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ABSTRACT

There is a growing demand for higher data rate systems timatucection in a highly
mobile environment. This mandates the design of commubitalstems that can func-
tion in doubly selective channels. Pulse-shaped multieramodulation schemes prove
to be an attractive option for transmission over doublpdisive channels. The pulse
shapes are designed to yield an inter-symbol/inter-aamterference profile matching a
given target response. The receiver relies on high-pedoo®/low-complexity equaliz-
ers that can reliably extract the transmitted symbols froendbservations in the presence
of controlled amounts of interference in the target resportss thesis presents two such
high-performance/low-complexity iterative equalizespecifically, the two iterative equal-
ization algorithms are based on minimum mean squared ercomaximum likelihood cri-
teria, respectively. In order to protect the transmittddrimation against sub-carrier nulls,
an error control code is used at the transmitter. The eqralexchange soft information
with a maximuma-posteriori probability (MAP) optimal decoder in a turbo-like fashion
at the receiver. Simulations suggest that turbo-equadizatith linear complexity iterative

equalizers offer significant performance enhancementsstaadard techniques.
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CHAPTER 1

Introduction

Broadband wireless communication has proved to be a ceomer®f today’s global
information infrastructure. Successful communicatioeroa wireless link entails over-
coming two main hurdles.

The first is posed by the effects of multi-path propagatidn [d simple terms, reflec-
tions from physical objects produce multiple versions ef¢hme signal at the receiver. The
cumulative effect at the receiver is a signal composed dbuartime and phase delayed
echoes. When the delay spread of this received signal exdbedduration of transmit-
ted signals, energy from each transmitted symbol spills amd contaminates neighboring
symbols. This effect is commonly known as inter-symbolrifgeence (ISI). Such channels
are referred to as frequency selective channels, sincehtlinel response is not uniform
over the bandwidth of the transmitted signal.

The second hurdle to be overcome in a wireless communicayistem is induced by
mobility of the communicating devices. As a result of motiime variations are intro-
duced in the wireless communication channel. Motion resultDoppler shifts in fre-
guency of the transmitted signal at the receiver. For itgawhen a pure tone is transmit-

ted through a time varying channel, the observed signaleatabeiver is composed of a



band of frequencies. Such a channel is termed time selestivee its characteristics vary
with time.

Channels that are frequency as well as time selective agereefto as “doubly selec-
tive”.

There is a growing demand for higher data rate (smaller syahlration) systems that
can function in a highly mobile environment. This mandakesdesign of communication
systems that can function in doubly selective channels.

Leveraging computationally efficient FFT operations athb@tceiver and transmitter,
orthogonal frequency division multiplexing (OFDM) [2—4 &n attractive alternative for
frequency selective channels. The key idea in OFDM to trarisrparallel over the set of
orthogonal discrete Fourier basis vectors as sub-cara#estively increasing the symbol
interval. By the insertion of a guard interval(proportibtathe maximum delay spread
of the channel) between symbols, ISI is completely avoideldwever, when channels
in question are doubly selective, the OFDM sub-carriersrerdonger orthogonal due
to Doppler spreading. The energy from symbols transmitie @articular sub-carrier
corrupt neighboring sub-carriers [5]. This phenomenariség inter-carrier interference
(ICI). A number of different approaches to make OFDM robuodiGl exist [5-8]. An al-
ternative approach is to consider the more general set otitation techniques (of which
OFDM is a subset) known as Multi-carrier Modulation (MCM)n®©such approach to
use MCM over doubly selective channels, is using pulse sh&f@M (PS-MCM) [9, 10].
PS-MCM is based on the realization that trying to mitigatéhd&l and ICI in a doubly
selective channel might be over ambitious. Instead, tinmeaio pulses are used shape

the channel profile so that it meets a target specificatioreligs on a high performance



low complexity equalizer to reliably extract the transedtisymbols in the presence of this
controlled amount of interference in the target specificati

This design philosophy serves as a premise for this thegmecifically, this thesis
attempts to design suitable equalizers for a PS-MCM system.

Classical equalizers can be classified into two broad cdas$ke first class is based
on linear combining of the observatioviz., linear equalizers (LE). LE have low com-
putational complexity, but suffer from poor performancesda noise enhancement. The
other class of equalizers are those that exploit the tr&titiscture introduced by the chan-
nel,viz, trellis based equalizers (TBE). Commonly used TBE such\teabi Algorithm
based equalizer [11] outperform LE but suffer from enormoaimputational complexity
for long channels. The aim is to design equalizers that ofdpa linear equalizers, and
have affordable low complexity.

Iterative approaches to interference suppression have sigggested for various sys-
tems. Most of these methods use soft decisions to cancélaregace [12]. The advantage
lies in the fact that soft decisions quantify the relialgilif the decision in addition to the
decision itself. Thus the interference canceled corredptmsymbols with highly reliable
estimates only. Interference cancellation using feed lbéskft decisions, such as in [12],
are popularly called soft interference cancellation (SEIT is more robust to error propa-
gation than decision feedback equalizers [13]. Motivatethis, both an iterative structure
and use of SIC is incorporated in the designs presented.

Finally, the bit error rate (BER) performance of an MCM systes severely ham-
pered by sub-carrier nulls. Thus coding is employed at thesmitter. Decoding and

interference-cancellation are coupled at the receiver.



Specifically, we propose two receiver schemes, both of whats soft bit estimates
between an iterative equalizer and soft-input soft-ou{fUE0O) decoder in a turbo-like
fashion [14, 15]. The first scheme, based on a LE using thenmim mean-squared error
(MMSE) criterion, builds on the work of [15, 16].

The second scheme is based on a maximum likelihood (ML) exgtigin stage which
is related to the probabilistic data association (PDA) atgms in [17, 18]. However, in
contrast to [15] and [17, 18], our algorithms are specifictdilored to the structure of the

ICI/ISI-shaped channel.

1.1 Organization of Thesis

This thesis has been organized iitechapters. The ensuing chapter introduces the
system model used and the key components of the iterativaiegrs. The following two
chapters present detailed discussions on the two designedizers. The next chapter
presents a short discussion on the coding aspect of thegonoflhe final chapter presents

experimental results and conclusions along with possilile¢ research directions.

1.2 Notation Used

We use(-)! to denote transposé;)* conjugate, and-)” conjugate transposeC(b)
denotes the circulant matrix with first colundn D(b) the diagonal matrix created from
vectorb, andI x the K x K identity matrix. We useB],, ,, to denote the element in the
m* row andn" column of B, where row/column indices begin with zero. Expectation is
denoted byE{-}, cross-covariance ¥, . := E{bc" } —E{b} E{c" } and auto-covariance
by 2, := E{bb"} — E{b} E{b"}. & denotes modul@-addition over{0, 1}. Finally, R

the field of reals, and. the set of integers.



CHAPTER 2

Iterative Equalization

This chapter introduces the iterative equalization athars that form the core of this
thesis. First, an appropriate model for a generic MCM schimmm@porating pulse shapes
is explained. Then a suitable decision metric is introdud&dally, the key ideas behind
the iterative equalization algorithms are elucidated dasethe given system model and
decision metric. This chapter also presents two receivefiguarations incorporating these
iterative equalizers, addressing the issue of couplingthmlizers with decoders for error

control coding.

2.1 System Model

In a MCM system, at each multi carrier symbol indeg Z, a vector of uncorrelatetl
bits ¢ = [¢&", ¢\, -+, c¢§_,"]t, wherec!” = [l ci ,cfo_Jt andc;, € {0,1},
is mapped to a vector of symbols?? = [s’,s{”,--- s\ ]!, si’ € S by the symbol
mappingy : {0,1}* — S, whereS is theconstéellation of size|S| = 2. In this thesisS
is restricted to a Gray-coded PSK constellation, for sioigli This set of V coded PSK

symbols{s;’} is collected to form a multi-carrier symbel”? = [s{’,...,s%_,]*. These

Lif coding is employed, thea® is an interleaved vector of coded bits.



symbols are used to modulate pulsed carriers as follows:
tn = Z an—iNsL Z 5\0 e F (n=ile=No)k (2.1)
i=—00 k=0
In (2.1), {a,} is the transmit pulse sequencg, is the multi-carrier symbol interval, and
N, € {0,...,N — 1} delays the carrier origin relative to the pulse origin. Thatirpath
channel is described by its time-variant discrete imputsponsé:(n, 1), defined as the
time-n response to an impulse applied at time /. We assume a causal impulse response

of length V. The signal observed by the receiver is then

Nj,—1

Peo= Vot > ha(n, Dt (2.2)

where v, denotes samples of circular white Gaussian noise (CWGN) watiances?.

Definingr) := rin,in, ¥ = Vin,4n, @andhy’ (n,1) := hy(iN, + n,1), it can be shown
that
Nh 1 N—-1
ry = v+ Z hy’ Z GZN5+n—z—N Zs; )i N (n—I+Ns=No)k (2.3)
{=—0c0 k=0

To estimate the multi-carrier symbefl’, the receiver employs the pul$g,} as follows:

1 . o
r = Do e R (2.4)

Here againV, delays the carrier origin relative to the pulse origin. Nittat this system
reduces to CP-OFDM wittV, = N, — N, {a,}.5" = 1, and{b,}*} = 1 (elsea, =
b, = 0). Note also thatV, := N, — N is analogous to CP-OFDM guard interval.

Plugging (2.3) into (2.4), we find

2

) w + ) hf;f“ d—k, k) s (2.5)
l 0

B
Il



where

wy = be y e Rdln=No) (2.6)
Np—1
hg'(d, k) = —Z Z B (1, )by, g €7 K AM—N) I FRIN) (2 7)

Equation (2.5) indicates thaf;” (d, k) can be interpreted as the response, at tiraad
sub-carrielk + d, to a frequency-domain impulse applied at tiine ¢ and sub-carriek.
In practice we implement finite-duration causal pulées} and{b, } of length N, and
N,, respectively, implying that only a finite number of termshe set{h};" (d, k), ¢ € Z}
will be non-zero. Specifically, (2.7) implies that non-zésoms result from indiceéwhich
satisfy0 < /N,+n—1 < N,—1forsomen € {0,...,N,—1} and somé € {0,..., N, —

1}. Itis straightforward to show thaf;;” (d, k) is non-zero fo¥ € {—Lye, . . ., Lpst} Where

Lpre = _LNX/:lJ and Lpst = LiNﬁ]\]/Zh ).
With the definitionse® := [z, ..., 2% ], w® = [w’, ..., w{_ ]}, and[H 9], =

hi”(d — k, k), (2.5) implies the linear time-varying (LTV) multiple-inp multiple-output
(MIMO) system

Lpst
20 = w4 Y HOs0, (2.8)

£=—Lpre

In the sequel we assume wide-sense stationary uncorreedgtring (WSSUS) [13]
so thatE{hu(n, ) (n — ¢, — m)} = r(q)o?d(m). Here,r(q) denotes the normalized

autocorrelation (i.ex;(0) = 1) ando? the variance of thé” lag.

2.2 Pulse Shape Design: An Aside

Even though, the design of suitable pulse shqpg$ and{b,} is not the focus of this

thesis, they are a key component of a MCM system. Hence, ltloid section presents a

7



terse qualitative discussion on pulse shape design. Failgleh pulse shape design, the
reader is referred to [9, 10, 16].

It is well known that unlike the class of LTI systems, there@scommon set of eigen
vectors for LTV systems. Therefore, use of the discreteiEobasis to modulate frequency
domain symbols is not justified. In the approach adopted,ib(p the symbols are modu-
lated by complex exponentials that are shaped by time domases{a,, } and{b,} at the
transmitter and receiver, respectively as in (2.3) and (2.4

The problem can be viewed from another perspective. Therénwar classes of inter-
ference to be counteredz., inter-symbol interference (ISI) and inter-carrier irfiéeence
(ICI). Use of narrow time domain pulses allows for the suppren of ISI at the expense of
introduced ICI. On the other hand, use of wide time domaisgaihelps suppress ICl at the
expense of the ISI introduced in the absence of guard irferizaen if this were possible
using linear processing, the noise enhancement would irtiggperformance significantly.
Instead, the attempt is to shape the channel profile to atbow ftolerable” amount of ISI
and/or ICI that has to be countered by a suitably designedliezgu

In [9,16], the pulse shapes are designed to allowfdaps of ICI on either side of a sub-
carrier, whereD depends on the maximum Doppler frequerfgyor the system. Fig. 2.1
shows a typical desired channel profile. Three types of mhapes can be designed using

this approachviz.,

e Transmitter Pulses: Design optimaKa,} for a fixed (rectangular) pulse shape, }

at the receiver.

¢ Jointly Optimized Pulses: Design optimal pair of transmitter and receiver pulses}

and{b,}.



e Receiver Pulses: Design optimal receiver pulse shapk,} for a fixed CP-OFDM

(rectangular) transmitter pulse shape.
2.3 Decision Metric

The bit error rate optimal MAP detection strategy [19] fot Afjjfm of a given multi-
carrier symboke, is based on a comparison of thgosteriori probabiIities{P(cgfm =

0iEARY izo- Our equalizer uses the observatiof? and knowledge ofi “*) to update

thei*" multi-carrier symbol’s bit reliability metri¢ L@ (k, m), vm} 1 ', also referred to as

L-values (LVs).

P(ci), = 0lz")

LYk | :
(km) = I ey

(2.9)

Since all quantities pertain to th# multi-carrier symbol, superscript indices are omitted
for the remainder of the thesis without loss of generalityeyrare only re-introduced when
multiple multicarrier symbols have to be distinguished.ré{ét is pointed out that when
subscripts are omitted refers toH“”. Note that the sign of.(k, m) is the uncoded
MAP bit decision, the magnitude df(k, m) indicates the reliability of this decision and
that thea posteriori probabilities for each bit can be written as (2.10).

eL(k,m) o
1+8L(k,m) ry - 0

Plegm =7lz) = (2.10)
e—L(k,m)
et =1L

In fact, this decision statistic is very popular and ofteersén algorithms for both
equalization [17, 20] and decoding [21, 22]. Using Baye$ mndassuming independent
bits,2 L(k, m) can be rewritten as the sum of the prior LBq(k, m), and the extrinsic LV,

2As a consequence of, e.g., interleaving, in the presenceafeontrol coding.



AL(k,m), defined in (2.11).

L(k,m) = 1 2oegipt o P@le =) Tliw oy my P (Chrmt = o)
,m) = In
> vegpn P(®|C =) T oy ) £ (Rt me = )

kN-+m,1

-~

AL(k m)

P(Ckm:())

In = \ham = 0)
LR T P—
~—— ———

Loig(k,m)

(2.11)

Here,g,’jg’a denotes the set of all length-bit vectors in which theé:%" bit has been set to
a € {0,1}. Intuitively, 2.11 says that the LV can be calculated by rigkihe ratio of the
sum ofa posteriori probabilities of all lengthy M/ bit sequences in which thg M +m)®"
bit is fixed asy € {0,1}. Another important issue is the decouplingaf.(k, m) and
Lod(k, m). The algorithms assume that the extrinsic IN_ (%, m) is independent of the
prior LV Log(k, m). Even though this is not completely true of the presentedralgns,
we ensure thaLqq(k, m) is not directly used in the calculation &L (%, m). However,
from the algorithms, it can be deduced that, throdgh(k, m') wherem’ # m, Loqg(k, m)

does influence the value &L (k, m) to a small extent.
2.4 Iterative Equalization: Key Ideas

Given the observatiom, the channel informatiod#Z, and the statistics of the additive
zero-mean complex Gaussian natsg, classical equalizers use various algorithms to com-
pute an estimate. In addition to these available quantities, by virtue oftésative nature,
an iterative equalizer has prior informatidy available to it. The task of the iterative
equalizer is to update the LV for each bit sequentially ugih@1). In essence, this entails
computing the extrinsic LVAL. We see in (2.11) that the numerator and denominator for

AL are summations af*’V~! terms each. Hence, the computationof is O (2"Y) per

10



LV update and its exact computation is generally infeasifilee algorithms proposed in

this thesis are sub-optimal strategies based on apprarinsatf A L(k, m) by

Z‘YEQ%O p(w|ck = '7) Hm’;ﬁm P(Ck,m’ = f}/m,)
E’YG(_L]}L{J p<w|ck = 7) Hm’;ém P(C&m/ = fym,) ’

In (2.12), the extrinsic LV is approximately computed by swlering all possible values

AL(k,m) = In (2.12)

of symbol z, for which ¢, = v € {0,1}. This brings down the complexity of the
algorithm toO (QM) per LV update. For simple constellationsz.,, BPSK and QPSK, it
will be shown that this update can be greatly simplified. Thgtinwo chapters provide
alternative approaches to compWté (k, m) via (2.12).

The information present in the LVs can be further exploitedqualization. Using these
a posteriori probabilities and the symbol mapping functionthe symbol mean§u,. } and

variances v, } are defined in (2.13)-(2.14).

e = Y BP(sp = flz) (2.13)
BEeS

v = Y _|BPP(sk = Bl@) — [l (2.14)
BEeS

Recall that, fors and~ related byy () = 3, we have
P(sp = Ple) = Plep =)
= H%lp(ck,m = Ym|T).
Also note that, since Gray-mapping is assumed, the realaadinary components of each

symbol are independent and thus the varianggs:= var(Re s;) anduy ; := var(Im sy)

can be written

ver = Y (Ref)’P(sy = Bl@) — (Re ) (2.15)
BeS

ver = Y (ImB)*P(sy = Bla) — (Im puy.)*. (2.16)
BeS

11



Now, these estimated symbol meanscan be used for interference cancellation, in
place of quantized hard decisions. Note that this kind afrietence cancellation is com-
monly termed in literature as soft interference cancelfa{SIC). SIC is less prone to error
propagation as compared to feeding back hard decisions.ighecause symbol estimates
that are unreliable will have small LVs and small symbol measa consequence. Thus the
interference due to an unreliable symbol remains almodtened and only the interference
arising from reliably estimated symbols is canceled.

These are the pivotal ideas behind the iterative equalidetailed in the subsequent
chapters. The equalization algorithms discussed are s@gum nature. We begin with
symbol indexk = 0 and sequentially perform the three steps mentioned below&oh

symbol.

e Use current synbol means {u.} for SIC

e Update the LV using (2.12) and {u}.

e Re-estimate {ux} and {v;} using updated LVs.

The exact iteration structure for each algorithm is exm@diafter a description of the
algorithms in subsequent chapters.

2.5 Receiver Configurations

In order to compare the efficacy of turbo equalization, wesaber two receiver config-
urations: serial equalization/decoding, shown in Fig, a2l turbo equalization/decoding,
shown in Fig. 2.3. The equalizer block is same in either comdiion; it uses the ob-
servationz® to update LVs of bits mapping to th#&" multi-carrier symbol. In serial

equalization/decoding, the equalizer’s input LVs areiatided to zero and its output LVs

12



are passed to a soft-input decoder which generates finakbisidns. Turbo equaliza-
tion/decoding starts out this way, but, instead of genegdinal bit decisions, the decoder
updates the LVs and passes them back to the equalizer. Thkzsguhen updates the LVs
and passes them back to the decoder, and this process repeattal times before the de-
coder generates final bit decisions. The equalizer bloekK isiterative in that its LVs are
updated internally several times before being passed wabeder. Note that the equalizer
does not use the code structure directly; it assumes thargitwdependent and calculates
their prior probabilities from the input LVs

As for the notation in Figs. 2.2 and 2.B¢q Lq4c, and L. denote equalizer, decoder,
and coder LVs, respectively, on which the superscripts ando label input, extrinsic,
and output versions, respectively. The switsh, s,) is set to positiors), to initialize the

decoder.

13
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o | Iterative s, e - | o
7T Equalizer \S T = Decoaer —=
| a

Figure 2.2: Serial receiver configuration.

Lgq Lgq . e SISO
@ 11 | Decoder
O o) Iterative
x Equalizer
A Y
Léq Le, Lo Coder

Figure 2.3: Turbo receiver configuration.
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CHAPTER 3

Iterative Maximum Likelihood Equalizer (IMLE)

This technique derives its name from the fact thdt(%, m) is the maximum likelihood
(ML) decision statistic for bity, ,,,. However, as discussed earlier, computing the exact ML
decision metric is computationally infeasible. Heké (k,m) is approximated to reduce
computational complexity. In this chapter, first a genexipgression for the extrinsic LV is
derived. Then a simplified system model, exploiting thecttrre of the channel matrices,
is presented and the extrinsic LV are computed on the ba#iisssdimplified system model.
This results in substantial reduction in complexity. Fipahe extrinsic LV is simplified

for BPSK and Gray mapped QPSK constellations.

3.1 Derivation of the Extrinsic LV

The key idea is to first perform a soft interference candeltefSIC) using the symbol
means{ .}, then to apply a Gaussian model to the residual interferancenoise.The
resultingA L(k, m) approximation, denoted b Ly e (k, m), is much easier to compute.

We defineu, as

e = [Hos- s =1, 0, fier1s o, pv—1)" 3.1)

and use it for SIC. Notice that the mean for thé¢ symbol has been set to zero. This
ensures that the contribution of th& symbol is not suppressed from. Specifically, the

15



observation after SIC is written

Yy, = z— Hp, (3.2)
N-1

= hpsi+ > hi(s;— ) +w (3.3)
=0
Jk

-~

'

qg

whereh,. denotes thé'" column of H.
The residual interference vectgy, is modeled as Gaussian, independent;of The

mean ofq,, is

N-1
Blq,} = Y hi(E{s;} — ) + E{w}
j=0
ik
= 0.
The covarianc&,, is
Y, = Elayq}

N—-1
= Y hE{(s; — ) (57— 1) T A + S
j=0

j#k

N-1
= vjh;h + 3y, (3.4)

§=0

j#k
= HD(v,)H" + %, (3.5)

where

vV = [UO,...,Uk_1,0,0k+1,---,UN—1]t- (3.6)

Replacingp(xz|c = =) in (2.12) withp(y,|sx = ¥ (7)), the extrinsic LV becomes

Ae(bim) — 1o P Wilsk = VO W Pl = 00)
,m) = In .
5 veqit, P Wrlsk = OOV T Pl = 7o)
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Expandingp(y,|sr = ¥ (7)) using (3.3):

p(Yilsk =(v)) = Cexp {— (Y — V(7)ha) T2 (g — w(v)hk)] (3.8)

N = DN

= Cexp {— [T %Iiﬁ(v)lzhf E;jhk)} exp [Re (¢(7)g)]

(3.9)

Since the first exponential in (3.9) is invariant4o(recalling the PSK assumption), its

contributions to the numerator and denominator of (3.7¢ehari-rom (2.10), we find

eLoId(kvm/)/2 3 O
e 1
(e, ) 2 cosh(Loia(k, m')/2) ( )
6_L0|d(k7m/)/2
Plepm =1) = (3.11)

2 cosh(Log(k,m')/2)
Together,

exp [(—=1)" Lo(k,m") /2]
2 cosh(Log(k,m)/2)

P(Ck7m/ = ’}/m/) (312)

Sincecosh(Leg(k, m’)/2) is invariant toy,,, its contributions to the numerator and denom-

inator of (3.7) cancel. The remaining terms yield

3 eqyt, @0 [Re(¥(1)9k) + 3 3 (—1) Lol )|

2 neghr, €XP [Re(w(v)gk) + 33 e (1) Lok, m/)} ’
(3.13)

AL|M|_E (k,m) = In

whereg;,. := yi' 3, ' hy.

Calculation of (3.13) can be implemented in two stages. t ks produceg, from
y,. using the linear combineE;klhk. Next we compute the extrinsic LVs using and
{Lowa(k, m")}2m. Also note that, as emphasized,q(k, m) is not used when computing
ALme (k,m).
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This completes the derivation éfy e (k, m). In Sec. 3.5, expressions fop e (k, m),

. andwy, for specific constellationsjz., BPSK and QPSK, are derived.
3.2 Structure of Iterations

The IMLE algorithm proceeds as follows. Prior to the firstét#on,{ Loq(k, m) Yk, m}
are obtained from the output of a soft decoder, if availatm@therwise set to zero. These
LVs are then used to initializéu, }r—, and {v;}+'. We begin the first iteration by
working on symbol indexc = 0. The meang, and variances, are used to calcu-

late y, and X,,, which in turn are used to computg. From gy and {Laa(0,m)}—;,

{ALmie (0,m)} = are calculated and used to comp{itg0, m)} /. Finally, { £L(0, m)} =]
are used to updai®, andv,. Moving on tok = 1, the vectorgs, andwv, are used to cal-
culatey, andX, , and laterg;. This allows the computation fA Linie (1,m)}2 -, the
computation of{L(1,m)}¥=;, and the update gf, andv,. Thek = 2 case is tackled
next, thenk = 3, and so on, untik = N — 1. Finally, {L(k,m) Vk, m} are copied to
{Low(k,m) Vk,m}. This concludes the first iteration. The next (e.g., secatedtion
begins again at symbol indéx = 0 and proceeds through = N — 1. The algorithm
terminates after a specified number of iterations.

The computationally expensive step of the algorithm is traputation o, for each

k. In order to reduce the complexit},, is computed as an update Bf, . First,Xq,

is defined as:

Yo X, +uhihy Yk (3.14)

k
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Onceuy_, is recomputed using updated L\E,jzfH is updated tcEg)t using the matrix
inversion lemma as:

Avp 135" hy1hi g
Zél — EE)I . 1 Qkle 1 _kll Qr_1 (315)

dated
Where,A’Uk_l = UZI_)la e Vg—1-

Finally, the matrix inversion lemma is used again to compute

X5 hhEe !
3 = g 4 T (3.16)
k k 1-— Ukhk Eékhk

This reduces the complexity of computidl,, from O (N?) to O (N?). In spite of this
update process, th® (N?) update can prove to be very expensive for laigeThus with
the aim of substantially reducing the complexity, a simptifsystem model is presented
in Sec. 3.3. This simplified system model exploits the barstedcture of the channel
matricesH ”. Equalization based on this system model helps reduce thelegity to

approximatelyO (N) without a substantial performance degradation.

3.3 Simplified System Model

With proper application of the pulse shapes described iagh,the MIMO channel
{H “*“}ff_ L NAS negligiblé pre- and post-cursor ISI and a cursor coefficihtvith the

banded structure shown in Fig. 2. This implies that,, will contribute primarily to the ob-

servation elementsr, }72 | whereall indexing in this section istaken modulo-N. Thus,
good “local” estimates of;, can be generated using := [z;_p, -,z p]'. If we define
S = [Sk—w, T 73k+2D]tu Wy = [wk—Da s 7wk+D]t| andey := [é‘k—D, T 75k+D]t, then

3When the delay spread is long relative to the multi-carryentsol interval, it may be necessary to sup-

press post-cursor ISl using block decision feedback, asigé®d in [9]. We assume that this is not the case

here.

4As stated earlietH refers toH 2,
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we can write

L = Hksk + €k, (317)
where H . is the sub-matrix ofH built from rows{k — D,... k + D} and columns
{k—2D,...,k+ 2D}, and wheres;, denotes noise plus residual ICI and ISI. Numerical

studies have shown that, when pulse shapes are designefasth .’ is dominated by
the noise component and hence can be modeled as zero-messidBawith covariance
3.,. Note that, as a consequence of modildndexing, the elements ol from the
top-right and bottom-left shaded triangles in Fig. 2.1 w#lincluded in{ H .} .

Now, we user; and H, to computeA L. (k, m). We use the process described in

Sec. 3.1. For SIC, we define, as:

e = [tr—2D,- - =150, fer1, - - - pir2n]” (3.18)

and compute a partial observation after SIC as

Y = T — Hyppy
k+2D

= hposp + Z hij(s; — p;) + e (3.19)
j=k—2D
%k

7

whereh,, ; denotes thé;j + 2D)" column of H,..

The covariance matri¥X,, then has the expression

Y. = HDw,)HI+ %,

k
where,
Vp = [Uk—2Da oo U1, 0, Uy, - 7Uk+2D]t- (3-20)

Finally, the extrinsic LVA Liuie (k, m) is given by (3.13), wherg;, := y;'3_ 'y o.
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3.4 Computational Complexity and Other Similar Algorithms

The computational complexity for IMLE is dominated by theeérsion of the2D+1) x
(2D+1) matrixX,, , yielding a per-iteration complexity order 6f (N D?). Itis interesting
to note that IMLE-BPSK is similar to the probabilistic datsaciation (PDA)-based multi-
user detection (MUD) schemes proposed in [17]. Howeverlij,[the iterative symbol
detection strategy is applieafter a zero-forcing (ZF) transformation is applieddtoi.e.,
after the channel has been trivialized. Since the ZF tramsftion has a complexity order of
O (N3), itis much more costly than IMLE and IMSE since, typically< N. Essentially,
IMLE leverages the banded structureHf, while PDA does not.

IMLE is also similar to [18]. However, IMLE updates LVs fordividual bits and
passes bit LVs to the decoder, whereas soft symbol estirmegagpdated in [18] and bits
are detected via hard decisions on the final symbol estimatso note that whereas
[18] works in the time-lag domain, our scheme operates irfrdgpiency-doppler domain.
This is advantageous since the number of interfering sysibamaller for our scheme as

D < Ny,

3.5 IMLE Algorithm for BPSK and QPSK

In this section, we consider the BPSK and Gray Mapped QPSHKoelnonstellations
and simplify the expressions for the extrinsic LV, the syiim@an and variance. It is
assumed in this section that the simplified system modelad.us

For BPSK (M/ = 1), we have
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The LV updateA Ly e (k, m) for the IMLE algorithm simplifies to

exp(Re gx)
exp(— Re gx)
= 2Reg,

AL”\/”_E (k‘,O) = lIl

The symbol mean can be calculated as

1
e = Y (=1 Pleeo = 0) (3.21)
70=0
led(k‘,O) _ Lold(k 0)
_ e e (3.22)
2 cosh(Low(k,0)/2)

= tanh(Log(k, 0)/2), (3.23)

where (3.22) follows from (3.12).

To calculate variance;, we note in (2.14) that3| = 1 for all symbolss in the BPSK
and QPSK constellations. Thug = 1 — |u4|? for BPSK and QPSK.

On the other hand, for QPSK (M=2), we have

1 Yo (1 \M
v(v) = ﬁ[(_l) +i(=1)"]

The LV update\ Ly e (k, m) for the IMLE algorithm can be written as

>0 —oexp [Re(([0,71])gx) + " Low(k, 1)]

>0 _oexp [Re(([1,71])gx) + 3(=1)7 Loa(k, 1)]

expld; Re gi] 1, g exp |~ 5 Im((=1)7gy) + §(~ 1) Laa(k, 1)]

1
1

AL”\/”_E (/{3,0) = In E

~— | ~—

= In

expl— Regi] 20, Ly exp [~ Im((—1) i) + 3(=1) Laa(k, 1)]
= V2Reg;

ALme(k1) = In Z%):o exp [Re(v([v0, 1])gx) + 3(—1)" Loia(k, 0)]
o0 XD [Re(¥([n1,0])gk) + 5 (—1)7 Loia(k, 0)]
. exp[—i Im gz E}/O:O exp [% Re((—1)°gx) + 5(—1)" Loa(k O)}
expl s Tm 4] 521 g exp | 5 Re((—1)%0g5) + (—1) Log(k, 0)|
= —V/2Im G-
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For the symbol mean, a similar derivation to the one for BP&§ to

1 1
U = 7702: 'YOP Cko—’yo)gp(ck’lzrh)
. 1
% Z 1" P(cea =) Z P(cko =) (3.24)
= % tanh(Low(k, 0)/2) + % tanh(Log(k, 1)/2). (3.25)

Table 3.1 shows the steps in one iteration of the IMLE alganifor BPSK and QPSK
constellations.

This concludes the discussion on the IMLE algorithm.
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BPSK

QPSK

for k=0:N-1
-1
.l = (Hp D(vp) HY + Z¢,)
Y =xp — Hypy,
gk = Y Bg hi o
L(k,0) = Loid(k,0) + 2Re gi

i = tanh (@)

v =1— u%
Loig(k,0) = L(k,0)
end

for k=0:N—-1

3.l = (Hi D(wp)Hf +2.,) "

Y = xp — Hppy,

gk = Y Bg o

L(k,0) = Lo(k,0) + v2Re g

L(k7 1) = L0|d(k7 1) - \/ihngk

P = % tanh (L(I;,O)) + % tanh (L(g’l)

o =1 — |ugl?

L0|d(k‘, 0) = L(k‘, 0), L0|d(k7, 1) = L(k’, 1)
end

)

Table 3.1: Steps in one iteration of IMLE.
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CHAPTER 4

Iterative Minimum Mean Squared Error Equalizer (IMSE)

The main idea of the IMSE is to enhance the performance of amaim mean squared
error (MMSE) equalizer exploiting the prior LVs and the fenidlphabet of the constel-
lation. Whereas in IMLE we performed SIC before computingriazic LVs, here we
perform linear MMSE estimation, and compute the extrindis by applying a Gaussian
approximation to the estimation error. The chapter begitis aderivation of the extrinsic
LV update equation for the IMSE algorithm. Next, the itepatstructure is discussed. The
simplified system model, introduced in Sec. 3.3, can be usedlhstantially reduce the
complexity of the IMSE algorithm, too. The required modifioas are summarized. A
discussion on the complexity follows. As with the IMLE, silfied expressions for the
extrinsic LVs, the symbol mean and variances are derivethibBPSK and Gray mapped

QPSK constellations in the final section.

4.1 Derivation of Extrinsic LV for IMSE

The MMSE estimate of;, given the observatiom is [19]

~

Sk

E{s} + E{spx Y E{zx"} ! (x — E{x})

MMSE

— E{si} + E{sis;}hl (S + HE,HT) ' (x —E{z}). (4.1)
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Now, the bit independence assumption implies that the caves matrix>, is diago-
nal. Using the prior LVs, we wish to compui&{x} andX,. However, to ensurA L(k, m)
invariant to Log(k, m), we setLog(k, m) = 0, VYm. This results inu, = 0 andv, = 1
when estimating;,.

Using these conditiongy{x} is computed as

E{x} = HE{s}+ F{w}

= Hyp,
and
Yg =Duwy,
where, as before, we define
v = [Voy.,Vk-1,0, V41, ... ,’UN_l]t
and,p, = [po, - pe—1, 0, flis1s - - oy pv—1]”

Using these definitions, the “extrinsic” MMSE estimate ikcaéated as

5 = b (Sw+ HD(w ) H” + hhf') ™ (@, — Hypy) . (4.2)

- -

P
The extrinsic estimaté, can be viewed from an alternate perspective. The idea is
to consider SIC on the observatianand then using the resulting vector to find a linear
MMSE estimate ok,. The linear MMSE solutiorf, is modified to reflect the suppressed
interference, accordingly.
Next, it is assumed that the estimation erggr— s, is complex Gaussian with uncor-

related real and imaginary components.
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Equivalently,s;, is conditionally Gaussian with the means and variancesabelo

Sy = E{Sklse =v(v)} (4.3)
orr = BE{Re’ (8 — 5pq)lsk = ¥(7)} (4.4)
ony = E{Im*(5, — 5i4)lsk = (7)) (4.5)

Simulation studies have shown that IMSE’s provisiondgy # o} , is advantageous,
especially when complex alphabets along with Gray map@egriployed. Using complex
alphabets with Gray mapping means that the real and imagpaats of each symbol de-
pend on independent bits. In this case, the variance of tierel imaginary parts of the
symbol are dependent on the LVs of independent bits.

The quantitys, , can be computed as:
Shay = E{fi (@ — Hmw) |se = v(7)}
= fi (B{z|si =v(7)} — Hy,)
= ()i b (4.6)
In order to compute, ,, define
Ty = x—Hp,
sothats, = fia.

The real part o, can be expressed as

o = 34
Re (8) 5 [fz z (4.7)
Then it follows that
H _
ta = 5[] oo (3] o) 3]
4 flt E:iek|sk Eik\sk lt 7
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where, assuming CWGN and symbols with uncorrelated realraadinary components,
Yz = HDw)H"+3%,

Sarse = E{(@r—E{@ilsi = v(v)}) (@ — B{@xlsp = (M)} sk = ¥(7)}

= HD(’U&R — ka)Ht,

for v, from (3.6), andvy,  defined as (4.8), and, ; defined as (4.9).

t
ViR = [Vo,Rs---» U1,k 0, Ukt 1,Rs - - -, UN—1,R) (4.8)

Vpr = [Vors---sVk—11,0,Vkt11,- .- 7UN—1,I]t (4.9)

Putting the above equations together gives

o _ L[#]"[ HD(w)H" + £,  HD(vrr - vin)H'| [4; (4.10)
kR 4 fz H*'D(Uk7R—Uk7[)HH H*D(Uk)Ht—i‘Eiu fz )
Using
A L f . Ty
I = = k. ~
me = 5| 5] 2]
and similar methods, we arrive at
o _ L[ £]"[ HD(w)H" + £,  HD(vis - vin)H'| [ f, (4.11)
k. 4 |=Fi] |HD(wrr—ve)HY HDw,)H +3% | |- Fi

Note that the conditional variances do not actually depengl.dorhus it is not required
to compute the conditional variances for each realization(e) individually.

Finally, in order to use the extrinsic estimajeand its conditional density to calculate
the extrinsic LVSA Liyse(k, m), p(x|c = ) in (2.11) is replaced with(s;|sr = (7).
This implies that

AL (l{? ) 1 Z‘YEQ%O p (§k|5k = Q/)(’Y)) Hm’;ﬁm P(Ck,m’ = f}/m’) (4 12)
, M - n L — . .
IMSE E’)’Ggﬁil p (3k|5k = ¢(7)) Hm’;ﬁm P<Ck,m’ — fym,)
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Using the conditionally Gaussian assumption described,

R62(§k — §k) Im2(§k — §k)

g p— p— C —
p(5klsk = ¥(7v)) exp 207 1 207,

Next, recall thatP(cx,., = 7.) can be written as in (3.12). Substituting (3.12)
into (4.12), thecosh(Leg(k, m’)/2) contributions from numerator and denominator cancel
(since they are invariant tg,/), and due to the remaining term&Luse(k, m) becomes

Re?(8x—5k,~)  Im?(8x—5k ) 1 -
ZWEQ%O exp [_ 2;%; - 2;%11» =+ 3 Zm’;ém(_l)'y Loi(k, m’)}
2(3,—35,. 205, —5,.
Segu, exp [-REGta) IS0 Sia) 45 (1) Lo(h, )]
(4.13)

AL|MSE(k,m) = In

This completes the derivation of the extrinsic LV{SLiuse(k, m).

4.2 Structure of Iterations

Similar to the IMLE, the IMSE algorithm proceeds as followsior to the first iteration,
{Lo(k, m) Yk, m} are obtained from the output of a soft decoder, if availadni@therwise
set to zero. These LVs are then used to initiaze } ', {ver}th o {Vks}rg and
{vk}g:‘(]l. We begin the first iteration by working on symbol index= 0. The means
{m}n=, are used for SIC, and the variandgs.},_, are used to calculatg,, which in
turn are used to compustg. Next, the statistics of the conditional densities for tkiiasic
estimateyiz., 5, for everyy € {0,1}", 0§  andog ; are computed. Using thesg, and
{Lo(0,m)}M 25, {ALimie (0, m) } M-+ are calculated and used to comp{fg0, m) } M-,
Finally, {L(0,m)}; are used to updat@, vy r, vo; andv,. Moving on tok = 1, the
entire process listed above is repeated. The 2 case is tackled next, then= 3, and
so on, untilk = N — 1. Finally, { L(k, m) Vk,m} are copied tq Loq(k, m) Vk, m}. This
concludes the first iteration. The next (e.g., second)titardegins again at symbol index
k = 0 and proceeds through= N — 1. The algorithm terminates after a specified number

of iterations.
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The complexity of the algorithm is dominated by tBgN?3) computation off,, for
each symbol. A technique similar to the one mentioned forBMising the matrix inversion
lemma can be used to obtafiy as an update of,_,. However, the cumbersome update
only helps reduce the complexity of the algorithmd@(N?). A much more effective
complexity reduction technique, via the simplified systewdel in Sec. 3.3, is suggested

in the following section.

4.3 Using the Simplified System Model

The simplified system model is used to reduce the complekityool MSE, too without
sacrificing performance significantly. The idea is to usey ¢imé partial observatiom, and
partial channel informatio#Z ,, as defined in Sec. 3.3, respectively, to generate good local

extrinsic estimates;,. Similar to the IMLE, ., is redefined as in Sec. 3.8, p andv;, ; as

t
Vg,R = [U(k—2D,R)> -« U(k—-1,R)» 0, V(k+1,R)) - - - U(k+2D,R)]

t
and, v,; = [U(k—QD,I), e Vk=1,1)5 0, Vg 1,1y - - - 7’U(kz+2D,I)} )

respectively. Thew, is defined as the sum ef,  andv, ;. Proceeding with the IMSE

algorithm in this case results in extrinsic LV expressianslar to (4.13).

4.4 Computational Complexity and Other Similar Algorithms

IMSE bears similarity to the algorithms proposed in [15] 4b€], though there are
significant differences. First, in both [15] and [16], thdi@stion error is modeled as
complexcircular Gaussian. Simulation studies have shown that IMSE’s pimvifor
0—,37] #+ a,z,R is advantageous, especially when complex alphabets ate &exond, the
algorithms in [15] update the symbol means and variancee pec iteration (i.e., after
updating{AL(k,m), Vm}, "), whereas IMSE updates the symbol means and variances
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at every symbol index. It was demonstrated in [16] that symbol-rate updating isaae

tageous. Finally, [15] uses the full observation veatpmandating the computation of an
N x N inverse autocorrelation matrix, whereas IMSE (and [16¢) the partial observation
xy, requiring only the computation of@D +1) x (2D +1) inverse autocorrelation matrix.

Since, typically,D < N, this leads to significant computational savings.

4.5 IMSE Algorithm for BPSK and QPSK

In this section, we consider the BPSK and Gray Mapped QPSistethations and
simplify the expressions for extrinsic LV(s), the symbolaneand variances for the IMSE
algorithm. It is assumed in this section that the simplifigstem model is used.

Recall that the symbol mapping function for BPSK (= 1) was defined as

Then,s;.., = (—1) f{ hy.o € R, so that (4.13) simplifies to

i

exp[— Re? (8, — 510)/ 0k R
exp[—Re?(8), — 5r.1) /07 5]
2Re(8) i hio

2
Ok R

AL|MSE(]{T,O) = lIl

On the other hand, the symbol mapping function for Gray MdpgpESK (\/ = 2) was

defined as

[(=1)° +5(=1)"]

Sl

31



Therefore, in this case, (4.13) simplifies to
I e2(8,—5 m2(8,—5 i
S0, goxp |~ R thal SO Rea) 4 g (1) Log(k, 1))

Z}leo exp -_R02(§k—§k,7) _ Im?(8k—5k,5) + %(—U“Lom(k, 1)_

AL|MSE(/{Z,0) = In

20%71? 201%’1
(4.14)
[ Re?(5,—5 Im?2(8,—3 i
S exp |~y — 2l 4 41y Log(k, 0)

AL|MSE(/{Z,1) = In = — —— =
Z}m:o exp _ Re®(8k—8ky) _ Im*(3x—5k,5) + %(_1)’70[/0“(]{;’0)

20%71% 20']%’1 ]
(4.15)

The numerator of (4.14) usés., = ([0, 71]) f1 ko in forming
Re?(8k — 8ky) = Re*(8k) — V2Re(3) fi hio + %( Fihyo)?,
while the denominator of (4.14) useg, = v ([1,11]) f+ hso in forming
ReA (8= Se) = ReA(8) + VER() L Rk + 5 (F o)

Since the numerator and denominator of (4.14) have idértic 3, — 55 ), we pull the
exp[% Re(41) £ hio] terms out from they,-summations, cancel common terms, and
find

ﬂRe(gk)kahk,o.

2
Ok.R

ALwse(k,0) =
Similarly, the numerator of (4.15) useg., = ¥([70, 0]) f; b0 in forming
(8 = Se) = Tm(38) — VR0 o + 5 (£ Rk,
while the denominator of (4.15) uses, = ¥ ([0, 1]) £+ b in forming
Im?(8, — 5py) = Im2(8) + V2Im(3,) Fl hyo + %(ff hi0)?,

Since the numerator and denominator of (4.15) have iddritieH 3, — 5k.~), we pull the

exp[?‘/i Im(ék)kahkvo] terms out from the,-summations, cancel common terms, and find

\/§ Im(=§k)kahk,o

2
Ok.1

ALwse(k,1) =
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The expressions for the mean symbol depend only on the updstand not on the
algorithm that was used to obtain it. Hence they are idelrttidhe ones derived in Sec. 3.5.

For the BPSK {/ = 1) case,
M = tanh(Lo|d(k, 0)/2)

and for Gray Mapped QPSK\( = 2) case,

e = —— tanh(Laa(k, 0)/2) + — tanh(Log(k, 1)/2).

V2 V2

In order to calculate the symbol variances, it can be seamha = 1 — (Re puy)?
andu;,; = 0in the BPSK case, and that x = 5 — (Reu)? anduy,; = 3 — (Im p)?

in the QPSK case. Notice that, with uncorrelated real andjingaty symbol components,
UV = Vk,R + Vk,I-
Table 4.1 and Table 4.2 shows the steps in one iteration ofMi&& algorithm for

BPSK and Gray Mapped QPSK constellations, respectively.

BPSK
for k=0:N—1,
Fo= (Ze, + Hy D(vy) HY + hyohi')) ™ By
S = fi (zp — Hipy)
conpute o, , from (4.10)
L(k,0) = Loa(k, 0) + 207, 3 Re(8x) £1 o

[ = tanh (@)

vp=1—p2

Lowg(k,0) = L(k,0)
end

Table 4.1: Steps in one iteration of IMSE for BPSK.
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QPSK

for k=0:N—1,
fk = (Eek + H, D(’Uk)HkH —+ hhoth’O)_l hk70
$e=Fi (wn — Hypy)
conpute o} and o;; from (4.10)-(4.11)
L(k,0) = Loa(k, 0) + V20, 3 Re(8¢) £1 o
L(k,1) = Loua(k, 1) +V20,] Im(§k>kahk,0

e = 1tanh< )+\/—tanh< )

Vk,R = % - (Reﬂk) y Ukl = 5 - (Imﬂk)
Loi(k,0) = L(k,0), Loa(k,1) = L(k,1)

end

S

Table 4.2: Steps in one iteration of IMSE for QPSK.

4.6 Relation between IMSE and IMLE

Starting from the optimal detection strategy for transedymbols and trading off per-
formance for affordable complexity, two algorithnvez., IMLE and IMSE, are developed
in this thesis. In the light of this common starting poinséems imperative to probe if the
IMSE and IMLE are related in some way. In this context, thistise shows that the two
algorithms developed are similar. In particular, for sfieahoices, the two algorithms are
identical. This section shows that for the BPSK constelfatthe IMLE is is identical to
the IMSE, when the estimation error for the extrinsic estesas assumed to be circular-
Gaussian distributed. Note that here, we use the generedssipns for IMLE and IMSE
andnot ones using the simplified system model. However, this et can be shown
for the algorithms for the simplified system model followiting same procedure.

Consider that at some iteration, all the L&qq(k,m) : &k = 1,2,--- /N ;m =

1,2,---, M} obtained by IMLE are identical to those obtained by the IMSEBnsider
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also that the most current symbol medng } and variancegv, } are identical for IMLE
and IMSE. This can be assumed since the symbol means andagsiare computed solely
using the updated LVs.

The extrinsic LV for the BPSK constellation using IMLE is givby
Lime(k,0) = 2Reg
— 2Re (yf Z;klhk) (4.16)
as shown in Sec. 3.5.

Now, for IMSE under the aforesaid assumption, the extrib¥ics given by

exp (7_|§k;:§hk‘2>
Livse(k,0) = In : I;{ . (4.17)
exp (—|Sk+f;C hk\2>
20%
In (4.17),0% is defined and calculated in (4.18).
0’]3 = E[§k|8k:ﬁ], ﬁES
= fiZq. S (4.18)
Note thats? does not depend of
Again, in (4.17), the extrinsic estimatg is calculated as
where using (3.2) , we obtain
5. = fily,. (4.19)
Now, using the matrix inversion lemmg, can be written as (4.20).
fr = (Zw+ HD(w)H" +hhl’) " by
— (2, +hh) Ry,
> 1h
_ a,k (4.20)

1+ RS hy,
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Using (4.18) and (4.19) in (4.17), the extrinsic LV can bedifred to

2Re (hE f, fiy
Limse(k,0) = (Hk i ye) . (4.21)
fk’ Eqk fk
Now substituting (4.20) in (4.21), we write
2
o 2 (P2 S0 S0 kil 2 ) (14 RS e )
Livse(k,0) = 2
(P22 S0 35 b ) (1+ RIS Ry )

(4.22)

Finally, noting thamkHE;klhk € R in the expression above, we obtain
Lwse(k,0) = 2Re (h}j E;klyk,> . (4.23)

ThenLie (k,0) = Livse(k, 0) from (4.16) and (4.23). The calculation of the extrinsic
LVs is the only step that differs in the two algorithms. Alsbe values of Log(k, m)},
{m} and{wv;} are initialized to the same values for both algorithms. Tihean be seen
that the algorithms are identical.

This concludes the discussion on the equalizer algorithms.
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CHAPTER 5

Error Control Coding

The aim of this thesis is to evaluate the performance of tlsggded equalizers in a
coded system with a receiver configured as a turbo-equdbizexs an iterative equalizer
followed by a SISO decoder). Hence, the design of the errntrabcode and the corre-
sponding decoder is not the primary focus of this thesis. él@w the error control coder
and decoder are an integral part of the turbo-equalizagtumps Thus a short discussion
on this aspect of the problem is presented. The selectedisaldscribed. The choice of
the decoder is also discussed. The final section of this eh&mtuses on the choice of the

interleaver.

5.1 Selected Coding Scheme

The turbo equalization idea has been used in a number ofcagiphs. In keeping
with most of these, we choose to use convolutional codes lirspstem. We choose to
use a code with relatively small memory in order to have a decwith relatively low
complexity. More specifically, we wish to use the convoloibcode with memory = 2

with the generator matrix
g(D) = |1+D* 1+D+ D? (5.1)
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In order to feed back soft information (in the form of LVs) feetequalizer as shown
in Fig. 2.3, we require a soft-input soft-output (SISO) aodEhe input to this block is a
stream of LVs for input bits. As its output, it generates théslfor the bits that are the
result of convolutionally encoding the input bits using tduavolutional code specified by
(5.1). In order to achieve this, we use results from [22].
The first result states that given statistically independernu, € {0, 1}, the LV of a; @ as,
L(a; @ az), is given by

1 + eL(al)eL(GQ)

L(a; ®az) = In eL{a1) 1 oLlaz)

= sgn (L(a1)) sgn (L(az)) min{|L(a1)|, [L(az)[}, (5.2)

where L(a;) is the LV for bita;, ¢ = 1,2. Building on this, it can be shown that for

statistically independent;, € {0,1} where,i =1,2,--- , M,

Llay®ay®---®ay) = 2tanh™’ (Hf\il tanh (L(ai)/Q))

Q

(I, sgn (L(a;))) min {|L(a1)], [L(az)], -+, [L(ar)]}

(5.3)
5.2 Non-Systematic Codes versus Recursive Systematic Cede

For our turbo-equalizers, we prefer to use the Non-Systergaherator (NSG) matrix

(5.1) over the Recursive Systematic generator (RSG) mgitren in (5.4).

1+ D?

@) = 1+ D+ D2

(5.4)

This choice seems counter-intuitive from a Turbo-Codespmstive which suggests
that codes defined by RSGs outperform those defined by thespammnding NSGs. But,
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codes defined by RSGs run into problems with the SISO-coder.clear that for a RSG,
the parity bit at any point has the influence of all previoysuits. Equation (5.3) shows
that the magnitude of the LV at the output of the SISO codeeleted to the LV with the
minimum magnitude encountered at the input. Thus even rigleibit is unreliable in the
input, all subsequent outputs have very low reliabilityisTédversely affects the equalizer
when these LVs are fed back. In contrast, the output LV of feo81SO coder using a NSG

depends only on a maximum of+ 1 input LVs and performs better.

5.3 Choice of Decoder

A number of decoders are available for decoding convolafioades. Again, we stress
that we wish to evaluate the performance of the equalizexsystem with coding. Thus we
choose the bit error rate optimal MAP decoder, hoping thageréormance loss is incurred
by the decoder. Specifically, we use the well-known MAP optiBCJR algorithm in [23].

In order to keep the decoding complexity low, we use codds svitall memory (smahu).

5.4 Interleaver

As seen from Fig. 2.3, an interleaver is used in the tranemdthd a corresponding
de-interleaver is used in the receiver. In our experimemsiyse a block interleaver. This
interleaver stores the values into a matrix row-wise ancegars the output by reading
out the stored values column-wise. This works well, sin@eftinction of the interleaver
is merely to scramble bits at the output of the coder to dgstre correlation introduced
as far as possible. The interleaver makes our assumptiorependent bits for the IMLE

and IMSE seem more realistic. The error events at the oufpghiecequalizers are highly
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bursty in nature. The interleaver helps distribute theseravents evenly in the stream
input to the decoder.

This concludes the short discussion on the error contrahgoscheme used. All the
relevant blocks of the proposed system have now been destués the following chap-
ter, we present simulation results and draw conclusionserefficacy of the algorithms

developed.
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CHAPTER 6

Experimental Results and Conclusion

In this chapter, the performance of the designed equalizetharacterized through
simulation results. First, the setup for the simulationdascribed. Next, the pulse shapes
and their success in shaping the channel into the desiredebdastructure of Fig. 2.1 is
validated. Then benchmark/reference configurations aredaced against which the per-
formance of the equalizers is measured. The performandeeadédualizers is presented.
Important conclusions that are drawn are listed. Findtlg,last section presents pointers

for possible future research directions.

6.1 Experimental Setup

The experiments performed employed BPSK and (Gray-mapgpEe&K constellations.
SNR!-variance CWGN noise is used along with a WSSUS Rayleigmfpchannel with
uniform power profile (i.e.g? = N, ! for 0 <1< N,). For the channel and pulse shapes,
the design choices made akg = 1.5N,, N, = N, + N, /2, andD = [fgN]| + 1 (from
[9,16]). We note here that the pulse shape designs only @wsmehstatistics. Even though
pulse shaping give#l the desired structure there are small leakages for practieanel

realizations. Thus, the equalization algorithms use d#ligarger value ofD while using
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the simplified system model than that used for the pulse desigually the value oD,
for the equalizer is set t®., = D + AD. We chooseAD = 1.

For the MCM,N = 64, N, = 32, andN, = N (i.e., no guard interval) are chosen and
the system studied for maximum Doppler frequendigs= 0.03 and f4 = 0.01. Recall
that f, is normalized to the chip rateg, r(q) = Jo(27 f4q). Perfect channel knowledge
is assumed. Hence, pilots are not employed. Note that ipds not larger thanV, the
block DFE configuration suggested [9] is not used for the &tmn results presented.

At the transmitter, i.i.d. information bits are coded, ni¢aved, and mapped to sym-
bols. Coding and interleaving is performed on blocks of 40tkuarrier symbols. The
block interleavell ensures that bits being mapped to symbols have very lowlatoe.
These symbols are then modulated by the PS-FDM transmagaritbed in Sec. 2.1 and
transmitted through the doubly selective channel, whoabzedions were generated us-
ing Jakes method. At the receiver, the windowed frequenceyaio observationc™ is
computed according to (2.4) and passed to the equalizdgooding stage. Both serial
and turbo equalization/decoding configurations (i.e., Eig and Fig. 2.3, respectively) are
simulated, each with IMLE and IMSE algorithms. Note thatyothle low-complexity ver-
sions of the IMSE and IMLE resulting from the simplified systenodel of Sec. 3.3 are
simulated, since the algorithms in their original form haeey high computational com-
plexity. For turbo equalization/decoding, one equaliteration is inserted between each
decoding iteration. Sixteen turbo iterations are used &wh BPSK and QPSK constella-
tions. Increasing the number of turbo iterations further bt enhance performance. For

each BER data point, we average over 3000 multi-carrier sysnb
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6.2 Pulse Shapes and Channel Profile

Out of the three pulse shape designs mentioned in Sec. 2.8omgder only the first
two, viz., the scheme employing optimized pulses at the transmititbr @P-OFDM like
pulses at the receiver and the scheme employing jointlyropéid pulses. The third scheme
mentioned in Sec. 2.2 employs guard intervals, and doesawet full rate. However, the
interested reader is referred to [16] for results on thieeuh

Fig. 6.1-Fig. 6.4 show the SINR maximizing pulse shapes amcesponding shaped
power profile for the channel. Note that our design choicgsyini,e = 1 and Lps; = 1.
Thus, for each pair of pulseg:,,} and {b,}, the three channel power profiles (in dB)
correspond tgb) the pre-cursoH ", (c) the cursorH “* and(d) the post-cursoH “",
respectively(from left to right). Note that all the ploteat SNR= 2dB. From the plots,
it is clear that the power of the pre- and post-cursor chanaed negligibly small. This
supports the choice of not using a block DFE as suggested.iit[® also clear that the

obtained channel profile agrees with the target responsgn@pamall amounts of leakage.

6.3 Performance References Chosen

In order to characterize the performance of the IMLE and IMBE following perfor-

mance references/benchmarks are used:

e Perfect Global Interference Canceler(PGIC): This scheme has one equalization
and one decoding iteration, in which, the equalization sddMSE estimation of
s assuming all interferences’} j.a)(i.x) is known perfectly. This can be viewed
as the best performance achievable by the IMSE and IMLE usiagntire cursor

channel matrixH .
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Figure 6.1: Optimized transmitter pulse shapes and chamoéles for f, = 0.01, (a)
pulse shapes, (b) pre-cursor, (c)cursor and (d) post-cMBdO channels.
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Figure 6.2: Optimized transmitter pulse shapes and chamodéles for f;, = 0.03, (a)
pulse shapes, (b) pre-cursor, (c) cursor and (d) post-cMBdO channels.
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Figure 6.3: Jointly optimized pulse shapes and channellgsdior f; = 0.01, (a) pulse
shapes, (b) pre-cursor, (c) cursor and (d) post-cursor Mtifiénnels.
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Figure 6.4: Jointly optimized pulse shapes and channellgsdior f; = 0.03, (a) pulse
shapes, (b) pre-cursor, (c) cursor and (d) post-cursor Mti¥iénnels.
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e Perfect Local Interference Canceler(PLIC): This scheme has one equalization
and one decoding iteration, in which, the equalization gegmilar to PGIC except
that, when estimating;’, only neighboring co-cursor IC{s{}5*?2, is known;
ISI and non-neighboring ICI are unknown. This PLIC lower bds the BER of
the simulated reduced complexity iterative equalizers;esiat best, they too cancel
only local interference. (It is interesting to note that gr@ximity of PLIC and

PGIC performance curves measures the success of the pulse 'dexsigpof-target

interference suppression ability.)

It is interesting to note that theGIC and PLIC are developed from MMSE esti-
mation. However, it is trivial to show that under the assuons for PGIC and
PLIC, IMLE acheives the same bounds. HenceRI@&GC andPLIC are performance

bounds for the IMLE, too.

e Complex White Gaussian Noise Channe{(WN): This refers to the performance
of the convolutional code over a CWGN channel, represerBB& performance
achieved in the absence oiterference andfading using a BER optimal MAP de-
coder. This represents bounds the performance attainabig the selected code

over any CWGN channel with or without interference.

e Linear MMSE Equalizer (LIN): This refers to the performance of the MCM system
with standard linear MMSE based equalization and one dagatéiration, where the

linear MMSE estimates are generated using (6.1).
s® = HEOM (H“"”H‘“’)H + Ew) - " (6.1)

The benefits of exploiting available LVs and the finite alpdtatf constellations is

highlighted by comparing the equalizers designed witrdinfrdMSE equalization.

48



6.4 Performance Characteristics

Here we characterize the performance of the proposed ghksged multi-carrier mod-
ulation system employing iterative equalization and cgdifEnd-to-end coded BER is
used as a performance measure for the proposed iteratiadizgys. Note that, in or-
der to provide a fair comparison across constellations, BHbhotted against the ratio of
information-bit energy to noise spectral density. In thBE®R plots,MLL andMSkE refer to
IMLE and IMSE, respectively, wittk decoding iterations. In particuldlL1 andMS1 rep-
resent the performance of the IMSE and IMLE using one-shoakzation and decoding.
This is the performance of the receiver when used in the acoraigpn shown in Fig. 2.2.

Fig. 6.5 depicts the performance of the equalizers in a sysi&ing optimized pulses
at transmitter only, whereas, Fig. 6.6 depicts the perfogaaf the equalizers in a system
using jointly optimized pulses when a BPSK constellatiomsed. Fig. 6.7 and Fig. 6.8 de-
pict the performance of optimal transmitter pulses andtpioptimal pulses, respectively

using the QPSK constellation.

6.5 Conclusions

From the performance characteristics presented, theafimigpconclusions are drawn.

e Bounding Performance
In Figs. 6.5-6.8, the gap between tAeIC andPGIC curves is less thandB for all
cases, implying that, with the pulse designs, the out-afetalCI/ISI is negligible,
even at the high Doppler frequency ff = 0.03. This also means that a very small
sacrifice in performance was made, by choosing to use thdiedsystem model,
in spite of the large computational savings it provides. cAi®tice that, for either
constellation, PGIC/PLIC forfy; = 0.03 is lower thanf; = 0.01. Recall thatD
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Figure 6.5: BPSK with transmitter pulses and CP-OFDM rezranindow for (a)f; = 0.01
and (b)f; = 0.03.
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Figure 6.6: BPSK with jointly optimized pulses for (4) = 0.01 and (b)f; = 0.03.
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Figure 6.7: QPSK with transmitter pulses and CP-OFDM remrewindow for (a) f; =
0.01 and (b)f; = 0.03
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Figure 6.8: QPSK with jointly optimized pulses for (&)= 0.01 and (b)f; = 0.03
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increases withf,; and provides diversity gain that could be exploited at thet o

complexity.

Performance of IMLE versus IMSE:

The BER plots for BPSK constellations show that the perforoezof the equalizers
in all cases considered approach BidC at about an SNR dfdB. This tells us that
for BPSK, both IMSE and IMLE are near optimal among all equeats that use the

simplified system model.

The BER plots for QPSK show that IMLE slightly outperforms$# at high SNR.
We conjecture that IMSE is less robust to violations in theu§agan interference

assumption that are more likely to occur in high-SNR scesari

Comparison across Pulse Shaping Schemes

Figure 6.7-6.8 suggest that the transmitter-only and jmarismitter/receiver pulse
designs give similar performance At = 0.01 and the transmitter-only scheme is
superior atfy = 0.03. While the joint design is expected to yield less out-ot&dr
ISI/ICI, non-rectangular receiver windowing colors theduency-domain noise, ren-
dering the simplified model of Sec. 3.3 sub-optimal. Henoce canjecture that the
advantages of the lack of noise coloration outweighs thddwubpf increase in out-

of-target ISI/ICI at higher Doppler for the designed eqeexs.

Comparison across changingfy:

We note that, agy increases, PGIC/PLIC performance improves (as a conseguen
of diversity) while IMLE/IMSE performance degrades. Weiatite this degradation
to error propagation during iterative equalization. Eveyvee find that IMLE perfor-

mance is withinl.5dB the PLIC bound af,; = 0.03 when transmitter-only scheme
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is used with QPSK. In all cases, it is clear that the algorghparform significantly
better than arO (N?3) standard non-iterative linear MMSE.IN) based equaliza-
tion strategy. This is remarkable considering that all theadizers considered have

O (N D?) complexity.
6.6 Final Remarks

We presented a new approach to equalization for PS-FDM iptbsence of doubly-
dispersive fading. For suitably constructed pulse seqeetashape ICI/ISI, it is demon-
strated that the affordable complexity equalization athars described come close to mit-

igating a substantial part of the interference present.

6.7 Future Work

A few of the interesting ideas that still need investigaiiciude:

¢ Information-Theoretic Analysis of Pulse Shaping Communication over doubly
dispersive channels has received a lot of attention. Puksgesl multi-carrier modu-
lation is one such scheme. Even though some recent work helsdd on it, there is
almost no literature on the information theoretic analpdipulse shapes, thier opti-
mality, and their limiting performance over doubly-seleetchannels. For instance,
the pulses are designed using a SINR maximizing criterioowever, whether this

criterion is optimal or not is not well understood.

e Extension of Pulse Shaping Schemes to Multi-Antenna SystesnMulti-antenna
systems are known to provide large spatial diversity galeistension of the pulse
shaping schemes to multi-antenna systems, along withbdelieagqualization and/or

coding algorithms will be valuable.
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e Analysis of Iterative Equalizers. The iterative equalizers proposed in my Master’s
Thesis work very well with the pulse shaped multi-carrierdulation system. How-
ever, the choice seems rather ad-hoc. In particular, thherecawell defined grounds
on which we can compare iterative equalizers (among themselnd with other
high performance equalization algorithms). It would beugdle to find methods of

comparing iterative equalization algorithms.
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