . , µk+2D]t. (3.18)

and compute a partial observation after SIC as

yk = xk − Hkµk

= hk,0sk +
k+2D∑

j=k−2D
j 6=k

hk,j(sj − µj) + εk

︸ ︷︷ ︸

qk

(3.19)

wherehk,j denotes the(j + 2D)th column ofHk.

The covariance matrixΣqk
then has the expression

Σqk
= Hk D(vk)H

H
k + Σεk

where,

vk := [vk−2D, . . . , vk−1, 0, vk+1, . . . , vk+2D]t. (3.20)

Finally, the extrinsic LV,∆LIMLE (k,m) is given by (3.13), wheregk := yH
k Σ

−1
qk

hk,0.
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3.4 Computational Complexity and Other Similar Algorithms

The computational complexity for IMLE is dominated by the inversion of the(2D+1)×

(2D+1) matrixΣqk
, yielding a per-iteration complexity order ofO (ND3). It is interesting

to note that IMLE-BPSK is similar to the probabilistic data association (PDA)-based multi-

user detection (MUD) schemes proposed in [17]. However, in [17], the iterative symbol

detection strategy is appliedafter a zero-forcing (ZF) transformation is applied tox, i.e.,

after the channel has been trivialized. Since the ZF transformation has a complexity order of

O (N3), it is much more costly than IMLE and IMSE since, typically,D ≪ N . Essentially,

IMLE leverages the banded structure ofH, while PDA does not.

IMLE is also similar to [18]. However, IMLE updates LVs for individual bits and

passes bit LVs to the decoder, whereas soft symbol estimatesare updated in [18] and bits

are detected via hard decisions on the final symbol estimates. Also note that whereas

[18] works in the time-lag domain, our scheme operates in thefrequency-doppler domain.

This is advantageous since the number of interfering symbols is smaller for our scheme as

D ≪ Nh.

3.5 IMLE Algorithm for BPSK and QPSK

In this section, we consider the BPSK and Gray Mapped QPSK symbol constellations

and simplify the expressions for the extrinsic LV, the symbol mean and variance. It is

assumed in this section that the simplified system model is used.

For BPSK (M = 1), we have

ψ(γ) = (−1)γ0
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The LV update∆LIMLE (k,m) for the IMLE algorithm simplifies to

∆LIMLE (k, 0) = ln
exp(Re gk)

exp(−Re gk)

= 2 Re gk,

The symbol mean can be calculated as

µk =

1∑

γ0=0

(−1)γ0P (ck,0 = γ0) (3.21)

=
e

1
2
Lold(k,0) − e−

1
2
Lold(k,0)

2 cosh(Lold(k, 0)/2)
(3.22)

= tanh(Lold(k, 0)/2), (3.23)

where (3.22) follows from (3.12).

To calculate variancevk, we note in (2.14) that|β| = 1 for all symbolsβ in the BPSK

and QPSK constellations. Thusvk = 1 − |µk|2 for BPSK and QPSK.

On the other hand, for QPSK (M=2), we have

ψ(γ) =
1√
2

[(−1)γ0 + j(−1)γ1 ]

The LV updates∆LIMLE (k,m) for the IMLE algorithm can be written as

∆LIMLE (k, 0) = ln

∑1
γ1=0 exp

[
Re(ψ([0, γ1])gk) + 1

2
(−1)γ1Lold(k, 1)

]

∑1
γ1=0 exp

[
Re(ψ([1, γ1])gk) + 1

2
(−1)γ1Lold(k, 1)

]

= ln
exp[ 1√

2
Re gk]

∑1
γ1=0 exp

[

− 1√
2
Im((−1)γ1gk) + 1

2
(−1)γ1Lold(k, 1)

]

exp[− 1√
2
Re gk]

∑1
γ1=0 exp

[

− 1√
2
Im((−1)γ1gk) + 1

2
(−1)γ1Lold(k, 1)

]

=
√

2Re gk

∆LIMLE (k, 1) = ln

∑1
γ0=0 exp

[
Re(ψ([γ0, 1])gk) + 1

2
(−1)γ0Lold(k, 0)

]

∑1
γ0=0 exp

[
Re(ψ([γ1, 0])gk) + 1

2
(−1)γ0Lold(k, 0)

]

= ln
exp[− 1√

2
Im gk]

∑1
γ0=0 exp

[
1√
2
Re((−1)γ0gk) + 1

2
(−1)γ0Lold(k, 0)

]

exp[ 1√
2
Im gk]

∑1
γ0=0 exp

[
1√
2
Re((−1)γ0gk) + 1

2
(−1)γ0Lold(k, 0)

]

= −
√

2 Im gk.
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For the symbol mean, a similar derivation to the one for BPSK leads to

µk =
1√
2

1∑

γ0=0

(−1)γ0P (ck,0 = γ0)
1∑

γ1=0

P (ck,1 = γ1)

+
j√
2

1∑

γ1=0

(−1)γ1P (ck,1 = γ1)
1∑

γ0=0

P (ck,0 = γ0) (3.24)

=
1√
2

tanh(Lold(k, 0)/2) +
j√
2

tanh(Lold(k, 1)/2). (3.25)

Table 3.1 shows the steps in one iteration of the IMLE algorithm for BPSK and QPSK

constellations.

This concludes the discussion on the IMLE algorithm.

23



BPSK QPSK
for k = 0 : N − 1 for k = 0 : N − 1

Σ
−1
qk

=
(
Hk D(vk)H

H
k + Σεk

)−1
Σ

−1
qk

=
(
Hk D(vk)H

H
k + Σεk

)−1

yk = xk − Hkµk yk = xk − Hkµk

gk = yH
k Σ

−1
qk

hk,0 gk = yH
k Σ

−1
qk

hk,0

L(k, 0) = Lold(k, 0) + 2Re gk L(k, 0) = Lold(k, 0) +
√

2 Re gk

L(k, 1) = Lold(k, 1) −
√

2 Im gk

µk = tanh
(

L(k,0)
2

)

µk = 1√
2

tanh
(

L(k,0)
2

)

+ j√
2

tanh
(

L(k,1)
2

)

vk = 1 − µ2
k vk = 1 − |µk|2

Lold(k, 0) = L(k, 0) Lold(k, 0) = L(k, 0), Lold(k, 1) = L(k, 1)
end end

Table 3.1: Steps in one iteration of IMLE.
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CHAPTER 4

Iterative Minimum Mean Squared Error Equalizer (IMSE)

The main idea of the IMSE is to enhance the performance of a minimum mean squared

error (MMSE) equalizer exploiting the prior LVs and the finite alphabet of the constel-

lation. Whereas in IMLE we performed SIC before computing extrinsic LVs, here we

perform linear MMSE estimation, and compute the extrinsic LVs by applying a Gaussian

approximation to the estimation error. The chapter begins with a derivation of the extrinsic

LV update equation for the IMSE algorithm. Next, the iteration structure is discussed. The

simplified system model, introduced in Sec. 3.3, can be used to substantially reduce the

complexity of the IMSE algorithm, too. The required modifications are summarized. A

discussion on the complexity follows. As with the IMLE, simplified expressions for the

extrinsic LVs, the symbol mean and variances are derived forthe BPSK and Gray mapped

QPSK constellations in the final section.

4.1 Derivation of Extrinsic LV for IMSE

The MMSE estimate ofsk given the observationx is [19]

ŝk

∣
∣
MMSE

= E{sk} + E{skx
H}E{xxH}−1 (x − E{x})

= E{sk} + E{sks
∗
k}hH

k

(
Σw + HΣsH

H
)−1

(x − E{x}) . (4.1)
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Now, the bit independence assumption implies that the covariance matrixΣs is diago-

nal. Using the prior LVs, we wish to computeE{x} andΣs. However, to ensure∆L(k,m)

invariant toLold(k,m), we setLold(k,m) = 0, ∀m. This results inµk = 0 andvk = 1

when estimatingsk.

Using these conditions,E{x} is computed as

E{x} = HE{s} + E{w}

= Hµk

and

Σs = D vk,

where, as before, we define

vk := [v0, . . . , vk−1, 0, vk+1, . . . , vN−1]
t

and,µk := [µ0, . . . , µk−1, 0, µk+1, . . . , µN−1]
t

Using these definitions, the “extrinsic” MMSE estimate is calculated as

ŝk = hH
k

(
Σw + H D(vk)H

H + hkh
H
k

)−1

︸ ︷︷ ︸

fH
k

(xk − Hkµk) . (4.2)

The extrinsic estimatêsk can be viewed from an alternate perspective. The idea is

to consider SIC on the observationx and then using the resulting vector to find a linear

MMSE estimate ofsk. The linear MMSE solutionf k is modified to reflect the suppressed

interference, accordingly.

Next, it is assumed that the estimation error,ŝk − sk, is complex Gaussian with uncor-

related real and imaginary components.
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Equivalently,̂sk is conditionally Gaussian with the means and variances below.

s̄k,γ := E {ŝk|sk = ψ(γ)} (4.3)

σ2
k,R := E

{
Re2(ŝk − s̄k,γ)|sk = ψ(γ)

}
(4.4)

σ2
k,I := E

{
Im2(ŝk − s̄k,γ)|sk = ψ(γ)

}
. (4.5)

Simulation studies have shown that IMSE’s provision forσ2
k,I 6= σ2

k,R is advantageous,

especially when complex alphabets along with Gray mapping is employed. Using complex

alphabets with Gray mapping means that the real and imaginary parts of each symbol de-

pend on independent bits. In this case, the variance of the real and imaginary parts of the

symbol are dependent on the LVs of independent bits.

The quantitȳsk,γ can be computed as:

s̄k,γ = E
{
fH

k (x − Hµk) |sk = ψ(γ)
}

= fH
k (E {x|sk = ψ(γ)} − Hµk)

= ψ(γ)fH
k hk. (4.6)

In order to computeσ2
k,R, define

x̄k := x − Hµk

so that,̂sk = fH
k x̄k.

The real part of̂sk can be expressed as

Re (ŝk) =
1

2

[
fk

f∗
k

]H [
x̄k

x̄∗
k

]

(4.7)

Then it follows that

σ2
k,R =

1

4

[
f k

f ∗
k

]H

Cov

([
x̄k

x̄∗
k

]∣
∣
∣
∣
sk = ψ(γ)

) [
fk

f∗
k

]

=
1

4

[
f k

f ∗
k

]H [
Σx̄k|sk

Σ̃x̄k|sk

Σ̃
∗
x̄k|sk

Σx̄k|sk

] [
f k

f ∗
k

]

,
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where, assuming CWGN and symbols with uncorrelated real andimaginary components,

Σx̄k|sk
= HD(vk)H

H + Σw

Σ̃x̄k|sk
:= E

{
(x̄k − E{x̄k|sk = ψ(γ)}) (x̄k − E{x̄k|sk = ψ(γ)})t

∣
∣sk = ψ(γ)

}

= HD(vk,R − vk,I)H
t,

for vk from (3.6), andvk,R defined as (4.8), andvk,I defined as (4.9).

vk,R = [v0,R, . . . , vk−1,R, 0, vk+1,R, . . . , vN−1,R]t (4.8)

vk,I = [v0,I , . . . , vk−1,I , 0, vk+1,I , . . . , vN−1,I ]
t (4.9)

Putting the above equations together gives

σ2
k,R =

1

4

[
f k

f ∗
k

]H [
HD(vk)H

H + Σw HD(vk,R − vk,I)H
t

H∗D(vk,R − vk,I)H
H H∗D(vk)H

t + Σ
∗
w

] [
fk

f∗
k

]

(4.10)

Using

Im (ŝk) =
1

2

[
f k

−f ∗
k

]H [
x̄k

x̄∗
k

]

and similar methods, we arrive at

σ2
k,I =

1

4

[
fk

−f ∗
k

]H [
HD(vk)H

H + Σw HD(vk,R − vk,I)H
t

H∗D(vk,R − vk,I)H
H H∗D(vk)H

t + Σ
∗
w

] [
fk

−f ∗
k

]

(4.11)

Note that the conditional variances do not actually depend on γ. Thus it is not required

to compute the conditional variances for each realization of ψ(γ) individually.

Finally, in order to use the extrinsic estimateŝk and its conditional density to calculate

the extrinsic LVs∆LIMSE(k,m), p(x|c = γ) in (2.11) is replaced withp(ŝk|sk = ψ(γ)).

This implies that

∆LIMSE(k,m) = ln

∑

γ∈GM
m,0

p (ŝk|sk = ψ(γ))
∏

m′ 6=m P (ck,m′ = γm′)
∑

γ∈GM
m,1

p (ŝk|sk = ψ(γ))
∏

m′ 6=m P (ck,m′ = γm′)
. (4.12)
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Using the conditionally Gaussian assumption described,

p(ŝk|sk = ψ(γ)) = C exp

[

−Re2(ŝk − s̄k)

2σ2
k,R

− Im2(ŝk − s̄k)

2σ2
k,I

]

.

Next, recall thatP (ck,m′ = γm′) can be written as in (3.12). Substituting (3.12)
into (4.12), thecosh(Lold(k,m

′)/2) contributions from numerator and denominator cancel
(since they are invariant toγm′), and due to the remaining terms,∆LIMSE(k,m) becomes

∆LIMSE(k, m) = ln

∑

γ∈GM
m,0

exp
[

−Re2(ŝk−s̄k,γ )

2σ2
k,R

− Im2(ŝk−s̄k,γ )

2σ2
k,I

+ 1
2

∑

m′ 6=m(−1)γm′ Lold(k, m′)
]

∑

γ∈GM
m,1

exp
[

−Re2(ŝk−s̄k,γ )

2σ2
k,R

− Im2(ŝk−s̄k,γ )

2σ2
k,I

+ 1
2

∑

m′ 6=m(−1)γm′ Lold(k, m′)
]

(4.13)

This completes the derivation of the extrinsic LV(s)∆LIMSE(k,m).

4.2 Structure of Iterations

Similar to the IMLE, the IMSE algorithm proceeds as follows.Prior to the first iteration,

{Lold(k,m) ∀k,m} are obtained from the output of a soft decoder, if available,or otherwise

set to zero. These LVs are then used to initialize{µk}N−1
k=0 , {vk,R}N−1

k=0 , {vk,I}N−1
k=0 and

{vk}N−1
k=0 . We begin the first iteration by working on symbol indexk = 0. The means

{µk}N−1
k=0 are used for SIC, and the variances{vk}N−1

k=0 are used to calculatef0, which in

turn are used to computês0. Next, the statistics of the conditional densities for the extrinsic

estimate,viz., s̄0,γ for everyγ ∈ {0, 1}M , σ2
0,R andσ2

0,I are computed. Using these,ŝ0 and

{Lold(0, m)}M−1
m=0 , {∆LIMLE (0, m)}M−1

m=0 are calculated and used to compute{L(0, m)}M−1
m=0 .

Finally, {L(0, m)}M−1
m=0 are used to updateµ0, v0,R, v0,I andv0. Moving on tok = 1, the

entire process listed above is repeated. Thek = 2 case is tackled next, thenk = 3, and

so on, untilk = N − 1. Finally, {L(k,m) ∀k,m} are copied to{Lold(k,m) ∀k,m}. This

concludes the first iteration. The next (e.g., second) iteration begins again at symbol index

k = 0 and proceeds throughk = N −1. The algorithm terminates after a specified number

of iterations.
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The complexity of the algorithm is dominated by theO (N3) computation offk for

each symbol. A technique similar to the one mentioned for IMLE using the matrix inversion

lemma can be used to obtainfk as an update offk−1. However, the cumbersome update

only helps reduce the complexity of the algorithm toO (N2). A much more effective

complexity reduction technique, via the simplified system model in Sec. 3.3, is suggested

in the following section.

4.3 Using the Simplified System Model

The simplified system model is used to reduce the complexity of the IMSE, too without

sacrificing performance significantly. The idea is to use only the partial observationxk and

partial channel informationHk as defined in Sec. 3.3, respectively, to generate good local

extrinsic estimateŝsk. Similar to the IMLE,µk is redefined as in Sec. 3.3,vk,R andvk,I as

vk,R :=
[
v(k−2D,R), . . . , v(k−1,R), 0, v(k+1,R), . . . , v(k+2D,R)

]t

and, vk,I :=
[
v(k−2D,I), . . . , v(k−1,I), 0, v(k+1,I), . . . , v(k+2D,I)

]t
,

respectively. Thenvk is defined as the sum ofvk,R andvk,I . Proceeding with the IMSE

algorithm in this case results in extrinsic LV expressions similar to (4.13).

4.4 Computational Complexity and Other Similar Algorithms

IMSE bears similarity to the algorithms proposed in [15] and[16], though there are

significant differences. First, in both [15] and [16], the estimation error is modeled as

complexcircular Gaussian. Simulation studies have shown that IMSE’s provision for

σ2
k,I 6= σ2

k,R is advantageous, especially when complex alphabets are used. Second, the

algorithms in [15] update the symbol means and variances once per iteration (i.e., after

updating{∆L(k,m), ∀m}N−1
k=0 ), whereas IMSE updates the symbol means and variances
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at every symbol indexk. It was demonstrated in [16] that symbol-rate updating is advan-

tageous. Finally, [15] uses the full observation vectorx, mandating the computation of an

N×N inverse autocorrelation matrix, whereas IMSE (and [16]) use the partial observation

xk, requiring only the computation of a(2D+1)×(2D+1) inverse autocorrelation matrix.

Since, typically,D ≪ N , this leads to significant computational savings.

4.5 IMSE Algorithm for BPSK and QPSK

In this section, we consider the BPSK and Gray Mapped QPSK constellations and

simplify the expressions for extrinsic LV(s), the symbol mean and variances for the IMSE

algorithm. It is assumed in this section that the simplified system model is used.

Recall that the symbol mapping function for BPSK (M = 1) was defined as

ψ(γ) = (−1)γ0

Then,s̄k,γ = (−1)γfH
k hk,0 ∈ R, so that (4.13) simplifies to

∆LIMSE(k, 0) = ln
exp[−Re2(ŝk − s̄k,0)/σ

2
k,R]

exp[−Re2(ŝk − s̄k,1)/σ2
k,R]

=
2 Re(ŝk)f

H
k hk,0

σ2
k,R

.

On the other hand, the symbol mapping function for Gray Mapped QPSK (M = 2) was

defined as

ψ(γ) =
1√
2

[(−1)γ0 + j(−1)γ1 ]
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Therefore, in this case, (4.13) simplifies to

∆LIMSE(k, 0) = ln

∑1
γ1=0 exp

[

−Re2(ŝk−s̄k,γ )

2σ2
k,R

− Im2(ŝk−s̄k,γ )

2σ2
k,I

+ 1
2
(−1)γ1Lold(k, 1)

]

∑1
γ1=0 exp

[

−Re2(ŝk−s̄k,γ )

2σ2
k,R

− Im2(ŝk−s̄k,γ )

2σ2
k,I

+ 1
2
(−1)γ1Lold(k, 1)

]

(4.14)

∆LIMSE(k, 1) = ln

∑1
γ0=0 exp

[

−Re2(ŝk−s̄k,γ )

2σ2
k,R

− Im2(ŝk−s̄k,γ )

2σ2
k,I

+ 1
2
(−1)γ0Lold(k, 0)

]

∑1
γ0=0 exp

[

−Re2(ŝk−s̄k,γ )

2σ2
k,R

− Im2(ŝk−s̄k,γ )

2σ2
k,I

+ 1
2
(−1)γ0Lold(k, 0)

]

(4.15)

The numerator of (4.14) usess̄k,γ = ψ([0, γ1])f
H
k hk,0 in forming

Re2(ŝk − s̄k,γ) = Re2(ŝk) −
√

2 Re(ŝk)f
H
k hk,0 +

1

2
(fH

k hk,0)
2,

while the denominator of (4.14) usess̄k,γ = ψ([1, γ1])f
H
k hk,0 in forming

Re2(ŝk − s̄k,γ) = Re2(ŝk) +
√

2Re(ŝk)f
H
k hk,0 +

1

2
(fH

k hk,0)
2.

Since the numerator and denominator of (4.14) have identical Im2(ŝk − s̄k,γ), we pull the

exp[
√

2
σ2

k,R

Re(ŝk)f
H
k hk,0] terms out from theγ1-summations, cancel common terms, and

find

∆LIMSE(k, 0) =

√
2 Re(ŝk)f

H
k hk,0

σ2
k,R

.

Similarly, the numerator of (4.15) usess̄k,γ = ψ([γ0, 0])fH
k hk,0 in forming

Im2(ŝk − s̄k,γ) = Im2(ŝk) −
√

2 Im(ŝk)f
H
k hk,0 +

1

2
(fH

k hk,0)
2,

while the denominator of (4.15) usess̄k,γ = ψ([γ0, 1])fH
k hk,0 in forming

Im2(ŝk − s̄k,γ) = Im2(ŝk) +
√

2 Im(ŝk)f
H
k hk,0 +

1

2
(fH

k hk,0)
2,

Since the numerator and denominator of (4.15) have identical Re2(ŝk − s̄k,γ), we pull the

exp[
√

2
σ2

k,I

Im(ŝk)f
H
k hk,0] terms out from theγ0-summations, cancel common terms, and find

∆LIMSE(k, 1) =

√
2 Im(ŝk)f

H
k hk,0

σ2
k,I

.
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The expressions for the mean symbol depend only on the updated LV and not on the

algorithm that was used to obtain it. Hence they are identical to the ones derived in Sec. 3.5.

For the BPSK (M = 1) case,

µk = tanh(Lold(k, 0)/2)

and for Gray Mapped QPSK (M = 2) case,

µk =
1√
2

tanh(Lold(k, 0)/2) +
j√
2

tanh(Lold(k, 1)/2).

In order to calculate the symbol variances, it can be seen that vk,R = 1 − (Reµk)
2

andvk,I = 0 in the BPSK case, and thatvk,R = 1
2
− (Reµk)

2 andvk,I = 1
2
− (Imµk)

2

in the QPSK case. Notice that, with uncorrelated real and imaginary symbol components,

vk = vk,R + vk,I .

Table 4.1 and Table 4.2 shows the steps in one iteration of theIMSE algorithm for

BPSK and Gray Mapped QPSK constellations, respectively.

BPSK
for k = 0 : N − 1,

f k =
(
Σεk

+ Hk D(vk)H
H
k + hk,0h

H
k,0

)−1
hk,0

ŝk = fH
k (xk − Hkµk)

compute σ2
k,R from (4.10)

L(k, 0) = Lold(k, 0) + 2σ−2
k,R Re(ŝk)f

H
k hk,0

µk = tanh
(

L(k,0)
2

)

vk = 1 − µ2
k

Lold(k, 0) = L(k, 0)
end

Table 4.1: Steps in one iteration of IMSE for BPSK.

33



QPSK
for k = 0 : N − 1,

f k =
(
Σεk

+ Hk D(vk)H
H
k + hk,0h

H
k,0

)−1
hk,0

ŝk = fH
k (xk − Hkµk)

compute σ2
k,R and σ2

k,I from (4.10)-(4.11)
L(k, 0) = Lold(k, 0) +

√
2σ−2

k,R Re(ŝk)f
H
k hk,0

L(k, 1) = Lold(k, 1) +
√

2σ−2
k,I Im(ŝk)f

H
k hk,0

µk = 1√
2
tanh

(
L(k,0)

2

)

+ j√
2
tanh

(
L(k,1)

2

)

vk,R = 1
2
− (Reµk)

2, vk,I = 1
2
− (Imµk)

2

Lold(k, 0) = L(k, 0), Lold(k, 1) = L(k, 1)
end

Table 4.2: Steps in one iteration of IMSE for QPSK.

4.6 Relation between IMSE and IMLE

Starting from the optimal detection strategy for transmitted symbols and trading off per-

formance for affordable complexity, two algorithms,viz., IMLE and IMSE, are developed

in this thesis. In the light of this common starting point, itseems imperative to probe if the

IMSE and IMLE are related in some way. In this context, this section shows that the two

algorithms developed are similar. In particular, for specific choices, the two algorithms are

identical. This section shows that for the BPSK constellation, the IMLE is is identical to

the IMSE, when the estimation error for the extrinsic estimates is assumed to be circular-

Gaussian distributed. Note that here, we use the general expressions for IMLE and IMSE

andnot ones using the simplified system model. However, this equivalence can be shown

for the algorithms for the simplified system model followingthe same procedure.

Consider that at some iteration, all the LVs{Lold(k,m) : k = 1, 2, · · · , N ,m =

1, 2, · · · ,M} obtained by IMLE are identical to those obtained by the IMSE.Consider
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also that the most current symbol means{µk} and variances{vk} are identical for IMLE

and IMSE. This can be assumed since the symbol means and variances are computed solely

using the updated LVs.

The extrinsic LV for the BPSK constellation using IMLE is given by

LIMLE (k, 0) = 2 Re gk

= 2 Re
(

yH
k Σ

−1
qk

hk

)

(4.16)

as shown in Sec. 3.5.

Now, for IMSE under the aforesaid assumption, the extrinsicLV is given by

LIMSE(k, 0) = ln
exp

(
−|ŝk−fH

k hk|2
2σ2

k

)

exp
(

−|ŝk+fH
k hk|2

2σ2
k

) . (4.17)

In (4.17),σ2
k is defined and calculated in (4.18).

σ2
k = E [ŝk|sk = β] , β ∈ S

= fH
k Σqk

f k (4.18)

Note thatσ2
k does not depend onβ.

Again, in (4.17), the extrinsic estimatêsk is calculated as

ŝk = fH
k (x − Hµk) ,

where using (3.2) , we obtain

ŝk = fH
k yk. (4.19)

Now, using the matrix inversion lemma,fk can be written as (4.20).

f k =
(
Σw + H D(vk)H

H + hkh
H
k

)−1
hk

=
(
Σqk

+ hkh
H
k

)−1
hk

=
Σ

−1
qk

hk

1 + hH
k Σ−1

qk
hk

(4.20)
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Using (4.18) and (4.19) in (4.17), the extrinsic LV can be simplified to

LIMSE(k, 0) =
2 Re

(
hH

k fkf
H
k yk

)

fH
k Σqk

f k

. (4.21)

Now substituting (4.20) in (4.21), we write

LIMSE(k, 0) =
2 Re

(

hH
k Σ

−1
qk

Σqk
Σ

−1
qk

hkh
H
k Σ

−1
qk

yk

) (

1 + hH
k Σ

−1
qk

hk

)2

(

hH
k Σ−1

qk
Σqk

Σ−1
qk

hk

)(

1 + hH
k Σ−1

qk
hk

)2 .

(4.22)

Finally, noting thathH
k Σ

−1
qk

hk ∈ R in the expression above, we obtain

LIMSE(k, 0) = 2 Re
(

hH
k Σ

−1
qk

yk

)

. (4.23)

ThenLIMLE (k, 0) = LIMSE(k, 0) from (4.16) and (4.23). The calculation of the extrinsic

LVs is the only step that differs in the two algorithms. Also,the values of{Lold(k,m)},

{µk} and{vk} are initialized to the same values for both algorithms. Thenit can be seen

that the algorithms are identical.

This concludes the discussion on the equalizer algorithms.
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CHAPTER 5

Error Control Coding

The aim of this thesis is to evaluate the performance of the designed equalizers in a

coded system with a receiver configured as a turbo-equalizer(or as an iterative equalizer

followed by a SISO decoder). Hence, the design of the error control code and the corre-

sponding decoder is not the primary focus of this thesis. However, the error control coder

and decoder are an integral part of the turbo-equalization setup. Thus a short discussion

on this aspect of the problem is presented. The selected codeis described. The choice of

the decoder is also discussed. The final section of this chapter focuses on the choice of the

interleaver.

5.1 Selected Coding Scheme

The turbo equalization idea has been used in a number of applications. In keeping

with most of these, we choose to use convolutional codes in our system. We choose to

use a code with relatively small memory in order to have a decoder with relatively low

complexity. More specifically, we wish to use the convolutional code with memoryν = 2

with the generator matrix

g(D) =
[

1 +D2 1 +D +D2
]

(5.1)

37



In order to feed back soft information (in the form of LVs) to the equalizer as shown

in Fig. 2.3, we require a soft-input soft-output (SISO) coder. The input to this block is a

stream of LVs for input bits. As its output, it generates the LVs for the bits that are the

result of convolutionally encoding the input bits using theconvolutional code specified by

(5.1). In order to achieve this, we use results from [22].

The first result states that given statistically independent a1, a2 ∈ {0, 1}, the LV ofa1 ⊕ a2,

L(a1 ⊕ a2), is given by

L(a1 ⊕ a2) = ln
1 + eL(a1)eL(a2)

eL(a1) + eL(a2)

≈ sgn (L(a1)) sgn (L(a2))min{|L(a1)|, |L(a2)|}, (5.2)

whereL(ai) is the LV for bit ai, i = 1, 2. Building on this, it can be shown that for

statistically independentai ∈ {0, 1} where,i = 1, 2, · · · ,M ,

L (a1 ⊕ a2 ⊕ · · · ⊕ aM) = 2 tanh−1
(
ΠM

i=1 tanh (L(ai)/2)
)

≈
(
ΠM

i=1 sgn (L(ai))
)
min {|L(a1)|, |L(a2)|, · · · , |L(aM)|}

(5.3)

5.2 Non-Systematic Codes versus Recursive Systematic Codes

For our turbo-equalizers, we prefer to use the Non-Systematic generator (NSG) matrix

(5.1) over the Recursive Systematic generator (RSG) matrixgiven in (5.4).

g1(D) =
[

1
1 +D2

1 +D +D2

]

(5.4)

This choice seems counter-intuitive from a Turbo-Codes perspective which suggests

that codes defined by RSGs outperform those defined by the corresponding NSGs. But,
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codes defined by RSGs run into problems with the SISO-coder. It is clear that for a RSG,

the parity bit at any point has the influence of all previous inputs. Equation (5.3) shows

that the magnitude of the LV at the output of the SISO coder is related to the LV with the

minimum magnitude encountered at the input. Thus even if a single bit is unreliable in the

input, all subsequent outputs have very low reliability. This adversely affects the equalizer

when these LVs are fed back. In contrast, the output LV of froma SISO coder using a NSG

depends only on a maximum ofν + 1 input LVs and performs better.

5.3 Choice of Decoder

A number of decoders are available for decoding convolutional codes. Again, we stress

that we wish to evaluate the performance of the equalizers ina system with coding. Thus we

choose the bit error rate optimal MAP decoder, hoping that noperformance loss is incurred

by the decoder. Specifically, we use the well-known MAP optimal BCJR algorithm in [23].

In order to keep the decoding complexity low, we use codes with small memory (smallnu).

5.4 Interleaver

As seen from Fig. 2.3, an interleaver is used in the transmitter and a corresponding

de-interleaver is used in the receiver. In our experiments,we use a block interleaver. This

interleaver stores the values into a matrix row-wise and generates the output by reading

out the stored values column-wise. This works well, since the function of the interleaver

is merely to scramble bits at the output of the coder to destroy the correlation introduced

as far as possible. The interleaver makes our assumption of independent bits for the IMLE

and IMSE seem more realistic. The error events at the output of the equalizers are highly
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bursty in nature. The interleaver helps distribute these error events evenly in the stream

input to the decoder.

This concludes the short discussion on the error control coding scheme used. All the

relevant blocks of the proposed system have now been discussed. In the following chap-

ter, we present simulation results and draw conclusions on the efficacy of the algorithms

developed.
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CHAPTER 6

Experimental Results and Conclusion

In this chapter, the performance of the designed equalizersis characterized through

simulation results. First, the setup for the simulations isdescribed. Next, the pulse shapes

and their success in shaping the channel into the desired banded structure of Fig. 2.1 is

validated. Then benchmark/reference configurations are introduced against which the per-

formance of the equalizers is measured. The performance of the equalizers is presented.

Important conclusions that are drawn are listed. Finally, the last section presents pointers

for possible future research directions.

6.1 Experimental Setup

The experiments performed employed BPSK and (Gray-mapped)QPSK constellations.

SNR−1-variance CWGN noise is used along with a WSSUS Rayleigh-fading channel with

uniform power profile (i.e.,σ2
l = N−1

h for 0≤ l <Nh). For the channel and pulse shapes,

the design choices made areNa = 1.5Ns, Nb = Na + Nh/2, andD = ⌈fdN⌉ + 1 (from

[9,16]). We note here that the pulse shape designs only use channel statistics. Even though

pulse shaping givesH the desired structure there are small leakages for practical channel

realizations. Thus, the equalization algorithms use a slightly larger value ofD while using
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the simplified system model than that used for the pulse design. Usually the value ofDeq

for the equalizer is set toDeq = D + ∆D. We choose∆D = 1.

For the MCM,N = 64,Nh = 32, andNs = N (i.e., no guard interval) are chosen and

the system studied for maximum Doppler frequenciesfd = 0.03 andfd = 0.01. Recall

thatfd is normalized to the chip rate,i.e., rt(q) = J0(2πfdq). Perfect channel knowledge

is assumed. Hence, pilots are not employed. Note that sinceNh is not larger thanN , the

block DFE configuration suggested [9] is not used for the simulation results presented.

At the transmitter, i.i.d. information bits are coded, interleaved, and mapped to sym-

bols. Coding and interleaving is performed on blocks of 40 multi-carrier symbols. The

block interleaverΠ ensures that bits being mapped to symbols have very low correlation.

These symbols are then modulated by the PS-FDM transmitter described in Sec. 2.1 and

transmitted through the doubly selective channel, whose realizations were generated us-

ing Jakes method. At the receiver, the windowed frequency domain observationx(i) is

computed according to (2.4) and passed to the equalization/decoding stage. Both serial

and turbo equalization/decoding configurations (i.e., Fig. 2.2 and Fig. 2.3, respectively) are

simulated, each with IMLE and IMSE algorithms. Note that only the low-complexity ver-

sions of the IMSE and IMLE resulting from the simplified system model of Sec. 3.3 are

simulated, since the algorithms in their original form havevery high computational com-

plexity. For turbo equalization/decoding, one equalizer iteration is inserted between each

decoding iteration. Sixteen turbo iterations are used for both BPSK and QPSK constella-

tions. Increasing the number of turbo iterations further did not enhance performance. For

each BER data point, we average over 3000 multi-carrier symbols.
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6.2 Pulse Shapes and Channel Profile

Out of the three pulse shape designs mentioned in Sec. 2.2, weconsider only the first

two, viz., the scheme employing optimized pulses at the transmitter with CP-OFDM like

pulses at the receiver and the scheme employing jointly optimized pulses. The third scheme

mentioned in Sec. 2.2 employs guard intervals, and does not have full rate. However, the

interested reader is referred to [16] for results on this scheme.

Fig. 6.1-Fig. 6.4 show the SINR maximizing pulse shapes and corresponding shaped

power profile for the channel. Note that our design choices imply Lpre = 1 andLpst = 1.

Thus, for each pair of pulses{an} and {bn}, the three channel power profiles (in dB)

correspond to(b) the pre-cursorH (i,−1), (c) the cursorH (i,0) and(d) the post-cursorH (i,1),

respectively(from left to right). Note that all the plots are at SNR= 2dB. From the plots,

it is clear that the power of the pre- and post-cursor channels are negligibly small. This

supports the choice of not using a block DFE as suggested in [9]. It is also clear that the

obtained channel profile agrees with the target response, barring small amounts of leakage.

6.3 Performance References Chosen

In order to characterize the performance of the IMLE and IMSE, the following perfor-

mance references/benchmarks are used:

• Perfect Global Interference Canceler(PGIC): This scheme has one equalization

and one decoding iteration, in which, the equalization stepis MMSE estimation of

s(i)

k assuming all interference{s(j)

d }(j,d)6=(i,k) is known perfectly. This can be viewed

as the best performance achievable by the IMSE and IMLE usingthe entire cursor

channel matrixH (i,0).
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Figure 6.1: Optimized transmitter pulse shapes and channelprofiles for fd = 0.01, (a)
pulse shapes, (b) pre-cursor, (c)cursor and (d) post-cursor MIMO channels.
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Figure 6.2: Optimized transmitter pulse shapes and channelprofiles for fd = 0.03, (a)
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• Perfect Local Interference Canceler(PLIC): This scheme has one equalization

and one decoding iteration, in which, the equalization stepis similar to PGIC except

that, when estimatings(i)

k , only neighboring co-cursor ICI{s(i)

d }k+2D
d=k−2D is known;

ISI and non-neighboring ICI are unknown. This PLIC lower bounds the BER of

the simulated reduced complexity iterative equalizers, since, at best, they too cancel

only local interference. (It is interesting to note that theproximity of PLIC and

PGIC performance curves measures the success of the pulse design’s out-of-target

interference suppression ability.)

It is interesting to note that thePGIC andPLIC are developed from MMSE esti-

mation. However, it is trivial to show that under the assumptions for PGIC and

PLIC, IMLE acheives the same bounds. Hence thePGIC andPLIC are performance

bounds for the IMLE, too.

• Complex White Gaussian Noise Channel(WN): This refers to the performance

of the convolutional code over a CWGN channel, representingBER performance

achieved in the absence ofinterference and fading using a BER optimal MAP de-

coder. This represents bounds the performance attainable using the selected code

over any CWGN channel with or without interference.

• Linear MMSE Equalizer (LIN): This refers to the performance of the MCM system

with standard linear MMSE based equalization and one decoding iteration, where the

linear MMSE estimates are generated using (6.1).

s(i) = H (i,0)H
(

H (i,0)H (i,0)H + Σw

)−1

x(i) (6.1)

The benefits of exploiting available LVs and the finite alphabet of constellations is

highlighted by comparing the equalizers designed with linear MMSE equalization.
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6.4 Performance Characteristics

Here we characterize the performance of the proposed pulse-shaped multi-carrier mod-

ulation system employing iterative equalization and coding. End-to-end coded BER is

used as a performance measure for the proposed iterative equalizers. Note that, in or-

der to provide a fair comparison across constellations, BERis plotted against the ratio of

information-bit energy to noise spectral density. In theseBER plots,MLk andMSk refer to

IMLE and IMSE, respectively, withk decoding iterations. In particular,ML1 andMS1 rep-

resent the performance of the IMSE and IMLE using one-shot equalization and decoding.

This is the performance of the receiver when used in the configuration shown in Fig. 2.2.

Fig. 6.5 depicts the performance of the equalizers in a system using optimized pulses

at transmitter only, whereas, Fig. 6.6 depicts the performance of the equalizers in a system

using jointly optimized pulses when a BPSK constellation isused. Fig. 6.7 and Fig. 6.8 de-

pict the performance of optimal transmitter pulses and jointly optimal pulses, respectively

using the QPSK constellation.

6.5 Conclusions

From the performance characteristics presented, the following conclusions are drawn.

• Bounding Performance:

In Figs. 6.5-6.8, the gap between thePLIC andPGIC curves is less than1dB for all

cases, implying that, with the pulse designs, the out-of-target ICI/ISI is negligible,

even at the high Doppler frequency offd = 0.03. This also means that a very small

sacrifice in performance was made, by choosing to use the simplified system model,

in spite of the large computational savings it provides. Also notice that, for either

constellation, PGIC/PLIC forfd = 0.03 is lower thanfd = 0.01. Recall thatD
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Figure 6.5: BPSK with transmitter pulses and CP-OFDM receiver window for (a)fd = 0.01
and (b)fd = 0.03.

0 2 4 6
10

−3

10
−2

10
−1

E
i
/N

0

be
r

(a)

LIN
ML1
MS1
MS16
ML16
PLIC
PGIC
WN

0 2 4 6
10

−3

10
−2

10
−1

E
i
/N

0

be
r

(b)

LIN
ML1
MS1
MS16
ML16
PLIC
PGIC
WN

Figure 6.6: BPSK with jointly optimized pulses for (a)fd = 0.01 and (b)fd = 0.03.
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Figure 6.7: QPSK with transmitter pulses and CP-OFDM receiver window for (a)fd =
0.01 and (b)fd = 0.03
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increases withfd and provides diversity gain that could be exploited at the cost of

complexity.

• Performance of IMLE versus IMSE:

The BER plots for BPSK constellations show that the performance of the equalizers

in all cases considered approach thePLIC at about an SNR of5dB. This tells us that

for BPSK, both IMSE and IMLE are near optimal among all equalizers that use the

simplified system model.

The BER plots for QPSK show that IMLE slightly outperforms IMSE at high SNR.

We conjecture that IMSE is less robust to violations in the Gaussian interference

assumption that are more likely to occur in high-SNR scenarios.

• Comparison across Pulse Shaping Schemes:

Figure 6.7-6.8 suggest that the transmitter-only and jointtransmitter/receiver pulse

designs give similar performance atfd = 0.01 and the transmitter-only scheme is

superior atfd = 0.03. While the joint design is expected to yield less out-of-target

ISI/ICI, non-rectangular receiver windowing colors the frequency-domain noise, ren-

dering the simplified model of Sec. 3.3 sub-optimal. Hence, we conjecture that the

advantages of the lack of noise coloration outweighs the burden of increase in out-

of-target ISI/ICI at higher Doppler for the designed equalizers.

• Comparison across changingfd:

We note that, asfd increases, PGIC/PLIC performance improves (as a consequence

of diversity) while IMLE/IMSE performance degrades. We attribute this degradation

to error propagation during iterative equalization. Even so, we find that IMLE perfor-

mance is within1.5dB the PLIC bound atfd = 0.03 when transmitter-only scheme
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is used with QPSK. In all cases, it is clear that the algorithms perform significantly

better than anO (N3) standard non-iterative linear MMSE (LIN) based equaliza-

tion strategy. This is remarkable considering that all the equalizers considered have

O (ND3) complexity.

6.6 Final Remarks

We presented a new approach to equalization for PS-FDM in thepresence of doubly-

dispersive fading. For suitably constructed pulse sequences to shape ICI/ISI, it is demon-

strated that the affordable complexity equalization algorithms described come close to mit-

igating a substantial part of the interference present.

6.7 Future Work

A few of the interesting ideas that still need investigationinclude:

• Information-Theoretic Analysis of Pulse Shaping: Communication over doubly

dispersive channels has received a lot of attention. Pulse shaped multi-carrier modu-

lation is one such scheme. Even though some recent work has touched on it, there is

almost no literature on the information theoretic analysisof pulse shapes, thier opti-

mality, and their limiting performance over doubly-selective channels. For instance,

the pulses are designed using a SINR maximizing criterion. However, whether this

criterion is optimal or not is not well understood.

• Extension of Pulse Shaping Schemes to Multi-Antenna Systems: Multi-antenna

systems are known to provide large spatial diversity gains.Extension of the pulse

shaping schemes to multi-antenna systems, along with suitable equalization and/or

coding algorithms will be valuable.
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• Analysis of Iterative Equalizers: The iterative equalizers proposed in my Master’s

Thesis work very well with the pulse shaped multi-carrier modulation system. How-

ever, the choice seems rather ad-hoc. In particular, there are no well defined grounds

on which we can compare iterative equalizers (among themselves and with other

high performance equalization algorithms). It would be valuable to find methods of

comparing iterative equalization algorithms.
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